
Learning virtual sensors for estimating the scheduling signal
of parameter-varying systems

Daniele Masti?, Daniele Bernardini†, Alberto Bemporad?

Abstract— We propose a novel data-driven virtual sensor
architecture to reconstruct an unmeasurable scheduling signal
of a parameter-varying system from input/output measure-
ments. The key idea is to train and feed an Artificial Neural
Network (ANN) with input/output measurements and with data
generated by processing such measurements through a bank
of linear observers. Special attention is paid to the design of
both the ANN and the feature extraction mechanism to keep
the architecture as lightweight as possible, so that the resulting
virtual sensor can be easily implemented in embedded hardware
platforms. As a special case, the proposed virtual sensor can
be used for hidden mode reconstruction of switched linear
systems. Applications of the proposed approach are geared
towards fault detection and isolation, predictive maintenance,
and gain-scheduling control.

I. INTRODUCTION

Most real-world processes exhibit complex nonlinear dy-
namics that are difficult to model, not only because of
nonlinear interactions between input and output variables,
but also for the presence of time-varying signals that change
the way they interact over time. A typical instance is the
case of systems subject to wear of components, in which
the dynamics slowly drifts from a nominal behavior to an
aged one, or even of systems subject to faults, in which
the dynamics suddenly changes. Unmeasured disturbances
also fall in this category, for example unknown time-varying
transport delays, ambient conditions, etc.

A parameter-varying model is a dynamical model Σ that
depends on a vector ρ of parameters, ρ ∈ RS ,

Σ :=

{
xk+1 = f(xk, uk, ρk)

yk = g(xk, ρk)
(1)

where xk ∈ Rnx is the state vector, yk ∈ Rny the output
vector, uk ∈ Rnu the input vector, f : Rnx+nu+S → Rnx ,
and g : Rnx+S → Rny .

Special cases widely studied in the literature are linear
parameter-varying (LPV) models [1], in which f , g are linear
functions of xk, uk, and switched affine systems [2], in which
ρk only assumes a finite set of values.

Estimating the vector ρk of parameters from input/output
data can be useful for several reasons. In predictive mainte-
nance and anomaly/fault detection and isolation [3], [4], the
value of ρk can be used to detect the occurrence of a fault,
when ρk deviates from a nominal range that is typical of
correct operation of the process, and to isolate the fault, by

?IMT School for Advanced Studies Lucca, Italy. E-mail:
{daniele.masti,alberto.bemporad}@imtlucca.it.

†ODYS S.r.l., Italy. E-mail: daniele.bernardini@odys.it.

classifying the type of fault based on the value of ρk. In gain-
scheduling control, ρk is used to decide the control law to
apply at each given time instant. For this reason, vector ρk is
often referred to as the scheduling signal [5]. In case a LPV
model scheduled with ρk is available, either by white-box
modeling or by system identification for LPV systems [6] or
for switched affine systems [7], [8], the same dependence on
ρk can be applied for scheduling the controller.

Depending on the specific application, solutions have been
proposed to estimate ρk from input/output data. In fault
detection, one is mostly interested in knowing which fault
model better describes the system during operations. Ap-
proaches like unknown input observers [9] have been proven
very effective for this task. Alternative approaches include
piecewise affine regression [10], [11] and moving horizon
estimation based on hybrid dynamical models [12], [13].
When the goal is instead to recover a signal that corresponds
to some unmeasured dynamical quantities of the process,
procedures to directly synthesize observers without going
through the identification of a dynamical model first were
proposed, also known as virtual sensors [14]–[16]. Robust
estimation schemes were also investigated in the context of
descriptor-LPV systems in [17]. All the above approaches
to synthesize virtual sensors for ρk require experimental
training data in which ρk is available from measurements,
which is the typical assumption when training virtual sensors.

In this paper we present an approach for learning virtual
sensors from data based on a lightweight artificial neural
network (ANN). The proposed approach consists of three
main steps:

1. build a finite set of linear time-invariant (LTI) models
that roughly cover the behavior of the system for the
entire spectrum of values of ρk;

2. design a set of linear observers based on such models;
3. train an ANN that maps the output of the observers

(such as state and output estimates) and input/output
signals into an estimate ρ̂k of ρk.

Although the underlying dynamics may be a nonlinear LPV
one, the use of linear observers is useful for creating extra
inputs to the ANN in a simple way that depend on the entire
history of past measurements.

