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Abstract

In this work, the phase field (PF) approach for brittle fracture in the bulk coupled with the cohesive
zone model (CZM) for pre-existing interfaces is exploited for the simulation of fracture of thin films on
compliant substrates, which are structural configurations of extensive use in many engineering systems such
as protecting layers for vessels, stretchable electronic devices, among many others. Due to the coupling
between the two aforementioned models for fracture, the proposed approach enables capturing bulk damage
and crack deflection or penetration at the prescribed interfaces in a robust and reliable manner, these
scenarios depending on the particular mechanical properties of the system under analysis via a sensitivity
analysis. In this concern, it is shown that the proposed approach is capable of predicting several complex
crack paths for different fracture modes, concerning the 2D and 3D thin film fracture problems herein
investigated: (i) deflection/delamination, (ii) penetration and (iii) deflection/delamination at the prescribed
interface in combination with penetration. Moreover, the effect of the interface fracture energy on the
predicted crack path has been carefully investigated.

Keywords: Phase Field approach to fracture; Thin Film; Cohesive Zone Model; Crack penetration; Crack
deflection; Shell finite elements

1. Introduction

Coatings and thin films supported on compliant substrates can experience different fracture events, which
can limit the performance and mechanical integrity of the corresponding engineering systems. Practical
applications of thin film-substrate components can be found in many engineering products ranging from
thermal barrier coatings, renewable energy systems to vessels, among others.

In order to achieve a deep understanding of thin film-substrate designs, numerous studies have been
carried out in the last three decades through analytical, experimental and numerical methods (mostly using
the nonlinear finite element method, FEM). The complexity of these systems provokes the appearance of
multiple fracture patterns as a consequence of the notable elastic mismatch of the constituents. Within
the framework of Linear Elastic Fracture Mechanics (LEFM), Hutchison and coauthors [1, 2] provided an
overall picture with regard to the energy release rate associated with penetration-deflection scenarios for
general layered materials, whose fundamental results have been later recalled in [3, 4, 5] and the references
given therein. Numerically, many recent investigations prolifically dealt with the use of cohesive zone models
[6, 7] for triggering delamination events in thin layer-substrate systems, whereby inelastic processes due to
fracture have been mostly confined to the interface between the composing parts [8, 9].

Owing to its widespread use in many engineering products, the reliable prediction of failure mechanisms
from different signature in heterogenous systems is of great importance. In this setting, the phase field (PF)
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approach to fracture offers different appealing aspects in situations comprising complex crack topologies such
coalescence and branching, among other scenarios, and enables overcoming some of the most remarkable
limitations of discontinuity-based methods [10, 11]. The basic concept of the PF approach encompasses a
diffusive crack representation based on the introduction of the crack phase field variable d, with d : Bt ∈
[0, t] −→ [0, 1] [12, 13], where Bt ∈ Rn denotes the domain of an arbitrary body in the Euclidean space, whose
material position vectors are identified by x. The PF formulation can be conceived as a nonlocal model
suitable for brittle and ductile fracture, and whose essential concepts are rooted in Fracture Mechanics. This
concerns the consideration of a crack density functional which depends on d, its gradient ∇xd and the length
scale l [14] (Fig. 1.a):

γ(d,∇xd) =
1

2l
d2 +

l

2
|∇xd|2. (1)
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Figure 1: (a) General modeling framework of the PF approach of fracture using the diffusive crack concept
within a region of width l. (b) Heterogeneous cracked systems with prescribed interfaces: basis of the PF-CZ
method.

The functional γ(d,∇xd) provides the starting point of the PF approach for fracture owing to the fact
that it allows approximating surface integrals on sharp crack surfaces Γc ∈ Ω by volume integrals. Therefore,
the dissipative part of the original Griffith’s functional can be rephrased as [15]:∫

Γc

Gc d∂Ω ≈
∫
Bt

Gcγ(d,∇Xd) dΩ, (2)

where Gc is the fracture toughness according to the Griffith fracture theory. Thus, the total potential energy
of the system renders

