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Abstract

The development of new high-tech products often requires the optimization of structural components having
layer-based arrangements. The primary focus of the present study is the analysis of the failure mechanisms
that may occur in thin layer-flexible substrate systems: crack propagation through the layers, delamination
at interfaces, and Mixed-Mode mechanisms. The phase-field (PF) approach, formulated for hyperelastic
materials, has been exploited through a series of tests to prove its capabilities in assessing the mechanical
performance and the crack propagation mechanism of these composite structures. While the PF approach
already captures the competition between crack propagation and delamination at the interface for bilayer
composites having properties mismatch, as in the case of metallic or ceramic layers on rubber-like substrates,
the framework has been further enriched with a Cohesive Zone Model (CZM) approach to model imperfect
interfaces. The benefit of the coupled method can be noticed, especially for Mixed-Mode failure patterns,
where this combination successfully captured their complexity.

Keywords: Phase-field method, Cohesive Zone Model, thin layer-substrate systems, hyperelastic materials,
delamination vs. crack propagation in the bulk

1. Introduction

Nowadays, many cutting-edge technologies integrate materials with a notable mismatch between the
mechanical and fracture properties of the components. This is the case of new-generation of flexible-electronic
devices, bio-medical sensors, adhesive-bonded joints, and solar-cell wafers, where polymeric substrates are
usually combined with stiffer layers. In the particular case of flexible electronic devices, these systems
generally combine thin metallic layers (or islands) having linear elastic behavior and polymeric substrates
that ensure the large deformability and flexibility of the final product.

These structural components mentioned above usually experience different failure mechanisms: (i) crack
penetration into the layers from the tensile side, (ii) cohesive delamination at the interfaces between mate-
rials, and (iii) mixed-mode mechanisms integrating (i) and (ii). In this regard, previous investigations have
reported the response of thin metal layers on elastomeric substrates of different Young’s Modulus [1, 2],
where it is possible to observe the formation of subsequent cracks in the metal layer. In line with this
research, fracture and debonding of stiff ceramic islands on deformable substrates have been experimentally
investigated considering different dimensions and layer thicknesses in [3].

According to the previous arguments, it can be clearly identified that the development of new high-
tech products complying with layer-based arrangements requires a profound understanding of the potential
failure modes and the prospective routes for possible mitigation. Within this context, the advent of numerical
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methods has been a matter of intensive research in the last three decades, where fracture modeling is still
a relevant challenge in Computational Mechanics. Stemming from this need, different techniques have been
proposed so far in the related literature such as the Linear Elastic Fracture Mechanics (LEFM) [4–7], the
eXtended FEM (XFEM) [8–10], the numerical manifold method (NMM) [11–17], the Continuum Damage
method [18–23], the Cohesive Zone Model (CZM) and the phase-field approach (PF) among many others.

Another innovative technique is the numerical manifold method (NMM), which is based on the partition
of the solid regions and has been used to solve continuous and discontinuous problems adopting two levels
of cover systems: the physical cover, which includes the problem domain, the boundaries and the internal
discontinuities (e.g., cracks, interfaces, etc.); and the mathematical cover, which is a set of small independent
domains that, even though may overlap, completely comprise the physical problem [11, 12]. This method
allows discontinuities treatment without the need to conform the mesh to the solid, as long as it covers
the domain. Therefore, compared to XFEM, the fracturing process can be modeled without remeshing.
Concerning the applications for this novel approach, the NMM has been successfully exploited for dynamic
fracture [13], hydro-mechanical systems [14] and other geotechnical engineering problems [15–17].

The CZMs are particularly efficient for pre-existing interfaces. At the same time, for modeling crack
evolution within the bulk, this technique incorporates a higher level of complexity due to the need for new
cohesive elements once the failure criterion is met based on re-meshing techniques. One of the main charac-
teristics of CZMs is that the interface is allowed to experience separation in accordance with a prescribed
nonlinear traction-separation law (TSL) [24–26]. Therefore, the so-called cohesive tractions increase from
zero to a failure point, reaching a maximum before decreasing to zero. A review of the different interface
constitutive laws can be found in [27]. This procedure has been widely applied to study crack propagation in
heterogeneous materials [28, 29] or along complex interfaces [30], to model delamination of composite mate-
rials [31, 32], to simulate the adhesive layer between two components as in [33–36], as well as for applications
in biological cell interactions [37].

In order to simulate crack events into continuum bodies encompassing initiation, branching, and coales-
cence for multiple fronts, multi-field variational formulations (usually denominated phase-field, PF, methods)
have been proposed in the last decade with a tremendous impact within the research community. These
techniques can be envisaged as a form of the Continuum Damage approaches, which use a parameter to
describe the solid deterioration and to control the material engineering-strength [38]. PF methods are based
on Griffith’s vision comprising the postulation of a functional that accounts for the competition between
the elastic and fracture energy counterparts. According to this theory for brittle elastic solids [39], when
a crack propagates, there is a reduction of the elastic strain energy stored in the body, and, at the same
time, the surface energy increases because of the creation of a new crack front. Hence a pre-existing crack
will propagate if the crack growth reduces the potential energy more than the increase of surface energy.
The energy released per unit of new crack surface is referred to as G. The critical value for which the crack
propagates, i.e., the bulk fracture toughness, noted with Gb

c in the sequel, is a material property independent
of the geometry of the solid.

