Defining and Guaranteeing Dynamic Service Levels in Clouds

Rafael Brundo Uriarte®*, Rocco De Nicola?, Vincenzo Scoca®, Francesco Tiezzi?

CIMT School for Advanced Studies Lucca, Italy
b University of Camerino, Ttaly

Abstract

In this paper, we introduce SLAC, a SLA definition language specifically devised for clouds as a formalism
to support the whole SLA lifecycle. The main novelty of the language is the possibility of capturing within
the SLA the dynamic aspects of the environment by defining the conditions and actions to change service
levels at runtime. SLAC permits to make the most of cloud elasticity, reduces the need for renegotiation and
provides guarantees for dynamic scenarios. The language has formal syntax and semantics, and it comes
with effective software tools supporting the whole SLA management lifecycle. The impact of our language
and of its software tools is assessed by considering a series of experiments that provide empirical evidences

of the advantages of SLAC.

Keywords: Cloud Computing, Service Level Agreements, Dynamic SLAs

1. Introduction

In cloud computing, consumers outsource their
business functions to entrusted cloud service
providers [1]. This requires the definition of formal
guarantees that the delivered services are compliant
with the agreed terms, which are specified via the
so-called Service Level Agreements (SLAs). SLAs
not only provide guarantees to consumers, but are
also the principal means for cloud providers to es-
tablish their credibility, and to attract or retain cus-
tomers [2].

Nevertheless, the main market players, like Ama-
zon, Google or Microsoft, do not offer machine-
readable SLAs, but only natural language descrip-
tions of service conditions. This conduct hinders the
automation of the SLA management and may lead to

*Corresponding author
Email addresses: rafael.uriarte@imlucca.it (Rafael
Brundo Uriarte), rocco.denicola@imlucca.it (Rocco De
Nicola), vincenzo.scoca@imlucca.it (Vincenzo Scoca),
francesco.tiezzi@unicam.it (Francesco Tiezzi)

Preprint submitted to Future Generation Computer Systems, 2018

controversial interpretations of given SLAs. To over-
come this issue, academia and standardisation bodies
have been proposing in the last years several domain-
specific languages for defining SLAs [3, 4, 5, 6, 7, 8,
9, 10, 11]. These languages, however, do not sup-
port crucial features of the cloud domain, such as the
dynamicity of the (changing) requirements of the par-
ties; the role of the broker; the types of clouds (e.g.,
community or hybrid); and the wide range of ser-
vice types. Adapting and extending such languages
to consider these features would result in deep struc-
tural and conceptual changes, up to the point of de-
naturing them and adding new layers of complexity.

Therefore, we propose a novel SLA definition lan-
guage, called SLAC, devised for comprehensively
dealing with the specific and distinctive aspects of
cloud services. SLAC builds upon earlier proposals
[12, 13], in which the mentioned features were ad-
dressed separately and differently. In this paper we
have revised the elements and mechanisms of the pre-
vious languages, and incorporated them into a new
single language; we refer to Section 7 for a compar-

April 3, 2019

ison with our previous papers. The key features of
SLAC are the following:

e Formally defined syntax and semantics, guaran-
teeing non-ambiguous SLAs and enabling SLAs
evaluation through constraint solving;

e Novel mechanisms for dealing with the dynam-
icity of SLA terms, to take full advantage of the
elasticity of cloud services and guaranteeing flex-
ibility to the involved parties;

e Linguistic support for multi-party SLAs, possi-
bly involving brokering;

e Software tools supporting the whole lifecycle of
SLAs, from editing to services deployment, from
monitoring to enforcement.

While works addressing other phases of the ser-
vice lifecycle, such as, scheduling and monitoring,
take into account the dynamic nature of cloud ser-
vices, this dynamism has been overlooked in the def-
inition of SLA languages. More specifically, existing
languages attempt to cope with it only by relying
on renegotiating of the SLA terms, which is a heavy
and expensive process. These languages are thus lim-
ited to the definition of the so-called static SLAs,
where parties agree on contractual terms that remain
the same for the whole contract lifetime. SLAC, in-
stead, provides novel linguistic facilities that allow
SLA’s designers to define, in addition, dynamic SLAs.
These offer the possibility of automatically modifying
at runtime the service level according to predefined
conditions stipulated in the contract itself. Such run-
time changes may act on the values of the metrics
involved in the current contractual terms of the SLA,
or on the set itself of valid SLA terms (i.e., the cur-
rently enforced terms can be dynamically replaced or
deleted, and new terms to be enforced can be added).
This permits to guarantee additional flexibility to the
parties by fully exploiting the elasticity of cloud ser-
vices while avoiding, or at least reducing, human in-
tervention. On the other hand, to have full control
of these dynamic changes, the SLA parties have to
agree, at negotiation time, on foreseeable scenarios.
In this way, the SLA does not loose its contractual

notion, since all the possible changes are specified
within the contract.

To sum up, the main contribution of this paper is
a comprehensive methodology supporting the whole
lifecycle of SLAs for the cloud domain. Its specific
contributions are:

e The SLAC language, devised for defining both
static and dynamic SLAs (Section 4);

e The SLAC software framework, providing sup-
port to editing, monitoring and evaluating SLAs
(Section 5);

e The validation of the SLAC approach via exper-
iments on a cloud testbed (Section 6).

Furthermore, in Section 2 we introduce a simple
scenario to motivate the use of dynamic SLAs. In
Section 3 we illustrate our proposed lifecycle for dy-
namic SLAs. In Section 7 we provide a comparison
with related works, showing the advancement with
respect to the state of the art. In Section 8 we fur-
ther discuss challenges and benefits of our approach,
and suggest future research directions.

2. Uses Cases and Motivating Scenario

In this section we illustrate the benefits of dynamic
SLAs by describing four use cases and a motivating
scenario that will be used throughout this paper to
present the SLAC language and the related software
framework. These are just simple illustrative exam-
ples; obviously, dynamic SLAs may be fruitfully ap-
plied in many situations, ranging from simple scala-
bility problems to complex SLA composition.

Use cases. Let us imagine that a municipality
decided to outsource the processing of its SmartC-
ity project, which relies on sensors spread around the
city (used, e.g., for traffic congestion monitoring, in-
door positioning, smoke detection and smart light-
ing). The need of processing varies considerably ac-
cording to, e.g., time, weather conditions and season.
With static SLAs, in case of high demand, the cloud
service provider may impose a new, higher price to
scale the service, or he may even refuse to offer the
service, which would imply additional costs to find

a new provider and transfer there the service. With
dynamic SLAs, instead, the municipality could have
a bidding document defining all the conditions to au-
tomatically change the valid terms of the SLA.

Now, let us consider a hospital that relies on a
cloud service provider to perform diagnostics based
on Magnetic Resonance Imaging. In most cases the
diagnoses can be made within two days without prob-
lems. However, in cases of emergencies, the hospital
may need diagnoses within an hour without any limit
on the number of simultaneous requests. In their dy-
namic SLA, the parties can specify the conditions to
pass from a normal to an emergency state, and hence
to change the response time and the related service
costs.

Dynamic SLAs can be useful also for cloud
providers when they have overbooked their resources
and the demand raises unexpectedly. In such case,
to prevent SLA violations, paying fines and losing
clients’ trust, the provider might want to activate a
clause in the SLA that allows him to reduce the re-
sources provided to some clients (e.g., change of the
type or the number of VMs) while offering monetary
discounts to compensate the service reduction.

Brokers, who have a key role in multi-cloud envi-
ronments, may also take advantage of dynamic SLAs.
In a multi-cloud scenario, like, e.g., the one described
in [14], a broker is responsible for the service but
outsources the actual execution of the service to a
provider. Dynamic SLAs, in this case, are essential
to guarantee that providers will be able to adapt ser-
vice provision according to what was sold to the final
consumer.

Motivating scenario. We consider as running
example a scenario regarding the provision of IaaS
services for hosting an e-commerce site. Alice con-
tracts this service from the IMT provider. Since she
does not have a reliable infrastructure to verify if
the service is compliant with the terms of the agree-
ment, she requests an auditor, Bob, to do it and de-
fines the monitoring terms. Although she believes
that her business will grow significantly in the fu-
ture, she requires at the beginning a small virtual
machine (S_-VM), which provides a limited amount
of CPU units and RAM memory. Anyway, she also

already defines the contractual terms for upgrading
the service, during its execution, up to 2 large virtual
machines (L_-VM_IMT), with more CPUs and mem-
ory, improved availability, and an additional require-
ments in terms of response time delay, at a higher
service price. To avoid surprises and plan the costs
of her business, she agrees on a pre-defined price for
all these requirements of the service. On the other
hand, IMT reserves itself the right to outsource the
service to UNICAM when Alice is using at least one
large VM, thus acting also as a broker. Moreover,
IMT allows Alice to freely scale up and down the ser-
vice level with one exception: once Alice scaled up to
a large VM, she must explicitly ask IMT the autho-
risation for moving to a small VM again. The reason
being that small VMs are expensive to maintain in
specific conditions and IMT cannot outsource them
to UNICAM which does not provide small VMs.
This SLA is represented, in Figure 1, as an au-
tomaton with five states, each representing a possi-
ble service level. State transitions are labelled by the
events triggering a change of state. This behaviour
is an example of how vertical (e.g., replacing a small
VM with a large one) and horizontal (e.g., adding
more VMs) scalability can be handled and regulated
by SLAC. The example also shows the flexibility of
dynamic SLAs and the expressive power of SLAC,
which may represent important business advantages
for all involved parties. We will present the SLAC
specification of this SLA in Section 4, where we will
use it to illustrate the key features of the language.