The paper is organized as follows. In Section II we intro-
duce the proposed virtual sensor architecture and training
algorithms. In Section III we study the behavior of the
synthesized virtual sensor numerically on a simple LPV
problem, analyzing the effect of the hyper-parameters of the
strategy. Finally, we draw some conclusions in Section IV.

Preprints of the 27th Mediterranean Conference on Control
and Automation (med19), Akko, Israel, July 1-4, 2019

We-A02.2

226

II. VIRTUAL SENSOR ARCHITECTURE

As common to direct virtual sensor synthesis procedures,
in our approach we do not assume that the parameter-varying
model f, g in (1) is known, nor that xk is measurable. Our
working hypothesis is that uk, yk can be measured both
during training/testing and online operations, while ρk can
be measured only during training/testing. We also suppose
that the dynamics of the process is heavily dependent on
ρk. For example, the value of ρk may be determining
whether the process is working properly or is in a physical
malfunctioning situation.

Let D : {uk, yk, ρk}, k = 1, . . . ,K be the dataset ac-
quired (off line) from the process. Our approach to synthesize
a virtual sensor for estimating ρk on line from measurements
of uk, yk is the following:

1. Identify a local linear model Σγk at each time k, k =
k1, . . . ,K, k1 ≥ 1, where Σγk is parameterized by a
vector γk of model coefficients, γk ∈ Rnγ ;

2. Use unsupervised learning techniques to partition the
set F = {

[ρk1
γk1

]
, . . . , [ρKγK]} of parameter and model

coefficient into N clusters, each one characterized by
a corresponding set of indices I1, . . . , IN , ∪Ni=1Ii =
{k1, . . . ,K}, Ii ∩ Ij = ∅, ∀i, j = 1, . . . , N , i 6= j;

3. Identify N linear time-invariant (LTI) models Σi based
on input/output data uk, yk, k ∈ Ii, i = 1, . . . , N ;

4. Design a Luenberger observer Li for each model Σi;
5. Process the dataset D by running the N observers to

generate state estimates x̂ik, k ∈ [k1,K];
6. Train an artificial neural network (ANN) on the resulting

augmented dataset to learn a relation between ρk and
uk, yk, and past ` values of x̂1

k, . . . , x̂
N
k .

After the virtual sensor is synthesized, the N observers are
run in parallel on line and uk, yk, x̂jk−i (j = 1, . . . , N ,
i = 1, . . . , `) fed to the virtual sensor to estimate ρk.

A. LTI model identification

Our goal is to construct a set of local LTI models

Σj :=

{
xjk+1 = Ajx

j
k +Bjuk

yjk = Cjx
j
k, j = 1, . . . , N

(2)

with xjk ∈ Rn̄x and with matrices Aj , Bj , Cj of appropriate
dimensions. The idea is that each of such models roughly
approximates the behavior of the real process Σ in (1) for a
certain range of the scheduling signal ρk, and will be used
to design the corresponding observer.

In order to define the subset Ij of datapoints used to
identify model Σj , we first adopt recursive linear system
identification techniques to build a set {Σγk1 , . . . ,Σ

γ
K} of

local linear models describing the behavior of the process
at each time step k, each one characterized by a parameter
vector γk.

Designing a time-varying linear observer based on such
models to generate the state estimate x̂k on line would
require estimating the vector γk of parameters on line too.
In order to avoid on-line recursive identification, we only
use the local model coefficient vectors γk collected offline,

together with the corresponding ρk, to partition the dataset
D into N clusters I1, . . . , IN . The underlying idea is that
samples (uk, yk), k ∈ Ij , associated with similar values of
ρk and similar values of γk contribute to identify the LTI
model Σj .

In this work we employ an online ARX estimator based on
Kalman filtering [18] to estimate the model coefficients γk
and the K-means algorithm [19] for clustering the dataset D.
Moreover, for simplicity, we do not cluster with respect to
[ρkγk] but only with respect to γk, and rather than identifying
one ARX model per cluster we consider as model Σj a state-
space model in minimal realization whose transfer function
coefficients are the coordinates of the centroid in the γ-space
of each cluster identified by the index set Ij .

