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Abstract—Motion planning and control algorithms for au-
tonomous vehicles need to be safe, and consider future movements
of other road users to ensure collision-free trajectories. In this
paper, we present a control scheme based on Model Predictive
Control (MPC) with robust constraint satisfaction where the
constraint uncertainty, stemming from the road users’ behavior,
is multimodal. The method combines ideas from tube-based
and scenario-based MPC strategies in order to approximate the
expected cost and to guarantee robust state and input constraint
satisfaction. In particular, we design a feedback policy that is a
function of the disturbance mode and allows the controller to
take less conservative actions. The effectiveness of the proposed
approach is illustrated through two numerical simulations, where
we compare it against a standard robust MPC formulation.

Index Terms—Autonomous vehicles, uncertain systems, predic-
tive control for nonlinear systems

I. INTRODUCTION

UTONOMOUS driving technologies have shown great

potential for safe and efficient driving [1]. While the
technology is expected to be first gradually deployed for envi-
ronments such as highway driving and low-speed parking [2],
scenarios such as urban driving pose a greater challenge due
to the presence of other road users, e.g., pedestrians, cyclists,
and vehicles. To address these challenges, research needs
to be focused on (a) deriving prediction methods to model
the stochastic behavior of human road users, and (b) control
algorithms that ensure safe collision-free trajectories.

To that end, it is of great importance to be able to un-
derstand and model the behavior of other road users. Several
techniques have been proposed to address (a) in the context of
autonomous driving, where in, e.g., [3], the authors presented
a pedestrian path prediction study using Gaussian process
dynamical models together with trajectory matching. Other
approaches consider switching dynamical models for short-
term predictions [4], and hybrid models to describe human
gaits to switch between different dynamics [5]. More recently,
data-driven methods involving Markov processes have been
proposed [6], and in [7] environmental context in form of a
semantic map was incorporated to guide the predictions. In [8]
a graph-based map was leveraged in order to propagate pre-
dictions using a feedback controller, while in [9] predictions
are propagated using set-based reachability analysis combined
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Fig. 1. Example of two prediction modes for an external obstacle.

with the structure of the road topology. However, in order to
make use of predictions of the surrounding environment, con-
trol and planning algorithms need to be developed with robust
safety guarantees against all possible uncertainty realizations.
In [10] an optimization-based planning and control framework
is proposed that enables safe control and avoids collisions with
other traffic participants by assuming availability of vehicle-
to-vehicle communication, while [11] proposes a partially ob-
servable Markov decision process that estimates the behavior
of other road users to form collision avoidance constraints to
be used for their controller. The hybrid controller presented
in [12] solves the pedestrian interaction problem using gap
acceptance to decide whether to yield or not, and in [13]
the authors present a planning and control framework that ac-
counts for moving obstacles by explicitly including predicted
pedestrian trajectories in an optimization problem in order
to be proactive. However, the framework addresses nominal
driving scenarios, where an emergency layer is assumed to
exist in order to ensure safety. Since safety is paramount in
autonomous driving, it is necessary to ensure satisfaction of
all constraints, e.g., road boundary limits, actuator limits, and
collision avoidance with other road users for all future times.

In this paper, we design a feedback policy that is able to
take less conservative actions, for cases when constraints are
affected by multimodal uncertainties. This is typically the case
for collision avoidance with other road users e.g., a pedestrian
might either cross the road or continue walking, as depicted
in Figure 1. In particular, we propose a causal feedback policy
that is a function of the disturbance mode and prove robust
constraint satisfaction by combining ideas introduced in tube-
based Model Predictive Control (MPC) [14], [15], [16] and
scenario-based MPC [17]. Furthermore, we show, through
numerical simulations, the benefits of our control strategy
compared to a standard robust tube MPC formulation.

The remainder of the paper is structured as follows. In
Section II the optimal control problem is defined and the
obstacle model is described in Section III. Section IV proposes
a safe, non-conservative control scheme. We illustrate the



theoretical developments in Section V with two numerical
examples. Finally, we draw conclusions in Section VI.

