
Learning Convex Terminal Costs for Complexity Reduction in MPC

Shokhjakon Abdufattokhov?, Mario Zanon, Alberto Bemporad

Abstract— Despite recent advances in computing hardware
and optimization algorithms, solving model predictive control
(MPC) problems in real time still poses some technical chal-
lenges when long prediction and control horizons are used,
due to the presence of several optimization variables and con-
straints. In this paper, we propose to reduce the computational
burden by shortening the prediction and control horizon to a
single step while preserving good closed-loop performance. This
is achieved by using machine learning techniques to construct
a tailored quadratic and convex terminal cost that approxi-
mates the cost-to-go function of constrained linear (possibly
parameter-dependent) MPC formulations. The potentials of
the proposed MPC with Learned Terminal Cost (LTC-MPC)
approach is demonstrated in two numerical examples.

I. INTRODUCTION

Model predictive control (MPC) is an optimization-based
control technique that has been applied successfully in many
real-life problems, thanks to its ability to achieve good
closed-loop performance while enforcing constraints on both
inputs and outputs of multi-variable systems [1]–[3]. Despite
recent advances in computing hardware and optimization
algorithms, the numerical operations required by MPC might
be excessive in certain applications characterized by high
sampling frequencies and/or cheap processing units.

One option to overcome the computational burden is to use
explicit MPC, which precomputes the feedback control law
as a piecewise affine function of the state vector by solving
offline a multi-parametric programming problem [4]–[6].
The main drawback of this approach is that exact multi-
parametric solutions are limited to small-scale time-invariant
MPC problems, since the high memory requirements should
be satisfied to store the polyhedral partitions and the re-
sulting control gains. On the other hand, to simplify the
complexity and to overcome the issues of the exact explicit
MPC scheme for large-scale problems, approximate explicit
MPC techniques have been proposed in the literature, such
as using neural networks [7]–[9], orthogonal trees [10],
piecewise affine basis functions [11] to mention a few.
However, approximate explicit solutions obtained by function
approximation methods might be difficult to get due to the
complexity of the control profile, and moreover constraints
should be included to preserve feasibility of at least the
commanded input.

When implicit MPC is the only viable option, the compu-
tational burden can be decreased by reducing the number of
degrees of freedom in the optimization, e.g., by shortening

?Corresponding author: s.abdufattokhov@imtlucca.it. This
paper was partially supported by the Italian Ministry of University and
Research under the PRIN’17 project “Data-driven learning of constrained
control systems” , contract no. 2017J89ARP.

the control horizon (i.e., the number of free control moves).
This is done by using move blocking [12], [13], that de-
scribes the idea of letting control input be time-varying over
the first few prediction steps and then forcing it to be constant
over the remaining steps. A different method to reduce the
number of degrees of freedom by parametrizing both the
input and state sequences with basis functions is investigated
in [14]. Alternatively, the authors in [15] propose to use a
method based on the combination of a singular value de-
composition and machine learning classification algorithms
to choose basis functions that are used to parametrize the
decision variables as an affine function of a small number of
optimization variables. However, computations may remain
significant in these methods if the prediction horizon and/or
the number of output constraints are large. Additionally,
these approaches do not adapt the objective function to (at
least partially) compensate for the optimality loss due to the
reduction of degrees of freedom.

In this paper, we propose an approach to significantly
reduce the online computational burden of implicit MPC by
considering a prediction and control horizon of length one. If
naively implemented, this strategy results in a considerable
loss of closed-loop performance, hence the need of intro-
ducing a suitable terminal cost. An attempt to construct an
appropriate terminal cost using state decomposition has been
investigated in [16], while [17], [18] proposes an algorithm
that optimizes a time-varying terminal cost. In both cases, a
prediction and control horizon larger than one is considered.
Ideally, the terminal cost should be the optimal cost-to-go
from the second step to the end of the prediction. Unfor-
tunately, the cost-to-go is typically a complicated function.
In case of linear time invariant systems with constraints, the
cost-to-go is piecewise quadratic. Such a function is both
difficult to compute, and would make the online optimization
problem difficult to solve.