Pioneering works on PF methods have been carried out by Francfort and Marigo [40], and Bourdin et
al. [41]; its variational theorem has been formulated by Bourdin et al. [42] and a more engineering-based
interpretation has been developed by Miehe et al. [43]. These authors consider a damage variable at the
material point level as an additional primary unknown of the problem, defining an extra degree of freedom
per node in the corresponding FE discretization to model brittle fracture. Further developments of PF
methods were conducted for capturing cohesive [44–46], quasi-static [47, 48] and ductile [49–51] fracture
events, and to dynamic crack propagation [52–54], among many others. A broader presentation of phase-
field approaches can be found in [55], while extensions for modeling fatigue [56] and multi-physics coupled
formulations [57] have also attracted a great deal of research in the last few years. The phase-field approach
has been recently developed also in the framework of the Virtual Element Method (VEM), which represents a
generalization of the standard finite element method [58, 59]. Moreover, the recent contribution [60] coupled
the PF approach with the NMM in a series of standard benchmark tests for linear elastic materials.

It is worth highlighting the relevant approach carried out by Wu and Nguyen [61], which manages to
propose a phase-field regularized CZM that proves to be insensitive to the length scale parameter. This
innovative procedure has been exploited to analyze dynamic fracture [62], hydrogen embrittlement [63],
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size effects in concrete beams [64] and many more fields of applications; and his iteration scheme has been
improved to perform without requiring a high computational cost [65]. Differing from this work, Wu and
Nguyen have simulated cohesive fracture in the bulk by establishing an analogy with Barenblatt’s CZM [24].
Instead, in the present paper, the authors aim to simulate the coupling between the standard PF approach
for brittle fracture of the bulk with cohesive interfaces to simulate the competition between crack propagation
and delamination. The coupled PF-CZM approach presented here could be in principle formulated using
the Wu and Nguyen approach for the bulk instead of the AT-2 approach for PF [41], which is employed
here.

Concerning hyperelastic materials, a seminal contribution can be traced back to the formulation pro-
posed by Miehe [66]. Mandal and coworkers [67] simulated crack nucleation and propagation in composites
materials with polymeric matrix, while Russ et al. [68] conducted the simulation of cracking events in 3D-
printed polymeric composites. In this direction, it is worth mentioning the phase-field model for a general
nonlinear elastic material based on a novel energy decomposition proposed by Tang et al. [69], whereas
further contributions tackling with crack nucleation and healing of micro-cracks in elastomers have been
modeled in [70, 71]. In addition to this, it is important to highlight the work of [72] where damage and
fracture of polymers are due to an energetic contribution that is related to the deformation of bonds in
polymer chains.

Though the scientific activity on PF methods has been very active in the last decade, the understanding
of fracture events in heterogeneous media has received much-limited attention so far, and it has been mostly
limited to linear elastic materials. Composite materials with random distributions of inclusions in the matrix
have been studied in [73] coupling the phase-field regularised CZM approach developed in [61] with Weibull
random fields of the material properties. In contrast, in [74] complex micro-cracking phenomena have been
simulated, introducing a regularization of the interfaces through an auxiliary scalar field. Within the same
framework, Nguyen et al. [75] proposed a modeling technique for the simulation of fracture phenomena
in layered structures that relies on the analysis of the material parameters mismatch and the influences of
interface properties.

Another attempt to model bulk and interface fracture exploiting the phase-field approach can be found
in [76, 77] where the interface delamination is addressed with the PF approach with a subtle variation in
the formulation to estimate the displacement jumps and it requires particular care in the discretization and
interpolation processes to avoid stress oscillations [78]. Hansen-Dörr and co-authors [79, 80] dealt with the
existence of adhesive interfaces smearing the discrete interface over a certain length scale and pinpoint the
addition of a compensation factor in order to avoid the interaction between the regularisation of the crack
in the bulk with the interface.

Following a different methodology, Paggi and Reinoso [81] initially coupled the PF of approach with the
CZM for modeling different failure mechanisms, with a special focus on composite materials and layered
engineering structures. This coupled formulation efficiently follows crack propagation and branching in the
bulk and models the interface interactions. In its original form, the numerical technique developed in [81]
exploited a coupled approach by modifying a tension cut-off interface law according to the value of the
phase-field of the surrounding bulk region.

Compared with the attempts mentioned above [61, 76–80], the combination of both PF and CZM pro-
posed in [81] has demonstrated to facilitate the modeling of multi-layer structures due to its versatility to
be adapted to a boundless number of interface laws and geometries without the necessity of modifying the
configuration of the bulk model and the introduction of a diffusive interface. A proof of the potentiality
of the approach is represented by its extension to brittle fracture of layered ceramics [82], poly-crystalline
materials [83], solid shells [84], and microscopic failure in long fiber-reinforced composites [85] with the use
of a bilinear TSL for triggering decohesion events. Moreover, a macroscopic approach for the delamination
induced by matrix cracking in cross-ply laminates has been analyzed in [86].

Compared to previous works, see [81, 82, 84, 87] for the current state-of-art for this technique, the cou-
pled PF-CZM approach has been extended to model hyperelastic materials and hence, applied to mechanical
systems composed of thin layers on rubber-like substrates, which are common in many engineering appli-
cations. In general, applying the phase-field method to elastomeric materials at large deformation is more
challenging than the linear elastic brittle fracture at infinitesimal strain because both material and geometric
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nonlinearities should be considered simultaneously. Moreover, the material nonlinearity is also influenced
by the evolution of the damage field. In order to outcome this issue, the PF approach is an effective tool to
understand how the failure of a bilayer structure is affected by the properties of each component, therefore
it aims to provide a characterization of the different damage patterns according to these properties, being
in line with [88].