3. Lifecycle of Dynamic SLAs

In this section, we first provide some background
notions on cloud SLA management, then we present
a lifecycle specifically defined for dynamic SLAs.

The management of clouds attempts to optimise
preferences and policies of stakeholders according to
the state of the cloud and the agreed SLAs.

Five types of actors are involved when defining
cloud SLAs [15, 16]:

e (Consumer is the user or beneficiary of the service
(in our running scenario, Alice plays this role);

1S_VM

2 cCPU 4 GB RAM
99% availability
price 0.20 EUR
Alice's
demand
Alice's auth

request
Alice's auth
request

IMT's
demand

1 L_VM_UNICAM

4 cCPU 8 GB RAM

99.1% availability
0.6 ms RT_delay
price 0.33 EUR

1L_VM_IMT

4 cCPU 8 GB RAM

99.89% availability
0.5 ms RT_delay

price 0.35 EUR

IMT's
demand

Alice's
demand

Alice's
demand

Alice's
demand

IMT's
demand

2 L_VM_IMT

4 cCPU 8 GB RAM
99.89% availability

0.5 ms RT_delay
price 0.35 EUR

2 L_VM_UNICAM

4 cCPU 8 GB RAM
99.1% availability
0.6 ms RT_delay
price 0.33 EUR

IMT's
demand

Figure 1: Automaton for the dynamic SLA of the motivating
scenario.

e Provider makes services available to interested
parties (both IMT and UNICAM play this role);

e Carrier provides connectivity and transports the
services from providers to consumers (our SLA
example does not involve this role);

e Auditor assesses the service provided in term of,
e.g., performance (Bob plays this role);

e Broker negotiates relationships between
providers and consumers, and may manage the
service use and delivery (IMT plays this role).

In the cloud domain, services are offered with two
main SLA modalities:

e Service-Based SLAs refer to non-negotiable and
ready-to-sign SLAs available for all consumers.
This is the most common type of SLA in clouds.

e Customer-Based SLAs have negotiable terms
and are agreed with individuals or groups (also

large organisations or brokers) to adapt the pro-
vided services to their needs. Although more
flexible, this modality is significantly more com-
plex and definitely less used.

To fulfil their dynamic needs, in both cases the in-
volved parties might want to change the terms of the
SLA for some predicted scenarios. However, current
SLA models are static, that is, once agreed, the SLA
remains the same till its expiration date or till all
the involved parties agree to terminate or renegotiate
it. Often, elasticity is offered through a generic SLA
valid for all instances of service (defined in natural
language), or through the possibility of terminating
the previous and starting a new SLA.

In fact, the terms scalability, elasticity and dy-
namism are commonly confused in the domain. Scal-
ability refers to the capacity to cope with the increase
of workload (new services or increasing demand of the
existing ones). This aspect is strongly related to the
provider of the service. Elasticity refers instead to the
flexibility to adapt the service to the current demand
as closely as possible, being autonomically managed
by the provider, or decided and requested (possibly
also autonomically) by the consumer [17]. It concerns
only the technical aspects of adapting the service but
does not refer to the definition of the terms and au-
thorisations related to them. Dynamism is related
to the changes in the needs of users and providers.
While elasticity enables providers and consumers to
maintain the quality of services within the specified
range (e.g., adding memory to keep the response time
lower than 3 ms), dynamic SLAs formalise the capac-
ity to change the valid terms of the service defined in
the SLA, e.g. the response time itself.

Currently, the parties specify dynamism in SLAs
using the natural language, but the inherent ambi-
guity of the latter could lead to misunderstandings.
One party could manually translate the SLA in a
digital form and (unilaterally) automatise the service
provisioning. However, there might be different un-
derstanding of the SLA and significant efforts from
both sides would be needed to reach an agreement.
To limit disagreements, we propose SLAC that, in
addition to modelling traditional SLAs, also intro-
duces the possibility of dynamically changing the set

of valid terms of agreements according to predefined
conditions stipulated in the SLA. It permits the for-
malisation of the elasticity of cloud services in the
SLA, guarantees flexibility to the parties who can
agree, at negotiation time, on foreseeable scenarios,
and yet maintains its contractual notion. Notably,
dynamic SLAs do not refer to the state of the cloud
or of the service, but only to the state of the SLA
itself.

We propose a SLA lifecycle, based on the one pre-
sented in [18], to support this dynamism. Its phases
are described below and depicted in Figure 2.

e Discovery and Negotiation. Consumers and
providers define requirements and offers, and
search for the most appropriate ones. For
Customer-Based SLAs, even if the terms are not
100% compatible, the parties can negotiate to
reach an agreement.

e Deployment. Parties commit the SLA and the
service is deployed.

e Monitoring. The compliance of the service per-
formance with the specification of the SLA is
constantly monitored to detect violations. If
some specified conditions are met, the service
level may be modified at runtime, by deploying
or withdrawing resources and reconfiguring the
monitor.

e Billing and Penalty Enforcement. This phase
is part of a small inner cycle with the monitor-
ing phase and is triggered by the parties, at the
end of the SLA, regular periods of time or in a
pre-defined date. This differs from the existing
lifecycles (including the one in [18]) that invoke
penalties and billing only after termination.

e Termination. Services and the associated config-
urations are removed by the provider due to an
agreement between the parties, after a violation
or due to the expiration of the SLA.

4. The SLAC language

In this section we introduce SLAC. For the sake
of readability, we focus on an informal description

SLA Lifecycle

Start
/Discovery and
Negotiation

Deployment

~

| Termination

AN

Move between
Service Levels
—_—_——

-

\

- —»‘\ Monitoring

Billing and Penalty
Enforcement

Figure 2: Service lifecycle of dynamic SLAs in the cloud do-
main (dotted arrows correspond to optional transitions).

of the language by resorting to an illustrative exam-
ple based on the motivating scenario defined in Sec-
tion 2. The formal definitions of the SLAC syntax
and semantics, specified in EBNF and denotational
style, respectively, are available in an online technical
report [19].

SLAC is a domain specific formal language specif-
ically designed for cloud services that supports the
main cloud deployment models, supports multiple
parties and all roles in the cloud service provision,
permits dynamic service level modifications accord-
ing to pre-defined conditions, and is equipped with a
set of software tools supporting SLAs management.
These distinctive features, together with its ease of
use and its expression power, enable SLAC to cover
most scenarios in the cloud domain.

Figure 3 depicts the sections of a SLA defined using
SLAC. We informally present them via our running
example SLA, reported in Table 1, which refers to a
brokered provision of a IaaS service, assessed by an
auditor.

SLA Description. This section defines the valid-
ity period (start and expiration time) and the parties
involved in the provision of the services. A party
is defined by its name and its roles. In the run-
ning example, the validity of the SLA (line 1) is one
year. The involved parties (lines 2-6) are four: two
providers (IMT and UNICAM), a consumer (Alice) and
an auditor (Bob). The IMT party has two roles; it is a

What type of SLA is it?
For how long is it valid?

What is provided?
Who is involved in each
term?

When and how to move
between service levels?

SLA Description

] i Service Description] {

Dynamic Aspects

SLAC

Monitoring] Guarantees]

[Billing] [Negotiation

When to verify and how

hat if the terms are
to analyse the service? violated?

When and how the
service is billed?

Which strategies are used
to reach an agreement?

Figure 3: Overview of the sections of a SLA written in SLAC.

provider and it acts also as a broker since, when nec-
essary, it may resort to UNICAM for offering the large
VM service to Alice.

Service Description. This section specifies the
details of the service and its quality. It con-
sists of two parts: groups of terms and instanti-
ation of the valid terms (lines 7-27 of the exam-
ple). The terms of the SLA express the character-
istics of the service along with their expected val-
ues. Each term requires the specification of the in-
volved parties, i.e., the party responsible for fulfill-
ing the term (a single party) and the consumers of
the service (one or more). In our example, the term
IMT — Alice:Availability 99.89% indicates that
the party IMT provides the service to Alice (i.e., one
or more virtual machines) with an availability of (at
least) 99.89%. Explicitly defining the involved par-
ties contributes to support multi-party SLAs, reduc-
ing ambiguity and leveraging the role of the broker.

