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RESPONSE TIME AND STRATEGIC CHOICE

The study of response times (RTs) has a long history in experimasyahology going back
to Donders (1868) who was interested in measuring the time that a partiogpothetical

mental stage involved in a task can take. This was when the idea that respoesean

help to infer the mental processes behind psychological phenomena tddkuce 1991).

Since then ‘mental chronometry’ (Jensen 2006) was used by psycholmgjsther with the
choice or survey data to make inferences about the processes underlyicesabdio analyze
behavior under time pressure. As it was recently stated by Ariel Rubin@807, 2016),
measuring response time allows us to ‘open the black box of decisiomgigRubinstein

2007, p. 1243). The same sentiment is shared in a thorough reviescerit experimental
economics studies that use RTs (Spiliopoulos and Ortmann 2018).

In spite of the view that RT can be utilized not only in testing hypsts related to the
process of choice but also in order to better understand preferences (Konawdl&rajbich
2019a), its usage in experimental and behavioral economics was limigdstiént, until very
recently (a known exception is Wilcox 1993). The tide started to chanthethe advances
in models of procedural rationality and studies of strategic sophi#tin and deliberation
costs (starting with Stahl and Wilson 1994, 1995 and Nagel 1995ghwhade RT a natural
candidate for a choice characteristic that allows uncovering of the detafleeadecision
process under the assumptions of bounded rationality. Another reasthre fintroduction of
RT to experimental economics is the emergence of neuroeconomics, which hghthrany
psychological and neuroscientific research tools to light, includingahehtonometry.

Response Timein the Models of Decision Processin Games

There are two broad classes of models which make explicit predictionsthiedRT of choice.
The first is dual-process theories (DPTs) (Kahneman 2003), which agbenpeesence of
two decision systems: fast intuitive system and slow deliberatiesysrhe former system
(type 1) is useful in situations when decisions should be made tastaously. It involves
‘hot’, emotional responses and has most likely evolved to make choicepigly changing
situations. The latter system (type 2) is slower and ‘cold; and is teipfsituations when
there is no time pressure and complex reasoning can help to make the choice.

The second class of theories comes under the titles of sequential samplorg)dtion
accumulation or drift-diffusion models (DDMs) (Ratcliff 1978; Smiand Ratcliff 2004;
Krajbich et al. 2015a). Here the process of choice among several optioqisty modeled
as a random process. The idea comes from the neurophysiological olisettati neurons
in the brain are noisy and, thus, as information about the availalilensgs accumulated, the
more desirable option is chosen with higher probability. Mathemayidail is represented by
a random walk with drift and two barriers, A and B (in the event of twtanps). The crossing
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of one of the barriers by the random walk represents the time pointatifng the choice
(A or B). Here the steeper the drift, the higher the difference intieliof the two options;
the greater the difference in utilities, the faster the choice will be madeodels of this type
it is possible to make explicit predictions about the speed—accuraay-tfaéhvolved in a
decision. If the time available for choice is limited (exogenouslgdogenously), then the
resulting choice will be fast but not very accurate. However, if the tsmet constrained, the
decision will be slow and the probability of choosing the best optidl be high.

The two classes of models raise different questions and utilize diffgnees of data. Both
are also subject to criticism. According to Keren and Schul (2009), daalegs theories
are never precisely formulated: what type 1 and type 2 systems are supgpasgaesent
in any given task is usually decided by the researcher, who uses his or hentition
without resorting to any objective procedure. This can lead to far-fetchedusions which
ignore other possible explanations. Rustichini (2008) provéaesverview of pros and cons
of dual-process theories and unitary theories, where the latter assuntleetteais only one
system that makes decisions by aggregating information available fifftaredt sources. He
comes to a conclusion, similar to that of Keren and Schul (2009), that eeatcaf the dual-
process theories is that the characteristics of the type 1 and 2 systems depegeding on
the experiment (for example, in some instances the type 1 system idsisgand in others
reactive to fear).

Drift-diffusion models are criticized for putting too much emphasisspeed—accuracy
trade-off. For example, Pennycook et al. (2016) notes that in choiceisitaathere there is
conflict (for example, when the stereotype is not in line with base-nd¢ernation; De Neys
and Glumicic 2008), the RT, if seen in the light of DDMs, might besimierpreted since RT
increases when conflict is introduced even if discriminability of theaoystistays the same.
Thus, RT might be modulated not only by the discriminability af tiptions but also by other
factors.

Studies Based on Dual-Process Theories

One of the most cited but, at the same time, controversial studiesatégitt choice that
tests hypotheses based on dual-process theory is Rand et al. (2012). tlidgiuses a
series of standard one-shot public goods (PG) games with four playersiér to establish
a connection between RT and the contributions to the public good (d=ta evllected on
Amazon Mechanical Turk). With the sample of 212 subjects, Rand et al. (%@t#i2hat high
contributions are associated with low RT and low contributions witgih IRT (RT is measured
as the time between the appearance of the decision task on the screen and tiiedsubm
answer). In addition, if RT is forced to be low (time pressure) thenrdmrttons tend to be
high. Conversely, if RT is forced to be high (time delay), the contidns are low. Rand et al.
(2012) conclude that cooperative behavior is intuitive and that theceho free ride takes
mental effort and time.

The results of this study came under close scrutiny after its publicalimghdg et al.
(2013) and Verkoeijen and Bouwmeester (2014) both failed to replicateshié#s from Rand
et al. (2012). These authors noted aberrations with data analysis (flusier of 50 percent
of subjects from analysis based on their inability to respond on timejepresence of many
uncontrolled factors that can influence RT (for example, subjects couldtftirg rules of the
game between repetitions).
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Another line of critique comes from experimental economics studies. Reetfd. (2018)
tested the main conclusion of Rand et al. (2012), that generosity in PG danmgitive.
Recalde et al. (2018) used modified PG games in which unique dominanggteafiglibrium
is in the interior of the action space for each playd@mey showed that in this case fast
decision makers’ choices are not influenced by the position of the eduiitibThis implies
that for the PG games with equilibria in the lower half of the action sfestedecision makers
tend to be more generous than slow decision makers. However, if equiliis in the upper
half of the action space, fast decision makers become less generous than tlleckion
makers. This and additional tests make Recalde et al. conclude that the chééstsletision
makers are best explained by mistakes (including the prevalence of choities aftions
which are dominated from both individual and group perspectives) andardriven by
intuitive generosity. Similar conclusions about mistakes are reachedexpamimental study
that considers beauty contests (Kocher and Sutter 2006). Here, fast decidiersrare less
efficient and are slower to reach equilibrium in the repeated setting whicloiatdbuted to
higher mistake rates.