B. Observer design

For each model Σj we need to design an observer pro-
viding an estimate x̂jk of the state xj . To be more general,
we denote by ijk ∈ Rv the information vector generated by
the observer, where ijk could be just x̂jk or also contain other
information, such as related to the covariance matrix of the
state-estimation error if linear time-varying Kalman filters
were used as state observers, or the covariance of the output
estimation error.

When designing the observers, we need to take into
account the trade-off between robustness, speed of con-
vergence, and computational burden. An observer that is
highly sensitive to changes of local behavior with respect
to model Σj could quickly decay in performance even for
small changes of the scheduling signal ρk. Hence, inferring
the value of ρk from ijk would be rather hard. On the other
hand, an observer designed for robustness may suffer from
the opposite problem and be weakly sensitive to variations
of the scheduling signal ρk. In both cases, the information
signal ijk computed by the observer would not be informative
enough to recover the scheduling signal ρk.

The computational burden introduced by the observers also
needs to be considered. As we need to run the full set of N
observers in parallel at runtime, techniques like particle filters
might results too expensive from a computation viewpoint.
For this reason, in this paper we use simple LTI Luenberger
observers [20]{

x̂jk+1 = (Aj − LjCj)x̂jk +Bjuk + Ljyk
ŷjk = Cj x̂

j
k

(3)

where Aj , Bj , Cj are the matrices of the corresponding
model Σj and Lj is the observer gain matrix. For the
observer in (3) the information vector ijk corresponds to the
current state estimate x̂jk.

After the N observers are synthesized, we process the
dataset D to generate the information vectors ijk, k ∈ [k1,K].

C. Learning problem and dimension reduction

Let us now consider the augmented dataset Daug :=
{i1k, . . . , iNk , uk, yk, ρk}, k = k1, . . . ,K. Our aim is to train

227

an artificial neural network (ANN) fθ : R`Nv+nu+ny → RS
using the dataset Daug so that

ρ̂k = fθ(i
1
k, . . . , i

1
k−`, . . . , i

N
k , . . . , i

N
k−`, uk, yk) (4)

is a good estimate of ρk. To this end, we consider the
minimization of a loss function L : R2S → R measuring the
distance between the measured value ρk and its reconstructed
value, that is we set

θ? = arg minθ

K∑
k=k1+`

L(ρk, fθ(i
1
k, . . . , i

N
k−`, uk, yk)) (5)

In order to embed possible a-priori information in
the architecture f about the relation between ρk and
{i1k, . . . , iNk−`, uk, yk}, we define the following structure for
fθ

ρ̂k = gθ(e(i
1
k, i

1
k−l, . . . , i

N
k , . . . , i

N
k−l, uk, yk)) (6)

where e : R`Nv+nu+ny → RnI is a pre-assigned function
defining the vector Ik = e(i1k, i

1
k−l, . . . , i

N
k , . . . , i

N
k−l, uk, yk)

of features, and g : RnI → RS the function to learn
from data. The role of e is to compress the raw data i1k,
i1k−l, . . ., i

N
k , . . ., iNk−l, uk, yk, embedding all the needed

pre-processing operations on the data such as normaliza-
tion and rescaling. Albeit many function approximation
approaches have demonstrated the capability of learning
feature-extraction maps (see for example [21]), leaving e as
a complete degree of freedom (that is to directly learn fθ
instead of gθ) would require more powerful machinery and
typically a larger number nθ of parameters, that may result
in a virtual observer with computation and memory require-
ments that not compatible with embedded applications. Note
that the full parameterization of fθ is retained by choosing
e(Ik) = Ik = {i1k, i1k−l, . . ., i

N
k , . . ., iNk−l, uk, yk}.

In this paper we propose a high-compression feature
extraction function e that, while reducing the number of
inputs to the neural network gθ, does not degrade fitting
performance significantly with respect to a full parameter-
ization fθ. The key idea is to consider, besides the current
input and output samples uk, yk, the sum νik of the squares
of the residuals yk − ŷjk over a window of past ` data

νik =

k∑
r=k−`

(yir − ŷir)2 (7)

In this way it is possible to reduce the feature vector Ik ∈
RnI to

Ik = {ν1
k , . . . , ν

N
k , uk, yk} (8)

which only has nI = (N+1)ny+nu components, so that the
input to the ANN gθ, and therefore the ANN gθ itself, can get
very compact. Finally, before feeding Ik to the ANN, each
component of Ik is normalized by subtracting the average
of Ik observed on the training dataset Daug and scaled by a
factor that provides unit variance on the same dataset.