Terms/groups marked with * are visible only to the
parties involved in the term, to improve security and
privacy. For example, the large VM service provided
by UNICAM (lines 13-19) defines the cost that IMT, as
a broker, has to pay to UNICAM but this information
is not accessible to the consumer, who is kept un-
aware of the SLA terms between the broker and the
providers.

Notably, the language offers a set of pre-defined
metrics devised for IaaS. Yet, new metrics and their
measurement definition can be easily defined without

affecting the general language. For a detailed account
on this extension procedure we refer to [20].

Additionally, terms can be specified in different
granularities by using groups of terms. A group of
terms is identified by a name (unique in the SLA) and
consists of one or more terms that are valid only in-
side the group. In the example, we have three groups
that represent different types of virtual machines: the
VMs provided by IMT (S_VM and L_VM_IMT) and the
one by UNICAM (L,VM,UNICAM).

To use a group in a SLA definition, it is not suffi-
cient to define it, but it is also necessary to instantiate
it by specifying the number of instances. For exam-
ple, the code in lines 26-27 requests the deployment
of one instance of the S_VM group.

Dynamic Aspects. Users can define runtime
changes of the enforceable SLA terms, through the
definition of Event-Condition-Actions (ECA) rules.
When an event occurs (e.g., a party makes an explicit
demand), a condition (defined by an expression) is
checked and one or more actions are executed (e.g.,
the change of the value of a given metric). These rules
permit, for instance, agreeing on unilateral or autho-
rized changes from one of the parties. In our example,
the consumer can autonomously upgrade the type of
VM (lines 29-30), request the authorisation by the
provider to move back from a large to a small VM
(line 31-34), and add or remove as many large VMs
as necessary (lines 35-39). Instead, the broker can
freely outsource the provision of large VMs (lines 40-

Table 1: Motivating scenario written in SLAC.

© 00O Ut ik«

11
12
13
14
16
17
18

Effective From:
Parties:
IMT Role:
UNICAM Role:
Alice Role:
Bob Role:
Term Groups:
S_VM:
IMT — Alice:
IMT — Alice:
IMT — Alice:
IMT — Alice:
L_VM_UNICAM:
UNICAM — Ali
UNICAM — Ali
UNICAM — Ali
UNICAM — Ali

01/01/19, Expiration Date: 01/01/20

Broker, Provider
Provider
Consumer

Auditor

cCpu 2 #
RAM 4 GB
Availability 99%
Price 0.20 EUR *

ce:cCpu 4 #

ce:RAM 8 GB
ce:Availability 99.1%
ce:RT_delay 0.6 ms

UNICAM — IMT:Price 0.26 EUR *

IMT — Alice:
L_VM_IMT:
IMT — Alice:
IMT — Alice:
IMT — Alice:
IMT — Alice:
IMT — Alice:
Terms:
1 of S_VM
Dynamism

Price 0.33 EUR *

cCpu 4 #

RAM 8 GB

RT_delay 0.5 ms
Availability 99.897%
Price 0.35 EUR *

on Alice demand:
replace S_VM with L_VM_IMT & migrate
on Alice authorization request:

if L_.VM_IMT =

1:

replace L_.VM_IMT with S_VM & migrate or
replace L_VM_UNICAM with S_VM & migrate
on Alice demand:

replace value
replace value
replace value
replace value
on IMT demand:

of L_.VM_IMT with _old+l or
of L_.VM_IMT with _old-1 or
of L_VM_UNICAM with _old+1
of L_VM_UNICAM with _old-1

or

replace L_.VM_IMT with L_VM_UNICAM & migrate or
replace L_.VM_UNICAM with L_VM_IMT & migrate

Invariants:
L_VM_IMT in [1,
L_VM_UNICAM in

Monitoring:

2]
[1,2]

S_VM.Availability:

Frequency: 1

0 s, Window: 1 month, By:

L_VM_UNICAM.Availability:

Frequency: 6

s, Window: 15 days, By: B

L_VM_IMT.Availability:

Frequency:
Guarantees:

6 s, Window: 15 days, By:

on violation of any.Availability:

if Availabil

ity > 98%:

IMT — Alice: Bonus 20 EUR

else:

IMT — Alice: Bonus 40 EUR
on violation of any.Frequency:
Bob — IMT,Alice: notify

Billing:

accounting: hourly
billing: monthly

Bob

ob

Bob

42). Replacement actions can use a reserved variable
name _old to refer to the current value of the term
metric or to the number of instances of a given group.
Various events are supported by SLAC in the ECA
rules (see [19] for a complete account), including, e.g.,
a request for authorisation from the counter-parties,
demands of modifications, which do not require au-
thorisation of other parties, and violations of specific
terms. In our example, Alice may produce both de-
mand and request events; in the latter case, a con-
dition is used to restrict the application of the ECA
rule to the case where only one large VM is provided.
Moreover, the parties can explicitly request the mi-
gration of the service to the instantiated resources by
using & migrate in the action definition. In our ex-
ample, migration is necessary when the type of VM
is changed (from small to large, and back) or when
the service provider is changed (from IMT to UNI-
CAM, and back); migration is not necessary in case
of scaling up and down of the same service type with
the same provider.

The Invariants constrains the effects of the
Dynamism rules, by fixing bounds for terms of the
SLA. When an event triggering changes of the SLA
is detected, the corresponding changes are applied
only if they are compliant with the invariants terms.
In our example, invariants are used to specify that
the consumer cannot demand more than 2 large VMs
(lines 43-45).

Monitoring specifies the information neces-
sary for evaluating the service and for configur-
ing the monitoring system. In the example, the
Availability metric is monitored by the Auditor
with different accuracy depending on the virtual ma-
chine type. For example, the availability of large
VMs is checked by Bob more frequently and within a
smaller time window with respect to the availability
of the small VM.

Guarantees. It specifies the actions to be taken in
case of violations and are defined in the form of ECA
rules. In our running example, if the Availability
of any (large or small) VM is violated, but it is still
greater than 98%, the broker needs to give a bonus
of 20 EUR to the consumer, while if it is less than
or equal to 98% the penalty is doubled (lines 54-58).
Moreover, if a requirement about the monitoring fre-

quency is violated (due to, e.g., maintenance activity
of the provider), the auditor is required to notify the
issue to the provider and the consumer (lines 59-60).

Billing. Since SLAC enables modification of the
valid terms at runtime, it is necessary to define peri-
ods of accounting and the frequency of billing. In our
scenario we defined the accounting period in hours
and the billing monthly. Thus, if the consumer used
a small VM for 48 hours and then demands a large
VM, after one month the service will be accounted
for 48 hours at the price 0.20 EUR/h, and at 0.35
EUR/h for the other days of the month.

Negotiation. SLAC also supports the definition
of templates for discovering compatibility of offers
and requests. Templates have a slight different syn-
tax. To provide flexibility in the search of compatible
offers, they supports intervals in the numeric metrics,
and weights may be assigned to terms to express the
priorities of the parties in the negotiation. Templates
can be used also to define protocols and strategies
to be used in the negotiation, possibly using OWL-
Q [21]. However, we do not cover negotiation aspects
in this paper, and refer to [20] for a detailed treat-
ment.

4.1. Semantic Overview

A SLA is formulated as a Constraint Satisfaction
Problem (CSP), which is evaluated, at design-time,
to identify inconsistencies in the specification and, at
run-time, to check compliance with the monitoring
data collected from the cloud system. To support dy-
namic SLAs, we adopt dynamic CSP [22]. Dynamic
CSP is necessary since not only the value of the terms
change (e.g., response time) but the set of terms itself
(with the addition or removal of term). Therefore, a
dynamic SLA is represented as an automaton, whose
states, representing the SLA states, are labelled by a
set of constraints, and whose transitions are labelled
by events that trigger the state changes.

At run-time, data representing the status of the
cloud are collected by the monitoring system and ren-
dered as a CSP as well. Then, the CSPs of (the cur-
rent state of) the SLA and of the monitoring data
are combined for evaluation. After that, the guar-
antees are evaluated and, possibly, actions are ex-
ecuted. Similarly, the ECA rules of the Dynamism

section are evaluated; for each applicable rule, the
terms of the Invariants section are checked in order
to apply only those changes that are compliant with
the invariants.

More formally, the semantics of a static SLA, or of
a single state of a dynamic SLA, is given by a function
[-] that, given the SLA terms, returns a pair com-
posed of a set of group definitions and a constraint.
This pair constitutes the CSP associated to (a state
of) the SLA, that will be solved by means of a stan-
dard constraint solver. The automaton representing
the semantics of a dynamic SLA is generated as fol-
lows. The initial state of the automaton is a CSP
obtained by applying [-] to the terms of the Term
Groups and Terms sections of the SLA specification,
considering the invariants. Then, all possible new
states are created considering events, conditions and
the triggered changes to the SLA constraints specified
in the Dynamism section and their invariants.

