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Abstract The problem of adhesive wear is herein in-

vestigated in relation to periodic asperity junction mod-

els in the framework of the Archard interpretation sug-

gesting that wear debris formation is the result of as-

perity fracture. To this aim, the Phase Field model for

fracture is exploited to simulate the crack pattern lead-

ing to debris formation in the asperity junction model.

Based on dimensional analysis considerations, the ef-

fect of the size of the junction length, the lateral size of

the asperity, and the amplitude of the re-entrant corner

angles γ and β defined by the junction geometry is ex-

amined in the parametric analysis. Results show that

two failure modes are expected to occur, one with a

crack nucleated at the re-entrant corner γ, and another

with a crack nucleated at the re-entrant corner β, de-

pending on the dominant power of the stress-singularity

at the two re-entrant corner tips. Steady-state adhesive
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wear, where the initial asperity junction geometry is

reproduced after debris formation, is observed for as-

perity junctions with γ = 45◦, almost independently

of the lateral size of the asperity and of the horizontal

projection of the junction length.

Keywords Adhesive wear · Steady-state conditions ·

Phase field · Finite element method

1 Introduction

Adhesive wear is one of the various forms of wear of ma-

terials [24] and its development is not yet fully under-

stood. It is mostly induced by severe adhesion between

asperities of rough surfaces in contact. It has its roots

at the micro-scale and it occurs under special environ-

mental conditions [26]. Its clear observation is possible

only in high vacuum, where there is no gas between the

two surfaces in contact, and in absence of impurities like

oxide films. In addition to the need for such particular

conditions, adhesive wear can frequently occur in me-

chanical system components in contact with insufficient

lubrication, as for plane bearings or gear teeth.

Adhesive wear can occur not only in metals, but also

in ceramics and polymers. Materials with comparable
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2 Valerio Carollo et al.

hardness are more prone to adhesive wear [3] and metals

can develop the most severe form. In [31] it is theorized

that when two metallic surfaces are sufficiently close

to each other to consider them in contact, electrons

can be exchanged between the two opposing surfaces.

This free movement of the electrons could provide the

explanation for the local bonds causing adhesive wear.

In the literature, the study of adhesive wear is mostly

based on two well-known pioneering approaches: the

atomistic model by Holm [13] and the continuum frac-

ture model by Archard [2]. Holm’s model assumes that

adhesive wear is the result of atoms removal from the

asperities in contact. Consequently, the asperities un-

dergo a process of progressive flattening. This model is

supported by experiments conducted with the atomic

force microscope [27,10] and by molecular dynamics

simulations [1,29]. However, Holm’s model can hardly

predict the occurrence of steady state wear configura-

tion observed in many tribological systems [8], due to

a progressive flattening of the surfaces which usually

continues without reaching an asymptotic geometry.

Archard’s model assumes that adhesive wear is the

result of debris originated by asperity interlocking and

fracture. This hypothesis is largely confirmed by many

experimental evidences [11,5,6,14]. When two joint as-

perities are subjected to sliding motion, the asperities

experience a strong deformation which causes severe

plastic strain in ductile materials (Fig. 1 (a)). After that

stage, cracks nucleate under shear (Fig. 1 (b)) until the

fractured material leads to debris formation.

Most of the studies in the literature on adhesive

wear are focused on the estimation of the debris vol-

ume (wear volume) [5], to quantify the material loss.

In [15,12], for instance, the assumption of perfect ad-

hesion is put forward for the case of complete contact

(a)

(b)

Fig. 1 Archard’s model: (a) Deformation of the asperities

before fracture; (b) shearing mechanism of fracture of the

asperities. Images adopted from [26].

problems. In the present study, we propose a method

to investigate on the stage of fracture which leads to

debris formation. Using the phase field (PF) approach

to fracture, whose features are described in Section 2,

the nucleation of cracks at joined asperities can be sim-

ulated, along with the crack path resulting from their

propagation. By performing a parametric study with

different model asperity geometries, the conditions for

the occurrence of a steady state wear are carefully anal-

ysed and identified, considering that steady state wear

occurs when the geometrical features of the undeformed

rough profile are re-generated after wear debris forma-

tion.

The manuscript is organized as follows: in Section

2, an insight on the PF approach o fracture is given
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The steady-state Archard adhesive wear problem revisited based on the phase field approach to fracture 3

and the numerical simulations based on the PF model

are described. In Section 3, the parametric analysis is

presented and results are discussed. Finally, conclusions

are provided in Section 5.