To keep online optimization simple, in this paper we
propose to learn a cost-to-go function that is quadratic and
positive semidefinite with respect to the command input (i.e.,
the optimization vector) and rather arbitrary with respect to
the initial state, reference signals, and possibly other parame-
ters entering the MPC problem. We employ machine learning
algorithms to learn the terminal cost by fitting samples of the
cost-to-go, that we assume informative enough. We therefore
call our approach MPC with Learned Terminal Cost (LTC-
MPC).

The remainder of this paper is organized as follows. After
providing formulations to construct a MPC optimization
problem with a single optimizer in Section II, we discuss
how to learn a quadratic convex approximation of the cost-



to-go function in Section III. In section IV, we demonstrate
the effectiveness of the proposed approach in simulations
with two examples. Finally, concluding remarks are drawn
in section V.

II. PROBLEM FORMULATION

In this section, we first formulate a standard MPC con-
troller based on a linear time-varying model with full-length
prediction horizon. This will be reduced to a linear MPC
controller with prediction horizon one by learning a suitable
convex terminal cost, that approximates the optimal cost-to-
go under input and output constraints from time 2 to N .

Consider the following MPC problem

min
U,E

N−1∑
k=0

`k(yk+1, uk,∆uk, εk+1, pt) (1)

s.t. x0 = Mxpt

xk+1 = Ak(pt)xk +Bk(pt)uk + bk(pt) k ∈ IN−10

umin
k (pt) ≤ uk ≤ umax

k (pt) k ∈ IN−10

∆umin
k (pt) ≤ ∆uk ≤ ∆umax

k (pt) k ∈ IN−10

∆uk = 0 k ∈ IN−1Nu

yk = Ck(pt)xk + ck(pt) k ∈ IN1
− εk + ymin

k (pt) ≤ yk ≤ ymax
k (pt) + εk k ∈ IN1

εk ≥ 0 k ∈ IN1

where t is the current time instant, N the prediction horizon,
Nu the control horizon, Iba is the set of all integers in the
interval [a, b] , U = (u0, . . . , uN−1) is the sequence of ma-
nipulated variables uk ∈ Rnu to optimize, xk ∈ Rnx is the
state predicted k-steps ahead, yk ∈ Rny is the output vector,
and we define ∆uk+1 := uk+1−uk. Parameter p ∈ Rnp is an
exogenous vector of parameters that includes the initial state
x0, such that x0 = Mxpt, the previous input u−1 = Mupt,
reference signals, and other known parameters affecting the
affine prediction model described by Ak(pt), Bk(pt), bk(pt),
Ck(pt), ck(pt), `k : Rny × Rnu × Rny × Rnp ∈ R≥0 are
convex stage cost functions, such as quadratic functions, and
E = (ε1, . . . , εN ) is a vector of slack variables εk ∈ Rny≥0
used to soften output constraints.

By Bellman’s principle of optimality, Problem (1) can be
reformulated as

min
u0,ε1

`0(y1, u0,∆u0, ε1, pt) + V (x1, pt) (2a)

s.t. x0 = Mxpt (2b)
x1 = A0(pt)x0 +B0(pt)u0 + b0(pt) (2c)

umin
0 (pt) ≤ u0 ≤ umax

0 (pt) (2d)

∆umin
0 (pt) ≤ ∆u0 ≤ ∆umax

0 (pt) (2e)
y1 = C1(pt)x1 + c1(pt) (2f)