Table 2 presents an excerpt of the SLA defined in
our example scenario and the resulting constraints.
Only terms and group terms of the SLA are con-
sidered for constraints generation, while additional
information, such as monitoring frequency and moni-
toring window, are used only as parameters (not con-
straints) for the monitoring system.

The automaton resulting from the interpretation
of the dynamic aspects of our example is reported in
Figure 1.

5. The SLAC Software Framework

To support the use of SLAC, we developed an open
source software framework! that covers the whole
SLA lifecycle illustrated in Figure 2, and all actors
involved in the cloud service provision. Figure 4 illus-
trates the main components of our framework, each
of which is described below by relating it to the cor-
responding phase of the lifecycle and the parties in-
volved. Notably, this figure shows only the parties

IThe SLAC Management Framework is a free, open-source
software that can be downloaded from the SLAC project’s web-
site [23].

Table 2: Semantics at work on our running example.

SLA Constraints:
Term Groups: #SLA Terms
S_VM: 1 <sw <1

IMT — Alice:cCpu 2 #
IMT — Alice:RAM 4 GB
IMT — Alice:Availability 99% | 2 <

IMT — Alice:Price 0.20 EUR 4 ;
Terms: 99 <
1 of S_ZVM

#Constraints in the S_-VM Group
S_VM:IMT,Alice:cCpu:0 < 2 A
S_VM:IMT,Alice:RAM:0 < 4 A
S_VM:IMT,Alice:Availability:0 < 100
20 < S_VM:IMT,Alice:price:0 < 20

and the components directly related to the SLA man-
agement. It is worth noting that even if all parties,
apart from the provider, have the same components,
they can use them differently. For example, the SLA
Inspector component is particularly important for the
auditor, since it is his responsibility to verify the com-
pliance of the service provision with the SLA, while
the consumer might choose not to exploit that com-
ponent when an auditor is hired.

Service Discovery. The SLA Editor is used by
consumers, providers and brokers to define either
SLAs, or service offers and requests. The editor per-
forms validation of SLAC models, error highlighting,
syntactic checks and autocompletion. It has been
developed using Xtext?, a framework for the imple-
mentation of domain specific languages. With the re-
sulting SLAs, Brokers discover services by using the
solution introduced in [24], which checks the compat-
ibility between offers and requests.

Negotiation. All involved parties have a Nego-
tiator component that proposes SLAs and evaluates
requests for (re-)negotiation or modifications in the
SLA. This component supports dynamic SLAs [24]
and may use multiple round negotiations.

Deployment. The SLA Inspector parses the
SLAs by using ANTLR4? and, by relying on the
EBNF grammar of SLAC, generates a set of con-
straints that is sent to the Service Manager, which de-
ploys the service. Our implementation of the Service

*https://eclipse.org/Xtext/
Shttp://www.antlr.org/

Manager is integrated with the OpenNebula toolkit*
to enable an automatic SLA /service deployment.

Monitoring. The SLA Inspector provides the
Monitor (in our case, based on Panoptes [25]) with
the information necessary to retrieve data concerning
the metrics related to the SLA. The SLA Inspector
parses the data received from the Monitor and gener-
ates set of constraints whose satisfiability is checked
against the SLA constraints using the Z3 solver [26].
In case of non-satisfiability, the agreed guarantees are
evaluated and due actions are activated. All par-
ties have a monitoring component that may actively
collects data and assess it using its own Inspector,
which constantly listens to events or requests, pro-
cesses modifications, logs them, and requests changes
of terms to the Service Manager.

Billing and Penalty Enforcement. The Biller
is responsible for this phase of the lifecycle. It
calculates costs and penalties, and bills the parties
regularly or when events (e.g., violations or service
changes) are received.

Termination. The SLA termination is handled
by the Biller component and by the Service Manager,
which un-deploys the service.

All parties have a Knowledge Manager component,
which contains information about the environment
and parties’ preferences and priorities, and supports
all components in all phases.

4nttps://opennebula.org/

| -\)) Knowledge) |
rrier s -
:Ca er| _:,v { Monitor H Manager Negotiator {SLAInspector :
i : 'Broker : : ; |
:Consumer{/,?\ ! : P S l !Prowder CoiEE :
| 1 . SLA Offer |

I Kl\r;gvglaegdegre 0" ISLA Request: Kl\r;lc;v:;egdegre T “ - I SLA Service q :
: : ' : | L Inspector { Manager | | Negetiator ji
I | Negotiator =N ! Negotiator N ! ! I
| Inspector | ! Inspector I | |
be—,———] q Knowledge | !

Fmmmmmmm - I I{ Biller } { Monitor Manager :

IAuditor ‘= I L L |

I L | Editor

|| Knowledge :

:{ Manager = Modify Service Level

| - .
| X SLA Directly Monitoring
Negotiator !
I g Inspector]| Monitoring Data

Figure 4: SLAC Management Framework.

6. Experiments

We assess the advantages of SLAC and its frame-
work from the:

e Consumers’ Perspective: We show the advan-
tages of dynamic services and the flexibility
provided by dynamic SLAs from the consumer
perspective, by comparing static services, com-
monly used before clouds, with a scenario with
scale up/down possibilities and with a more flex-
ible scenario based on previous reservation of re-
sources.

Providers’ Perspective: We focus on the benefits
for providers, due to the increased flexibility in
SLAs management; we will show that the capac-
ity to move between service levels reduces the
penalties for SLA violations by 66%.

6.1. Benefits for consumers

Capturing the dynamism of clouds in the SLA pro-
vides flexibility and significant economic and business
advantages to consumers. In this section we focus on
the economic advantages of dynamic SLAs from the
consumer’s perspective. We define an IaaS provider
inspired by services offered by Amazon®: On-demand
and Reserved Instances. In the former, consumers

Shttps://aws.amazon.com/

10

instantiate VMs according to their needs for a fixed
price. In the latter, consumers reserve (and pay) in
advance for a fixed number of VMs for a period of
time, but receive a significant discount. Service of-
fers by Amazon are however specified in natural lan-
guage. Existing (semi-)formal SLA languages only
capture the initial state of these offers. SLAC, in-
stead, is able to formalise also the dynamic aspects
and supports the automation of the whole service life-
cycle.
In our scenario, we cover different service offers:

e Static SLA that defines a static service offer
where consumers specify a fixed number of VMs
for the whole duration of the service, i.e., the
service level cannot change;

On-demand VMs defined using dynamic SLAs,
where at every hour consumers can scale up and
down their requests according to their needs;

Reserved Instances, which are also defined using
dynamic SLAs and allow users not only to scale
requests up and down, but also to reserve a fixed
minimal number of VMs at a discounted price.

The cost of a non-reserved VM in all offers is $0.058
and of a reserved instance $0.036 (the prices are based
on Amazon AWS). In our scenario, consumers use
VMs to run websites and each VM, equivalent to the
micro instance in Amazon AWS, is able to process a

maximum of 30000 requests/hour. We assume that
there is a charge for not fulfilling a request fixed at
$0.043 for every missing VM. We show in Table 3 an
excerpt of the SLAC SLA for the Reserved Instances
case.

For modelling the scenario we use 20 days of HTTP
requests traces of Wikipedia [27]. Each time the ex-
periment is run, we randomly choose 50 pages of the
Wikipedia traces, and select among all HTTP re-
quests only those referring to the selected pages to
create a time-series of the total requests/hour of each
page. The same set of pages is used by all service of-
fers.

Figure 5 shows the flow diagram of our scenario. If
the tested service offer is not On-demand, we use the
information of the first 10 days for predicting the load
of the following days of the dataset, which range from
1 to 10, by using the Load Prediction module of our
framework. We adopted the time-series forecasting
tool Prophet®, which is based on an additive regres-
sion model that considers important variables related
to work load prediction, such as, growth, seasonality
and holidays. Then, in the case of Static SLAs, we
simulate the cost of the predicted scenario for differ-
ent numbers of VMs and select the best scenario by
considering predicted load, VM costs and penalties.
After deciding the fixed number of VMs for the re-
maining days, we run the scenario with the requests
extracted from the Wikipedia traces and verify every
hour whether the select number of VMs is sufficient
to satisfy all requests. If not, beside adding the cost
of the predefined number of VMs, we add the penalty
multiplied by the number of missing VMs.

In the case of Reserved Instances, we also use the
Prediction module to predict the load of the following
days and, via simulations, we determine the num-
ber of instances to reserve by considering the VM
discount and the extra costs in case some of the re-
served VMs are not necessary to fulfil the requests.
After defining this number, we run the scenario and
at every hour we use the past information to predict
the next hour load and scale the service accordingly.
Then, we add the cost of the used pre-reserved in-

6https://facebookincubator.github.io/prophet /

11

Table 3: Excerpt of a SLA of the Reserved Instances scenario.