Π(u, d) =

∫
Bt

ψ(ε, d) dΩ +

∫
Bt

Gcγ(d,∇xd) dΩ, (3)

where ψ(ε, d) stands the elastic energy density which depends on the damage d and the strain ε.
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As a consequence of its versatility, the PF approach has attracted a remarkable attention over the last
decade, leading to a wide variety of developments focused on dynamic fracture [16], thermo-mechanical
applications [17, 18], fracture in shells [19, 20, 21], hydrogen assisted cracks [22] and many others. In this
setting, the authors seminally proposed a modeling framework for triggering fracture events in heterogeneous
media encompassing different materials, whereby the existing interfaces play a major role. This novel
computational methodology couples the PF approach for bulk fracture and interface-like models (cohesive
zone model, CZM) for delamination events in a consistent and modular form, being called as PF-CZM
technique. The reliability of this seminal method was thoroughly examined in [23] through retrieving
fundamental LEFM results, whilst its versatility has been examined by means of the application of this
concept to Silicon based polycrystal materials [24], layered ceramics [25, 26], among other applications.

In view of the strong potential of the combined PF-CZM methodology, this paper analyzes crack events
in thin film-substrate systems subjected to tensile stresses, with the aim of gaining a more profound under-
standing of the failure mechanisms that interplay in their designs.

2. Computational strategy: coupled phase field of fracture and cohesive-like interface ap-
proach for heterogeneous media

This section succinctly presents the main aspects of the coupled phase field approach to fracture and
cohesive-like interface models for heterogeneous media developed in [23]. Within the scope of the current
study, we present the variational formalisms of the PF-CZM method for 2D small strains and 3D large strains
for solid shells in Sects. 2.1 and 2.2, respectively. Particular developments with regard to the corresponding
FE implementations are omitted in the sequel for the sake of brevity, see [21, 26, 25] for further details.

2.1. Modeling framework for 2D systems in the infinitesimal deformation setting

The point of departure of the current numerical method is the consideration of a generic crack body
with prescribed interfaces Γi ((Fig. 1.b)). The material points of the bulk are identified by the position
vectors x, whereas the points on the interface Γi are given by the vector xc. For the separated treatment
of the energy that is dissipated within the bulk and along the interfaces, it is assumed that the free energy
functional which governs the mechanics of the body Ω, Eq. (3), can be rephrased as

Π(u,Γb,Γi) = ΠΩ + ΠΓb
+ ΠΓi

=

∫
Bt\Γ

ψe(ε) dΩ +

∫
Γb

Gbc(u, d) dΓ +

∫
Γi

Gi (g, h, d) dΓ, (4)

where g stands for the displacement jump between the interface flanks, h is an interface history parameter
[27], and d denoted the phase field variable. In Eq.(4), the central idea of the proposed method concerns
the additive split the fracture energy function Gc that can be released in the system into the following
contributions: (i) Gbc describing the fracture in the bulk, which is modeled via the PF approach, and (ii)
Gi which endows the delamination failure along the prescribed interfaces in the system, this phenomena
being simulated using the so-called CZM. At this point, it is worth mentioning that the current approach
introduces the consideration of two length scales as was thoroughly analyzed in [23], i.e the phase field l and
the cohesive-like crack lCZM length scales.

Through the invocation of the PF approach for the bulk, Eq.(5) renders

Π(u, d) = Πb + ΠΓi
=

∫
Bt

ψ(ε, d) dΩ +

∫
Bt

Gbcγ(d,∇xd) dΩ +

∫
Γi

Gi (g, h, d) dΓ, (5)

with

Πb(u, d) =

∫
Bt

ψ(ε, d) dΩ +

∫
Bt

Gbcγ(d,∇xd) dΩ; ΠΓi(u) =

∫
Γi

Gi (g, h, d) dΓ. (6)

One possible coupling form between the PF approach in the bulk and the CZM along the interface
can be accomplished through the tension cut-off interface model [28], which has been also denominated
as the Linear Elastic Interface Model (LEBIM) [29]. Recalling, Paggi and Reinoso [23] the effect of the
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average bulk damage d of the continuum surrounding the interface flanks is accounted for by means of
modifying the apparent interface stiffness. Thus, the critical opening displacement of the CZM (gc) obeys
a linear dependence upon the bulk damage d: gc(d) = (1 − d)gc,0 + dgc,1, where gc,0 = gc(d = 0) stands
for the critical gap for intact bulk, whereas gc,1 = gc(d = 1) identifies the critical gap for fully deteriorated
surrounding bulk. This relationship is assumed for the cohesive traction-separation laws corresponding to
fracture Mode I and Mode II in the 2D setting, see Fig. 2.a for a generic fracture mode. Mathematically,
the corresponding interface law for each fracture mode is given by