II. PROBLEM DEFINITION

We consider the following discrete-time system

(D

where at time k the state x; € X C R™= and control
u; € U C R™«. The goal is to design a controller, given
an initial state xg € S C X, that minimizes deviations from
a reference trajectory ry, = (r¥, r}), while avoiding collisions
with external dynamic obstacles o, € O C R™~. Ideally, one
would want to design a controller solving the infinite horizon
Optimal Control Problem (OCP), where the future positions
of the obstacle are assumed to be known a priori

Xpy1 = f(Xk, ug),

)
I3 oo (9) :m&n Zﬁ(xk —rf,u, —rp) (2a)

s.t. Xg i_;zs (2b)

Xp+1 = f(xXp,ug), vk >0, (2¢)

h(xg, m(xk, 01)) <0, vk >0, (2d)

9(Xp, m(Xk,0),0) <0, Yk >0, (20

where constraints (2b) and (2c) represent the initial state

and system dynamics, and constraint (2d) includes, e.g., state
and control limits. Finally, constraint (2e) ensures collision
avoidance with obstacles oy, for all future positions and times
k > 0. We assume that the stage cost {(-,-) is continuous
positive-definite and ¢(0,0) = 0.

Our goal is to guarantee the safety of the controller for all
Xg in an initial set S, which we define formally as follows.

Definition 1 (Safety). A controller is safe in the set S,
if it generates control inputs U = {ug,...,us} and state
trajectories X = {Xq,X1,...,Xoo }, such that h(xp,u;) < 0
and g(xk,uk,ok) <0, Vxp €S, Vk >0, Vo, € Q.

Solving problem (2) is challenging for the following rea-
sons: (a) the exact knowledge of the future states oy is
generally impossible to know a priori; (b) solving an infinite-
horizon OCP is computationally challenging, even though the
exact solution can be computed for special cases, e.g., for
linear systems, convex cost and constraints [18]; and (c) we
want to optimize over feedback policies, which depend on the
various configurations of oy and system states xj.

In the following we first address issue (a) by defining a
prediction model at time k, allowing the prediction of oy for
future times. Then, to tackle (b) we approximate the infinite
horizon OCP (2) by a model predictive control strategy which
defines a feasible, i.e., safe, receding horizon feedback policy.
Finally, to overcome (c) we fix the structure of the feedback
policy by solving only over a subset of feedback policies.

III. ENVIRONMENT PREDICTION MODEL

Since the full information of the future obstacles’ states oy,
are not known a priori, we use the notation O,k to denote
the predicted obstacle state at time n given the information
available at time k. We assume that we are given a multimodal

prediction model for the obstacle. In particular, at each time
k for each mode 7 € {1,...,L} the state of the obstacle is
given by

3)

02,+1\k = W(Oﬁwvwhk),
;‘k is the uncertainty that drives
the dynamics for modeAi and has a compact support W;‘k C
R™w  je., w;‘ e € W;l x- We denote (i as the probability
associated with prediction mode i. Note that the different
modes of our prediction model may be used to describe
different intentions, e.g., a pedestrian can either choose to
cross the road or continue walking, as depicted in Figure 1.
In order to introduce safe constraint satisfaction, we need
to predict the set of possible values that 0, can take. For
each mode ¢, we denote such uncertainty set as @;lk and

where the random variable w

(O)n‘ PSS UiL=1 ibl i~ The following assumption guarantees that
o, € @n|k_, Vn>k.

Assumption 1. The uncertainty sets (D)il i, are outer approxi-
mations of the robust reachable sets given by (3), i.e.,

Oy 1y 2 {w (051 Wi ) | 00 1 € O 1 YWy €W T

for @};‘k =oy Vie{l,...,L}.

Note that for each mode ¢, the sets @fl‘ . can group different
realizations of the same intention, e.g., pedestrians who cross
the road might do so in multiple ways (faster, slightly on one
side, etc.). Also, when the sets of two modes are disjoint it
is possible to infer which mode cannot be realized anymore.
This is formalized in the following proposition and allows us
to define a causal feedback policy in Section IV-B, which is
a function of the prediction mode.

Proposition 1 (Mode Distinction). Given a sequence of pre-
dicted obstacle states [02|k7""0f1|k]’ p € {i,j}, one can
infer whether p =1 or p = j if n > n;;, with

Vn>k. 4)

N = mgn n, s.t. O, N (O)iblk,‘ =0,

Proof. Definition (4) implies that N OL = 0.