Term Groups:
Reserved_VM
IMT — Alice:cCpu 0.5 #
IMT — Alice:RAM 1 GB
IMT — Alice:Price 0.036 EUR *
Non_Reserved_VM:
IMT — Alice:cCpu 0.5 #
IMT — Alice:RAM 1 GB
IMT — Alice:Price 0.058 EUR *
Terms:
1 of Reserved VM
Dynamism
on Alice demand:
replace value of Reserved VM with _old+1l or
replace value of Reserved VM with _old-1 or
add term Non_Reserved.VM or
remove term Non Reserved VM or
replace value of Non Reserved VM with _old+1 or
replace value of Non Reserved VM with _old-1
Invariants:
Reserved VM in [1,6]

stances, the price of the additional VMs used for that
hour (the full VM price) and the penalties users could
incur if they are not able to satisfy their customers.

The On-demand service model is similar to the Re-
served Instances one, but it does not offer the pos-
sibility of pre-reservation; it requires paying the full
price for each VM without any discount.

Figure 6 shows cost reduction of the on-demand
and reserved instances approaches in relations to the
static one with different simulation periods, from 1 to
10 days. In average, the cost reduction for consumers
using dynamic SLAs with the On-demand service is
29%, while with Reserved Instances it is 42%. The re-
sults show: (i) an increasing cost reduction tendency
for both approaches, when the analysed number of
days grows, probably due to the lack of flexibility of
the static approach; and a reduction on the differ-
ence in performance of the on-demand and reserved
instances, since the forecasting accuracy is lower for
further periods. Overall, these results demonstrate
the potential of flexibility for reducing costs. No-
tably, although these scenarios are already present in
commercial offers, they are still not covered by the
other SLA specification languages.

On-demand?
Dynamic SLA

On-demand

Define Reserved

for Predicted Load VM# for Predicted Load ‘

Define Fixed VM# ‘ ‘

Total Cost (TCost)
+= VM# * Price

TCost += (RVMs -
VM#) * Penalt

TCost += (Reserved
VM# * Price) +
(VM# * Price)

TCost += (VM#
* Price)

TCost += (RVMs -
VM#) * Penalty

TCost += (VM# -
RVM#) * Price)

xperiment
Finished?

xperiment
Finished?

Compare Costs

Figure 5: Experiment scenario used to measure the economic
impact for consumers.

50

I Ondemand
I Dynamic

Cost Reduction (%)
8 & 8 &

N
o

4 7

5 6
Time (Days)

Figure 6: Cost reduction of the On-demand and Reserved In-
stances approaches in relation to the Static approach.

12

6.2. Benefits for providers

Here, we analyse the number of violations, the
penalties and the total provider revenue to compare
the advantages of three different approaches: Static
SLAs (SLAs do not change during their lifetime),
Renegotiation (parties can renegotiate the existing
SLAs) and Dynamic SLAs (some terms can be dy-
namically changed). We propose a scenario where
providers analyse the running services, and in case
of high SLA violation risk, which implies high penal-
ties and lost of trust, they may modify the service
quality and cost in the Dynamic or Renegotiation
approaches. The results, discussed below, demon-
strate the flexibility of SLAC, its capacity to reduce
the number of SLA violations and to improve the
revenue of the involved parties.

6.2.1. Use Case Implementation

The main components, together with their interac-
tion and implementation, are shown in Figure 7. The
SLAC Inspector parses and evaluates SLAs for the
service specification and requirements, and sends the
outcome to the Service Manager, which is specifically
designed to guarantee the correct deployment and ex-
ecution of services, and to manage the cloud infras-
tructure. The Panoptes Monitoring System (Monitor
component) is automatically configured by the Ser-
vice Manager and provides monitoring data to the
Knowledge Manager and to the SLA Inspector. The
Knowledge Manager measures the risk of the running
services of not meeting the deadline specified in the
SLA, and informs the Negotiator about these risks.
We implemented this violation risk analysis by rely-
ing on the Supervised Random Forest technique [28],
which assess these risks based on monitoring infor-
mation and on the characteristics of the SLA. The
Negotiator proposes modifications in the SLA; and,
when it receives a service modification proposal, it
decides whether to accept it.

Each service is processed according to the workflow
depicted in Figure 8 (based on [13]). A service is
evaluated regularly, and the penalties are added up
when the service is completed.

Static SLAs services are executed by employing the
SLA defined at design time. The SLA is verified every

|
I
: Priority: Time I :
1| (Knowledge Negotiator | |
1 Manager) |\J |
IL _____________________ I Service 1 ‘ SLA Service ’ Fuzzy System :
! Inspector Execute/ Manager (Negotiator) |1
: Modify :
Tttty T T T T N b Traces . Risk [
|Consumer 2 . Il////>: Mopeon :
| — | Service I Panoptes Random Forest ||
|| Priority: Price i ! (Monitor) [Wenorin3| (Knowledge ||
1| (Knowledge Negotiator [1 Data Manager) |
I Manager) l T 1

minute and, when the service ends, the revenue (price
paid) and penalties are computed. In the Renegoti-
ation approach, for the sake of simplicity, the risk of
SLA violation is measured only once during its execu-
tion lifetime, at a random time between the starting
and the deadline of the service. If it is not higher
than given thresholds, the service is provided nor-
mally according to the SLA defined at design time.
Otherwise, the provider sends a SLA proposal to the
consumer, who analyses it according to its priorities
and takes a decision by relying on a Fuzzy Decision
System (see below). If the proposal is accepted, the
service continues and, after the change, it is evalu-
ated considering the new SLA, otherwise the initially
defined SLA remains valid till the end of the service.

The Dynamic approach is similar to the Renego-
tiation one, the only difference is that the involved
parties do not have any active role. Indeed, in case
of high violation risk, the SLA is modified automat-
ically since the changes are pre-defined in the SLA.
In both cases, to motivate or compensate a party for
the changes, a bonus (defined in the SLA) is given to
the other party when a change is performed during
the service execution. Although the bonus a priori
is usually much smaller than the bonus required for
renegotiating the SLA during the execution, which
would improve the results of the Dynamic approach
and, consequently, of SLAC, we opt to use the same
range of values of the renegotiation approach for the
sake of simplicity.

13

Risk > 70%

Pre-Defined
Conditions?

Renegotiation Dynamic

‘Renegotiate SL;# ‘ Modify SLA ‘

offer offer
refused accepted

Compute Service
with old SLA
Compute Service|
LA Violated? with new SLA

no

Figure 8: Flow diagram of the service processing for the Static,
Renegotiation and Dynamic approaches.

yes

’Revenue - PenaItyH Revenue

6.2.2. Fuzzy Decision System

To decide whether to accept or refuse a new SLA in
the Renegotiation approach, the consumer needs to
know the difference between the original SLA and the
SLA proposed at renegotiation time. In our use case,
to simulate this process, which is typically carried out
by a human or by an autonomous decision system,
we designed a fuzzy logic decision support system
inspired by the approach presented in [29].

Table 4: Fuzzy rules of the consumer decision system.

Rule Evaluation
P, increases favourable
P, or D increases unfavourable
P, and D increase | very unfavourable
P. increase < 5% neutral

The decision system takes as input the consumer’s
priorities and the changes proposed by the provider,
e.g., the increment in price, to decides whether to ac-
cept the SLA proposed. In our use case, the consid-
ered SLA parameters are: the deadline for the ser-
vice (D), the price to be paid for the service (P,)
and the penalty in case of violation (P.). Table 4
exemplifies some rules used by the decision system.
Moreover, consumers specify their priorities among
these parameters and the system gives more weight
to the changes related to the higher priorities param-
eters. For example, if the proposed SLA is neutral
with respect to the penalty, very favourable on the
service price (the provider reduced it considerably),
and very unfavourable in the deadline (time to finish
the service increased significantly), this proposal is
only accepted if the service price has an higher pri-
ority for the consumer than the deadline. For a
complete account of the fuzzy rules and the frame-
work used in the experiments, we refer to the SLAC
project’s website [23].

0.2.3. Evaluation

The experiments were conducted in a cloud with 2
physical machines, providing 12 heterogeneous VMs.
Services are created by taking into account the dis-
tribution of a trace of a real-world cloud environ-
ment, the Google’s cloud dataset [30], and the same
services are executed using all described approaches.
Each service has an associated SLA, which is created
along with the service, according to an estimation of
the resources necessary to finish the service within
the completion time. The considered characteristics
of the services used to train the Supervised Random
Forest are: CPU, RAM, platform requirements (e.g.,
operating system and architecture), disk space, com-
pletion time and network bandwidth. Different types

14

of services are used in the experiments, such as web
crawling, word count, number generation and format
conversion, which are similar to real-world applica-
tions [31]. Service’s penalties and prices are based on
the service execution time and on a randomly defined
number. Penalties are always higher than the price,
since the price is paid even if a service is violated.