− ε1 + ymin
1 (pt) ≤ y1 ≤ ymax

1 (pt) + ε1 (2g)
ε1 ≥ 0 (2h)

where V : Rnx × Rnp → R is the cost-to-go defined by the

sum of stage costs starting from 2 to N , that is

V (x1, pt) =

min
U1,E1

N−1∑
k=1

`k(yk+1, uk,∆uk, εk+1, pt) (3)

s.t. xk+1 = Ak(pt)xk +Bk(pt)uk + bk(pt) k ∈ IN−11

umin
k (pt) ≤ uk ≤ umax

k (pt) k ∈ IN−11

∆umin
k (pt) ≤ ∆uk ≤ ∆umax

k (pt) k ∈ IN−11

∆uk = 0 k ∈ IN−1Nu

yk = Ck(pt)xk + ck(pt) k ∈ IN2
− εk + ymin

k (pt) ≤ yk ≤ ymax
k (pt) + εk k ∈ IN2

εk ≥ 0 k ∈ IN2

where U1 = (u1, . . . , uN−1), E1 = (e2, . . . , eN ). In
case `k are convex quadratic functions, the optimal value
function is convex and piecewise quadratic in x1 [5], and in
the absence of input and output constraints it is quadratic.
More generally, V is a convex function of x1 [19], although
it may not be easy to express analytically.

A. Complexity reduction

While appealing due to the simplicity of implementation,
MPC without terminal constraints such as problem (1) may
require a long prediction horizon to ensure stability, good
closed-loop performance, and constraint satisfaction [20].
Additionally, in many cases, the system dynamics are non-
linear and given in continuous-time, such that linearization
and discretization are required. Consequently, increasing N
directly leads to a significant increase in the computations
required to solve the problem in (1).

If the cost-to-go function V (x1, pt) were known and
simple enough, one could solve problem (1) more easily in
the form (2), as the number of optimization variables and
constraints would be drastically reduced. The main idea of
this paper is to construct an approximation

V̂ (x1, pt) = (x1 − x̂(pt))
′P̂ (pt)(x1 − x̂(pt)) (4)

of V (x1, pt), where x̂(pt) : Rnp → Rnx and P̂ (pt) : Rnp →
Rnx×nx are functions of pt to be learned, as we will describe
next. Accordingly, problem (2) is approximated as

min
u0,ε1

`0(y1, u0,∆u0, ε1, pt) + V̂ (x1, pt) (5a)

s.t. (2b)− (2h) (5b)

which we call MPC with Learned Terminal Cost (LTC-
MPC). Parameterizing V̂ as in (4) leads to two main
advantages: (i) when `0 is also quadratic, the LTC-MPC
problem (5) is a small quadratic program (QP), (ii) the input
u0 and slack ε1 remain as optimization variables, so that
input and output constraints can be enforced exactly at the
initial step, and in particular the optimal input u?0(pt) applied
to the process is feasible.

The LTC-MPC law is evaluated on line as described in
Algorithm 1.



Algorithm 1: LTC-MPC law
Input: pt
Output: u?0

1 evaluate A0(pt), B0(pt), b0(pt) and C1(pt);
2 evaluate matrix P̂ (pt) and vector x̂(pt);
3 solve the LTC-MPC problem (5) and get u?0;
4 apply ut = u?0(pt).

III. LEARNING THE COST-TO-GO FUNCTION

In this section, we focus learning an approximation V̂ of
the cost-to-go function V as in (4). As we need to ensure
convexity of V̂ with respect to x1, the learning algorithm
must ensure that P̂ (pt) is positive semidefinite for all pt. To
this end, instead of directly learning P̂ , we learn a lower-
triangular matrix L̂ : Rnp → Rnx×nx , so that

P̂ (pt) = L̂(pt)L̂(pt)
′ (6)

is positive semidefinite by construction for all possible values
of the parameter vector pt. The formulation (4), (6) requires
solving a regression problem parameterized by nx(nx+1)

2 +nx
functions and np features (or inputs). Note that directly
parameterizing the symmetric part of P̂ is also possible,
and still involves nx(nx+1)

2 predictors. The advantage of
such a parameterization is the reduced nonlinearity of the
learning problem, the disadvantage is that one must introduce
constraints in the learning process to ensure that P̂ (pt) � 0
for all pt ∈ Rnp . A thorough investigation comparing the
alternative parameterizations of P̂ is left for future research.