X3
Mg
Therefore, oﬁ_’lij‘ k€ @%ijl . if and only if ]tlhe mode p =1¢. [
Remark 1. The computation of the reachable set is not
trivial for nonlinear systems. Standard strategies tackle this
issue by computing overapproximations @nl w See, e.g., [19],
[20], [21], [22]. The computation of n;; requires one to
perform set intersection, which can be done as in, e.g., [23],
[24]. Unfortunately, such computations are unavoidable if
safety is sought. Note, however, that computationally efficient
approaches have been proposed in the literature. Since this is
outside the scope of this paper, future research will adapt the
computationally inexpensive methods of [8], [13] such that
they satisfy Assumption 1.

Remark 2. We assume that the probabilities (B; are given. In
practice they can be estimated or learned from sensor data.



IV. CONTROLLER DESIGN

In this section, we first show that a feasible policy for
problem (2) can be synthesized using robust tube MPC strate-
gies [15]. However, in case the predicted states 0, are
multimodal, the robust tube approach can be conservative.
Therefore, in the second part of this section we present a
control strategy which leverages Proposition 1: we use a
causal feedback policy which considers different scenarios as
a function of the mode of the prediction model. As we will
show in Section V, the proposed strategy allows us to achieve
better performance on average compared to standard robust
tube MPC, while having a comparable computational cost.

A. Tube MPC approximation

A simple, yet often conservative, solution is to approximate
problem (2) with a standard tube MPC formulation that
optimizes over a sequence of controls rather than policies.
More formally, given the measured state xj, we solve the
following finite time optimal control problem

k+N-—1
: § X u
min q(xn|k - rn|k7 un|k - rn|k)
x,u (Sa)
n=~k

+ P(Xpp N ik — TR k)

S.t. Xk\k = Xg, (5b)
Xn—&-l\k, = f(xn|k7 un\k>7 (SC)
B g W) < 0, (5d)

g(Xn|k7 un|k7on|k) é 07 von\k € @n|k7 (56)
f
[XZ-',-NU«: 02+N|k]T6er vok_t,-N‘k € Opqnip- (5D

where N is the prediction horizon, and ¢ and p are the
stage and terminal costs, and constraint (5f) is a terminal
set. We denote the optimal sequence of problem (5) to be
U ={ujp -, uf noqpp )t at time &, with the policy

e (xy) 1= uj . 6)

Problem (5) is then solved at time k + 1 based on the new
state Xp11 = f (%, 77"P¢(x3)), yielding a receding horizon
control strategy. While problem (5) is formulated to guarantee
robust constraint satisfaction [16], it can be conservative for
scenarios where the predictions stemming from oj become
multimodal. Therefore, to reduce conservativeness we intro-
duce our proposed control strategy in the following section.

Remark 3. Since satisfying the constraints with probability
1 might be conservative, if a certain degree of risk can be
accepted one can define sets Wn‘k such that they correspond
to the desired probability of constraint satisfaction, i.e., in
the presence of probability information of the uncertainties,
one can formulate (5) as a chance-constrained (risk bounded)
problem which results in a less conservative solution [25].

B. Scenario Expectation Strategy

As discussed previously, the solution to problem (5) is
robust for all possible realizations of the obstacle position. We
propose to leverage the result from Proposition 1 to design

causal time-varying feedback policies, which are a function
of the obstacle mode 7. Note that this design of the feedback
policy follows a similar principle in [17]. Furthermore, this
strategy allows us to approximate the expected cost, which
depends on the random position of the obstacle, thus allowing
for improvements of the closed-loop performance, as we will
show in Section V.

At predicted time n, we allow the controller to pick different
control actions if the prediction mode can be inferred from the
obstacle’s positions. In the following, we denote by ufl‘ . the
control input for mode ¢ at time n predicted at time k, and we
constrain the predicted inputs of different modes to be equal
when the mode cannot be distinguished from past obstacle
positions, i.e., we set uile = uﬁl , When n < i, for n;;
defined from Proposition 1. The resulting finite time optimal
control problem is then formulated as

L k+N -1
. 1 X, i u,i
min E ,Bi< E S A
x"u’ T —
vierl =1 n=k (7a)

+ p(Xp ik — r:imk))

Vi e IF, (7b)
X1 = F O Whpn)s vielf, (7o)
(X}, e upy) <0, Vi e IF, (7d)
9K Wi, 041) <0, Voo, € O, Vi €17, (Te)
Vn < fj, Vi, j € IE, (76)

viell, (7g)

i
St Xy = Xk,

i ]
W = Wy i

iT i1 T f
(Xpt Nk Okinie] € Ao

(7c) — (79) Vn € IFFN=1
where we use 12 := {a,a + 1,...,b} as a short-hand no-
tation. We denote the optimal solution to problem (7) as