In spite of this criticism, other studies support the intuitiveoperation hypothesis.
Cappelen et al. (2016) examine response times in the dictator game (DG )cavieful
control over the factors that might influence RT. In particular, Cappelen €G@l16) conduct
additional tests on swiftness of choice and cognitive ability. Sw&tis measured by the
time it takes subjects to answer three standard demographic questigrsti@oability is
measured by a 20-item progressive Raven test. Cappelen et al. (2016) civaedoclusion
that, after controlling for swiftness and cognitive ability, the cexgtors are still faster than
free riders. Nielsen et al. (2014) obtain the same result with a large-Béalgame and
conclude that free riders act slower than cooperators. It should be memtioat these two
studies are not immune to the ‘fast decision makers make more mistakiegiediscussed
above. Moreover, the results for the DG should be considered with cadtioghdg et al.
(2016) conducted large-scale experiments with around 1400 subjectgttirem countries
and did not find any differences in giving choices in DGs under time pressucognitive
load, which casts doubts on the findings of Cappelen et al. (2016).

Grimm and Mengel (2011) look at ultimatum game (UG), where they deltbbr delay
the response of the second movers by around 10 minutes (the subjeets artpiestionnaire
before their response decisions). They find that after the delay thereaasemore accepting
choices than in standard setting. This does not per se support théventcboperation
hypothesis, but does demonstrate that rejections in UG do result &strerhotional reaction
that has to be expressed immediately after observing the choice of thesproim this setting,
where only two actions are available, the change in behavior can hardlyrimited to
the mistakes made by fast decision makers. These findings, thus, sthmpdual-process
theory.

Nishi et al. (2017) extend the intuitive cooperation hypothesis follaw-up experiment
to Rand et al. (2012) in part as a response to the criticism just mentibligd et al. (2017)
put forward the social heuristics hypothesis (SHH) which postul&i@spteople are fast at
choosing options that they use in everyday life, be they cooperativaton the environments
where reputation plays a role, cooperative behavior might be ubiguifor constitute a
social norm), while selfish choices are uncommon. On the contrary, incerméents where
selfishness is a norm, cooperative choices will be considered urudtnals, from the
perspective of dual-process theory, we should expect fast intuitiveigraghen an action
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representing a norm is chosen and slow deliberative reaction when an actnwidiates a
norm is preferred.

Nishi et al. (2017) conduct repeated social network PG games experimengslitstand
India (using Amazon Mechanical Turk). First, they find that overall coatien rate in the US
is significantly higher than in India (75 percent versus 44 percent ingh&al environment,
and 88 percent versus 37 percent in the cooperative environment), whicbstsigjgat the
common behavior is different in the two countries (cooperation in tBeadd defection in
India). Second, Nishi et al. (2017) show that the negative correlattnween cooperative
choices and response times in the US is reversed in India: selfish choicesdréaster there.
These findings directly support the SHH and provide evidence ofrineapy role of social
norms in decision making. However, completely different interpretatibthe differences
between the American and Indian data is possible if RT is considered iigtiteof DDMs,
which we turn to in the following section.

Studies Based on Drift-Diffusion M odels

Not many studies of strategic choice utilize DDM as the hypothesistgéing theory. Drift-
diffusion models were originally used in perception studies in ordepredict how the
perceptual systems in the brain discriminate between two visual stibatdir, these models
were adapted to studying individual choice. Many studies have dematsaakemarkably
good fit of DDM to the binary value-based choices, in particular, the résalof speed—
accuracy trade-off was shown to be matched very well (for example, Milesavt al. 2010
fit DDM to the value-based decision-making data under time pressure)lifenature is still
in its infancy and not many attempts have been made to apply DDM to strategtions.
Nevertheless, Krajbich et al. (2015b) used DDM to clarify the connectiomdsat RT and
choices in DGs and PG games. In part, their goal was to show that the consladiout
RT in strategic environments made under the assumptions of dusdgwdheories should
be taken with caution. They conducted several experiments to show tlaseanference
results, which label, say, cooperative behavior as intuitive based ah Rfipmight be an
artifact of the experimental design. Their argument, derived from DDMlres the notion
of discriminability: the less is the difference in utilities fromethvailable options, the longer
the choice process will take. Krajbich et al. (2015b) conducted an experinmeméwsubjects
were presented with a series of mini DGs that varied in the amount of neoselyject should
have sacrificed in order to increase the payoff of the receiver. To estimaléfdrence of the
values derived from the choices, Krajbich et al. (2015b) fitted inequalitysa utility function
to the choices of each subject. It follows directly from DDM that pro-sosiddjects should
make their preferred choice (more money to the receiver) quicker than thehsgibiice. The
opposite holds for selfish subjects: they should make their prefesaigh choice quicker.
The data of Krajbich et al. (2015b) support DDM predictions: the cati@h of the RT with
the pro-social choice has opposite signs for pro-social and selfifcssibl hus, in an exper-
iment, where RT for choosing selfish or pro-social actions are compaeefhster RT will be
found for the action which is chosen more often. For example, if therenare selfish than
pro-social subjects in the experiment, the selfish choice will haverestRT and vice versa.
Krajbich et al. (2015b) use this intuition to revisit the resuftRand et al. (2012). They run
the same public goods experiment, but consider three levels of trggmabper capita return
from the public good. Figure 3.1 presents the results. Krajbich é€2@15b) demonstrate that
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Note: Consistent with DDM, in low return condition fast contrilmris are lower than slow ones (two-sided
t-test,p = 0.00001), while in the high return condition fast conttibos are higher than slow ones (two-sided
t-test,p = 0.03).

Source: Krajbich et al. (Krajbich et al. 2015b, fig. 3.4).

Figure 3.1 Average contributions to public good in three experimerith different
marginal per capita returns (MPCR =0.3, 0.5 and 0.9)

with the low return the selfish option is faster than the cooperatitiermpw~hereas with the
high return the cooperative option is faster (as in Rand et al. 2012).

Thus, Krajbich et al. (2015b) conclude that, in line with DDM, thetaiiee in utilities of
the two options and the composition of the subject pool determiriehwiipe of action is
faster: if a great deal of monetary units have to be forgone in ordectease group payoff,
selfish choices will be faster as selfish subjects will find it easier to mageliice. On the
contrary, if few monetary units should be forgone to increase gralfare, pro-social action
will be faster since it will be simpler for pro-social subjects to cleos

Finally, DDM interpretation of the data might also explain the défece in RT observed
in Nishi et al. (2017), discussed previously. The Indian populegeEems to have more selfish
types than the American population, thus, according to the argument ab®gbpuld expect
faster RT for selfish action in India and faster RT for pro-social actiohéntS, exactly what
was found in Nishi et al. (2017).