σ =

 kn
gn
gnc

, if 0 <
gn
gnc

< 1;

0, if
gn
gnc
≥ 1,

(7)

τ =

 kt
gt
gtc

, if 0 <
gt
gtc

< 1;

0, if
gt
gtc
≥ 1.

(8)

where σ and τ identify the Mode I and Mode II traction components, respectively, g is the relative
displacement, and the subscript n and t refers to Mode I and Mode II deformation, respectively.

Accordingly, the generic stiffness of the cohesive law k depends on the phase field crack variable d:

kn = kn,0

(
gnc,0
gnc

)2

; kt = kt,0

(
gtc,0
gtc

)2

, (9)

where k0 and g0 are the stiffness and critical relative displacement for d = 0.
Finally, and without loss of generality, interface failure is attained using a mixed mode quadratic criterion:(

GiI
GiIC

)2

+

(
GiII
GiIIC

)2

= 1, (10)

where GiI and GiII are the energy release rates for fracture Mode I and Mode II, respectively, which are given
by

GiI(d) =
1

2
kn,0g

2
n

g2
nc,0

[(1− d)gnc,0 + dgnc,1]
2 ; GiII(d) =

1

2
kt,0g

2
t

g2
tc,0

[(1− d)gtc,0 + dgtc,1]
2 . (11)
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Figure 2: (a) General fracture mode: traction-separation law based on a tension cut-off interface compatible
with the PF approach of fracture in the bulk. (b) Cracked shell with presence of prescribed interfaces.

2.2. Modeling framework for 3D systems in the large deformation setting: particularization to enhanced-
assumed solid shell elements

This section summarizes the extension of the modeling approach described in the previous section for 3D
large strains applications incorporating a nonlinear enhanced assumed solid shell model into the formulation.
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This shell model is especially suitable for triggering fracture events in thin walled structures, displaying a
locking free performance from the numerical standpoint [21, 30, 31].

For nonlinear shell analysis undergoing large deformations, we denote B0 ⊂ R3 as the reference place-
ment and Bt ⊂ R3 its corresponding current placement. The position vectors at the reference and current
configurations are denoted by X and x, respectively. The nonlinear deformation mapping is defined as:
ϕ(X, t) : B0 × [0, t] → R3, where [0, t] stands for the time step interval mapping the reference material
points (X ∈ B0) onto the current material points (x ∈ Bt), such that x = ϕ(X, t). The definition of
the displacement-derived deformation renders: Fu := ∂Xϕ(X, t), where Ju = det[Fu] is the corresponding
Jacobian of the transformation, and ∂X is the partial derivative with respect to the reference frame.

The parametric space identified for the current shell model is denoted as: A := {ξ = (ξ1, ξ2, ξ3) ∈
R3 | − 1 ≤ ξi ≤ +1; i = 1, 2, 3}, where (ξ1, ξ2) are in-plane directions, ξ3 stands for the thickness direction
and H is the initial shell thickness. The solid shell formulation, also denominated as 6-parameter shell
model, envisages the parametrization of an arbitrary material point X(ξ) through the linear interpolation
of the position of the top Xt(ξ

1, ξ2) and bottom Xb(ξ
1, ξ2) vectors:

X(ξ) =
1

2

(
1 + ξ3

)
Xt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
Xb(ξ

1, ξ2). (12)

This interpolation scheme also holds for the current configuration:

x(ξ) =
1

2

(
1 + ξ3

)
xt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
xb(ξ

1, ξ2). (13)