First we create a training set before every exper-
iment round by executing 1000 services. Then, the
traces of these services are used to train the Random
Forest algorithm (Knowledge Manager). The algo-
rithm, then, defines the probability of each service to
be in the violated and not violated classes.

In the actual experiments, new random services are
generated and the same services are re-executed for
each approach. We run 9 rounds of experiments with
the number of services from 100 to 500 (with an in-
crease of 50 services every round). We assume that
the services’ arrival is a Poisson process, i.e., the time
between consecutive arrivals has an exponential dis-
tribution and that a service arrives, on average, every
0.7 seconds.

In the case of the Renegotiation approach, the
decision system (Negotiator) only accepts proposals
which are beneficial for the party that received the
offer. Therefore, the provider offers compensations
to the consumer; for example, if the violation risk
is high, the provider requests more time to finish the
service but offers a discount on the price and a higher
penalty. The definition of the exact parameters of the
considered metrics of the proposal, which are used by
the Renegotiation and the Dynamic approaches are
randomly generated within a predefined range.

The results of these experiments are illustrated in
Figure 9, while Table 5 presents the overall results
relative to the Renegotiation and the Dynamic ap-
proaches, expressed as percentages: in the case of
penalties and revenue, the results correspond to a
comparison with the Static approach, whilst for the
other features they result from a comparison with the
total number of services. Considering the parameters
defined for the renegotiation approach and the ben-
efit threshold used in the experiments, around 60%
of the modification requests were accepted and car-
ried out. Using the Dynamic approach, 21% of the
services were modified, mainly due to high risk of

~
o

| ¢ static
-@- Renegotiation

| -~ Dynamic

o
=}

wu
=}

N
o

Violations
w
2

N
o

150

200 250 300 350

Number of Services

400 450

100

Modifications

Renegotiation Requests

N x Dynamic

-@- Renegotiation

o
o

N
o

0
100

150 200 250 300 350

Number of Services

400 450 500

Figure 9: Performance analysis.

Table 5: Results in comparison to Static SLAs

Renegotiation| Dynamic
Modification Requests 21% 0%
Modifications 12% 19%
Penalties -32% -66%
Revenue Increase 13% 24%

violation (more than 19%).

Overall, the flexibility provided by the Dynamic
approach increased the revenue by 24% and reduced
the penalties by 66%, while these measures were only
13% and 32% for the Renegotiation approach.

The benefits of the Renegotiation and Dynamic ap-
proaches heavily depend on the accuracy of the vio-
lation risk analyses. The results show that, although
the penalties were reduced by 66%, the impact on the
total revenue was an increase of around 24%. The
main reasons for this difference are: (i) the limited
impact of the penalties on the total revenue due to
the low average number of violations; (ii) the com-
pensation provided to the consumers when a modi-
fication is requested, which lowers the price paid for
that service and sets higher penalties in case of viola-
tion; (iii) the number of SLAs that were violated even
after modifying the service, since most of the modifi-
cation requests increase the penalty in compensation
for the higher service completion time. This suggests
that performing an analysis to define the additional

15

time required to avoid violations instead of generat-
ing a random number could improve significantly the
total revenue.

Also, the parameters defined in the SLA modifica-
tion proposal may have a considerable impact on the
results. We adjusted these parameters to simulate a
real-world situation, where every party defends his
interest. Moreover, it can always be used together
with the Renegotiation approach in case not all rele-
vant modifications are included in the SLA.

7. Related works

Although we can find in the literature general dis-
cussions about the dynamism and flexibility of elec-
tronic contracts (see, e.g., [32, 33]), the dynamic as-
pects for SLAs have not been investigate before. In
this section, we show how SLAC advances the state
of the art with respect to dynamism and to the main
features a language of the domain needs, and compare
it to other languages defined not only for the cloud
domain but also for related ones, such as service-
oriented and grid computing. This analysis provides
a broader view of the advantages and features of each
of them and shows the advancements of SLAC also
in relation to the state of the art in different areas.

Below we briefly describe the evaluation criteria.
The results of our evaluations are summarised in Ta-
ble 6 and show the advantage of SLAC over other

formalisms. Important characteristics of the cloud
domain, like Dynamism, All Parties, and Broker, are
supported only by SLAC. Its supporting software
framework allows an easy deployment of SLAC SLAs
in a wide-range of real-world scenarios.

For our assessment, we consider the following for-
malisms: WSLA [3], WS-Agreement [4], WSOL
[5], RBSLA [6], Linked USDL (LUA for short) [7],
SLALOM [8], SLAng [9], SLA* [10], CSLA[11],
rSLA [34], ySLA [35]7 and, of course, SLAC. We eval-
uate them by first considering General features of the
languages and then assessing their impact on the dif-
ferent phases of SLAs lifecycle. In the table, we use
yes v~ for indicating that the feature is fully sup-
ported, * for indicating that the feature is partially
supported, and X for indicating that the feature is not
supported. The categories and considered aspects are
defined below.

General

Cloud Domain considers whether a SLA language
has been specifically designed for cloud computing.

Service Models evaluates whether all service mod-
els (including specific vocabularies) are directly sup-
ported or, in some cases, extensions are needed.

Formalisation refers to the level of formality in the
definition of syntax and semantics of the language.

Dynamism considers the capacity to express pos-
sible changes of the SLA terms at runtime.

Confidence or Fuzziness is the capacity to deal
with QoS uncertainty, with confidence defining the
percentage of compliance of clauses, and fuzziness re-
ferring to an acceptable interval around the threshold
of a metric.

Reusability refers to the possibility of reusing con-
structs defined in a template or in a SLA across differ-
ent SLAs. Reusability Scopes refers to the possibility
of specifying scopes for the definition of terms and
monitoring constructs.

Composability is the ability to express composite
SLAs.

"In this work, the authors focus only on reusability, which
hinders our analysis. Since they write that the language is
based on rSLA, we use the results of the rSLA analysis for
those categories for which we do not have information.

16

FEaxtensibility evaluates whether the language terms
and metrics can be extended.

All parties considers whether it is possible to de-
scribe all parties involved in the service provision
and in all actions (monitoring, verification, provision,
etc.).

Price Model is the level of coverage of price schemes
and of computation models.

Consistency check considers whether consistency
of SLAs is verified; we write ¥ if only syntactic checks
are offered, v if also semantic aspects are considered,
and X if no check is performed.

Definition, Discovery and Negotiation.

Editor for writing SLAs, they can be generic (%),
domain-specific(v") or absent (X).

Broker may have different levels of support when
taking decisions.

Metric Definition refers to the possibility offered
for defining quality metrics.

Alternatives evaluates the ability to specify alter-
native levels of service.

Soft Constraints is concerned with the use of soft-
constraints to address over-constrained requirements.

Matchmaking Metric enables the specification of
how to match equivalent metrics or metric units.

Negotiability is the ability to indicate how, and to
which extent, quality terms are negotiable.

Deployment and Monitoring.

Metric Schedule indicates how often the SLA terms
are measured.

Metric Provider indicates the possibility of speci-
fying the party responsible for monitoring each SLA
term.

Automatic Deployer refers to the provision of tools
for automatic deployment of the service.

Integrated Monitoring is concerned with the capac-
ity to automatically configure the monitoring system
relying on the SLA specification.

Billing and Penalty Enforcement.

Penalties and Rewards to be enforced under spec-
ified conditions. In this case, v stands for fine-
grained support (at the level of service level objec-
tives), ¥ for coarse-grained, and X for no support.

Actions triggered by SLA violations.

Conditions Evaluator refers to the possibility of
specifying the party in charge of auditing each term.

Assessment Scheduler specifies when each term is
assessed.

Termination
Automatic Undeployment of the used resources.

We close the section by comparing the version of
SLAC proposed in this paper with respect to the ear-
lier proposals it builds upon by significantly revising
and extending them. In this work we: (i) appro-
priately integrate language extensions into the core
language; (ii) simplify the resulting linguistic con-
structs, and add new ones for specifying, e.g., mi-
gration, monitoring information and visibility con-
trol for terms; (iii) separate the SLA definition and
the negotiation languages; (iv) describe new exper-
iments; (v) discuss the impact of dynamic SLAs in
different domains; (vi) define a new service lifecycle;
and (vii) describe the design and implementation of
a software framework to support the automation of
the whole new lifecycle.

8. Concluding Remarks

We have introduced the SLAC language for defin-
ing dynamic service levels; proposed a new lifecycle
for the service provision in clouds; discussed the main
challenges that our new language poses; provided sev-
eral example scenarios using the language; proposed
a software framework covering the whole SLA lifecy-
cle; presented experimental results showing that both
providers and consumers can benefit from SLAC; dis-
cussed non-measurable benefits for providers, con-
sumers and brokers.