Studies Based on Response Competition Dual-Process Theories

Some researchers note that although the DPT critique of Krajbich et 4bI§2¢s on target,
it completely ignores the diversity of models and approaches in DPT literand, thus, the
results of Krajbich et al. (2015b) should not be taken as an ultimatdidatsdbn of DPT. In
particular, the arguments of Krajbich et al. (2015b) go against the @aveference) practice
of labeling fast RT choices as intuitive and slow RT choices as deliberativeetéw, as



74 Handbook of experimental game theory

Pennycook et al. (2016) observe, there exist other types of DPT whiclotaéall concerned
with the intuition—deliberation dichotomy. A great deal of attentias heen paid to the idea of
the competition or conflict between two systems for the right to make iaeh&or example,
in base-rate problems a conflict is artificially created between the overwheinfiarghation
that someone, say Paul, is a nurse and his stereotypical look of a dadtoeske studies (for
example, De Neys and Glumicic 2008) it is shown that, in guessingReub actually is, the
majority of subjects go with the stereotype and that the RT in thelpnabwith conflict is
longer than in the problems without it no matter what action is eventehtbsen. Response
competition DPT gives an answer to the question of why RTs are longecottflict between
two systems causes the type 2 deliberative processing.

This type of effects on RT is not necessarily inconsistent with DDM. iflea of a conflict
between options is investigated in at least two studies which involagegic interactions.
Evans et al. (2015) conducted several experiments with one-shot piisgitesnma (PD) and
one-shot and repeated PG games. They found that RTs follow the invepattdon, namely,
extremely selfish and extremely cooperative choices were fast, whereas choietaéerp
the two extremes were slow. In addition, unlike in Rand et al. (20t23, effect did not
disappear with repetition. Response competition DPT explains thadésras a consequence
of a conflict between a system that advocates selfish choice and a system thabgsescri
cooperation. When one of the two systems is dominating, the conflopiekly resolved,
while it takes longer for the resolution when the two systems are ofpasable strength.
Furthermore, these findings are exactly in line with the argument ajbich et al. (2015b),
which stipulates that subjects with extreme preferences for either selfisbnpso-sociality
should make decisions faster than those with mixed preferences.

Similar results are reported by Piovesan and Wengstrom (2009), who reeR$s in a
sequence of mini DGs played by each subject. The DGs varied in the degresqality
of the allocations and whether a dictator was rich or poor (dictators wetiagyetore or
less money than receivers). Piovesan and Wengstrom (2009) found thaaskdonrelated
with the social complexity of the choice: selfish choices were reached fastechioées
that necessitated social consideratidms.addition, it took poor subjects longer to reach the
decision than rich subjects, which suggests the involvement of envy idebisions. All this
taken together supports the conflict resolution hypothesis of longer R

Inferences Using Reaction Time

The studies mentioned up to this point were mostly concerned with thsistency of
theoretical accounts with observed data. There is, however, a growirgfuiterwhere an
attempt is made to use RTs as signals of decision makers’ characteristias stidies can be
divided into two categories: (1) RTs are used by experimenters to ligeds’ preferences;
and (2) RTs are used by subjects to infer others’ motives or as signaaliray private
information.

In the first category are the studies by Rubinstein (2007, 2013%)2@ho used the unique
dataset with tens of thousands of observations obtained from himétipeory.tau.ac.il
(accessed 9 July 2020). It was used to create a typology of subjects usingrils in 10
games. Later, the predictive power of this typology was investigated et af unrelated
games. First, a very large number of anonymous observations (20 Q@60Lsubjects in
each game) from http://gametheory.tau.ac.il (accessed 9 July 2020) were useaktare the
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mean RTs of the actions taken in the 10 games (eight normal form games anxténsive
form: ultimatum and centipede). The RTs then were divided into two categdelow median
and above median. The actions with below-median mean RTs were labeled instarud
those with above-median mean RTs contemplative (notice that the prodeciompletely
objective and does not involve any ad hoc assumptions). Next, a séégperiments was
conducted where subjects played the same 10 games. The contemplatiordhdex ¢ach
subject was calculated as a proportion of games in which a subject took a ctatteenp
action. It was then demonstrated that, in a set of unrelated games, there waslatioor
between action choices and ClI of the subjects even when the mean RTs of the chmoes w
not significantly different. This shows that the division of théjeets in accordance with
their choosing instinctive or contemplative actions can predict theircelsoin unrelated
games.

In another study Konovalov and Krajbich (2019b) use RT informationnfer sub-
jects’ individual preferences. They use the insight from DDM that aliffi choices (low
discriminability) should be slower than easy choices (high discrinilitigb To validate
this premise, Konovalov and Krajbich (2019b) collected data in three cleiperiments
including one with a sequence of mini DGs with varying payoff allogai¢akin to Piovesan
and Wengstrom 2009). From the data, the utility function parameteres fiver estimated for
each subject (for DG, the parameters of the utility function with inegaliersion). Then, for
each choice task of each subject, the difference between the utility parametersabjbet
and the parameter which would make the utilities of the options the seasecalculated
and treated as a measure of task complexity for that subject: if the abdiffetence was
small the task was deemed complicated; if the absolute difference was largaskheas
considered easy. Konovalov and Krajbich showed that the difficulty ofatblestmeasured in
this way was strongly correlated with the RT: difficult tasks took lemn@rigure 3.2 illustrates
this).

In the next step, Konovalov and Krajbich (2019b) demonstrated thatnietion about RT
can be successfully used to deduce preferences even with very little datahtledghat the
utility parameter inferred from a single choice and RT was a good predittbe subsequent
choices. In addition, RTs allowed for the identification of preferences &tonice tasks where
the majority or all subjects chose the same option. Overall, thiy stathonstrates the great
potential of using RTs in decision making experiments.

Two studies utilize RTs in order to test the hypothesis that subjeetalde to use infor-
mation that RTs convey about other players’ unobserved preferences oe pnficamation.
Frydman and Krajbich (2019) investigate choices in a classical informatiscade task in
two conditions, with and without subjects’ observing RT of thevjyas player. They make
two important observations: (1) from the perspective of DDM, RTsformation cascade
do deliver additional information about the private signal of a playkeemher choice is in
line with the cascade’s history of choices; (2) subjects in the experiarerdble to use this
information contained in RT to correctly infer the private signal. That fibservation builds
upon the following argument. Conditional on player’s choice to biénig with the majority,
when his or her private signal is congruent with the previous choiceglécision is easy and
should be made quickly. When, however, the private signal is incemgrthe choice is hard
and should take longer. Therefore, RT reveals information about that@signal. Frydman
and Krajbich (2019) showed that the subjects could extract this infaymftbom the RT and
change their own choices accordingly.
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demonstrate that RT increases as the subjects’ prefergatemser to indifference.

Source: Konovalov and Krajbich (2019b, fig. 10.2).