From a material perspective of the substrate, the point of departure is the constitutive model proposed in
[66] including PF capabilities of fracture. Moreover, the current PF-CZM approach allows the analysis of the
interaction between fractures in the bulk and the interface in the case of layered heterogeneous composites,
taking into consideration also the properties of the interface, for example, in the case of an adhesive joint, and
can permit the optimized designs of such structures for high-tech applications. Hence, in order to capture
different failure modes, the PF technique for bulk failure in hyperelastic materials is combined with cohesive
interface elements implemented considering the polynomial-based Tvergaard TSL [89, 90], which provides
a gradual degradation with a larger extent of the so-called cohesive process zone (CPZ) in comparison with
the cut-off TSL.

The reminder of the paper is organized as follows. Sec. 2 introduces the variational formulation of the
overall system, describing the phase-field approach for finite deformation and the interface contribution. In
Sec. 3 the finite element discretization of the bulk and the interface is presented. Numerical simulations
exploiting the phase-field approach alone and coupled with the CZM are presented in Sec. 4.

2. Theoretical formulation

This section outlines the proposed computational framework for modeling crack propagation in layered
structures. Sec. 2.1 describes the variational form of the internal energy functional of a general cracked
body with the presence of prescribed interfaces. The bulk phase-field variational formulation is introduced
in Sec. 2.2, whilst the interface contribution is delineated in Sec. 2.3.

2.1. Variational formulation of the system

Consider a solid in the reference configuration which domain is denoted by Ω0 ⊂ R3. The material
points within the solid are identified by the position vector X ∈ R3 with respect to the reference system.
This initial configuration is considered undeformed and stress-free. Moreover, we assumed the existence of
internal prescribed interfaces Γi

0 ⊂ R2 in the system, and a discrete cracks network Γb
0 ⊂ R2 in the bulk, see

Fig. 1. They are signified together as Γ0.
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Fig. 1: A cracking solid Ω0 in the reference configuration with an interface Γi
0 and a sharp crack Γb

0 in (a) and its regularization
in (b).
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Throughout the deformation process, the solid assumes the so-called current configuration occupying the
domain denoted by Ω ⊂ R3 at an arbitrary time t, and whose position vectors are identified by the vector
x(X, t).

Furthermore, it is possible to introduce the displacement vector which describes the motion of the body
from the undeformed to the deformed configuration at the time t:

u(X, t) := x(X, t)−X (1)

In the quasi-static framework, the time represents only a ”pseudo-time” necessary to characterize the state
of deformation. Moreover, in what follows, the body’s motion has been described using the total Lagrangian
description, where the variables and the system equations are formulated with respect to the reference
configuration and to the vector X.

For convenience, we define the displacement jump at the interface as the relative displacement between
two homologous points, i.e., u = u1 + u2 where the interface flanks are identified by Γi,1

0 and Γi,2
0 .

The deformation of the body can be characterized by the deformation gradient tensor, F, defined as:

F := ∇X(φ) =
∂φ

∂X
=

∂x

∂X
(2)

where ∇X(·) is the gradient of (·) with respect to the material configuration. The stress measure used in the
present work is the first Piola-Kirchhoff tensor, P, which can be seen as the internal force per unit deformed
area.

It is also assumed that the arbitrary solid is subjected to specific body forces b∗, while prescribed
displacements u∗ and surface tractions t∗ are applied to some portions of the delimiting external boundary
∂Ω0,u and ∂Ω0,t respectively, such that ∂Ω0 = ∂Ω0,u ∪ ∂Ω0,t and ∂Ω0,u ∩ ∂Ω0,t = ∅.

The external potential energy is:

P =

∫
Ω0\Γ0

b∗ · udV +

∫
∂Ω0,t

t∗ · udA (3)

The energy functional of the systems (i.e. accounting the bulk and the prescribed interfaces) reads

Π(u,Γ0) =

∫
Ω0\Γ0

ψ(F) dV +

∫
Γ0

Gc dA (4)

where the integral
∫
Γ0
GcdA identifies the energy dissipation due to fracture events at the crack set Γb

0 and

at the prescribed interface Γi
0. This contribution can be split as:

Π(u,Γ0) =

∫
Ω0\Γ0

ψ(F) dV +

∫
Γb
0

Gb
c dA︸ ︷︷ ︸

Πb(u,Γb
0)

+

∫
Γi
0

Gi dA︸ ︷︷ ︸
Πi(u,Γi

0)

(5)

where ψ(F) is the Helmholtz free-energy function; Gb
c, the critical energy release rate or fracture toughness

of the bulk material; and Gi, the fracture energy dissipated at the existing interface.
The total energy functional of the system can be expressed as then sum of three contributions:

Π(u,Γ0) = Πb(u,Γb
0) + Πi(u,Γi

0) + P(u) (6)

where the bulk and the interface contributions, Πb and Πi respectively, have been split.
Accordingly, the variation of the total potential with respect to the primary fields, i.e. the displacement

and phase-field, renders:
δΠ(u, ϕ) = δΠb + δΠi + δP = 0 (7)
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2.2. Phase-field variational formulation for finite deformation

The bulk contribution to the energy dissipation due to fracture can be treated considering the variational
approach introduced by Francfort and Marigo [40], which evaluates the crack evolution by the substitution
of the sharp crack with a transition region from undamaged to broken material. The sharp crack is approxi-
mated as a band of finite thickness characterized by a crack phase-field parameter ϕ ∈ [0, 1] such that ϕ = 0
denotes the intact material and ϕ = 1 represents the cracked one. The crack approximation converges to
the sharp crack when the band thickness approaches zero.