The SLAC language contributes to the automation
and specification of services and covers a wide range
of use cases that are not covered by static SLAs and
corresponding languages. The dynamic part of SLAC
is particularly useful for brokers and medium/big
companies that require guarantees and plan for long
term, but can also be used by small consumers, e.g.
to ensure vertical and horizontal scalability. The lan-
guage is intuitive and extensible and covers the most
important aspects of the cloud domain.

17

8.1. Discussion

Dynamic SLAs impact significantly on cloud man-
agement and may add complexity to this task. Below,
we present the main challenges and opportunities of
using this paradigm according to each phase of the
SLA lifecycle and hint at possible solutions for these
challenges.

8.1.1. Complexity and challenges of dynamic SLAs

Planning. From the provider’s perspective, the
planning and discovering phases with dynamic SLAs
are similar to the corresponding phases of static
SLAs. Providers need to define the conditional
changes to be executed at runtime for all services,
but this extra effort is necessary only when setting
up new services or updating distribution policies.

Consumers can take a more general approach and
consider only service scalability in dynamic SLA.
However, to fully benefit of this approach, the ser-
vices need to be meticulously planned and future
needs carefully considered. Big companies, multi-
clouds and brokers are naturally the main beneficia-
ries of this approach, since the cost of this planning
process is normally just a small fraction of the bene-
fits that flexibility and business certainty can bring.

From the broker perspective, there are several pos-
sible scenarios depending on the type of brokerage
[16]. The broker might use dynamic SLAs on both
sides, or only with providers or only with consumers.
Since the profit margins of brokers is usually small, a
careful planning of the dynamic part of SLAs, mainly
with providers, is needed. Dynamism would permit
brokers to precisely determine the costs of different
scenarios and offer competitive services.

SLA dynamism, however, requires the anticipation
of possible scenarios from all participants and some of
its advantages depend on the quality of this anticipa-
tion, since unforeseen scenarios might require rene-
gotiation. The typical, and straightforward, strat-
egy to foresee these scenarios is by means of hu-
man evaluation of the considered use cases. How-
ever, many different solutions may be applied to au-
tomatise the whole process. Possible solutions range
from the use of simple flexibility rules for the main
terms (e.g., having a margin of 20% more VMs than

Table 6: Evaluation results of SLA languages

Criteria WSLA WS-A WSOL RBSLA LUA SLALOM SLAng SLA* CSLA rSLA ySLA SLAC

Cloud X X X X X X X v v v v
Domain
Service * ¥*
Models
Formalisation X

* * * v’ * * *

*

*

*

Dynamism X

x x
x x
LIANAN

¥*
X
Confidence or X v’ X
Fuzziness
Reusability v’
Reusability X
Scopes

>
*

*

X

X
v’
v’

General

> O % % %
> Q% % %
> O % * *
> Q0 % > *
3

>

Composability X
Extensibility v’
All Parties X
Price Model X
*

Consistency
Check

* > x %
* x> (%
¥ X X X} X
CU* x = O %%
X K X X K
> x % (%
> x % %

Ux > % %

Editor *

Broker X
Metric v’
Definition
Alternatives *
Soft X
Constraints

Matchmaking X X
Metric

Negotiability

¥*
*
*
>
>

*
>

Cx] CCxCC = x

x >
<
<

>
>
% *
>
>
x

*
*
*

N
>
>
3
>

Definition
Disc./Nego.
>
>
>

*
>
>
*
>

NS

Metric
Schedule
Metric
Provider

C N €
NES

<

<

>
>
*
>

Automatic
Deployer

Mon.

Deploy.

C O Q>
x>

C Q>

Integrate
Monitoring

Penalties
Rewards
Actions

Q] € C < (>

CAUx %
x > {
> > *
x % %
Ux <

Condition
Evaluator

x (= <
C == <
C A=l € =
C A= €~

Billing and
Penalty Enfor.

x
*
*
=
=
<

Assessment *
Schedule

/A N N ND O N N R N AN U O N N N (N N N N NN

) Automatic X X X X X X X
= Undeployment

*
>
>
>

the estimated), to more advanced solutions based on quired flexibility, take into account the modifications
machine learning models that, to determine the re- required in previous services and their costs.

18

Discovery. Manual discovery of services becomes
more difficult when conditions and actions change the
valid terms of the SLA. With dynamic SLAs, a large
number of states have to be analysed; thus, verifying
whether there exists a state that is not compatible
with the parties’ specification is costly and implies
low matching rates. Therefore, automated techniques
that consider the problem of state explosion are nec-
essary. Such techniques could compute the similarity
between offers and requests, and select just the most
compatible ones.

Negotiation. Negotiation is another significant
challenge since there is a large number of possible so-
lutions or requirements from the parties. In [24], we
proposed an open source negotiation framework for
matching offers and requests and for facilitating the
agreement between the parties in case no immediate
matching is possible. The framework provides adap-
tation, consistency check, verification of SLA prop-
erties, suggesting the changes necessary for reaching
an agreement. In this work, the preferences of the
parties are defined by a utility function, which is a
first step to automatise the whole negotiation process
and reduce the need for human intervention.

Scheduling. Scheduling and service admission need
to handle service modification requests that may not
require consent from the provider. Although most of
the existing methodologies employ statistical meth-
ods to predict systems’ load and possible variations,
the agreement about pre-defined changes is a valuable
source of information as it contains the explicit defini-
tions of the changes which are more likely to happen.
This information might be used to define the best way
to deploy a new service (e.g., considering also the
resources that would guarantee possible scalability)
and to decide whether to admit a new service (e.g.,
considering the resources that should be reserved and
that are likely to be used in the future). Machine
learning algorithms are good candidate for the devel-
opment of schedulers in this area, because such al-
gorithms can learn patterns based on the consumers
profiles, monitoring data and SLA characteristics to
predict changes (temporal, arbitrary and conditional)
and use this information to schedule new services or
optimise their placement.

Service Management. Management solutions can

19

also use the conditions in the SLAs to estimate and
adjust systems’ load and improve revenues. The im-
mediate advantage is the possibility of activating new
terms to avoid violations of the SLA agreed with
a given consumer or violation of other SLAs estab-
lished with other consumers. For example, in case
an important consumer requests a large number of
new VMs, and the provider does not have enough
VMs available, it can fulfil the request by reducing
the number of VMs from another consumer lever-
aging on the dynamism of the SLA with the other
consumer, while providing a discount to him. Obvi-
ously, taking advantage of this mechanism is a com-
plex process that requires considering multi-objective
management problems to find optimal (or better) so-
lutions.

Even if all these challenges are important to the
consolidation of dynamic SLAs, we believe that the
most urgent ones to leverage its adoption are: the
need for automatic solutions for planning and foresee-
ing the possible SLA scenarios, and new approaches
to negotiate them.

8.2. Advantages of dynamic SLAs and Future Works

In our experiments, we showed the possible
economic advantages of using dynamic SLAs for
providers and consumers. Besides these benefits,
there are several other advantages of our approach,
for example:

e SLAC extends the coverage of SLA definition
languages to new scenarios by supporting dy-
namism and other concepts already in use in con-
tracts defined in natural language.

e With SLAC, vertical and horizontal scalability
can be formally defined.

e Business can be planned meticulously consider-
ing future scenarios, conditions and penalties in
case of violations.

e Explicitly supporting brokers, which can com-
bine the benefits for consumers and providers.

We plan to extend the language to support Edge
Computing and we are currently analysing the use of

SLAC in the context of blockchain and smart con-
tracts, whose terms, such as payment, confidential-
ity and quality, are automatically enforced by relying
on a previously agreed protocol. In [36] we survey
blockchain-based cloud solutions and discuss the role
of SLAs in this field, while in [37] we describe an ar-
chitecture to utilise SLAC SLAs as smart contracts in
these contexts. A particular characteristic of smart
contracts is that they can consistently be executed by
a network of mutually distrusting nodes, without the
arbitration of a trusted authority [38]. Smart con-
tracts are prominently associated to platforms based
on distributed ledger technologies, such as Ethereum,;
are general purpose, covering different areas, from fi-
nance to cloud services; and many smart contracts
definition languages are Turing-complete.

Similarly to smart contracts, also SLAs formalise
the terms of an agreement, specifically for the provi-
sion of a service, and can be automatically enforced
according to a previously agreed protocol. Although
our SLAs are defined in a domain specific language,
which does not have the expression power of smart
contract languages, SLAC covers the important fea-
tures of the domain, including the dynamic aspects,
monitoring and accounting/billing. Yet, SLAC was
designed for environments with trusted authorities.
Therefore, to actually deploy SLAC in distributed
ledger environments, two main challenges need to be
addressed: the trust problem, i.e., the enforcement of
SLAs without trusted authorities; and privacy, since
all participants can read and execute the smart con-
tracts, which could reveal the identity of the involved
parties and details about the service.