Note that ` is a hyper-parameter of our approach. The
value of ` must be chosen carefully: if it is too small the
time window of past output prediction errors may not be

Observer #1
Observer #1

Observer #n
e()ykuk

𝝆k

Fig. 1. Virtual sensor architecture: observers (orange), feature extraction
map (red), and ANN-based virtual sensor (blue)

long for a slow observer. On the other hand, if ` is too large
the virtual sensor may become excessively slow in detecting
changes of ρk.

D. Choice of the approximator

As highlighted in [22], in order to target an embedded
implementation we must envision a learning architecture for
gθ that has a limited memory footprint and requires a small
and well predictable throughput. Among various options, as
also noted in [23], a good choice is to resort to a very
compact feedforward neural network with a small number
of layers composed of neurons with Rectified Linear Unit
(ReLU) activation functions [24]

fReLU(x) = max{0, x} (9)

The simple structure in (9) requires very limited memory
footprint, due to recent advancements in group sparsity
regularization techniques [25], and results in a very compact
CPU load. Moreover, the number of floating point operations
(flops) involved in a evaluating an ANN with ReLU activa-
tion functions (9) is independent of the number of samples
used in the training phase, in contrast for example to K-
nearest neighbor classifiers [19].

We choose a linear activation function for the output layer
of the network receiving inputs from the underneath hidden
layers. Finally, in order to effectively train the proposed ANN
structure, we select the loss function L to be the standard
squared prediction error.

The overall architecture proposed for the virtual sensor for
the scheduling parameter ρ is shown in Figure 1.

III. NUMERICAL RESULTS

A. Benchmark system

In order to test our approach on a simple example we
assume that the underlying system Σ in (1) generating the
data is the following linear parameter-varying (LPV) system

Σ :


x1
k+1 = A1x1

k + ρkB
1uk

x2
k+1 = A2x2

k + (1− ρk)B2uk
yk = ρkC

1x1
k + (1− ρk)C2x2

k

(10)

228

with x1 ∈ R2, x2 ∈ R2 (nx = 4), the scheduling signal
ρk ∈ R, and

A1 =
[−0.375 −0.1

0.125 0

]
A2 =

[
0.375 −0.75

1 0

]
B1 =

[−2
0

]
C1 = [0.0625 2.5]

B2 = [2
0]

C2 = [−1 −0.0938]

(11)

A training dataset of 25000 samples and a dataset of 5000
testing samples are generated by exciting the system Σ with
a white Gaussian noise input uk with zero-mean and unit
standard deviation starting from the zero initial state. To
mimic measurement noise, a zero-mean white Gaussian noise
with standard deviation of 0.05 is added on the input, output,
and scheduling variable signals.

B. Virtual observer synthesis

A recursive ARX estimator based on Kalman filtering [26],
parameterized with 3 past outputs, 3 past inputs, and unit
input delay has been run on the training set, with k1 =
` + 1. The resulting vectors γk ∈ R6 of coefficients are
then processed using K-means, with the squared Euclidean
distance between such vectors used to construct the N
clusters. The LTI models Σj are obtained by taking a state-
space realization of the transfer functions defined by the
coefficients of the centroids γ̄j of the clusters, for all j =
1, . . . , N , and a deadbeat observer is then taken for each
model Σj . We also set the length ` = 4 of the time window of
past output estimation errors consumed by the virtual sensor.

The chosen ANN structure consists of 3 layers (2 ReLU
layers and an output linear layer), with overall 20 neurons
in the nonlinear layers. The network was trained and im-
plemented using the Deep Learning Toolbox of MATLAB
R2018b [27], with the training procedure carried out using
the Levenberg-Marquardt algorithm [28].

The performance of the resulting virtual sensor is judged
on the testing set in terms of the following fit figure

FIT = max

{
0, 1− ‖ρk − ρ̂k‖2

‖ρ̄k − ρk‖2

}
(12)

where ρ̄k is the mean value of ρk over the test set.
For each examined case we report the mean value and stan-

dard deviation of FIT obtained over 10 different runs, each
one involving different realizations of the input, scheduling,
and noise signals.