The energy contribution from the crack surface, contained in equation (5), is obtained through a volu-
metric approximation: ∫

Γb
0

Gb
cdA ≈

∫
Ω0\Γi

0

Gb
cγ(ϕ;∇ϕ) dV (8)

Accordingly the bulk strain energy functional is given by

Πb(u;ϕ) =

∫
Ω0\Γi

0

g(ϕ)ψ(F) dV +

∫
Ω0\Γi

0

Gb
cγ(ϕ;∇ϕ) dV (9)

where g(ϕ) is called energetic degradation function and acts to reduce the elastic strength of the material.
There are different choices for the function g(ϕ), in this work we used the model introduced by Bourdin

et al. in [41], usually referred to as AT2 model:

g(ϕ) = (1− ϕ)2 + kres (10)

where, in order to avoid numerical instabilities at the fully broken state, a small positive parameter kres is
used.

In Eq. (9), Γ0(ϕ;∇ϕ) is the crack surface density function that assumes this generic form:

γ(ϕ,∇ϕ) = 1

c0

[
1

l0
α(ϕ) + l0|∇ϕ|2

]
(11)

where α(ϕ) is called geometric crack function and determines the distribution of the crack phase-field, l0 is
the length scale that defines the width of the diffuse crack band, and c0 is called scaling parameter. For the
AT2 approach, the geometric crack function is α = ϕ2 and the scaling parameter is set c0 = 2.

In the related literature [91, 92], it has been shown that by assigning to l0 a value related to the
material tensile strength, σb

c, it is possible to predict the nucleation of fracture in the system. These authors
established that the length scale is proportional to Irwin’s characteristic length, Gb

cE/(σ
b
c)

2, by a factor
depending on the type of phase-field model. This approach has been successfully applied to ceramics,
metals, and hard polymers, showing a good agreement with experimental results [92]. Without any loss
of generality, this approximation is used in the sequel, even though a detailed discussion on the use of the
length scale parameter and other possible approaches can be found in [55, 67, 93], being beyond the scope
of the present research. For the AT2 model, the formula reads:

l0 =
27

256

Gb
cE

(σb
c)

2
(12)

The following variational formulation for the bulk can be derived:

δΠb
u =

∫
Ω0\Γi

0

g(ϕ)
∂ψ(F)

∂F

∂δu

∂X
dV (13a)

δΠb
ϕ =

∫
Ω0\Γi

0

dg(ϕ)

dϕ
ψ(F)δϕdV +

∫
Ω0\Γi

0

Gb
c

c0l0

dα(ϕ)

dϕ
δϕdV +

∫
Ω0\Γi

0

2Gb
cl0
c0

∆ϕδϕ dV (13b)

where δu and δϕ stand for the virtual variation of the displacements and the phase-field.
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The given formulation can be specified for different material models substituting the desired expression for
ψ(F). As stated before, the numerical simulations will be conducted using the expression of the strain energy
potential for hyperelastic materials. Then, introducing the first Piola-Kirchhoff stress tensor P = ∂ψ(F)/∂F,
the formulation can be written as:

δΠb
u =

∫
Ω0\Γi

0

g(ϕ)P
∂δu

∂X
dV (14a)

δΠb
ϕ =

∫
Ω0\Γi

0

dg(ϕ)

dϕ
ψ(F)δϕdV +

∫
Ω0\Γi

0

Gb
c

c0l0

dα(ϕ)

dϕ
δϕdV +

∫
Ω0\Γi

0

2Gb
cl0
c0

∆ϕδϕ dV (14b)

According to [66], the strain energy function is written in terms of right Cauchy-Green tensor C = FTF
as:

ψ(C) =
µ

2
[tr(C)− 3] +

µ

β

[
J−β − 1

]
(15)

where J = det(F), µ is the shear modulus and β = 2ν/(1− 2ν) > 0 describes a weak volumetric compress-
ibility of the elastic solid through the Poisson ratio ν.

The first Piola-Kirchhoff stress tensor is given by:

P = µ
[
F− J−βF−T

]
(16)

The linearization of the weak form equations of the system introduced later in Sec. 3 requires the
computation of the first elasticity tensor A(1) [94]. This operator is used in the Newton-Raphson solution
method in fully implicit nonlinear FE schemes. The first elasticity tensor in component notation can be
computed starting from Eq. (16) as:

A(1)
iIjJ =

∂2ψ

∂FIi∂FJj
=

[
µδijδIJ + µβJ−βF−1

Ii F
−1
Jj + µJ−βF−1

iI F−1
jJ

]
(17)

2.3. Variational formulation of the interface contribution

The formulation is here described in a 2D setting for the sake of simplicity in the derivation, however,
the generalization in 3D is straightforward, see [95]. For the description of the interface contribution to the
energy functional of the solid, it is necessary to introduce the displacement jump, ∆u, given by the relative
displacement g = u1 − u2 between the two sides of the interface Γi

0. The displacement jump can also be
described as the gap field across the interface g = (gn, gt)

T, in the local reference defined by the normal and
tangential unit vectors, n and t, at the interface.