Given a dataset of M samples (pi, x1,i, V1,i), with V1,i =
V (x1,i, pi) as in (3), we solve the following regression
problem

min
L̂,x̂

1

M

M∑
i=1

φ(V1,i, (x1,i−x̂(pi))
′L̂(pi)L̂(pi)

′(x1,i−x̂(pi)))

(7)
where φ : R2 → R is a training loss function. In this paper,
we consider the commonly used squared error loss function,
i.e., φ(a, b) = (a − b)2, although other functions could be
used; for example if the values V1,i range between very small
and very large values, one could use φ(a, b) = (log(a) −
log(b))2.

The general problem (7) is infinite-dimensional. We adopt
a parametric approach in this paper by modeling L̂, x̂ as
feedforward neural networks (NNs) L̂θ, x̂θ. Let θ ∈ Rnθ
denote the overall set of weights/bias terms of NNs. Then
problem (7) is approximated by

min
θ

γ‖θ‖22 +
1

M

M∑
i=1

φ(V1,i, Vθ(x1,i, pi)) (8a)

where γ is an L2-regularization parameter and

Vθ(x1,i, pi) := (x1,i − x̂θ(pi))′L̂θ(pi)L̂θ(pi)′(x1,i − x̂θ(pi))
(8b)

We refer to [21] for a wide range of possible alternative loss
functions, regularization terms, and optimization algorithms

to solve (8), as well as to [22], [23] for well-established
open-source frameworks for solving the training process.

The posed learning problem requires a training dataset that
is rich enough to make LTC-MPC (5) a good approximation
of the original MPC problem (1). A possibility is to generate
random samples (pi, x1,i) that well cover a given operating
range of states, set-points, and other parameters of interest.
To avoid the curse-of-dimensionality issue when the number
of components of (pi, x1,i) is high, a possibility is to run
a closed-loop simulation in which the next state vector
coincides with

x1,i = A0(pi)Mxpi +B0(pi)u
?
0(pi) + b0(pi) (9)

and u?0(pi) is the first sample of the optimal sequence
returned by the full MPC problem (1), for i = 1, . . . ,M .
An intermediate approach that ensures better exploration is
to generate random perturbations of x1,i and pi around the
obtained closed-loop signals. How to best generate suitable
perturbations is application dependent. Note that in case
x1,i is the optimal state given by (9) (unperturbed case)
the cost-to-go V1,i is immediately available as a by-product
of the solution of (1). Otherwise, for a generic (perturbed)
value x1,i one necessarily needs to evaluate the cost-to-go
as per (3).

IV. ILLUSTRATIVE EXAMPLE

In this section, we demonstrate the potentials of the
proposed strategy on two simulation examples. First, we
consider a linear quadratic regulation (LQR) problem without
constraints, and show that the optimal cost-to-go solving
the MPC problem (1) is recovered from data. Second, we
consider a simplified lane-keeping problem for autonomous
driving with full/partial road preview and constraints on
inputs and outputs.

To run our numerical experiments, we collect M samples
in closed-loop without perturbation as follows: (i) we gen-
erate a set of Ninit random initial conditions and reference
signals; (ii) starting from each initial condition, we run a
closed-loop simulation over a horizon Nsim using the full
MPC controller and evaluate the optimal cost-to-go V (x1, pt)
on the optimal predicted states x1 as in (9) obtained during
the simulation. Out of the resulting M = NinitNsim samples
of (x1, V ), we use Mtrain = 0.6M samples for learning the
parameters of the model, Mval = 0.2M samples for the vali-
dation that helps to specify the architecture of the model, for
example to choose the number of hidden units, and Mtest =
0.2M test samples used to assess the performance of the
specified model. We validate NNs model by measuring the
prediction accuracy using the commonly used Normalized
Root Mean Square Error(NRMSE) metric and the R2

score-
coefficient of determination. We use Pytorch [22] to fit the
NNs required to approximate the cost-to-go function. All
simulations are executed in MATLAB 2018b on a machine
equipped with an Intel Core i5-5200U (2.7GHz) processor.