Regarding the scheduling signal ρk, we generate it in
accordance with the following stochastic process

pk ∼ U(0, 1)

ρk+1 =


ρk + κ if pk > 0.75 ∧ |0.5− ρk| < 0.5
ρk − 5κ if pk < 0.05 ∧ |0.5− ρk| < 0.5

ρk
2 if |0.5− ρk| > 0.5
ρk otherwise

(13)
with κ = 0.015.

C. Sensitivity to the number N of models

In this section we analyze the performance of the virtual
sensor with respect to the number N of LTI model/observer
pairs used, by comparing the performance obtained using

TABLE I
AVERAGE FIT (12) OF THE VIRTUAL SENSOR WITH RESPECT TO THE

NUMBER N OF LTI MODELS

N 2 3 4 5
mean 0.6258 0.7510 0.7935 0.8054
standard deviation 0.0361 0.0218 0.0157 0.0147

N = 2, 3, 4, 5 and 25000 samples for training. The results
reported in Table I and in Figure 2 show that performance
quickly degrades when too few local models are employed.

3600 3800 4000 4200 4400 4600
time steps

-0.2

0

0.2

0.4

0.6

0.8

k

Fig. 2. Example of reconstruction of the scheduling signal by the virtual
sensor based on 5 local models and deadbeat observers: ρk (blue line), ρ̂k
(red line), reconstruction error (light blue line)

D. Sensitivity to the number K of samples

We analyze next the performance obtained by the virtual
sensor depending on the number K of samples available
for training. Assessing the scalability of the approach with
respect to the size of the dataset is extremely important as
neural networks often require a large number of samples to
be effectively trained.

Table II shows the results obtained by restricting the
training procedure to only use a subset of the training dataset,
when 5 model/observer pairs are used. It is apparent that
good results can be already obtained with only 5000 samples.
With smaller datasets fit performance degrades, for example
1000 samples result in a virtual sensor that is not able to
reconstruct the scheduling signal satisfactorily.

TABLE II
AVERAGE FIT (12) OF THE VIRTUAL SENSOR USING DATASET OF

DIFFERENT SIZES

no. of training samples 1000 2000 5000 25000
mean 0.4115 0.5833 0.7843 0.8054
standard deviation 0.2681 0.2337 0.0147 0.0147

229

E. Sensitivity to observer poles

We now analyze the sensitivity with respect to the location
of the observer poles. This analysis could be also relevant to
address practical scenarios in which the observers are already
in place in a gain-scheduled control system and designed to
satisfy different closed-loop control criteria.

Using again N = 5 models, we tune the Luenberger
observers to have their poles all equal, and vary the pole
location in different tests. Results are reported in Table III for
the full training dataset of 25000 samples. We highlight that
while performance is satisfactory in all cases, fast observers
provide better fit performance.

TABLE III
AVERAGE FIT (12) WITH RESPECT TO OBSERVERS POLES

pole location 0.0 0.3 0.6
mean 0.8054 0.7786 0.7157
standard deviation 0.0147 0.0167 0.0304

F. Sensitivity to ρk dynamics

So far we have analyzed fit performance when the dy-
namics (13) of the scheduling signal ρk is the same in both
training and testing data. Here we analyze the performance
obtained when the testing dataset is instead generated by the
different scheduling signal dynamics

ρk =


0.3 + 0.3 cos(k

100) if k ≤ N
3

0.3 if k ∈ [N3 ,
2N
3]

mod (k,300)
300 otherwise

(14)

where N is the number of time steps of the dataset.
The results, reported in Table IV, related to using N = 5

models and 25000 or 5000 training samples, show that the
performance of the virtual sensor remains quite effective.

TABLE IV
AVERAGE FIT (12) OBTAINED WITH A DIFFERENT LAW FOR ρk IN THE

TEST DATASET

no. of samples 25000 5000
mean 0.7699 0.7261
standard deviation 0.0149 0.0165

G. A mode observer for switched linear systems

An interesting class of systems which can be described as
in 1 are switched systems [29], a class of hybrid systems
in which the scheduling signal ρk can only assume a finite
number s of values ρ1, . . ., ρs. In this case, we are approxi-
mating model (1) as the discrete-time switched linear system

Σ :=

{
xk+1 = Aρkxk +Bρkuk
yk = Cρkxk

(15)

The problem of estimating ρk from input/output measure-
ments is also known as the mode-reconstruction problem.
In order to test our virtual sensor approach for mode re-
construction, we let the system generating the data be the
switched linear system with s = 4 modes obtained from (10)

0 1000 2000 3000 4000
time steps

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

k

Fig. 3. Example of tracking performance of the scheduling parameter in
a switched linear system setting. Blue line is ρk , red line is ρ̂k , light blue
is the tracking error.

by restricting the scheduling signal ρk to only assume the
following values

ρk =


0.3 if k ∈ [K4 ,

K
2]

0.75 if k ∈ [K2 ,
3K
4]

0.94 if k > 3K
4

0.12 otherwise

(16)

where K is the number of samples collected in the experi-
ment.