¥ = {u}CTk,...mi‘;NW...,uﬁl’;c,...,uij‘erk}, and define

the feedback policy at time £ as

7Tscenario (Xka Ok) = u};l%k. (8)
At time k + 1 we solve (7) with initial state xpy1 =
f(xp, mSeenario(x, o4)) in a receding horizon fashion. By
Assumption 1, @Zlk = oy, Vi € ]IlL, therefore uﬁk = uﬁk,
Vi, j € T and the policy (8) is well-defined.

Note that this formulation does not optimize over L separate
trajectories for L scenarios. Instead, it groups the L scenarios
together in the same problem, where the control input ties
together the scenarios and trajectories through constraint (7f).
Since fB; denotes the probability associated with prediction
mode 17, i.e., ZiLzl B; = 1, the objective (7a) therefore
becomes an approximation of the expected cost. Consequently,
problem (7) minimizes the expected cost, and on average
performs better than problem (5). Since all possible modes are
accounted for, this cost reduction still preserves safety: if, e.g.,
a pedestrian crossing is very unlikely, the vehicle will make
sure to always be able to stop without slowing down more than
necessary. By Proposition 1, collision avoidance constraints
related to some mode are removed from the problem only
once the obstacle cannot be in that mode anymore. E.g., once



a pedestrian starts crossing it cannot keep walking on the
sidewalk it was on.

Note that problem (7) will in general not be solved in
its form, but rather reformulated as a robust MPC problem
through constraint tightening [16]. This essentially requires
knowledge on the global maximizer of g, which can be hard
to compute in the general case. However, in some cases this
computation can be made very efficient. Notable examples
include the accurate pedestrian models proposed in [8], [13].

Remark 4. While problem (7) can become computationally
intractable in the presence of many obstacles, the problem
can be massively simplified by carefully identifying the most
restricting mode. Note that modes can be used to construct
piecewise linear approximations of nonlinear dynamics (3)
and, therefore, make the worst-case computation computation-
ally tractable, as in [8], [13]. These topics are the subject of
ongoing research.

Remark 5. The solution to problem (7) coincides with prob-
lem (5) whenever ni;; = N.

Problem (7) establishes the first step towards the desired
results: it proposes the policy (8) that is an approximation
to the optimal policy from OCP (2), and is on average less
conservative, in terms of cost, than the standard tube MPC
formulation (5). However, since the policy in OCP (2) is
by definition safe, i.e., recursively feasible, we use standard
approaches in MPC [18], [26], [27], which assume the exis-
tence of a robust invariant terminal set. Hence, the following
assumptions are introduced to prove safety also for policy (8).

Assumption 2. Vi € {1,..., L} there exists a j € {1,...,L}
such that @;lk - @i\kfl’ for all n > k. Furthermore, oy, €
Opjg—1 VE > 0.

Assumption 3. There exists a robust invariant set Xisafe,
ie., if [x,Lerk,o;—Jerk]T € X.afe, then Iu such that

T T T
R neo ) 50 v ) EXeates VOu 4 v 1k €EQpy v
and g(XHN‘k,u,oHN‘k) <0.

This assumption postulates the existence of a safe set
ensuring constraint satisfaction. While this might seem strong,
it is often implicitly used in many situations in the form

Xsafe = {Xn‘ka On\k; | Xn|k = f(xn|k:’un|k>7

9)
h(xn\lwun\k:) < 0’ g(Xn|k7un|k7on|k) < O}

Note that the prediction model can be constructed to avoid
unrealistic behavior that would cause the controller not to be
feasible. For instance, the prediction model can be constructed
to include the following cases: (a) a parked vehicle is consid-
ered safe and not responsible for collisions with other road
users; (b) a robotic joint moving in a human-robot environment
is considered safe if it does not move; and (c) an electric circuit
which is switched off is safe.

Proposition 2 (Recursive feasibility). Suppose that Assump-
tions 2 and 3 hold, and that problem (7), formulated with
er = Xsate, I8 feasible for the initial state xo. Then system
(1) in closed loop with the solution of (7) applied in receding
horizon is recursively feasible.