A. LQR problem

We consider the following discrete Linear Time Invariant
(LTI) system

xi+1 =

[
0.9 −0.2
0.1 1.0

]
xi +

[
0.1
0

]
ui

We formulate an LQR problem over a prediction horizon
N = 30 using state weighting matrix Q = I , control
weighting matrix R = 0.1 and terminal cost matrix Q,
and get the closed-loop solution through running Riccati
backward iterations. We run Ninit = 150 simulations of
length Nsim = 40 steps each, visualized in Figure 1, resulting
in a dataset of M = 6000 samples. The parameter vector
pi ∈ R5×1 consists of the initial state x0,i ∈ R2×1, reference
states xri ∈ R2×1 and a reference input uri ∈ R (both constant
over the prediction horizon), such that

pi = (x0,i, x
r
i, u

r
i)

Since ∆u is not used in this example, we eliminated it
from the formulation and we removed u−1,i from pi, since
it becomes unnecessary. We fix x̂(pi) = xri and learn
matrix L̂(pi) using a neural networks composed of fully
connected layers, with an input layer with 5 neurons is
followed by one hidden layer with 100 neurons and an output
layer with 3 neurons. A sigmoidal function is chosen as
an activation function for the hidden layer, while a linear
activation function is applied to the output layer. We solve
problem (8) using the ADAM algorithm [24] with a learning
rate α = 10−2, coefficients used for computing running
averages of gradient and its square exponential decay rates
β = (0.95, 0.995), L2-regularization parameter γ = 10−4

and epochs = 1000. The prediction accuracy analysis of
chosen model is given in Table I.

TABLE I: LQR cost-to-go prediction accuracy analysis.

Training Validation Test
NRMSE 0.005 0.004 0.004
R2

score 0.995 0.995 0.995

We simulate the system with Nsim = 50, constant ref-
erences xr =

[
0 2

]′
and ur = 4. In order to check the

consistency between full MPC and LTC-MPC, we investigate
the maximum of the absolute difference between terminal
weight matrices, respectively Pfull and P̂ , and linear state
feedback gain matrices, respectively Gfull and Ĝ. In the
proposed simulation, we obtain a good approximation:

max
i=1,...,Nsim

‖P̂ (pi)− Pfull‖max

‖Pfull‖max
= 0.08

max
i=1,...,Nsim

‖Ĝi −Gfull‖max

‖Gfull‖max
= 0.03

The closed-loop performance of LTC-MPC is close to the
one of full MPC, as displayed in Figure 2.

5 10 15 20 25 30 35 40

-4

-2

0

2

x
1

5 10 15 20 25 30 35 40
-2

0

2

4

x
2

5 10 15 20 25 30 35 40

simulation steps

-10

0

10

u

Fig. 1: Trajectory samples used in the LQR training.

5 10 15 20 25 30 35 40 45 50

-1

0

1

2

x
1

LTC-MPC with N=1 Full MPC with N=30 Reference

5 10 15 20 25 30 35 40 45 50

2

3

x
2

5 10 15 20 25 30 35 40 45 50

simulation steps

-2
0
2
4
6

u

Fig. 2: Trajectory tracking results. The top subplot shows
trajectories drawn for state one x1 by full MPC with N = 30
(blue line) and LTC-MPC with N = 1 (green circle), while
the middle and lower subplots illustrates lines for state two
x2 and control input u, respectively.

B. Lane-keeping problem

To pose a control problem for lane-keeping in autonomous
driving, consider the following continuous-time bicycle-like
kinematic model of the vehicle dynamics

ṡx = v cos(ψ + δ)
ṡy = v sin(ψ + δ)

ψ̇ =
v

Wb
sin(δ)

(10)

where (sx, sy) [m] is the Cartesian position of the front
wheel on a fixed reference frame, ψ [rad] is the orientation
of the vehicle with respect to the x-axis, δ [rad] is the
commanded steering angle, v [m/s] is the commanded longi-
tudinal velocity, and Wb = 4.5 m is the wheelbase. We then
summarize the model as ẋ = f(x, u), with x = [sx sy ψ]′

and u = [v δ]′, and f : R3 × R2 → R3 is given by (10).
The model is linearized around the current state xt and the
last computed optimal input u?1,t−1, and discretized using
the first-order forward Euler method with sampling time
Ts = 0.05 s, obtaining the linear parameter varying (LPV)
system as in (1) with