The kinematics field, u(ξ) yields

u(ξ) := x(ξ)−X(ξ) = v(ξ1, ξ2) + ξ3w(ξ1, ξ2) (14)

where v(ξ1, ξ2) and w(ξ1, ξ2) stand for the displacement of the shell midsurface and the displacement
vector that accounts for the difference between the shell director vector in the reference and in the current
configuration, respectively. The co-variant basis in the reference (Gi) and current (gi) configurations render

Gi(ξ) :=
∂X(ξ)

∂ξi
, gi(ξ) :=

∂x(ξ)

∂ξi
, (15)

whereas in the curvilinear setting the displacement derived deformation gradient, Fu, takes the form

Fu := gi ⊗Gi. (16)

The previous parametrization is also assumed for the phase field variable, identifying the phase field
variables corresponding to the top and bottom surfaces of the shell, dt and db, respectively [21]:

d(ξ) =
1

2

(
1 + ξ3

)
dt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
db(ξ

1, ξ2). (17)

With regard to the variational formalism, in the current solid shell formulation, the enhanced assumed
strain (EAS) technology is advocated to alleviate locking pathologies. In particular, the EAS method is
adopted through the additive decomposition of the Green-Lagrange strain tensor E = Eu + Ẽ, where Eu

and Ẽ denote the compatible and the incompatible counterparts of the strain [32, 33], respectively. In this
concern, the formulation is defined through the Hu-Washizu functional, whereby the displacements u, the
incompatible strains Ẽ, the second Piola-Kirchhoff stress tensor S, and the crack phase field variable d
constitute the independent fields of the formulation.

Considering a generic shell with cracks and a pre-existing interface as shown in Fig. 2.b, the dissipative
part of the energy functional is again split into a bulk contribution and an interface contribution (Eq. (4)).
This split is introduced in the Hu-Washizu functional leading to the following expression:

Π(u, Ẽ,S, d) =

∫
B0\Γ

g(d)Ψ(E) dΩ−
∫
B0

S : Ẽ dΩ +

∫
B0

Gbcγ(d,∇Xd) dΩ︸ ︷︷ ︸
Πb

fr

+

∫
Γi

Gic(u, d) dΓ︸ ︷︷ ︸
Πi

fr

+Πext, (18)
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where Πb
fr is the bulk contribution and Πi

fr is the interface-related term, whereas Πextis the external potential.
Differing from the previous 2D small strain formulation formulation, it is notable to remak that the

extension to 3D cases requires the introduction of the fracture Mode III within the proposed framework and
the computation of the linearizarion of the rotation operator with respect to the displacement field as was
detailed in [7]. Then, the constitutive response for a generic fracture Mode reads:

Sm =


km

gm
gm,c

, if 0 <
gm
gm,c

< 1; with m = n, t1, t2

0, if
gm
gm,c

≥ 1,
(19)

where Sm identifies the Piola stress of the interface, being Sm,c its corresponding critical value; km is
the interface stiffness, whereas gm and gm,c are the displacement gap and its critical value in the local
reference system of the interface. The previous cohesive law is further equipped with a penalty formulation
in compression with the aim of precluding the material interpenetration at the interface.

Relying on the these considerations, the fracture energies for a generic fracture Mode are:

Gim,c =
1

2
Smgm,c =

1

2
kmg

2
m,c. with m = n, t1, t2 (20)

Similarly to the 2D case, the critical relative displacements triggering interface failure have a linear
dependence on d̂. On the contrary, the critical energy release rate for each fracture Mode is preserved
throughout the corresponding analysis. Then, imposing the independence of the fracture energies for each
Mode and the crack phase field value, the following expressions for the energy release rates are derived:

Gim(d) =
1

2
km,0g

2
m

g2
m,c,0

[(1− d)gm,c,0 + dgm,c,1]
2 . with m = n, t1, t2 (21)

Without loss of generality, a standard quadratic criterion to trigger the interface failure under Mixed
Mode fracture conditions is again adopted as in 2D and it reads:(

Gin
Gin,C

)2

+

(
Git1
Git1,C

)2

+

(
Git2
Git2,C

)2

= 1. (22)

Finally, the following tangent constitutive operators at the interface are derived for the subsequent
numerical treatment via nonlinear FEM:

∂2Gic
∂g2

loc

=

 α̂kn 0 0

0 β̂kt1 0
0 0 γ̂kt2

 , (23a)