Proof. The proof follows from Assumptions 2-3, Proposition 1
and standard MPC arguments [17], [18]. Assume that prob-
lem (7) is feasible at time k, and let

* 1x 1x Lx Lx
Uy = {uk‘k,...,uk+N|k,...,uklk,...,u,H_N‘k} (10)

be the optimal solution. Now, notice that by Assumption 2
Vi e {l,...,L} there exists a j; € {1,..., L} such that

Oy SOy Yn >k +1. (11)

Therefore, by Assumption 3, we have that for some u/i € U
the following candidate input sequence

Jix Ji* Ji JL* JL* JL
{ukﬂ‘k, e W g W W B 12

is a feasible solution to problem (7) at time k+ 1. We have just
shown that problem (7) is feasible at time k+ 1 if problem (7)
is feasible at time k. Finally, we have by assumption that
Problem (7) is feasible at time k = 0, therefore we conclude
by induction that problem (7) is feasible at time k£ > 0. O

While we only focus on safety, i.e., recursive feasibility of
problem (7), it seems possible to also prove some form of
stability, similarly to [28].

We will show next in numerical simulations that this strat-
egy performs better than standard robust MPC on average.

V. SIMULATIONS

In this section we propose two examples in order to illustrate
the performance of our proposed strategy. We define the state
and controls to be x = [p, p|T, u = a, where p and p
denote a scalar position and velocity, and a the acceleration.
The constraints are p > 0 and |a| < 5 together with the
collision avoidance constraint g(x,u,0) < 0. We are given
the reference r*(t) = (tp™f, prf), r¥(t) = 0, with constant
velocity reference p**' = 5m/s. All examples are framed in
a standard tracking MPC formulation with stage and terminal
cost functions defined as ¢(x,u) := x'@x + u' Ru, and
p(x) := x' Px, where Q = diag(0,10), R = 1, and P is
the LQR cost-to-go matrix. We use sampling time ¢; = 0.1s
and prediction horizon N = 90. The safe set is defined
as per (9) using the approach of [28] and we solve the
MPC problem using CasADi [29] and IPOPT [30]. We select
simple but accurate pedestrian models [8] in order to ease
the interpretation of the results while considering realistic
situations.

A. Uncertain Static Obstacle

To illustrate the closed-loop behavior for our proposed
method, we consider a scenario where an obstacle oy, := p°Ps
is positioned at p°"> = 20m. We assume that the obstacle
may disappear after 6s, hence we consider only two modes
i € {1,2}. The constraint function g can then be defined as

9(Xq ks U s Op i) = Proje — O < 0,
where the true obstacle dynamics are o, = 20 for ¢ < 6s and

20 with probabilit
Ok{ with probability -, £ 6s,

oo with probability 1 — v,



T 7 T
keep/remove ’ 7
. constraint ,k/'”/"/
S0k — L7 i
X -
0 ] ‘
0 5 10 15
] £l
= 4b (2
5, [—7=0
=2 |——~=05 keep/remove R
& N =1 constraint
or I I ]
0 5 10 15
; tl
keep/remove ['
T constraint I‘.
~ D
E O -
S
-5 I I
0 5 10 15

Fig. 2. Closed loop trajectories for our proposed scenario MPC strategy,
with an obstacle at p = 20. Different lines show the behavior for varying
prediction probabilities . The dashed lines show the closed loop behavior
when the constraint is lifted after ¢ = 6s.

ie., f1 =7, P2 =1 —~. For t < 6s we define the sets

{20}7
{oo}

if nts <6

0y, = {20}, Vn >0, 0O = -,
otherwise

and, for t > 6s, the sets

If mode 1 is active

{20}
{oo}
For ¢ > 6s the obstacle position oy allows us to infer if the
obstacle is in mode 1 or 2.

Figure 2 shows closed-loop trajectories for the initial state
X9 = [~20,5] 7. The effect of having v = 0, i.e., assuming
that there is zero probability for the constraint to be present in
mode ¢ = 1 after 6s, results in having closed-loop trajectories
that become very aggressive and only slow down after the
mode can be distinguished. Alternatively, for v = 1, the closed
loop trajectories become instead conservative and approach the
obstacle p°P® smoothly. Note, that for v = 1, the proposed
solution for the setting coincides with a standard robust MPC
strategy, i.e., the controller defined in Section IV-A. For
v = 0.5, the controller tries to balance the aggressiveness and
conservatism from the other two behaviors, hence, keeping a
faster velocity compared to the case when v = 1, but also
decelerating earlier compared to when v = 0.