The interface energy dissipation due to crack opening phenomena can be written as function of the gap
field and in terms of the Piola-Kirchhoff cohesive traction T = (τ, σ)

T
as:

Πi(g,Γi
0) =

∫
Γi
0

Gi(g)dA =

∫
Γi
0

gTTdA (18)

The variation of the previous expression reads

δΠi = δuT

∫
Γi
0

(
∂g

∂u

)T

TdA (19)

The constitutive relation of an interface has been modeled in this paper by the TSL proposed by Tver-
gaard [89] with the addition of a nonlinear unloading relationship described by Espinosa and Zavattieri [90].
This interface model describes the dependence of the cohesive traction on displacement jumps through a
polynomial law.

Since both the normal and the tangential behaviors should be considered, a non-dimensional effective
displacement λ is introduced:

λ =

√(
gn
gnc

)2

+

(
gt
gtc

)2

(20)
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Fig. 2: Tvergaard cohesive law with unloading and reloading at λ = 0.4.

where gnc and gtc are the critical gap values corresponding to the interface failure.
The tangential and normal cohesive tractions τ and σ in case of monotonic loading are computed as:

σ =
gn
gnc

σcP (λ) (21a)

τ =
gt
gtc

τcP (λ) (21b)

where the polynomial factor P (λ) is defined by:

P (λ) =
27

4
(1− 2λ+ λ2) (22)

Moreover, in case of an unloading of the interface, the traction relations depends on the value assumed
by λ at the last step before unloading, here referred as λu. Hence, the unloading and reloading are governed
by the following expressions under a nonlinear behavior:

σ =
gn
gnc

σcP (λu)
λ

λu
if λ < λu (23a)

τ =
gt
gtc

τcP (λu)
λ

λu
if λ < λu (23b)

The described interface constitutive law is depicted in Fig. 2 for the tangential and the normal directions.

In order to elucidate the physical state of the interface, a damage variable D is introduced in the interval
λcr < λ < 1 where λcr = 1/3 represents the value of the effective gap at which the tractions are maximum.
Hence the interface is considered to be intact until λcr, and the following boundaries are given for the damage
variable:

D =


0 if λ < λcr

2λ2 − λ4 if λcr ≤ λ < 1

1 if λ = 1

(24)

Moreover in case of unloading, the damage is obtained considering the maximum effective gap reached
λu: D = 2λ2u − λ4u.
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The expression of the damage variable derives from energetic considerations as already proposed in [90].
Considering pure mode I or mode II, the expressions for the energy release rate GI and GII are obtained
through the integration of the traction-separation law expressed in Eqs. (21a)-(21b):

GI =
9

16
σcgn(6λ− 8λ2 + 3λ3) GII =

9

16
τcgt(6λ− 8λ2 + 3λ3) (25)

Considering the fully broken state, i.e. λ = 1, gn = gnc and gt = gtc; the critical strain energy release
rate GIC and GIIC, which represent the area under the traction-displacement curves, are given by:

GIC =
9

16
σcgnc GIIC =

9

16
τcgtc (26)

In case of unloading at λu, the dissipated energy is given by the blue area highlighted in Fig. 2 which
can be computed through Eqs. (21a)-(21b) and Eqs. (23a)-(23b) as:

Gd
IC =

9

16
σcgnc(6λ

2
u − 8λ3u + 3λ4u)−

27

48
σcgnc(4λ

2
u − 8λ3u + 4λ4u) =

9

16
σcgnc(2λ

2
u − λ4u) (27a)

Gd
IC =

9

16
τcgtc(6λ

2
u − 8λ3u + 3λ4u)−

27

48
τcgtc(4λ

2
u − 8λ3u + 4λ4u) =

9

16
τcgtc(2λ

2
u − λ4u) (27b)

The ratio of the energy dissipated in case of unloading of the interface with respect to the critical energy
release rate can be written as:

Gd
IC

GIC
=

Gd
IC

GIIC
= 2λ2u − λ4u (28)

Hence, this leads to the expression of the damage variable that is indicated at Eq. (24).
From a numerical perspective, the nonlinear Newton-Raphson solution scheme requires the computation

of the tangent operator C = ∂T/∂g. The expressions for each component are analytically derived from the
above-given equations for the tractions, having this matrix the form of

C =


∂τ

∂gt

∂τ

∂gn
∂σ

∂gt

∂σ

∂gn

 (29)

Notice that in the case of a compression state of the interface along the normal direction, a penalty
parameter kpe is used to avoid penetration. Hence, the complete interface law in the normal direction reads:

σ =


gn

gnc
σcP (λ) if gn ≥ 0 and λ ≥ λu

gn

gnc
σcP (λu) if gn ≥ 0 and λ < λu

kpegn if gn < 0

(30)

where the penalty parameter kpe = 103 is assumed in the numerical simulations unless otherwise noted.
For the tangential direction, the interface law is written as:

τ =


gt

gtc
τcP (λ) if λ ≥ λu

gt

gtc
τcP (λu) if λ < λu

(31)
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3. Finite element formulation of the system

This section presents the finite element formulation for the bulk and the interface. They are introduced
in Sec. 3.1 and in Sec. 3.2 respectively.

3.1. Finite element discretization of the bulk

The displacement field u is interpolated in terms of nodal displacements ū as:

u(X) ≈
∑
a

Na(ξa)ūa = N(ξ)ū (32)

where ξ = {ξ1, ξ2} are the natural coordinates for each element in the two-dimensional case, Na is the shape
function matrix associated with node a (with the shape function Na at the diagonal terms), and N(ξ) is
matrix operator collecting the standard linear shape function at the element level.