Ak(pt) = I + Ts
∂f(xt, u

?
1,t−1)

∂x

Bk(pt) = Ts
∂f(xt, u

?
1,t−1)

∂u
,

bk(pt) = xt + Tsf(xt, u
?
1,t−1)−Ak(pt)xt −Bk(pt)u

?
1,t−1

Ck(pt) =

[
1 0 0
0 1 0

]
, ck(pt) = 0



10 20 30 40 50 60 70 80 90

s
x
-position [m]

15

20

25

30

35

40

45

s
y
-p

o
s
it
io

n
 [
m

]

Full MPC with N=20 and N
u
=5 Reference path Lane border

(a)

10 20 30 40 50 60 70

s
x
-position [m]

5

10

15

20

25

30

35

s
y
-p

o
s
it
io

n
 [
m

]

Full MPC with N=20 and N
u
=5 Reference path Lane border

(b)

10 20 30 40 50 60 70 80 90

s
x
-position [m]

5

10

15

20

25

30

s
y
-p

o
s
it
io

n
 [
m

]

Full MPC with N=20 and N
u
=5

Reference path

Lane border

(c)

Fig. 3: Lane-change maneuver examples.

where the parameter pt ∈ R5+2Nr is given by

pt = (xt, u
?
1,t−1, y

r
1,t, . . . , y

r
Nr,t) (11)

assuming that at each time t the future samples
yr1,t, . . . , y

r
Nr,t

of the reference are known, Nr ≤ N .
Our goal is to make the vehicle follow the reference path

while staying within the lane margins. For this purpose, we
make the output y track reference signals yr by considering
the following quadratic stage cost

`k(yk+1,∆uk, εk+1, pt) =

‖yk+1 − yrk+1‖22 + ‖∆uk‖2R + 100‖εk+1‖22

with R =

[
0.1 0
0 1

]
. Moreover, the following upper and

lower bounds are included in the control problem formu-
lation:

umin
k =

[
−5.5
−π/4

]
umax
k =

[
19.5
π/4

]
∆umin

k =

[
−1.0
−π/18

]
∆umax

k =

[
5.0
π/18

]
ymin
k = yrk − 2 ymax

k = yrk + 2

Simulations are carried out in two scenarios. First, we
design the vector pt with Nr = 1 and learn the cost-to-
go function given in (8). Second, we include full preview
information in the vector pt for a fair comparison with the
Full MPC scheme. In both cases, we parameterize the 6
components of L̂θ(pi) and the 3 components of x̂θ(pi) as
NNs consisting of an input layer with 5 + 2Nr neurons,
one hidden layer with 200 neurons and sigmoidal activation
functions, and a linear output layer with 9 neurons. We
run Ninit = 150 simulations of length Nsim = 120 using
3 different lane-change maneuvers as displayed in Figure
3, yielding a dataset of M = 18000 samples. We employ
the ADAM algorithm with a learning rate α = 10−4,
coefficients used for computing running averages of gradient
and its square exponential decay rates β = (0.99, 0.995), L2-
regularization parameter γ = 10−5 and epochs = 2000 to
train both model. The prediction accuracy analysis of chosen
models is given in Table II. As expected, one can see that
the predictions of the cost-to-go function trained with full
preview are more precise than the function trained with a 1-
step-ahead preview. The full MPC with N = 20, Nu = 5 and
the LTC-MPC controllers are tested in simulation by running
the vehicle from the initial state x0 = [10 29.5 0]′, assuming
u−1 = [0 0]′. The quadratic programs associated with

TABLE II: Lane-keeping cost-to-go prediction accuracy
analysis (NRMSE / R2

score).