∂2Gic
∂gloc∂d̂

=

[
gnkn

∂α̂

∂d̂
gt1kt1

∂β̂

∂d̂
gt2kt2

∂γ̂

∂d̂

]
, (23b)

∂2Gic
∂d̂∂gloc

=


gnkn

∂α̂

∂d̂

gt1kt1
∂β̂

∂d̂

gt2kt2
∂γ̂

∂d̂

 , (23c)

∂2Gic
∂δd̂2

=
1

2
g2
nkn

∂2α̂

∂d̂2
+

1

2
g2
t1kt1

∂2β̂

∂d̂2
+

1

2
g2
t2kt2

∂2γ̂

∂d̂2
. (23d)
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where the terms α̂, β̂ and γ̂ are given by:

α̂ =
g2
nc,0

[(1− d)gnc,0 + dgnc,1]
2 , (24a)

β̂ =
g2
t1c,0

[(1− d)gt1c,0 + dgt1c,1]
2 (24b)

γ̂ =
g2
t2c,0

[(1− d)gt2c,0 + dgt2c,1]
2 . (24c)

3. Applications

In the sequel, we aim at showing the capabilities of the present model to simulate damage in heterogeneous
media with the presence of interfaces in thin layer-substrate systems. The main target is providing a
characterization of the different damage patterns that can evolve based on the mechanical properties of the
system. For this purpose, we present a comprehensive mechanical study endowing the simulation of several
examples with different geometries, cracking paths and types of failure. The current methodology has been
implemented into the general purpose FE code FEAP, the simulations being conducted under displacement
control.

In Sec. 3.1, we simulate a 2D film/substrate system with a single-edge notched under different load-
ing conditions and respective mechanical properties between the constituents. Additionally, we vary the
interface properties and after that, we introduce a secondary notch in order to evaluate its influence on
the corresponding damage pattern. These actions are performed in order to study the influence of different
system parameters on the propagation path and therefore, on the type of failure. Finally, recalling the in-
formation of the simulations herein under consideration, we construct a potential failure map of single-edge
notched problem, enabling the quick and efficient prediction of the failure type knowing the properties of
the system.

Subsequently, Sect. 3.2 exemplarily addresses the capabilities of the current numerical methodology
to simulate 3D problems involving thin layer-substrate systems under the concomitant development of the
three fracture modes, i.e. Modes I, II and III.

Moreover, as mentioned above, it is worth mentioning that the present numerical method introduces the
role of two length scales into the model, l (associated with the PF model) and lCZM (related to the CZM)
following the previous notation. After the computation of both length parameters [34, 35] for the material
properties under consideration, we noticed that both length scales are of the similar order of magnitude,
leading to a real competition between the corresponding failure modes.

3.1. 2D film/substrate system

In this Section, we first analyse the failure and crack propagation of the system shown in Figure 3,
whereby we exploit the longitudinal symmetry of the system. The geometry and material parameters are
collected in Tables 1 and 2.

L/t 2000 Specimen length/Interface thickness
h/t 25 Coating thickness/Interface thickness
H/t 250 Substrate thickness/Interface thickness
lc/t 5 Notch length/Interface thickness

Table 1: 2D film/substrate under tension: Geometrical parameters.

In order to determine the influence of the interface properties on the failure of the system, the interface
fracture energy for Mode I, GI , is varied with respect to the baseline value in Table 2. This leads to
three different configurations of the system: weak interface (GI), intermediate interface (10×GI) and tough
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Figure 3: 2D film/substrate under tension: Geometry.