We consider two different scenarios. In the first one, the
number N of clusters matches the number s = 4 of modes
of the systems. The corresponding results are reported in
Table V and in Figure 3. In the second scenario we only
consider N = 3 and obtain the results reported in Table VI.

TABLE V
AVERAGE FIT (12) OBTAINED WITH 4 CLUSTERS / 4 MODES

no. of samples 25000 5000
mean 0.9087 0.9018
standard deviation 0.0471 0.0322

TABLE VI
AVERAGE FIT (12) OBTAINED WITH 3 CLUSTERS / 4 MODES

no. of samples 25000 5000
mean 0.8375 0.8241
standard deviation 0.0056 0.0061

Note that in this special case of mode reconstruction,
a different ANN architecture could be used to provide a
classifier rather than a function regressor, so that it always
produces a discrete output.

H. Computational complexity
The on-line evaluation of the proposed virtual sensor

architecture is extremely light from a computational point

230

of view. Evaluating the virtual sensor on the entire testing
set requires 30 ms (roughly 10 µs per sample) on an Intel
Core i5 6200U with 16 GB of RAM.

The training procedure also does not require excessive
computations: on the same hardware the training process is
carried out in less than a minute for a fully sized training
set with negligible RAM occupancy. Only about 600 double-
precision weights on average are needed to parametrize the
ANN in our tests.

I. Effects of information compression

In order to assess how much the information compres-
sion (8) proposed in Section II-C affects fit performance, we
also test the performance of an ANN modeling directly fθ
in (4) using the same number of layers, which leads to 1101
weights. In both cases we consider N = 5 observers and use
25000 training samples.

Results are reported in Table VII. Clearly, with enough
storage space for the resulting set of weights characterizing
the ANN, it is indeed possible to slightly increase the
performance of the virtual sensor, at the cost of almost
doubling the number of weights required by the network.
On the other hand, the same table also shows that no much
is lost due to the compression (8).

TABLE VII
AVERAGE FIT (12) WITH FEATURE EXTRACTION (8) (CASE A) AND

USING A UNIT ENCODER e TO DIRECTLY LEARN fθ IN (4) (CASE B)

case A B
mean 0.8054 0.8094
standard deviation 0.0147 0.0148

IV. CONCLUSIONS

In this paper we have proposed a data-driven virtual sensor
approach for the reconstruction of the scheduling signal af-
fecting the dynamics of a parameter-varying process. The key
idea is to enrich the input/output dataset with the additional
data generated by processing the same data through a bank
of linear observers. In this way, rather than trying to estimate
the scheduling signal directly from a (possibly large) number
of past inputs and outputs, we design a very compact ANN
which is fed by the current input, current outputs, and by the
output estimator errors cumulated over a time-window. The
resulting architecture is particularly suitable for embedded
applications, due to its limited computational complexity and
memory occupancy.

REFERENCES

[1] R. Tóth, Modeling and Identification of Linear Parameter-Varying
Systems. Springer, Berlin, Heidelberg, 2010.

[2] F. Torrisi and A. Bemporad, “HYSDEL — A tool for generating com-
putational hybrid models,” IEEE Trans. Contr. Systems Technology,
vol. 12, pp. 235–249, Mar. 2004.

[3] D. Rotondo, V. Puig, J. M. A. Valle, and F. Nejjari, “FTC of LPV
systems using a bank of virtual sensors: Application to wind turbines,”
in Proc. of Conf. on Control and Fault-Tolerant Systems, pp. 492–497,
Oct 2013.

[4] M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for
Non-Linear Systems. Springer, Cham, 2014.

[5] W. J. Rugh and J. S. Shamma, “Research on gain scheduling,”
Automatica, vol. 36, pp. 1401–1425, 2000.