Figure 3.2 Subjects made 120 choices in a series of mini DGs with pions

Evans and van de Calseyde (2017) follow one of the studies discusseel @vans et al.
2015) and investigate what type of information about others subjeetalde to infer from
observing RTs. They use the data previously collected in a PG ganerximgnt to tell
subjects the RTs of choices and then ask them to evaluate the motives dayleespon
several Likert scales. Evans and van de Calseyde (2017) find that shoar&&ssociated
in subjects’ minds with the extreme choices, either full or zero cortichuand long RTs
with intermediate contributions. This is in line with the actual hetvareported in Evans
et al. (2015). More interestingly, when the subjects were told thapligers in the actual
PG game were exogenously time constrained, the responses became ntioed arity clear
pattern. These findings indicate that RTs, when unconstrained, can baatiice about the
incentives and the choice process of others in social dilemmas.

EYE AND MOUSE MOVEMENTS DATA IN STRATEGIC INTERACTION
Visual Attention in Eye-Tracking and Mouse-L ab Paradigms

The primary purpose of the visual process is to derive meaning fremvdrld in order to
direct our actions. This is a dynamic process that is conducted by the thraingh the

visual system and in which attention plays a crucial role. According to Duskio(2007),
attention involves a cyclical procedure composed of different stages itiedien in which a
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stimulus such as an image is observed by a person for the first timejattesntsually driven
by the characteristics of the visual scene. This is termed bottom-up atteitiwhich an
individual starts observing the entire scene through a low-résalperipheral vision while
the important elements of the scene are captured in the field of view. liir¢hstage, the
features that are considered interesting are selected for a subsequent, deegés. array
second stage includes disengagement of the attention from the less atedetivents and
the repositioning of the eyes to capture the stimuli that most agtlabe attention (selective
attention). Finally, when the fovea is repositioned to the area thattatt the most attention,
all the features of these regions of interest can be inspected at high i@solLhis is a
bottom-up model of visual attention that does not take into accountithatiens where
the eye movements are guided by the voluntary intention to captureemdato a specific
part of the scene. In this regard, Yarbus (1967) highlighted theafotep-down factors in
modulating the eye movement patterns used by the observer to acqoimnaation from a
scene. When a stimulus, such as an image, is observed by a person for tivadirthe eye
movements should be driven by bottom-up processes. Converselyptapfactors should
have a prominent role in modulating the patterns of eye-movemenbasasothe individual
becomes more familiar with the stimulus.

That attention can be mediated by bottom-up or top-down mechanisms hasantpmpli-
cations for the interpretation of the process data because an observedatiborsearch pat-
tern may be the result of a predetermined information search strateggdtap analysis) or
mainly determined by some features of the visual scene (bottom-up amalpstye-tracking
experiments, the characteristics of the task and of the decision maker médicaigly affect
how attention is allocated in a visual scene. For example, a bottom-up Bnalgy be
promoted by the presence of attractors or focal points (Devetag et al..ZDd®)ersely, the
adoption of routines may promote a more stable and systematic visalgben

In classical mouse-laboratory experiments, features of the scene, such asfotabpd
attractors, cannot drive attention because the information (presentedamputer screen)
is hidden in opaque boxes and can be revealed only using the mouse [§Bigtee 3.3).
The way in which information is revealed in a typical mouse-laboratarghstan be set by
the experimenter and varies depending on the type of task and the objertyofor example,
information can be revealed (1) when the pointer is moved into the BdwHen the pointer
is moved into the box and the left button of the mouse is presse®) evhen the pointer is
moved into the box and the left button is held down. Mouse-laboragahyniques can provide
high-resolution temporal data about the location of the pointeietims of pixels) and many
other analysis metrics such as the number of times a certain box is opened hod/fong.
In addition, more advanced mouse-tracking techniques can retrace the moajsetties,
and examine velocity and acceleratfotn general, using a mouse-laboratory paradigm a
researcher can understand how, when and what information is processed bytithipapey
and how the decision processes evolve over time.

Some studies have noted that the mouse-laboratory paradigm may #selfah effect
on the information search process (Billings and Marcus 1983; Maule,; 198#se and
Johnson 1996; Gléckner and Betsch 2008; Franco-Watkins and Johrikbn BOr example,
attention cannot be affected by peripheral information, and the way it isa#id in a given
visual scene is largely based on top-down processes. Glockner and Bets8hd2fie that
this research method, in some instances, promotes deliberation and ptéecactivation of
automatic decision-making processes. Moreover, the mouse-laboratdrgdrggnificantly
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Final payoff is determined by both players’ choices.
The payoft structure is shown in the table below!

S/He : & ‘ S/He: @ | S/He: &

You : YOUR YOUR HER/HIS
# POINTS POINTS POINTS

S/He : @

HER/HIS
POINTS

You : HER/HIS
* POINTS POINTS

HER/HIS
POINTS

HEH'

HH:

Please make your choice!

_ You want to choose #
~ You want to choose *

(oK)

Note: In this example, participants (the row players, You) canteegayoffs by moving the cursor over the boxes.
The payoffs of the participants (Your points) are locatethimtwo left-most columns. The payoffs of the
counterpart (Her/his points) in the two right-most columnss possible for the participant to have only one box
open at a time. When the participant move the cursor outbElepaque area, the box closes automatically.

Source: Adapted from Spiliopoulos and Ortmann (2018).

Figure 3.3 Mouse-laboratory screenshot of a two by two one-shoega

increases the amount of time needed to acquire information compared wighakeacking
method. In eye-tracking paradigms a participant can acquire informatianmire natural
way, whereas in mouse-laboratory paradigms the participant is inducedendaged in a
serial consideration of information. Unfortunately, the use of egieking apparatus is usually
costly and the data collection is limited to one participant at a time, wiiekes mouse
laboratory a viable alternative despite its drawbacks.

Eye-Tracking System

The eye-tracking system measures the point of gaze (where a subject iisgloakd the
motion of one or both eyes relative to the head position. The starstangpling rate of
an eye-tracker varies from a minimum of 60 Hz, to a maximum of 2000 Hz. Moelge-
trackers identify eye movements and gaze locations by using the contnasebethe center
of the pupil and the iris. Moreover, they can create a corneal reflection asiimgrared non-
collimated light. The system creates a vector using these two features and etlibration
procedure, computes gaze intersection with a surface.

Common analysis metrics include fixations location and their duratimeasles directions,
velocities and amplitudes, smooth pursuit and transitions-based pararhetween fixations
and/or region of interest. Eye-tracking systems also allow to measwrenoich pupils dilate
(expand in width and area). Fixations and saccades are excellent measures cltiésitiain
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Note: The background image is the game shown to the participaetcifbles indicate the areas of interest
defined by the experimenter for the analysis of the eye-ingakata. The small circles indicate the fixation
locations (the size of the circle is proportional to the fieatduration), whereas a number next to a circle
indicates the fixation duration. Lines indicate the sacsaaled the arrows indicate their directions.