2 Proposed simulation method and design of

numerical experiments

2.1 Phase Field approach to fracture

In this section we describe the thermodynamically con-

sistent formulation of the Phase Field method for frac-

ture. The formulation herein adopted is based on the

approach proposed in [17,18] and revisited in relation to

interface fracture in [22]. This formulation lays on the

classical fracture theory of Griffith, but it models the

crack as a diffuse damage process rather than a sharp

discontinuity.

Our approach is developed on a two-dimensional

framework (Fig. 2(a)). We consider an arbitrary body

Ω ∈ R2 in the Euclidean two-dimensional space. A

point in the body Ω is defined by the vector of its

Cartesian coordinates x, while the body forces are de-

noted by fv : Ω −→ R2. The boundaries of Ω are de-

noted by ∂Ω, which in turn are split into the boundary

∂Ωu where kinematic (Dirichlet) boundary conditions

are prescribed and in the boundary ∂Ωt where trac-

tion (Neumann) boundary conditions are imposed, be-

ing ∂Ωt ∪ ∂Ωu = ∂Ω and ∂Ωt ∩ ∂Ωu = ∅. For a generic

point of Ω, we denote its displacement vector by u and

the Cauchy stress tensor by σ. Then, the prescribed

displacements and tractions at the boundaries ∂Ωu and

∂Ωt are:

u = u on ∂Ωu and t = σ · n on ∂Ωt,

where n denotes the outward normal unit vector to the

body.

(a)

(b)

Fig. 2 (a) from the discrete discontinuity (left) to the

smeared discontinuity (right) in the bi-dimensional frame-

work; (b) 1D approximation function which smears out the

discontinuity, where the damage d follows the exponential

based function d = e−|x|/l.

In the Phase Field approach to fracture, the crack,

which is usually represented by a discrete discontinuity,

is regularized through a diffusing scalar damage vari-

able d, with d : Ω x [0, t] −→ [0, 1] [4]. For d = 0, the

undamaged state takes place, while for d = 1 Griffith

fracture occurs. Between 0 and 1, the damage has an

exponential variation in space, as depicted for a 1D test

problem of a bar in uniaxial tension in Fig. 2(b). The

parameter l is the so-called Phase Field internal length

scale, which controls the width of the damage zone [17,

18] around the crack identified by the level set d = 1.
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4 Valerio Carollo et al.

Based on this framework, the total internal energy

of the system takes the form:

Π(u, d) =

∫
Ω

ψ(ε, d) dΩ +

∫
Ω

Gcγ(d,∇xd) dΩ, (1)

where ψ(ε, d) is the elastic strain energy density which

depends on the damage variable d and on the strain ten-

sor ε. Gc is the Griffith fracture energy and γ(d,∇xd) is

the so-called crack density functional which depends on

d and its gradient ∇xd, which introduces a nonlocality

in the formulation, essential to avoid mesh-dependency.

The crack density functional herein considered is the

same as that defined in [17]:

γ(d,∇xd) =
1

2l
d2 +

l

2
|∇xd|2. (2)

The Euler equations associated with the phase field for-

mulation are:

d− l2∇2
xd = 0 in Ω and ∇xd · n = 0 in ∂Ω, (3)

where ∇2
xd denotes the Laplacian of the damage vari-

able.

Regarding the elastic energy stored in the body ψ(ε, d),

the positive-negative split proposed in [16] is herein ap-

plied to distinguish between tension and compression

stress states. Other variants fro the split are possible,

see e.g. [9]. The positive elastic energy is a fraction

of the total elastic energy and it depends on the ten-

sile stresses, while the negative counterpart depends on

the compressive ones. Hence, in formulae, the positive-

negative split proposed in [16] takes the form:

ψ(ε, d) = g(d)ψe+(ε) + ψe−(ε), (4a)

ψe+(ε) =
λ

2
(〈tr[ε]〉+)

2
+ µtr[ε2+], (4b)

ψe−(ε) =
λ

2
(〈tr[ε]〉−)

2
+ µtr[ε2−], (4c)

where λ and µ are the Lamé constants, ε+ and ε− are,

respectively, the positive and negative counterparts of

the strain tensor. The symbol tr[•] denotes the trace op-

erator, the symbol 〈•〉± denotes the so-called Macaulay

brackets which describe the operation 〈•〉± = (• ± | •

|)/2. The function g(d) is a degradation function that

is selected as:

g(d) = (1− d)
2

+K, (5)

where K is a residual stiffness introduced to avoid nu-

merical instabilities when d = 1. Note that in Eq. (4a)

the degradation function (5) multiplies only the pos-

itive part of the elastic energy, thus avoiding damage

growth in compression.