Ea/Ga 1×107 Substrate Young modulus/Substrate Fracture energy
Eb/Ga 5×108 Coating Young modulus/Substrate Fracture energy
νa/Ga 111 Substrate Poisson ratio /Substrate Fracture energy
νb/Ga 111 Coating Poisson ratio/Substrate Fracture energy
Gb/Ga 10 Coating Fracture energy/Substrate Fracture energy
l/Ga 83.33 Phase field length scale parameter/Substrate Fracture energy
GI/Ga 0.67 Interface Fracture energy for Mode I/Substrate Fracture energy
GII/Ga 2.67 Interface Fracture energy for Mode II/Substrate Fracture energy
σI/Ga 25×103 Interface Maximum traction for Mode I/Substrate Fracture energy
σII/Ga 30×103 Interface Maximum traction for Mode II/Substrate Fracture energy
α 0.96 Dundurs’ parameter α
β 0.48 Dundurs’ parameter β

Table 2: 2D film/substrate under tension: Mechanical properties.

interface (100 × GI). From Figure 4, it can be noticed that for a weak interface, the predominant failure
mode is due to pure delamination. However, for the toughest case, the interface represents a very high
energetic barrier that is very difficult to break. For this reason, as expected, it is predicted that the crack
penetrates into the substrate upon the complete system collapse instead the development of delamination
along the prescribed interface. Finally, we analyze an intermediate situation, where the present method
estimates the onset and growth of delamination events along the interface until a certain position, following
a symmetric pattern, and subsequently these crack events kink out from the interface penetrating into the
substrate. These results illustrate one of the main capabilities of the proposed formulation in rather complex
damage situations whereby two fracture events from different signature can be efficiently captured without
the requirement of any user intervention in order to trigger the crack path throughout the simulations.

It is also worth mentioning that from a quantitative point of view, the dissipated energy in the previous
cases is different from each other, according to the stress-strain evolution curves depicted in Figure 4. For
instance, in the delamination case, the dissipated energy features the response with the lowest stiffness and
dissipating exclusively the energy associated with delamination failure. However, although in the penetration
case there is also a single dissipation mechanism, the corresponding crack path is predicted with a larger
extent, so the overall dissipated energy is larger with respect to the weakest interface configuration, and
therefore leading to stiffer stress-strain response. Finally, for the intermediate case, there are two concomitant
dissipation mechanisms (delamination and penetration) which means that, in this case, the dissipated energy
corresponds to the toughest configuration. This latter effect can be seen from the secondary branch of
the corresponding response after the first drop of the evolution, featuring the system a modified stiffness
(governed by the substrate) upon complete failure (second drop in the response).

Note also that although we increase the apparent rigidity of the interface, the overall stiffness of the
problem only increases from the weakest interface case to the intermediate one, since the first part of
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the evolution prior the first drop is ruled by the thin layer. However, from the intermediate interface
case to the tough interface configuration, the stiffness of the problem remains constant but the dissipated
energy decreases. This is because, as was discussed above, when the interface is tough enough there is no
delamination along the thin layer-substrate interface transferring the imposed actions to the substrate via
the joined regions.

Figure 4: 2D film/substrate under tension problem: Influence of GI on the stress-strain evolution curve
(stress of the system/stress-layer).

Finally, it is important to remark that current results represent a largely novel contribution to the state-
of-the-art regarding the analysis of the characteristic failure mechanisms in thin layer-substrate systems,
which are principally confined to fracture aspects around the common interface [36]. Differing from previous
investigations, the current approach enables capturing a complete range of damage patterns upon complete
system failure.

3.1.1. 2D film/substrate system: analysis of the effect of a secondary notch

Now, we introduce a secondary notch in our problem, close to the previous notch at the center of the
system. The distance from the main notch to the secondary one is denoted as hc, setting: hc/t=25. We
intend illustrating the influence of a secondary notch on the damage patterns and also the role of the interface
fracture toughness GI , as was performed in the previous section. For this purpose, we simulate two problems,
each of them corresponding to different values of the secondary notch length: lc/2 and lc.

The geometry of the problems are given in Figure 5 and the results are shown in Figure 6 and 7.
From these plots note that, in line with the scenarios considering a unique main notch presented above,

the system stiffness is ruled by the type of primary failure, i.e. weakest configurations yield to a complete
delamination (featuring the most compliant response) whereas intermediate and tough interface cases comply
with responses governed by the thin layer stiffness with similar stiffness values up to the first drop in the
evolution.

Moreover, analyzing the results obtained from a qualitative standpoint, we can argue that the influence
of the secondary notch on the problem response depends on its length. Thus, it can be observed that when
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the secondary notch length is equal to lc/2, the results are exactly the same as the results of the one notch
problem, i.e with no interactions between notches. However, when the second notch is of the same length as
the main one, the predictions are significantly different from the previous examples because there is a clear
interaction between the cracks that appear in both notches.