Figure 3.4 This example shows the event data, such as fixatiorsaanddes of a row
player, recorded during a trial of a two-player, three-by-three, norfioam
game

and expressed interest. During fixations, the eyes extract infornfatiorthe visual scene for
further processing. During saccades, visual perception is suppressed (ida4); however,
differences in speed and accuracy of the eye saccades can affect the amount and the qualit
of information processed. Smooth pursuit eye movements allow the teykeep the visual
projection of a moving object continuously on the center of the fovea.

In general, eye-tracking data provide information about which elemeniteofisual scene
participants take into account, how long they look at a certain areas of infa@y, and in
what order they look at the available information. Figure 3.4 degsrthe main parameters
that can be acquired by using an eye-tracking device. The circles representltheléfhed
by the experimenter to identify when the participant is looking at ardqular visual element
on the screen. The definition of the AOIs is important to allow a detaaanination of events
data such as fixations and saccades (represented by small circles and lines respéatizely
of interest are sub-regions of the displayed stimuli that can be usealdirstand whether a
respondent is acquiring certain information. They can also be used to raé@sumuch time
passed from stimulus onset until respondents looked into therrétile to first fixation),
how much time the respondents spent in the region, how many fixateyshad, and the
number of times the respondents returned to look at that area (humbens)f uis also
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Note: This example shows the data on fixation duration of a respuraying a series of three-by-three matrix
games. The example shows that the respondent (row playei3ds his or her attention on his or her own payoffs
and does not take into account the payoffs of the countefpaltimn player).

Figure 3.5 Data on fixation counts and fixation durations can bealized using heat maps

possible to generate heat maps of fixation densities for single respasiaell as for a full
study of several respondents (Figure 3.5). Eye-tracking heat maps aegatjgns of fixations
that reveal the distribution of visual attention. This is an excellegthod to visualize which
elements attract more attention than others.

The analysis of eye-tracking data can provide a lot of information abtteibtional and
cognitive aspects of decision making and can help researchers in the evaldiai@nrative
theories. For example, a decision-making process that requires the tegusiparticular
information, cannot be pursued when this information is not acquitaadnson and Camerer
2004). At the same time, there is plenty of evidence showing thatriher of information
acquisition (the lookup pattern) is informative of the decisior mdlopted and predictive of
the decision (Johnson et al. 2002; Polonio et al. 2015).

Decision-making processes can be investigated also measuring the lenggitiofifand the
pupil dilation. For example, longer fixations are associated with civgrtdtfficulty, such as
deliberate consideration of information and planning (Velichkovsk80]l ¥elichkovsky et al.
2002; Glockner and Herbold 2011; Graffeo et al. 2015). Short fixatiomsyaically related
to simpler processes of visual perception, such as exploration of theement (Figure 3.6).

Pupil dilation is an index of cognitive difficulty, stress, arousall gmain, which has
been extensively used in the lie detection literature to infer deceptivevioet{Berrien and
Huntington 1943; Janisse 1973; Heilveil 1976; Bradley and Jaii888, 1981; Janisse and
Bradley 1980; Lubow and Fein 1996; Dionisio et al. 2001; Wang et alOp(ess (1972)
reported that pupil dilation occurs between 2 and 7 seconds after the preseafatimotional
stimuli. In cognitively demanding tasks, pupil dilation reaches its pkak seconds after
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Long fixations Long fixations
Computer Computer

Shop A Shop B Shop A Shop B
Price 5606 ——480 € Price 585 ¢ =y ~-‘Vﬁ_fo €
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Discount 25% —45 % Discount 28 % 45 %

Note: In this example, an identical product was on sale in two shadfisdifferent initial prices and discounts. The
respondents were asked to choose the best option. The gtee dfcles indicates the length of fixations, the lines
indicate the saccades. A correct procedure to compute thiepfilces requires the decision makers to compatre, for
each option, the initial price with the associated discantt engage in a mental calculation. The left-hand side of
the figure shows eye movements of a respondent who used asiorpparison procedure to choose between the
two shops. When one of the alternatives yielded a highepdistowith a lower initial price, this decision maker
chose that option. Alternatively, when one option yieldahkr discount and another option lower initial price, the
respondent selected the option with the higher discouns dimple decision strategy did not require long fixations.
The right-hand side of the figure shows eye movements of @nelgmt who engaged in the calculation of the final
prices. This complex cognitive operation required the oesignt to keep the gaze on the most relevant information
(the initial price) until the end of the mental calculation.

Source: Adapted from Graffeo et al. (2015).

Figure 3.6 Eye movements of two respondents while making a decisiarcttage a
product

trial onset (Beatty 1982) and contracts gradually (Kahneman and Beatty 106&tantly
(Bernhardt et al. 1996) once the response is made.

In the following we take a more detailed look at how mouse laboratodyege tracking
can be used to inform economic theories. In particular, we focus on haegsaata can help
to test different game-theoretic models.

The Relevance of Process Data for the Evaluation of Different Theories

A fundamental question in game theory is why players sometimes dewiseeiuilibrium
strategies, especially in situations where players do not have clear precdédeatshot
games). Many theories of bounded rationality were developed in an atterqividle more
accurate predictions of players’ behavior than those provided by eduititanalysis alone.
Some studies have begun to evaluate these theories by combininpatifan about process
data with observed choices. The advantage of using process data is cleabaimnced
rationality theories make precise assumptions about processes or faetbtead to out-
of-equilibrium decisions. For example, McKelvey and Palfrey’'s ()9§56antal response
equilibrium (QRE) relaxes optimization, but maintains the assummtfaorrect beliefs. The
model assumes that players form accurate beliefs about the expected actionayfplosient,
but best responses are not played with certainty because players respdydmeigoected
payoffs/ Similarly, in cursed equilibrium (CE), it is assumed that players are @béstimate
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the distribution of actions chosen by other players, but sometimdatddgvom equilibrium
because they do not fully take into account the correlation between othesisiahs and
private information (Eyster and Rabin 2005). The validity of theuagstions of these two
theories can be tested in terms of information acquisition. For exantpbani be tested
whether players are able to acquire all the relevant information necessamrtddccurate)
beliefs about the expected actions of other players or to estimate thbuwdistn of actions
chosen by others.

Other bounded rationality models of strategic behavior, such askef&tiahl and Wilson
1994, 1995; Nagel 1995; Crawford 2003) and cognitive hierarchy (Hd. 69998; Camerer
et al. 2004) explain out-of-equilibrium outcomes by assuming thdividuals perform
different and limited levels of iterative strategic thinking owindimited cognitive capacities.
For information acquisition, we may expect that agents do not play bquiih because they
fail to process relevant information. Hence, to test these theories wédsherify whether
players exhibit information search patterns that are consistent withi¢hei-k.

A different picture is that proposed by the theories of social preferencesrding to these
theories, deviations from equilibrium are based on a different defimidf decision utility.
They reject the assumption that a person’s behavior reflects only thenimaion of his or
her own utility and promote the relevance of competing motives suchrasgsait reciprocity,
and inequity aversion (Fehr and Camerer 2007).be supported by process data, theories
social preferences require that the information acquired by a player reflecs iés social
motive. For example, a player motivated by fairness should look at theffisagf others,
regardless of whether these payoffs are strategically relevant or not.