The split of the strain tensor into (ε = ε+ + ε−) is

made according to the following spectral decomposition

of the strain tensor:

ε± =

ndim∑
i=1

〈εi〉±niε ⊗ niε, (6)

where εi and niε are, respectively, the eigenvalues and

the eigenvectors of the strain tensor.

Finally, the Cauchy stress tensor of the Phase Field

formulation takes the form:

σ :=
∂ψ̂

∂ε
= g(d)σ+ + σ−; (7)

with σ± = λ (〈tr[ε]〉±) 1 + 2µε±,

where 1 denotes the second-order identity tensor, and

σ± denotes the positive-negative counterpart of the

stress tensor.

This formulation has been implemented by the present

authors as a 4-node finite element with the isoparamet-

ric formulation in the finite element research program

FEAP [30], see [22] for a detailed definition of all the
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The steady-state Archard adhesive wear problem revisited based on the phase field approach to fracture 5

operators for a monolithic fully implicit solution strat-

egy of the nonlinear problem.

2.2 Design of the numerical experiments

The geometry of rough profiles in contact has been

herein simplified by considering triangular asperities

with a periodic distribution along the profile, inspired

by the model asperity studied in [5]. Each asperity has

one side in contact with another, as shown in Fig. 3

(a). Taking advantage of periodicity, only the represen-

tative unit asperity junction is investigated (Fig. 3 (b)),

with periodic boundary conditions imposed on the ver-

tical sides of the unit asperity junction. Here, L is the

lateral size of the periodic asperity and lc is the horizon-

tal projection of the contact length. This configuration

generates a geometry characterized by 6 re-entrant cor-

ners (Fig. 3 (c)) which are a potential source of stress

singularities and crack nucleation. Four re-entrant cor-

ners have an angle 2β, while the remaining two have an

angle 2γ, being the two angles related by the equation

β = π/2−γ. The condition of adhesion between the two

asperities is herein modelled by considering the two as-

perities as a monolithic solid, in line with theoretical

arguments for complete contact problems in re[20,23,

19]. The sliding motion of the asperities is simulated by

imposing a horizontal displacement on the top and on

the bottom of the unit asperity junction, see Fig. 3 (b).

Although the present mechanical problem is non-

linear, we know from [22] that the critical apparent

shearing stress corresponding to crack propagation in

the PF approach, which defines in the present prob-

lem the onset of debris formation, is ruled by a scaling

of the type Tc/L ∼
√
EGc/l, where Tc is the critical

tangential force per unit out-of-plane thickness at de-

bris formation, E and Gc are the Young’s modulus and

(a)

(b)

(c)

Fig. 3 Geometry of the computational model: (a) contact

between periodically distributed asperities; (b) the unit as-

perity junction and the boundary conditions (dashes denote

periodic boundary conditions while arrows denote imposed

displacements); (c) the re-entrant corners present in the ge-

ometry.

the fracture toughness of the material, l is the internal

length scale of the PF approach, and L is the lateral

size of the asperity. Dimensional analysis suggests the

following functional dependency in relation to the geo-

metrical problem sketched in Fig.3:

Tc = Tc(E,Gc, l, L, lc, γ), (8)

which, after some manipulation leads to the following

dimensionless form:

T ∗c =
Tc

L

√
EGc

l

= Φ

(
lc
L
, γ

)
, (9)

As a result, the dimensionless critical tangential force

is expected to be function of just two parameters: lc/L

and γ.

In the following, a parametric analysis is carried out

by varying three geometrical parameters: the asperity
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6 Valerio Carollo et al.

Values of the geometrical parameters

γ 15°; 30°; 45°; 60°; 75° Asperity angle

L 1.0 ; 1.5 ; 2.0 Asperity lateral size (mm)

lc 0.1 L ; 0.2 L ; 0.3 L ; 0.4 L Horizontal projection of the junction area

Mechanical parameters

E 117,000 MPa Young modulus

v 0.35 Poisson ratio

G 70 N/mm Fracture energy

l 0.2 mm Phase Filed internal length scale

Table 1 Geometry and material parameters used in the simulation.

slope angle γ, the asperity size L, which is also the

distance between two adjacent asperities, and the hor-

izontal projection of the junction area lc (Fig. 3 (b)).