Nr Training Validation Test
1 0.03 / 0.90 0.05 / 0.88 0.05 / 0.87

20 0.01 / 0.98 0.02 / 0.96 0.03 / 0.94

both MPC problems are solved using qpOASES [25] and
simulation results are obtained. Figure 4 and Figure 5 show
that LTC-MPC is able to keep the vehicle within the lane
margins even in case the 1-step-ahead preview is used. While
this results in a large performance loss, good performance is
recovered by using the full preview information to compute
the terminal cost. Moreover, the cost-to-go predictions and
corresponding approximation errors with respect to the Full
MPC scheme are illustrated in Figure 6.

10 20 30 40 50 60 70

s
x
-position [m]

5

10

15

20

25

30

35

s
y
-p

o
s
it
io

n
 [
m

]

Fig. 4: Lane-keeping control results. The reference path
(black-dashed line), Full MPC with N = 20 and Nu = 5
(blue line), LTC-MPC with N = Nu = 1 and Nr = 20
(green line), LTC-MPC with N = Nu = Nr = 1 (magenta
line) and lane borders (red line).

0 20 40 60 80 100 120

-2

-1

0

1

2

3
LTC-MPC with N=N

u
=1 and N

r
=20 Full MPC with N=20 and N

u
=5 LTC-MPC with N=N

u
=N

r
=1 Upper/Lower bounds

0 20 40 60 80 100 120
simulation steps

-2

0

2

Fig. 5: Output tracking errors.

The computation time required by the full and LTC-MPC
controllers shown in Figure 7 are measured on an Intel
Core i5-5200U (2.7GHz) processor. Table III illustrates the



0 20 40 60 80 100 120
0

10

20

30

C
o
s
t-

to
-g

o LTC-MPC with N=N
u
=1 and N

r
=20

Full MPC with N=20 and N
u
=5

LTC-MPC with N=N
u
=N

r
=1

0 20 40 60 80 100 120

simulation steps

-10

0

10
LTC-MPC with N=N

u
=1 and N

r
=20

LTC-MPC with N=N
u
=N

r
=1

Fig. 6: Cost-to-go predictions(up) and corresponding approx-
imation errors with respect to Full MPC scheme(down).

0 20 40 60 80 100 120

simulation steps

10
-5

10
-4

C
P

U
 t
im

e
 [
s
]

LTC-MPC with N=N
u
=1 and N

r
=20

Full MPC with N=20 and N
u
=5

LTC-MPC with N=N
u
=N

r
=1

Fig. 7: Computational time for each MPC iteration of the
closed loop simulation.

comparison of the corresponding average and worst-case
CPU time required to solve the QP associated with the MPC
law, and the time to evaluate the NN yielding L̂(pt) and
x̂(pt). Note that while the solution time of the QP varies
from one sample step to the next due to the possible different
number of active-set iterations, evaluating the NNs requires a
fixed number of floating-point operations at each execution.

TABLE III: CPU times in [ms] for evaluating the full MPC
(excluding condensing) and the LTC-MPC schemes at each
sample step.

Nr N Nu NNs QP worst-case QP average
Full MPC 20 20 5 - 0.220 0.171

LTC-MPC 20 1 1 0.094 0.010 0.005
1 1 1 0.051 0.012 0.006

V. CONCLUSION AND FUTURE WORK

This paper has presented a novel approach to construct
convex terminal costs for MPC problems that allow a dras-
tic shortening of the prediction horizon, with consequent
considerable reduction of computation time. In order to
preserve good performance, the terminal cost is computed
as an approximation of the convex MPC cost-to-go, and
is supported by neural networks. The reported numerical
example showed that closed-loop performance is preserved
in spite of the introduced approximation.

Future work will address the investigation of theoretical
guarantees of feasibility and stability of the LTC-MPC
law, and the extension of the approach to nonlinear MPC
formulations.

REFERENCES

[1] E. Camacho and C. Bordons, Model Predictive Control. Advanced
Textbooks in Control and Signal Processing, London: Springer, 1999.

[2] D. Mayne, J. Rawlings, and M. Diehl, Model Predictive Control:
Theory and Design. Madison,WI: Nob Hill Publishing, LCC, 2 ed.,
2018.