Process Data and Backward I nduction

Equilibrium predictions made by game-theoretic models of sequentiglrding are typically

not supported by experimental results (Ochs and Roth 1989). Inténatlire, there are two
possible explanations of this phenomenon: the first is that playiaté from equilibrium

because of their limited cognition and the second is that players are ipeyegitse or

want to reciprocate cooperation. These two alternative hypotheses werelig<taunerer

et al. (1993) and Johnson et al. (2002) by combining information-sepatierns and
choices. Johnson et al. (2002) used mouse-laboratory to study backwadtiam in three-

stage Rubinstein bargaining games (Figure 3.7). In their studyiciparits were asked
to acquire information about the pie size in different stages by clickinghe relative

boxes? Camerer et al. (1993) found that the offers ($2.11) were closer to the spli@al
($2.50) than to the equilibrium prediction ($1.25). Their resalisld be explained by the
inability of the players to find the equilibrium via backward induntiby inequality aversion
(individuals dislike differences in final payoffs), or a combinatidrthee two. Starting from

the evidence that the equilibrium model in sequential bargaining dicaocount for the

initial offers of the players, Camerer et al. (1993) used process data tratadd whether
some of the implicit assumptions of the equilibrium model werdagenl. For example, to
compute a subgame perfect equilibrium offer players needed to open the saubride

third boxes. If players did not open the third box they did not hameugh information

to compute an equilibrium offer. This simple line of reasoning sstgd to Camerer
et al. that deviation from equilibrium predictions could be related t& hmdormation was

processed.

of
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pie's size your role

Seller: What is your offer to the buyer?

Source: Adapted from Johnson et al. (2002).

Figure 3.7 Mouse-laboratory screenshot of the three-stage baiggigame

In their analysis, Camerer et al. (1993) compared the information acquigitiocess of
players who were trained to apply backward induction with that of untrgitegers. They
found that trained players paid more attention to the second- and thkrthind boxes,
and made more transitions between them. Moreover, untrained players tdizbmgider
information following the same order as trained players. They mostiyained focused on
the boxes related to the current round and did not pay sufficient attemtiofarmation
about the subsequent rounds (for example, they did not open the secwhthe third-round
boxes 19 percent and 10 percent of the time, respectively). These resultthsittive search
pattern of untrained players differs from the search pattern expected feyrarplwho apply
backward induction.

To test whether players’ behavior is better explained by limited cognitio inequity
aversion, Johnson et al. (2002) classified players into different tygaesed on their search
patterns, and tested whether there was correspondence between how playersaiéotaia
and the decision rule adopted. Johnson et al. (2002) made the faiqwédictions: they
expected level-0 players to remain focused on the first-round boxesirigrfature rounds;
level-1 players to look one round ahead and open the second-round bodesyulibrium
players to open the third-round boxes and allocate their attentionyrosthe second- and
third-round boxes. Johnson et al. (2002) found that the averagefoffeach type of player
was close to that predicted by the level-k model. In particular, theyddhat the average
offer of players classified as level-0 ($2.07) was significantly higher thah of players
classified as level-1 ($1.71) and that the average offer of players classifie¢ebg ($1.44)
was significantly lower than that of players classified as level-1. Impdytdmeories of social
preferences could not explain these results because high offers were olssovethen the
counterpart was a robot player.
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Process Data and Heter ogeneity in Strategic Sophistication

Results obtained by Camerer et al. (1993) and Johnson et al. (2002) siiggésterogeneity
in search patterns leads to heterogeneity in players’ choices. This link wastidsseed in
a mouse-laboratory experiment conducted by Costa-Gomes et al. (20GLyyostrategic
sophistication in one-shot normal form games (Figure 3.8). Costa€s et al. (2001) tested
the cognitive implications of alternative models of choice combinirgj@hdata and patterns
of information search. To explain the behavior (choices and search patéthsjr players,
they specified a priori nine possible types of players. Four of thypied were non-strategic
(or had diffused beliefs) since they did not require consideratiorhefimcentives of the
counterpart to predict their decisions. Five of their types were stateyl required both
the formation of beliefs about the expected action of the counterpart antbthespondent
best-response to them. Costa-Gomes et al. (2001) assumed that eachttgeeifies which
information search strategy to adopt, and then the information seaatbggtrand the type
both determine the final decision. To describe the link between the degsoxress and
the choice, they associated each decision type with one (or more) search pati@espite
finding heterogeneity in both players’ behavior and lookup patternsta@®omes et al.
(2001) observed that most of their participants exhibited lookupschinices consistent
with the level-k model. They found that about two-thirds of theartiipants exhibited
action choices and lookups patterns that were consistent with level-¢edr2enodels. The

YOUR POINTS H HER/HIS POINTS

Note: In this example, participants (the row players ‘You’) coskk the payoffs one-by-one by left-clicking the
mouse cursor in correspondence to the gray boxes. It wagfofs the participant to have only one box open at
atime. To open a new box or enter the decision, the partitip@hto close the open box by right-clicking the
mouse cursor.

Source: Adapted from Costa-Gomes et al. (2001).

Figure 3.8 Mouse-laboratory screenshot of a two-by-two one-séioieg
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dominance-1 model explained the behavior (choices and lookup pattermspsifof the
remaining participant’?

Mouse-tracking was used also by Costa-Gomes and Crawford (2006) udw wshere
they elicited players’ initial responses to a series of two-person gugegsimes. Similarly
to Costa-Gomes et al. (2001), they identified different types of playsng@an econometric
analysis and found that deviation from equilibrium could be predictédaplained assuming
a hierarchy of boundedly rational types.

Process Data in Gameswith Private | nfor mation

Brocas et al. (2014) investigated the link between information search andotesisategy

in games with private information. They used mouse laboratory ttysttrategic thinking in

two-person betting games with three states and two-sided privatenafion (Figure 3.9).

They were interested in testing the predictions of two different clasewodels. The

first class includes models which predict that a player fully analyzes the gatmadkes

imperfect inferences about the other player’'s action or believes that theecparitmade

imperfect inferences about his or her own action (models of this type iac¢h® QRE, the

CE and the analogy-based expectation equilibrium). The second class elsrasdumes that
players sometimes have imperfect attention and ignore relevant infomizsgcause of their
bounded rationality (as in level-k and cognitive hierarchy theories).

Brocas et al. (2014) used a model-based clustering method to group farticgrcording
to their lookup patterns and choices. They found three clusters whiclodpyately corre-
sponded to level-3, level-2 and level-1 players, and a fourth clustahwhcluded players
who fully analyzed the game but made inferential mistakes. More genetadly, found
that deviations from Nash equilibrium were usually associated withiriaito look at the
relevant information and that the choices of the players could be predigtdgeliime they
spent looking at relevant payoffs.