Lastly, notwithstanding the open gaps and the
known resistance of the large market players and
businesses to adopt new concepts and change pro-
cesses - e.g., most of them still use SLAs in natural
language - we believe that dynamic SLAs could be
widely adopted in academia and industry because of:

e the large number of new scenarios they support;
e the gain in flexibility and business security;

e the fact that blockchain-based clouds could in-
crease trust and eliminate vendor lock-in, and

20

thus stimulate providers to look for new com-
petitive advantages;

e the fact that dynamic SLAs can be easily con-
verted to smart contracts, and thus make SLAC
a good candidate as SLA definition language for
the next generation clouds.

9. Acknowledgements

We would like to thank Kyriakos Kritikos, Ivona
Brandic and all the anonymous reviewers for their
detailed review and the very helpful comments.

References

[1] T. S. Dillon, C. Wu, E. Chang, Cloud com-
puting: Issues and challenges, in: Proc. of
AINA, IEEE Computer Society, 2010, pp. 27—
33. doi:10.1109/AINA.2010.187.

[2] D. Kyriazis, Cloud computing service level
agreements—exploitation of research results, Eu-
ropean Commission Directorate General Com-
munications Networks Content and Technology
Unit, Tech. Rep 5 (2013) 29.

[3] A. Keller, H. Ludwig, The WSLA Framework:
Specifying and Monitoring Service Level Agree-
ments for Web Services, JNSM 11 (1) (2003) 57—
81. doi:10.1023/A:1022445108617.

[4] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,
H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano,
S. Tuecke, M. Xu, Web Services Agreement
Specification (WS-Agreement), Tech. rep., Open
Grid Forum (2007).

[5] V. Tosic, B. Pagurek, K. Patel, WSOL - A Lan-
guage for the Formal Specification of Classes of
Service for Web Services, in: Proc. of ICWS,
CSREA Press, 2003, pp. 375-381.

[6] A. Paschke, RBSLA A declarative Rule-based
Service Level Agreement Language based on
RuleML, Proc. of CIMCA-TAWTI 2 (2005) 308
314.

[7]

[13]

[14]

C. Pedrinaci, J. Cardoso, T. Leidig, Linked
USDL: A vocabulary for web-scale service trad-
ing, in: Proc. of ESWC, 2014, pp. 68-82.

A. Correia, F. B. e Abreu, V. Amaral, SLALOM:
alanguage for SLA specification and monitoring,
CoRR abs/1109.6740.

URL http://arxiv.org/abs/1109.6740

J. Skene, D. D. Lamanna, W. Emmerich, Precise
service level agreements, in: Proc. of ICSE, 2004,
pp. 179-188.

K. T. Kearney, F. Torelli, C. Kotsokalis, Sla*:
An abstract syntax for service level agreements,
in: Proc. of the 11th IEEE/ACM GRID, 2010,
pp. 217-224.

D. Serrano, S. Bouchenak, Y. Kouki, F. A.
de Oliveira Jr, T. Ledoux, J. Lejeune, J. Sopena,
L. Arantes, P. Sens, Sla guarantees for cloud ser-

vices, Future Generation Computer Systems 54
(2016) 233-246.

R. B. Uriarte, F. Tiezzi, R. De Nicola, SLAC:
A Formal Service-Level-Agreement Language for
Cloud Computing, in: Proc. of UCC, 2014, pp.
419-426. doi:10.1109/UCC.2014.53.

R. B. Uriarte, F. Tiezzi, R. De Nicola, Dynamic
slas for clouds, in: Proc. of ESOCC, Springer,
2016, pp. 34-49.

S. Farokhi, F. Jrad, I. Brandic, A. Streit, Hierar-
chical sla-based service selection for multi-cloud
environments, in: Proc. of CLOSER, 2014, pp.
722-734.

F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina,
L. Badger, D. Leaf, Nist cloud computing ref-
erence architecture, NIST special publication
500 (2011) (2011) 292.

P. Mell, T. Grance, The
inition ~ of Cloud Computing
doi:10.1080/1047621920040218.

NIST Def-
(2011).

N. R. Herbst, S. Kounev, R. H. Reussner, Elas-
ticity in cloud computing: What it is, and what
it is not., in: ICAC, Vol. 13, 2013, pp. 23-27.

21

[18]

[20]

[21]

[26]

[27]

[28]

L. Wu, R. Buyya, Service Level Agreement
(SLA) in Utility Computing Systems, arXiv
preprint arXiv:1010.2881.

URL http://arxiv.org/abs/1010.2881

R. B. Uriarte, V. Scoca, F. Tiezzi, R. De Nicola,
SLAC: Formal Definitions, Tech. rep., IMT,
http://sysma.imtlucca.it/tools/slac/
(2017).

K. Kritikos, R. B. Uriarte, Semantic sla for
clouds: Combining slac and owl-q, in: Proc.
of CLOSER, ScitePress, 2017, pp. 432-440.
d0i:10.5220/0006299804320440.

K. Kritikos, D. Plexousakis, Owl-q for semantic
qos-based web service description and discovery,
in: Proc. of SMR2, CEUR-WS. org, 2007, pp.
114-128.

G. Verfaillie, T. Schiex, Solution reuse in dy-
namic constraint satisfaction problems, in: Proc.
of AAAI, Vol. 94, 1994, pp. 307-312.

SLAC project website.
URL http://sysma.imtlucca.it/tools/
slac/

V. Scoca, R. B. Uriarte, R. De Nicola, Smart
contract negotiation in cloud computing, in:

Proc. of IEEE CLOUD, 2017, pp. 592-599.

R. B. Uriarte, C. B. Westphall, Panoptes: A
monitoring architecture and framework for sup-
porting autonomic Clouds, in: Proc. of NOMS,
IEEE, Poland, 2014, pp. 1-5.

L. De Moura, N. Bjgrner, Z3: An efficient smt
solver, in: Proc. of TACAS, 2008, pp. 337-340.

G. Urdaneta, G. Pierre, M. van Steen, Wikipedia
workload analysis for decentralized hosting, El-
sevier Computer Networks 53 (11) (2009) 1830
1845.

Ma-
5-32.

L. Breiman, Random
chine Learning 45 (1)
doi:10.1023/A:1010933404324.

forests,
(2001)

[29]

[31]

S. S. K. Djemame, Enabling service-level agree-
ment renegotiation through extending WS-
Agreement specification, SOCA (2015) 177-
191d0i:10.1007/s11761-014-0159-5.

C. Reiss, J. Wilkes, J. L. Hellerstein, Google
cluster-usage traces: format + schema, Tech-
nical report, Google Inc., Mountain View, CA,
USA (Nov. 2011).

URL https://github.com/google/
cluster-data

R. Nanduri, N. Maheshwari, A. Reddyraja,
V. Varma, Job Aware Scheduling Algo-
rithm for MapReduce Framework, in:
Proc. of CloudCom, 2011, pp. 724-729.

d0i:10.1109/CloudCom.2011.112.

S. Cheung, D. K. W. Chiu, S. Till, A Three-
Layer Framework for Cross-Organizational e-
Contract Enactment, in: WES, Vol. 2512 of
LNCS, Springer, 2002, pp. 78-92.

M. P. Papazoglou, The world of e-business:
Web-services, workflows, and business trans-
actions, in: International Workshop on Web
Services, E-Business, and the Semantic Web,
Springer, 2002, pp. 153-173.

H. Ludwig, K. Stamou, M. Mohamed,
N. Mandagere, B. Langston, G. Alatorre,
H. Nakamura, O. Anya, A. Keller, rsla: Moni-
toring slas in dynamic service environments, in:
International Conference on Service-Oriented
Computing, Springer, 2015, pp. 139-153.

R. Engel, S. Rajamoni, B. Chen, H. Ludwig,
A. Keller, ysla: Reusable and configurable slas
for large-scale sla management, in: 2018 IEEE
4th International Conference on Collaboration
and Internet Computing (CIC), IEEE, 2018, pp.
317-325.

R. B. Uriarte, R. De Nicola, Blockchain-based
decentralized cloud/fog solutions: Challenges,
opportunities, and standards, IEEE Communi-
cations Standards Magazine 2 (3) (2018) 22-28.

22

[37]

R. B. Uriarte, R. De Nicola, K. Kritikos, To-
wards distributed sla management with smart
contracts and blockchain, in: 2018 TEEE Inter-
national Conference on Cloud Computing Tech-
nology and Science (CloudCom), IEEE, 2018,
pPp- 266-271.

M. Bartoletti, L. Pompianu, An empirical anal-
ysis of smart contracts: platforms, applications,
and design patterns, in: International Confer-
ence on Financial Cryptography and Data Secu-
rity, Springer, 2017, pp. 494-509.