The virtual displacement field is approximated using the same shape functions as:

δu(X) ≈
∑
a

Na(ξ)δūa = N(ξ)δū (33)

The displacement derivatives with respect to the reference system are computed as:

ua,J =
∂ua

∂XJ
=

∑
a

Na,J ūa (34)

where the notation □,J is used to express the derivative of a variable □ with respect to XJ .
In order to express the weak form equations, the columns of matrix B containing the derivatives of the

shape functions can be expressed, for a 2D setting, as:

Ba =

[
Na,1

Na,2

]
(35)

Similarly, for the phase-field ϕ and its gradient ∇ϕ the interpolation in terms of nodal values ϕ̄ reads:

ϕ ≈
∑
a

N̄a(ξ)ϕ̄a = N̄ϕ̄ (36)

δϕ ≈
∑
a

N̄a(ξ)δϕ̄a = N̄δϕ̄ (37)

∇ϕ ≈
∑
a

B̄a(ξ)ϕ̄i = B̄ϕ̄ (38)

where N̄ is the standard interpolation operator for the phase-field and B̄ is the kinematic operator that
approximates the phase-field spatial gradient. Their specific expressions can be found in [96].

With the above approximations, the weak form of the nonlinear Eq. (14) after the insertion of the
previous interpolation scheme is given by:

δΠu =(δū)T
(
f ext −

∫
Ω0

BTg(ϕ)PdV

)
= 0 (39a)

δΠϕ =(δϕ̄)T
∫
Ω0

N̄T

(
g′(ϕ)ψ(F) +

Gb
c

c0l0
α′(ϕ)

)
dV + (δϕ̄)T

∫
Ω0

2Gb
cl0
c0

B̄TB̄ϕ̄dV = 0 (39b)
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The internal residuals that are required for the nonlinear Newton-Raphson solution scheme of the corre-
sponding finite element problem take the form:

riu = −
∫
Ω0

BTg(ϕ)PdV = 0 (40a)

riϕ =

∫
Ω0

[
N̄T

(
g′(ϕ)ψ(F) +

Gb
c

c0l0
α′(ϕ)

)
+

2Gb
cl0
c0

B̄TB̄ϕ̄

]
dV = 0 (40b)

From a numerical perspective, the current FE formulation is implemented into the implicit form of the
package ABAQUS using the user-defined UEL capability. In particular, a staggered solution method is used
to solve the discretized system of equations as in [96]. For this purpose, at each time step, the current
displacement is computed using the phase-field value at the previous step, while the current phase-field is
calculated based on the energy history. Correspondingly, the weak form of the displacement problem at the
time step n+ 1 is formulated as follows:

riu = −
∫
Ω0

BTg(ϕn)PdV = 0 (41)

This equation is solved for u, assuming ϕn known from the previous time step.
Similarly the phase-field problem is written as:

riϕ = −
∫
Ω0

[
N̄T

(
g′(ϕ)Hn+1 +

Gb
c

c0l0
α′(ϕ)

)
+

2Gb
cl0
c0

B̄TB̄ϕ̄

]
dV = 0 (42)

where the potential energy from the displacement problem is replaced by a history variable defined as:

H0 = 0 (43a)

Hn+1 = max{ψ(Fn), Hn} (43b)

Finally, the consistent tangent matrix are computed by conducting the consistent linearization of the
residual equations. Then, the global system of equations renders:[

Kuu 0
0 Kϕϕ

] [
∆u
∆ϕ

]
=

[
ru
rϕ

]
(44)

where ∆u and ∆ϕ are the new nodal solutions at the time step n + 1, and the residuals are given by
ru = reu − riu and rϕ = reϕ − riϕ, where the terms with the superscript e denote the external contribution.

The terms of the matrix Kuu can be obtained as [97]:

Kuu
ab =

∫
Ω0

∂Na

∂XI
AIJ

∂Nb

∂XJ
dV, (45)

whereas from the phase-field residual in Eq. (42), the tangent matrix Kϕϕ is computed as:

Kϕϕ =

∫
Ω0

[(
g′′(ϕ)H+

Gb
c

c0l0
α′′(ϕ)

)
N̄TN̄+

2Gb
cl0
c0

B̄TB̄

]
dV (46)

3.2. Finite element discretization of the interface

In order to evaluate the displacement gap g at any point inside the interface finite element represented
in Fig. 3, we need to introduce the interface nodal displacement vector d = (u1e1 , u

1
e2 , . . . , u

4
e1 , u

4
e2)

T, which
collects the displacements uie1 and uie2 (with i = 1, ..., 4) of the four interface finite element nodes.

The relative displacement g for the nodes 1-4 and 2-3 is then computed by applying a matrix operator L
which calculates the difference between the displacements of nodes 1 and 2 with respect to those of nodes 4
and 3. The relative displacement within the interface finite element is then given by the linear interpolation
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Fig. 3: Sketch of the interface finite element topology in case of a 2D setting.

of the corresponding nodal values, represented by the multiplication with the matrix N̂ which collects the
shape functions at the element level.