Screenshot of the game with hidden payoff Screenshot of the game with displayed payoff

You are Player 2
You are Player 1
Game Table Sure Payoft
Game Table Sure Payoft A B c
A B c 26
Player 1 11 32 ’ 10
Player 1
’ ez 11 |32 12
Player 2
You are in State Bor C
You are in State C Do you want to play the game?
Do you want to play the game? [ves |[ % ]
Yes No |
G

Note: The left-hand panel is a screenshot of the game as seen bgrtihepants in the experiment. The right-hand
panel is an example of the game with displayed payoff. Theegaiuded three possible states

(A, B and C). The computer selected randomly one of the thegesand each respondent privately observed a
state partition (either one or two of the three states). kanmmple, player 1 knew that the state was A or B or knew
that the state was C for sure. Player 2 knew that the state viassiire, or B or C. The respondent chose whether
to bet or accept an outside option (sure payoff).

Figure 3.9 Example of the two-person betting games used by Brocag2084)
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Process Data and Deception in Games

Process data were recorded to study deception in games. Wang et al. (2010gdecord

eye-tracking and pupil dilation data in a sender—receiver game. The sendefrg@ne
represents a typical economic situation in which two players (the sendérareteiver) have
different interests: the sender is incentivized to send a message to therdicafvexaggerates
the truth, and the receiver is incentivized to infer correctly the true Btate the message of
the sender. However, there is evidence that the sender usually teltsitthenore often than
equilibrium predicts. Wang et al. argue that over-communication can baieggdlby a level-k
model in which the behavior of a level-0 sender is anchored at the triitfgteh their analysis
of eye movements, they showed that level-0 players (both senders ancerspédcused
mainly on the payoffs corresponding to the true state. Conversaylothkup patterns of
level-1 and level-2 players were focused more on the payoffs corresgpmhalithe true
state plus a known bias parameter that depended on the level-type andtiracsion
combination. Wang et al. (2010) also investigated the underlying degmpitocesses of over-
communication by recording the senders’ pupil dilation during théoden which they sent
the message. They found that senders’ pupils dilate when they sent eessagdiverged
from the true state and that the pupil dilation increased more whenretteption had larger
magnitude. These results show the predictive power of lookups arilddfiafion for inferring
private state information.

Process Data and Social Preferences

The studies described up to now show how process data can be used to chanaletgsizan
terms of their ability to do different steps of iterative strategioking. Jiang et al. (2016)
showed that, in certain strategic contexts, process data can also be useatdctarive
the social preferences of players. They started from the assumption thatirfdividual
is motivated by a particular social preference, the way in which informasoacguired
should reveal that social preference. In their study, eye movements wereledoohile
participants played a simple three-person (dictator) distributionegdrhe choices in the
game could be characterized according to three different types of social metifieigncy
(maximize the sum of the payoffs), maximin (maximize the minimumofidyand envy
(minimize the difference between the highest payoff of a player and thdfdytbe dictator
player). The participants performed a preference-based decision-making takich they
were free to adopt the decision strategy they prefer. Then, they perfoansecond task in
which they were instructed and incentivized to choose according to each bréegossible
decision rules (Figure 3.10). In the analysis, players were first fiedsiccording to their
choices and then according to their information search patterns when makiegepied-
based decisions. Patterns were characterized based on two types of variablesngaaelti
saccades.

The first type of variable (gaze time) referred to the time spent lookinthe payoffs
of person one, two, and three. The second type (saccades) referred to the songpari
made by the respondent and included saccades within rows (eye movemerdsrbétw
allocations of the same person), saccades between rows (eye movementsheithame
allocation of two different persons) and saccades within areas of interesm@yements
that remained on the same payoff). Then, Jiang et al. (2016) used the pattptamented
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Note: The lines and circles depict saccades and fixations regpcflhe diameter of the circles is proportional to
the fixation duration.

Figure 3.10 Example adapted from Jiang et al. (2016) in which éspondent was
instructed to choose according to one of three possible decisies rul

by the participants while choosing according to the three decision ades template to
predict the decision strategy adopted by the players when making preferasee decisions.
Finally they compared the level of correspondence of the two classificatmre based on
eye movements and the other based on choices). The results show thatdifieafia® based
on eye movements leads to accurate predictions of players’ choices, sngpbetidea that
choices are strictly related to the specific information search analysis adpptied player.

Process Data and Subjective L evels of Strategic Sophistication and Social Preferences

In the studies described up to now, process data was used mostly tdgateseparately
strategic sophistication and social preferences, though it is likely dieatation from

equilibrium can be owing to both aspects. In relation to this, theystfi?olonio et al. (2015)
started from the assumption that the strategy adopted by a player depemdscomponents:
the player’s level of sophistication and social motive. Following thieoretical framework,
Polonio et al. (2015) conducted an eye-tracking study in which partigpalated two-

person, two-by-two, one-shot normal form games. They tested whéieletision strategy
implemented by the players could be described and predicted by the visual patterhs

they used to acquire information about the game structure. To defingetdreh patterns,
Polonio et al. (2015) identified a subset of informative saccades that wesieleced useful for
capturing pieces of information about the games. Informative saccadesddcldd saccades
necessary to identify the presence of dominant actions; (2) identifi@gction with the
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Note: On the left-hand side is a player who compared his or her ownffsawith those of the counterpart within
the four cells. In the middle, a player who remained focugetiie or her own payoffs. On the right-hand side, a
player with distributed attention who consider iteratyils or her own and his or her counterpart’s payoffs. The
lines indicate the saccades (that is, eye movements frorfixatsn to the next), and the circles the fixation
location.

Source: Adapted from Polonio et al. (2015).

Figure 3.11 Eye-tracking data from three column players

highest average payoffs (for the player and the counterpart); and (iipadng the payoffs
of the two players within the same cell.

Polonio et al. (2015) found that different groups of players used spe&cifnbinations of
informative saccades in order to implement their decision strategies.fdoteg two groups
of participants who neglected information that was needed to best resptiveddounterpart.
In one group, participants simply compared their own payoffs witlse¢haf the counterpart
within the four cells. In the other, participants focused their attentio their own payoffs.
However, they also found a third group of participants who tool attcount the payoffs of
the counterpart using an iterative step-by-step procedure. These @aticipoked first at
their own payoffs, then at the payoffs of the counterpart, and then agdieiabtvn payoffs
(Figure 3.11). Participants who compared their own payoffs withelodthe counterpart were
classified as cooperative or competitive players. Participants focused orowheipayoffs
were classified as level-1 players and participants with distributed attesitilevel-2 players.
Using this classification based on visual search patterns, Polonio et 4b)(2@re able to
predict the choices of the four groups of players in games with differeuililedum structures.
These results support the idea that players use stable decisionistdlteq can be identified
with precision by looking at the information acquisition pattermsa lsubsequent analysis, it
was established that equilibrium choices in the two-by-two matrix garees made when the
information acquisition followed a specific temporal pattern. Accorttirthe data, deviations
from this specific temporal pattern led to out-of-equilibrium choicéguie 3.12).