According to Eq. 9, the values selected for the param-

eters are collected in Table 1. This led to a total of

60 simulations, each one with around 57000 nodes. The

choice of varying L in addition to lc/L and γ is aimed at

confirming the dimensional analysis results suggesting

that the failure mode at crack nucleation is independent

of L.

3 Discussion of numerical results and

mechanical interpretation

The numerical simulations show crack nucleation al-

ways in the proximity of a re-entrant corner. We dis-

tinguish between two failure modes: (1) crack propaga-

tion from the re-entrant corners of amplitude 2γ (Fig. 4

(a)); (2) crack propagation from the re-entrant corners

of amplitude 2β (Fig. 4 (b)). Table 1 shows the prevail-

ing failure mode (1 or 2) for each combination of the

model parameters.

These results show that the failure mode is indepen-

dent of the lateral size L, as expected from dimensional

analysis considerations. Moreover, the dimensionless crit-

(a) Failure mode 1

(b) Failure mode 2

Fig. 4 Different failure modes observed from numerical test:

(a) failure mode 1 corresponding to crack propagation from

the re-entrant corner of amplitude 2γ; (b) failure mode 2 cor-

responding to crack propagation from the re-entrant corner

of amplitude 2β.

ical tangential force at the onset of crack growth is also

almost independent of L, as highlighted in Fig. 5.
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The steady-state Archard adhesive wear problem revisited based on the phase field approach to fracture 7

lc/L

0.1

0.2

0.3

0.4

γ = 15◦

L

1.0 1.5 2.0

1 1 1

1 1 1

1 1 1

1 1 1

γ = 30◦

L

1.0 1.5 2.0

1 1 1

1 1 1

1 1 1

1 1 1

γ = 45◦

L

1.0 1.5 2.0

1 1 1

1 1 1

1 1 1

1 1 1

γ = 60◦

L

1.0 1.5 2.0

1 1 1

2 2 2

2 2 2

2 2 2

γ = 75◦

L

1.0 1.5 2.0

2 2 2

2 2 2

2 2 2

2 2 2

Table 2 Crack nucleation (failure mode 1 or 2 based on Fig. 4) for each combination of model parameters.

Fig. 5 Variation of T∗c vs L for each combination of model parameter.

To propose a mechanical interpretation of the nu-

merical results, we recall that the problem geometry

presents 6 re-entrant corners (Fig. 3 (c)): 4 of amplitude

2β at the base of each asperity, and 2 of amplitude 2γ

at the junction boundaries. Angles γ and β are comple-

mentary angles, i.e. β + γ = π/2. Those re-entrant cor-

ners can be the source for stress-singularities. Depend-

ing on their amplitudes, one stress singularity can pre-

vail over the other, and it can lead to the failure mode

1 or 2. According to Linear Elastic Fracture Mechanics

(LEFM), the stress-field components σij near the tip of

a re-entrant corner (at a radial distance r −→ 0) are

given by the Williams asymptotic analysis [28]:

σij = rλ−1fij(θ), (10)

where r and θ are, respectively, the radial distance from

the notch root and the angle measured from a horizon-

tal axis emanating fro the notch tip (Fig. 6(a)), i and j

are the indices identifying the components of the stress

tensor, λ is the eigenvalue characterizing the power of

the stress-singularity, and f is the corresponding eigen-

function [7,21]. For the present problem, the eigenval-

ues for Mode I and Mode II deformation, associated to

notch opening or sliding, are given by the roots of the
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8 Valerio Carollo et al.

following eigenequation:

sin(2λα)± λ sin(2α) = 0, (11)

where α is the angle shown in Fig. 6(a). The positive

sign in Eq.(11) gives the roots corresponding to Mode

I deformation (symmetric loading w.r.t. the angle bi-

sector), while the negative eigenvalues sign gives the

roots corresponding to Mode II deformation (antisym-

metric loading), which is the loading condition relevant

for the present problem. The solution of Eq.(11) is col-

lected in [25], and is shown in Fig. 6(b) vs. β or γ

(0 ≤ β, γ ≤ π/2).