Finally, the tangential and the normal gaps are determined by the multiplication with the rotation
matrix R defined by the components of the unit vectors t and n. This operation is due to the necessity of
transforming the relative displacement computed as Ld in the global reference system to the local reference
system of the interface finite element. In the formula, we have:

g = −RN̂Ld, (47)

where the operators’ expressions are described in details in [98]. To shorten the notation, it can be introduced

the interface compatibility operator B̂ = N̂L.
The term ∂g/∂u entering in Eq. 19 can be approximated as:

∂g

∂u
≈ ∂g

∂d
= RB̂+

∂R

∂d
B̂d (48)

With the introduced approximations, the interface contribution in equation (19) can be expressed as:

δΠi = δdT

∫
Γi
0

(
RB̂+

∂R

∂d
B̂

)T

TdA (49)

where δd stands for the kinematically admissible virtual nodes displacements at the interface.
The solution of the variational equation requires the following residual vector:

rd =

∫
Γi
0

(
RB̂+

∂R

∂d
B̂

)T

TdA (50)

Moreover, the element stiffness matrix, necessary for the Newton-Raphson procedure, can be obtained from
the linearization of the residual. In the hypothesis of large displacements, since the rotation operator R(u)
depends on the displacement field, the linearization leads to the so-called geometrical stiffness matrix. Hence
the element stiffness matrix for the interface finite element, Kdd, is given by the material and the geometrical
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contributions:

Kdd = Kmat
dd +Kgeo

dd (51a)

Kmat
dd =

∫
Γi
0

B̂TRTCRB̂dA (51b)

Kgeo
dd =

∫
Γi
0

[
2B̂T ∂R

T

∂d
T+ dTB̂T ∂R

T

∂d
C
∂R

∂d
B̂d+

(
B̂TRTC

∂R

∂d
B̂d+ dTB̂T ∂R

T

∂d
CRB̂

)]
dA (51c)

The detailed derivations of the previous contributions can be found in [98].

4. Numerical simulations

The formulation of the current phase-field hyperelastic formulation is first examined by considering plane
strain, plane stress, and 3D cases through benchmark tests taken from the literature, see Appendix A. In
this section, the capability of the phase-field framework for the 3D simulations is only explored in the case
of a thin cylindrical structure and it will be further explored in future investigations.

After the previous verification, the proposed computational framework is employed for modelling cracking
events in thin-walled structures composed of two different layers with mechanical parameters mismatch. The
simulations aim to reproduce the crack propagation within structures that involve materials with significantly
different Young’s Modulus and fracture energy.

The first application under analysis, described in Sec. 4.1, considers a notched 2D plate with two different
thin layers. Exploiting the phase-field approach for the bulk, a parametric study on the fracture propagation
through the layers is conducted varying fracture toughness and bulk properties between the joint materials to
understand the competition between crack branching and penetration when the crack impinges the interface
represented by the materials discontinuity.

In addition to the previous parametric studies, the following two sections deal with realistic applications
of the framework to stretchable electronics. An interesting application considering a thin linear elastic
material layer on top of a hyperelastic one is first proposed. These simulations have been conducted using
the phase-field approach without interface in Sec. 4.2.

A comparison of the crack paths obtained using the phase-field approach for the bulk in combination
with CZMs for interface cracking is presented in Sec. 4.3. This application is chosen in order to show that
the simulation of complex failure mechanism benefits from the introduction of the interface. The cohesive
interface is equipped with the polynomial-based Tvergaard TSL between the thin elastic layer and the
polymeric substrate with this aim.

The last application considers ceramic islands on top of a polyimide substrate as was tested by [3],
exploiting the proposed framework to simulate different failure modes involving cracking and debonding of
the structure.

4.1. Bilayered joint with parameters mismatch

The analysis proposed in this section concerns a structural joint composed of two layers with different
mechanical and geometrical properties. The failure of a joint subjected to a uniform tensile condition is
simulated using the proposed hyperelastic PF formulation. With the aim of understanding which parameters
can affect the failure of the joint, a parametric study is conducted considering: (i) Young’s Modulus ratio
between the two layers, (ii) critical fracture energies mismatch, and (iii) thickness of the joined components.

The geometry of the sample is given in Fig. 4 together with the applied boundary conditions. The current
simulation is conducted under plane strain assumption. Moreover, in order to keep the consistency in the
analysis, the total height of the joint is constant and equal to 10mm, while the ratio between the upper and
lower layer thickness may vary. In this latter case, the notch depth varies so that it is always half of the
upper layer thickness.

Both the layers are modeled using the Neo-Hookean constitutive model described in Sec. 2.2. Concerning
the mechanical parameters, the lower layer is considered as made of PET (PolyEthylene Terephthalate), one
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Fig. 4: Geometry (a) and boundary conditions (b) of a bilayer rectangular plate with a notch in the top layer. The simulations
include thickness of t = 1.0, 2.0mm.

of the most common polymers used for packaging, in the form of containers for food and liquids, and as
the substrate in solar cells and flexible electronics, and for 3D printing products. Its material properties are
reported in the Tab. 1. The length scale parameter has been computed using E and σc as given in the table
through Eq. (12). The same procedure has been applied for the other materials in the present work.

Material E ν λ µ Gc σc l0
[GPa] [GPa] [GPa] [N/mm] MPa [mm]

PET 2.80 0.37 2.91 1.02 10.34 55 1.00

Tab. 1: Mechanical parameters of the polymer PET (Polyethylene terephthalate), taken from [84, 99].

The properties of the upper layer are reported in Tab. 1 as well, except for the Young’s Modulus and the
critical fracture energy that will take different values in order to assess the impact of the specific parameter
for the current study case.

Regarding the underlying FE discretization and to avoid mesh influence on the results, a convergence
study has been carried out on the element dimension, choosing the value of h = 0.2mm.

4.1.1. Young’s Modulus influence

The first parameter for the joint analysis is the Young’s Modulus ratio between the two layers E1/E2,
where E1 and E2 refer to the upper and lower layers, respectively. The considered range accounts for
different orders of magnitude from E1/E2 = 0.001 to E1/E2 = 100. The study aims to assess how different
stiffness values of the upper layer can change the crack initiation and propagation. The analysis is repeated
for two different upper layer thicknesses: t = 1.0, 2.0mm.