The dashed lines in Figure 2 show the closed loop behavior
after ¢ > 6 when mode ¢ = 2 is active, i.e., the obstacle
disappeared. Since the controller with v = 0 is optimistic
and will only decelerate when truly necessary, it does not
change its velocity. However, for v > 0 the controller becomes
more conservative, and therefore approach the constraint at
a reduced velocity. This is also visible from Figure 3 that
compares the expected cost for our proposed approach with
a standard robust tube MPC. We discuss the expected cost
results in more detail for the example in the following section.

@}zu@ = @i\k = . -
If mode 2 is active

B. Uncertain Dynamic Obstacle

To compare the overall closed-loop performance, we use a
more involved scenario, where we consider the setting with

.. 15000
z —Robustl
% 10000 I Scenario J
3
£ 5000 1
=
=
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Fig. 3. Expected cost for robust tube MPC and the proposed strategy.
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Fig. 4. Simplified pedestrian scenario. The pedestrian is predicted to move
along the dashed lines and turn left with probability §1 = - and continue
straight with probability 82 = 1 — ~.

a moving obstacle displayed in Figure 4, where the reference
r*(t) is shown by the orange line centered around y = 0.
The pedestrian states are modeled as oy, := [z, yi] ', with
z) and y, being the positions in the global frame shown in
Figure 4. We assume that as the pedestrian reaches x = 20m,
it might turn and cross the road, or continue walking along

the straight line y = —2.75m. Therefore, for a measurement
oy, we predict the two modes of the pedestrian using
i i B x;‘k, ts cos(wi(x};))
Ok =0k W) = | Lrsinwiep) 0 Y

where ¢ € {1,2} and

if z,, <20

2
w*(xr) = 0.
otherwise (k)

wl(zy) = (14)

vy O

For zj, < 20 we define two sets O}, and (O)il ,» Which contain
all possible evolutions of the obstacle. Note that this model is
a piecewise linear approximation of the nonlinear model (13),
whose accuracy has been demonstrated in [8]. When x; > 20,
the active mode becomes known and O, = O? ; contains
the only active mode. The constraint function g is then set as

pﬁl‘k —xilk —r if |y;‘k| <A+,

i i iy
g(xn\k’un\k’on\k) i .
—00 otherwise,

where » = 1m is an increased safety margin around the
pedestrian, and A = 1.5m is a distance threshold from the
road deciding when the pedestrian should be considered for
collision avoidance. Similarly to Section V-A, we set the
probabilities of the two modes as 1 =y and B2 =1 — 7.
We run simulations where we sweep v € [0, 1] and compute
the expected cost of the closed loop trajectories, using the stage
cost ¢(x —r*, u—r"). We compare the expected cost for our
proposed scenario MPC, a tube MPC, i.e., problem (5), and a
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Fig. 5. Expected cost for a prescient MPC, robust tube MPC, and our proposed
scenario MPC for different crossing probabilities .

prescient MPC, i.e., a controller that knows all constraints g
a priori and provides a lower bound on the expected cost.

Figure 5 displays the expected cost for the three different
methods with initial state xo = [~20,5] ", and initial obstacle
state oy = [15,—2.75]". The prescient controller results in
the lowest expected cost, since it knows beforehand whether a
constraint will be present or not in the future. For low crossing
probabilities ~, it is visible that the scenario MPC results
in a much lower expected cost than the conservative robust
MPC. In particular, for very small probabilities -, the cost
for scenario MPC is close to the optimal prescient MPC cost.
However, for higher values of ~, the robust MPC is not much
more conservative than the scenario MPC. Finally, for v = 1,
the pedestrian always crosses, and the solutions and expected
cost coincide for all controllers.

VI. CONCLUSIONS

In this paper, we introduced an MPC scheme that guar-
antees collision avoidance in the presence of obstacles. In
particular, we designed a feedback policy as function of the
obstacle mode that on average performs at least as good
as a standard robust MPC, and plans a sequence of control
actions that guarantee constraint satisfaction regardless of the
obstacle trajectory. We evaluated the proposed control scheme
in simulations, and showed that our strategy outperforms a
standard robust MPC formulation in terms of expected cost.
Future work will focus on finding suitable approximations to
contain the increasing computational complexity for multi-
obstacle settings.
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