Summarizing current results, the following differences between single and double notched configurations
can be identified where there exists interaction between the two notches:

• In the case of weak interfaces, if a secondary flaw is considered, the maximum stress increases with
respect to the single notch configuration and the failure happens at lager strain levels but the stiffness
system remains constant. This means that we are increasing the dissipated energy. Although there
are slight differences in the overall response of the system, the predominant failure is the complete
delamination of the thin layer from the substrate.

• For intermediate tough interfaces and two interacting notches, current simulations only predict delam-
ination events for longer secondary notches. Moreover, the failure happens under smaller strain levels
in comparison with the single notch specimen. Differing from this, for the double notched system,
the maximum stress, the dissipated energy and the stiffness decrease with respect to the single notch
system. Stemming from this aspect, it can be stated that the presence of the secondary notch makes
weaker the system and causes a different type of failure (delamination instead of delamination followed
by penetration).

• Finally, for very tough interfaces, the predicted type of failure does not change between the single and
the double notched systems regardless (penetration) the length of the secondary notch. Thus, for sys-
tems with two notches and very tough interfaces, in line with weak interface cases, the stiffness remains
constant while the dissipated energy increases in comparison with the single notch configurations.

Figure 5: (a) Secondary notch of length equal to lc/2. (b) Secondary notch of length equal to lc.

3.1.2. 2D film/substrate system under bending

In the previous problems, the failure corresponded to pure fracture Mode I. In this Section, we extend
our study analyzing the systems responses under mixed fracture modes (Mode I and II), which can be
introduced by adding a vertical displacement leading to in-plane bending (See Figure 8).

Two problems have been examined: (a) an external solicitation for which the vertical and horizontal
displacements are of the same magnitude, and (b) the magnitude of the vertical imposed displacement is
the half with respect to that corresponding to the horizontal displacement.

The corresponding simulation results to the solicitations previously identified by (a) and (b) are shown
in Figure 9 and 10, respectively. In these graphs it can be seen that in the case of a weak or an intermediate
interface, the governing failure is due to thin layer-substrate delamination. However, in the case of a very
tough interface, an exclusive propagation through the substrate is predicted with no interaction with any
other dissipative mechanism. Finally, from a qualitative standpoint, it can be stated that the particular
interface cases herein considered, as the horizontal displacement decreases (Mode I decreases), the stiffness
of the system decreases and the final deformation level at the collapsing point increases.
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Figure 6: Secondary notch of length equal to lc/2: Influence of GI on the stress-strain evolution curve.

Figure 7: Secondary notch of length equal to lc: Influence of GI on the stress-strain evolution curve.

3.1.3. 2D film/substrate system: construction of a potential failure map.

Through the exploitation of the current numerical approach, in this Section, we aim at constructing an
overall failure map of the 2D film/substrate system, which is given in Figure 3 for different values of the
Dundurs’ parameter α, and also different values of GI . Therefore, knowing the properties of our system,
we can easily determine the type of failure that might arise in each particular configuration of the system.
This failure map is shown in Figure 11, where we can see that there are three predominant types of failure:
(1) delamination (0.1≤GI/Gb≤0.25), (2) delamination+penetration (0.75≤GI/Gb≤1) and (3) penetration
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Figure 8: 2D film/substrate under bending: Geometry.

Figure 9: 2D film/substrate system under bending (a): uy = −0.005 and ux = 0.005 mm. Influence of GI
on the stress-strain evolution curve.

(5≤GI/Gb≤43). From this failure map we can elucidate that as α decreases, the damage extent prediction
in the substrate increases for all the types of failure.

3.2. 3D film/substrate system.

In this Section, we focus our attention on examining the capability of the proposed method to model
3D applications of thin layer-substrate systems. To do so, we simulate the 3D problem given in Figure 12.
The geometry and material parameters are listed in Tables 3 and 4. As can be observed in Figure 12, the
geometry is subjected to several loading conditions, so we are simultaneously considering different fracture
Modes, i.e. Mode I, II and III in an individual case.