[3] F. Borrelli, A. Bemporad, and M.Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge University Press, 2017.

[4] M.Seron, J. DeDona, and G. Goodwin, “Global analytical model
predictive control with input constraints,” in In Proc. 39th IEEE Conf.
on Decision and Control, (Sydney, Australia), pp. 154–159, 2000.

[5] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[6] A. Bemporad, “A multiparametric quadratic programming algorithm
with polyhedral computations based on nonnegative least squares,”
IEEE Trans. Automatic Control, vol. 60, no. 11, pp. 2892–2903, 2015.

[7] S. Chen, K. Saulnier, N. Atanasov, D. Lee, V. Kumar, and G. Pappas,
“Approximating explicit model predictive control using constrained
neural networks,” in American Control Conference, pp. 1520–1527,
June 2018.

[8] B. Karg and S. Lucia, “Efficient representation and approximation of
model predictive control laws via deep learning,” IEEE Transactions
on Cybernetics, vol. 50, no. 9, pp. 3866–3878, 2020.

[9] M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer, “Learning
an approximate model predictive controller with guarantees,” IEEE
Control Systems Letters, vol. 2, no. 3, pp. 543–548, 2018.

[10] T. Johansen and A. Grancharova, “Approximate explicit constrained
linear model predictive control via orthogonal search tree,” IEEE
Transactions on Automatic Control, vol. 48, no. 5, pp. 810–815, 2003.

[11] A. Bemporad, A. Oliveri, T. Poggi, and M. Storace, “Ultra-fast
stabilizing model predictive control via canonical piecewise affine
approximations,” IEEE Trans. Automatic Control, vol. 56, no. 12,
pp. 2883–2897, 2011.

[12] R. Cagienard, P. Grieder, E. Kerrigan, and M. Morari, “Move blocking
strategies in receding horizon control,” Journal of Process Control,
vol. 17, no. 6, pp. 563–570, 2007.

[13] R. Shekhar and C. Manzie, “Optimal move blocking strategies for
model predictive control,” Automatica, vol. 61, pp. 27–34, 2015.

[14] M. Michael and D. Raffaello, “A method for reducing the complexity
of model predictive control in robotics applications,” IEEE Robotics
and Automation Letters, vol. 4, no. 3, pp. 2516–2523, 2019.

[15] A. Bemporad and G. Cimini, “Reduction of the number of variables
in parametric constrained least-squares problems,” 2020. Submitted
for publication. Also available on arXiv at http://arxiv.org/
abs/2012.10423.

[16] B. Pluymers, L. Roobrouck, J. Buijs, J. Suykens, and B. De Moor,
“Constrained linear mpc with time-varying terminal cost using convex
combinations,” Automatica, vol. 41, no. 5, pp. 831–837, 2005.

[17] H. H. Bloemen, T. J. van den Boom, and H. B. Verbruggen, “Opti-
mizing the end-point state-weighting matrix in model-based predictive
control,” Automatica, vol. 38, no. 6, pp. 1061–1068, 2002.

[18] H. Zhang, J. Huang, and F. L. Lewis, “Updated terminal cost rhc for
continuous-time systems,” in Proceedings of the 48h IEEE Conference
on Decision, pp. 4056–4061, 2009.

[19] O. Mangasarian and J. Rosen, “Inequalities for stochastic nonlinear
programming problems,” Operations Research, vol. 12, pp. 143–154,
1964.

[20] L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Commu-
nications and Control Engineering, Springer International Publishing,
2 ed., 2017.

[21] C. C. Aggarwal, Neural networks and deep learning: a textbook.
Cham, Switzerland: Springer, 2018.

[22] Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” Advances in Neural Information Processing Systems,
vol. 32, pp. 8024–8035, 2019.

[23] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” Advances in Neural Information Processing
Systems, 2015.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[25] H. J. Ferreau, C. Kirches, A. Potschka, G. Bock, and M. Diehl,
“qpOASES: A parametric active-set algorithm for quadratic pro-
gramming,” Mathematical Programming Computation, vol. 6, no. 4,
pp. 327–363, 2014.