(a)

(b)

Fig. 6 (a) Re-entrant corner geometry and polar coordi-

nates; (b) eigenvalue λ vs. α, γ and β.

As per Eq.(10), stress-singularities occur only for

λ < 1. Consequently, considering the re-entrant corner

angles in our numerical simulations, we can state the

following simple criterion for the failure mode predic-

tion: the failure mode 1 with crack onset from the re-

entrant corner of amplitude 2γ takes place if the associ-

ated power of the stress-singularities is higher than that

corresponding to that of the re-entrant corner of am-

plitude 2β, while vice-versa for the failure mode 2. The

value of λ related to Mode II deformation for the angles

γ and β tested in our simulations is collected in Table 3

for the various values of γ and β tested and those lead-

ing to a singular stress field (for γ or β less than 51◦)

are highlighted. The simulated failure mode is ruled by

the most singular stress-singularity criterion as stated

above. The only exception to such a rule occurs for

γ = 60◦ when both failure modes take place depending

on the ratio lc/L. Although the failure mode 2 should

prevail according to the dominant stress-singularity cri-

terion, failure mode 1 takes place for lc/L = 0.1, which

corresponds to re-entrant corner tips very close to each

other. This exception can be explained by the elastic

interactions between the two stress-singularities, which

would need a refined analysis for the quantification.

4 Occurrence of steady-state wear

In this section we investigate the conditions leading

to steady-state wear in our model junction problem.

Steady state adhesive wear would happen when the

new profile created by fracture has exactly the same

geometry as that of the undeformed original one. Con-

sequently, the invariance in the profile slope will repro-

duce exactly the same crack pattern up to infinity in

the case of repeated tangential loadings. In order to

investigate on this phenomenon, the angle γ′ after frac-

ture (estimated from the crack pattern) is compared

to the originally underformed one, γ, and the quantity
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Mode II stress-singularity Crack onset based on numerical simulations

γ λγ β λβ Failure mode 1 Failure mode 2

15◦ 0.61 75◦ 1.50 X

30◦ 0.74 60◦ 1.15 X

45◦ 0.91 45◦ 0.91 X

60◦ 1.15 30◦ 0.74 X X

75◦ 1.50 15◦ 0.61 X

Table 3 Mode II eigenvalues of the stress-singularities for each simulated re-entrant corner. The eigenvalues which give a

singular stress field are highlighted in blue. The symbol X denotes the occurrence of a given failure mode.

∆γ = γ′ − γ is used as a measure to quantify the de-

viation from the steady-state condition. This value is

plotted vs. lc/L in Fig. 7.

This plot further confirms the dimensional analy-

sis results in Section 3 suggesting that the variation of

∆γ is mostly governed by the slope asperity angle γ

and by lc/L, while the lateral size L has a negligible

effect. Fig. 4 shows the identified crack patterns from

the simulation that closely reproduce the steady-state

wear condition, i.e., those with γ = 45◦.

5 Conclusions

In the present study, the problem of adhesive wear has

been investigated in relation to periodic asperity junc-

tion models in the framework of the Archard interpreta-

tion suggesting that wear is the result of asperity frac-

ture. Therefore, the Phase Field model for fracture has

been exploited to simulate the crack pattern affecting

the asperity junction model, depending on the size of

the junction length, the lateral size of the asperity, and

the amplitude of the re-entrant corner angles γ and β

defined by the junction geometry. Results show that

two failure modes are expected to occur, one with a

crack nucleated at the re-entrant corner γ, and another

with a crack nucleated at the re-entrant corner β. The

occurrence of one failure mode over the other appears

to be ruled, as a first glance, by a simple criterion based

on the dominant stress-singularity at the two re-entrant

corner tips. The reproducibility of the initial asperity

junction geometry after debris formation due to crack

growth can be used as a criterion to assess the occur-

rence of steady-state adhesive wear. From the numerical

results we found that steady-state wear is likely to hap-

pen for γ = 45◦, almost independently of the lateral

size of the asperity and of the horizontal projection of

the junction length.
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(a)

(b)

Fig. 7 (a) Crack propagation angle γ′; (b) Deviation angle vs normalized contact area for all the simulations of the parametric

analysis

(a) γ = 45◦, L = 1.0,

lc = 0.4L

(b) γ = 45◦, L = 1.5, lc = 0.4L (c) γ = 45◦, L = 2.0, lc = 0.4L
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