[6] S. Z. Rizvi, J. M. Velni, F. Abbasi, R. Tóth, and N. Meskin, “State-
space LPV model identification using kernelized machine learning,”
Automatica, vol. 88, pp. 38–47, 2018.

[7] V. Breschi, D. Piga, and A. Bemporad, “Piecewise affine regression
via recursive multiple least squares and multicategory discrimination,”
Automatica, vol. 73, pp. 155–162, Nov. 2016.

[8] A. Bemporad, V. Breschi, D. Piga, and S. Boyd, “Fitting jump models,”
Automatica, vol. 96, pp. 11–21, Oct. 2018.

[9] M. Witczak, Unknown Input Observers and Filters, pp. 19–56. Cham:
Springer International Publishing, 2014.

[10] M. Mejari, V. V. Naik, D. Piga, and A. Bemporad, “Regularized
moving-horizon pwa regression for lpv system identification,” in Proc.
of 18th IFAC Symposium on System Identification, 2018.

[11] M. Mejari, V. V. Naik, D. Piga, and A. Bemporad, “Energy dis-
aggregation using piecewise affine regression and binary quadratic
programming,” in Proc. 57th IEEE Conf. on Decision and Control,
2018.

[12] A. Bemporad, D. Mignone, and M. Morari, “Moving horizon esti-
mation for hybrid systems and fault detection,” in Proc. of the 1999
American Control Conf., vol. 4, pp. 2471–2475 vol.4, 1999.

[13] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting
multiple model methods in target tracking: a survey,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 34, pp. 103–123, Jan
1998.

[14] L. Ljung, “Convergence analysis of parametric identification methods,”
IEEE Transactions on Automatic Control, vol. 23, no. 5, pp. 770–783,
1978.

[15] M. Milanese, C. Novara, K. Hsu, and K. Poolla, “The filter design from
data (fd2) problem: Nonlinear set membership approach,” Automatica,
vol. 45, no. 10, pp. 2350–2357, 2009.

[16] T. Poggi, M. Rubagotti, A. Bemporad, and M. Storace, “High-speed
piecewise affine virtual sensors,” IEEE Transactions on Industrial
Electronics, vol. 59, pp. 1228–1237, Feb 2012.

[17] F.-R. L.-E. et al., “Robust sensor fault estimation for descriptor-LPV
systems with unmeasurable gain scheduling functions: Application to
an anaerobic bioreactor,” Int. Journal of Applied Mathematics and
Computer Science, vol. 25, no. 2, pp. 233–244, 2015.

[18] L. Ljung, System identification: theory for the user. Prentice-Hall,
1987.

[19] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer Series in Statistics, New York, NY, USA: Springer
New York Inc., 2001.

[20] S. M. Shinners, Modern Control System Theory and Design. New
York, NY, USA: John Wiley & Sons, Inc., 2nd ed., 1998.

[21] Y. Gao, L. Zhu, H.-D. Zhu, Y. Gan, and L. Shang, “Extract features
using stacked denoised autoencoder,” in Intelligent Computing in
Bioinformatics, pp. 10–14, Springer International Publishing, 2014.

[22] D. Masti and A. Bemporad, “Learning binary warm starts for multi-
parametric mixed-integer quadratic programming,” in Proc. of Euro-
pean Control Conference, (Naples, Italy), 2019.

[23] B. Karg and S. Lucia, “Efficient representation and approximation
of model predictive control laws via deep learning,” arXiv preprint
arXiv:1806.10644, 2018.

[24] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Int. Conf. on Machine Learning (ICML),
pp. 807–814, Omnipress, 2010.

[25] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group
sparse regularization for deep neural networks,” Neurocomputing,
vol. 241, pp. 81 – 89, 2017.

[26] L. Ljung, System Identification Toolbox for MATLAB – User’s Guide.
The Mathworks, Inc., 2001.

[27] M. H. Beale, M. T. Hagan, and H. B. Demuth, Deep Learning Toolbox
– User’s Guide. The Mathworks, Inc., 2018.

[28] N. M. Nawi, A. Khan, and M. Rehman, “A new Levenberg Marquardt
based back propagation algorithm trained with Cuckoo search,” Proce-
dia Technology, vol. 11, pp. 18 – 23, 2013. 4th Int. Conf. on Electrical
Engineering and Informatics.

[29] D. Liberzon, Switching in systems and control. Springer Science &
Business Media, 2003.

231