The results of Polonio et al. (2015) are supported by another eye+taskiidy, con-
ducted by Devetag et al. (2016). They showed that in two-person, thrédedyy, one-
shot games players adopt simplified strategies such as ‘choosing the wadétiorthe
highest average payoff’ or ‘the action leading to an attractive and synumedsioff’ 1t
They found that many players did not take into account the other play@shiives or
considered the other player’s payoffs only for a subset of game outcdhesanalysis of
eye-movements emphasized the strong link between patterns of inforraatjarsition used
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Note: Panel A shows data for equilibrium choices. At the beginmhg trial, participants considered their own
payoffs (first 4 saccades). Then, they looked at the othgepkapayoffs (saccades 4-9) and, finally, before making
a decision, they looked again at own payoffs (saccades JORa6el B shows the data for non-equilibrium choices.
This demonstrates that in order to make an equilibrium e@haicertain pattern of analysis should be followed.

Source: Adapted from Polonio et al. (2015).

Figure 3.12 The average proportions of saccades (across gamesjdbatred between
player's own payoffs (own), between counterpart’s payoffs (other) and
between own and counterpart’s payoffs (intra-cell) over time

by the players and the strategy adopted. They found that the looktgrnsabf the players
were heterogeneous but very statdeMoreover, it was found that the prototypical visual
search pattern adopted by each type of player is not affected by the type of glypé¢her
presence of descriptive features (that is, ‘features that can be changed vaitieoiny the
game equilibrium properties’; Devetag 2016, abstract). Finally, it feasd that one-third
of the players chose according to focal payoffs and used information atmuipatterns
that differ from those expected under the assumptions of the leveddemThe behavior of
these players, as well as their visual search pattern, was similar to that eratee players
identified in Polonio et al. (2015).
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Process Data and the Analysis of Consistency between Choices and Beliefsin Games

In a similar experiment, Polonio and Coricelli (2019) used eye-tracténhnique to identify
possible causes of inconsistency between choices and beliefs in games. Istuigir
participants played a set of two player, three-by-three, one-shot gamesgdask) and
stated their beliefs about which action they expect their counterpart tolyatigfs elicitation
task). Polonio and Coricelli (2019) classified participants into différtypes according
to the pattern of visual analysis they used when playing the games and wdiémg s
their beliefs. Then, they tested for each type of player, the degree to whimbes were
consistent with stated beliefs. They found that participants classifiedvat-2 used a
more sophisticated pattern of visual analysis when they were choosirgatttions than
when they were stating their beliefs, as if they were best respondingetdelief that
their counterpart was less sophisticated than themselves. This hypatiassssipported by
the finding that their choices were highly consistent with their statefbelConversely,
participants classified as level-1 or as having social preferences disregafdedaition
which was necessary to find a best response to their stated beliefs. Poldn@oenelli
(2019) found that their choices and beliefs were generally inconsistegy. ddncluded that
there are two main reasons why individuals do not best respond to th@fsin games.
Some individuals take into account the incentives of the counterpart \stagimg their
beliefs, but not when choosing their actions (level-1 players). Othersotl attempt to best
respond to the expected action of the counterpart, but want to find a caepesalution
of the game (cooperative players). These findings have importantcatiphs for non-
equilibrium models, such as level-k (Stahl and Wilson 1994, 1995eNE@P5) and cognitive
hierarchy models (Camerer et al. 2004), since they show that individuadsevchoices
were consistent with the level-1 model did not assign equal probatiliall counterparts’
actions (as expected for level-0 players) but stated that the level-1 asttbo$sen much more
frequently.

Process Data and L earning in Games

Process data can be useful also for testing different models of learnirgmrg Knoepfle
et al. (2009) tested different learning theories assuming that each theory thouight of

as an information search algorithm that uses specific information aboutptshs and
payoff to guide choices. In this instance, eye-tracking data are particuladful since
choices alone cannot clearly distinguish among alternative learning ruidsrtuhately,

Knoepfle et al. (2009) did not find any learning rule that is supportetidil choices and
information search patterns. When they considered eye-tracking dataotireythat players
look more at information that is relevant for sophisticated model/kiich players anticipate
that their counterpart is learning) as compared to information that isarelder adaptive
models (in which players learn by generalized reinforcing). However, whey ahalyzed
players’ choices they found that adaptive models predict players’ behadoe precisely
than sophisticated models. They conclude that a learning model that camdxmth choices
and information acquisition data is still not present in the liteeatur
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CONCLUSIONS

In this chapter, we described some research on process tracing in behavioeathgamy.

We provided some examples and some critical comments about the metppdolase.
Experimentation in economics has reached a very high standard and a vast range of
applications. Process tracing analysis represents a new frontier. Weeb#iigt process
tracing approaches can contribute significantly to a better understanding odgnitive and

the emotional underpinnings of economic decision making, from hovplpeavaluate the
outcomes of their choices to how they form beliefs about what other peagl do.

NOTES

*. The study was funded by the European Research Council (E&Golidator Grant 617629).

1. For example, if the action space is between 0 and 100, #ngifizium contribution is higher than 0 and less
than 100.

2. Gilland Prowse (2017) find that fast decision makers a=déficient in games. However, they also report that
overthinking can lead to bad choices.

3. A good example of this distinction is the evidence of skaral anti-social punishment reported in Herrmann
et al. (2008). In this study, Herrmann et al. (2008) find tatNestern societies punishing free riders in
repeated PG is prevalent, while in countries such as SaadiiarUkraine, Russia and Greece a non-negligible
proportion of subjects use anti-social punishment to puo@perators. This suggests that cooperators in these
societies are seen as norm breakers.

4. This strand of literature is remarkably close in flavoih® tinitary system view discussed previously. Rustichini
(2008) argues that the resolution of the conflict betweehaiud unitary theories may lie in their synthesis.

5. Similar results were obtained by Suter and Hertwig (204f) studied moral judgment: there were more
deontological than consequentialist choices under tireesure, which in the strategic settings correspond to
selfish and social behavior.

6. \Velocity and acceleration are indexes of the degree glorese competition at different time points (Hehman
et al. 2015).

7. Quantal response equilibrium is also called the trergbtiand effect because people would make errors in the
decision phase.

8. In some cases also competition and punishment.
9. Equilibrium predictions are typically rejected in thisagegic setting.
10. Dominance-1 players assign equal probability to theonppt’s undominated actions and zero probability to

the remaining dominated ones.
11. The first strategy is expected of a level-1 player, whetlea second one is expected of a cooperative player.
12. The lookup pattern of each participant did not changetmfioen trial to trial.
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