The results of this problem are shown in Figure 13, whereby different failure mechanisms can be identified.
Analyzing in detail these results, it can be appreciated that in the weak and intermediate interface cases, the
initial predicted failure is due to delamination. Moreover, for the intermediate interface case, it is observable
that the corresponding failure pattern shows the concomitant development of delamination and bulk damage,
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which is characterized by a notable secondary plateau evolution prior the collapsing point. Differing from
this, as can be expected, in the weak interface case, the corresponding failure mode of the system corresponds
to the exclusive development of delamination with a single plateau evolution and a subsequent sudden drop.
These two failure patterns contrast with that corresponding to the tough interface case, in which the strong

Figure 10: 2D film/substrate system under bending (b): uy = −0.005 mm and ux = 0.1 mm. Influence of
GI on the stress-strain evolution curve.

Figure 11: Failure map of the 2D film/substrate system under tension: Dundurs’ parameter α vs GI/Gb.
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energetic barrier of the interface provokes the breakage of the coating and precluding the initiation and
evolution of deflection or penetration events along the prescribed the interface.

Figure 12: 3D film/substrate system: Geometry.

L/t 2020 Specimen length/Interface thickness
La/t 1500 Substrate length/Interface thickness
W/t 1000 Specimen width/Interface thickness
h/t 50 Coating thickness/Interface thickness
H/t 500 Substrate thickness/Interface thickness
lc/t 12 Notch length/Interface thickness

Table 3: 3D film/substrate system: Geometrical parameters.

Ea/Ga 3.79×104 Substrate Young modulus/Substrate Fracture energy
Eb/Ga 3.79×105 Coating Young modulus/Substrate Fracture energy
νa/Ga 11.71 Coating Poisson ratio /Substrate Fracture energy
νb/Ga 11.71 Substrate Poisson ratio/Substrate Fracture energy
Gb/Ga 2 Coating Fracture energy/Substrate Fracture energy
l/Ga 3.82×10−2 Phase field length scale parameter/Substrate Fracture energy
Gint/Ga 0.17 Interface Fracture energy for Mode I, II and III/Substrate Fracture energy
σint/Ga 2.58×104 Interface Maximum traction for Mode I, II and III/Substrate Fracture energy

α 0.82 Dundurs’ parameter α
β 0.5 Dundurs’ parameter β

Table 4: 3D film/substrate system: Mechanical properties.

4. Concluding remarks

In the present work, the problem of fracture and debonding of a thin film bonded on a compliant substrate
has been carefully investigated on several thin film-substrate systems with the presence of interfaces from a
numerical standpoint. For this purpose, it has been exploited the 2D and 3D phase field model for brittle
fracture coupled with the CZM for triggering bulk and interface cracks, respectively, in an efficient and
reliable manner. This coupling is performed reducing the stiffness of the CZM with the increasing damage
at the surrounding bulk and allows the simulation of delamination on the interface. This model has been
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implemented within the nonlinear FEM context for the analysis of plane strain systems and for fully 3D
applications through the use of a enhanced assumed the solid shell formulation.

Derived from the current predictions, we have shown the capability of this methodology to simulate 2D
and 3D problems and to capture different crack paths depending on the material and fracture properties of
the system. In particular, it has been analysed the influence of the interface fracture energy on the type of
failure. For instance, in the 2D film substrate system, we illustrated the different failure mechanisms that
can experience thin layer-substrate systems based on the interface definition (weak, intermediate or tough)
for given bulk properties. Exploiting the versatility and robustness of the current numerical method, current
simulations enabled the construction of an overall failure map of such systems depending on the fracture
properties and the Dundurs’ parameters between the constituents. This yields to very valuable information
regarding the different failure patterns that govern the system response. This is a novel contribution in
the field, since the current methodology provides a complete failure map, not only analysing the system
response around the pre-existing notches and interfaces, but also gives additional information for subsequent
propagation into the adjacent substrate upon complete failure.

Relying on the reliability of the present estimations, future developments might regard further analysis
on the 3D thin film-substrate systems, in particular with regard to curved geometries. Finally, further work
should be conducted to achieve a quantitative-qualitative correlation with respect to experimental data.
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