The imposed displacement-reaction force results are depicted in Fig. 5. It can be noticed immediately
that a higher Young’s Modulus ratio corresponds to a smaller prescribed displacement for the failure of the
joint for both the upper layer thickness considered. For E1/E2 = 100, after a sudden drop of the reaction
force caused by the propagation of the crack in the upper layer, when the crack arrives at the interface, the
reaction force curve shows a second stage due to the propagation of the crack into the lower layer with a
lower Young’s Modulus.

The crack path for the different stiffness ratios in the undeformed configuration is shown in Figs. 6-12,
comparing for each case the results for the two values of thickness of the upper layer. Analyzing these
graphs, it can be observed that the thickness of the layers does not strongly influence the predicted crack
path. Moreover, the first three cases (Figs. 6-8) are characterized by an upper layer more flexible than
the substrate. For such cases, despite the presence of the notch, the failure phenomenon is predicted to
commence from the lower layer. It can also be noticed that, before the propagation in the upper layer, the
damage tends to propagate within the substrate and along the interface.

The case in Fig. 9 is reported only for comparison since, in this case, the same parameters are used for
the upper and lower layer; hence the plate is composed only of one material. The crack development has
been detailed in Fig. 10 for the system with upper layer thickness t = 2mm in the deformed configuration.

The triangular shape of the crack band visible in the undeformed contour plot in Fig. 10f can be related
to the deformation process related to the crack propagation, or it might be related to the appearance of
the phenomenon of crazing. In order to elucidate this, an extension of the framework to dynamic fracture
would be required, and it could be an interesting future development. In such a field, a recent contribution
by [100] deals with layered composites employing a phase-field approach with CZM interfaces in dynamics,
and the investigation could be extended to finite strain and hyperelastic materials.
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Fig. 5: Parametric study on the effect of Young’s Modulus mismatch in a bilayer structure. For the lower layer, the PET
material parameters have been used (see Tab. 1), varying the top layer thickness and its value of Young’s Modulus E1.

t = 1mm t = 2mm

(a) u = 1.70mm (b) u = 1.710mm

(c) u = 2.00mm (d) u = 1.714mm

Fig. 6: Crack evolution for Young’s Modulus ratio E1/E2 = 0.001.

t = 1mm t = 2mm

(a) u = 1.70mm (b) u = 1.70mm

(c) u = 2.00mm (d) u = 2.00mm

Fig. 7: Crack evolution for Young’s Modulus ratio E1/E2 = 0.01.
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t = 1mm t = 2mm

(a) u = 1.66mm (b) u = 1.64mm

(c) u = 2.00mm (d) u = 2.00mm

Fig. 8: Crack evolution for Young’s Modulus ratio E1/E2 = 0.1.

t = 1mm t = 2mm

(a) u = 1.42mm (b) u = 1.17mm

(c) u = 2.00mm (d) u = 2.00mm

Fig. 9: Crack evolution for Young’s Modulus ratio E1/E2 = 1.

(a) u = 1.1576mm (b) u = 1.1582mm (c) u = 1.1588mm

(d) u = 1.1592mm (e) u = 1.16mm (f) u = 1.16mm - Undeformed

Fig. 10: Crack propagation for the system with thin layer thickness t = 2mm and Young’s Modulus ratio E1/E2 = 1.

Finally, in Figs. 11 and 12, the crack starts from the notch, propagates in the more rigid upper layer
until the complete failure when the propagation reaches the end of the lower layer. In the cases with a thin
layer stiffer than the substrate in Figs.11-12, the crack band appears narrower w.r.t. Figs. 6-8, because of
the immediate failure of the substrate as soon as the upper layer fails. On the contrary, in the cases with
E1/E2 lower than 1, the crack band is more diffuse and the damaged area involves the entire substrate as
represented by the predominant light blue color of the contour plots in Figs. 6c,6d,7c,7d,8c,8d, with respect
to the predominant dark blue color in Figs. 11c,11d,12c,12d which indicates an almost undamaged sample
apart from the crack band area. The same phenomenon is confirmed also by the displacement-reaction force
curves in Fig. 5 which show a loading drop at a higher value of prescribed displacement for the cases with

16



Young’s modulus lower than 1 and an almost simultaneous failure of both the upper and lower layers.

t = 1mm t = 2mm

(a) u = 0.42mm (b) u = 0.30mm

(c) u = 1.00mm (d) u = 1.00mm

Fig. 11: Crack evolution for Young’s Modulus ratio E1/E2 = 10.

t = 1mm t = 2mm

(a) u = 0.10mm (b) u = 0.08mm

(c) u = 2.00mm (d) u = 1.00mm

Fig. 12: Crack evolution for Young’s Modulus ratio E1/E2 = 100.

4.1.2. Critical fracture energy influence

The models with upper layer thickness t = 1mm and t = 2mm are chosen to assess the effect of the ratio
between the critical energy fracture Gb

c of both constituents. For this purpose, we select varying the value
of the top layer Gc1 and keeping constant the value of Gc2 = 10.34N/mm for the lower layer. The system’s
response for these cases in terms of the evolution of the reaction force vs. the imposed displacement at
the ends is shown in Fig. 13. Based on these results, it can be observed that the curves have very similar
behavior to each other, distinguished only by the prescribed displacement that causes the complete failure
of the joint.

However, if the crack path is analysed (see Figs. 14 -16), it can be seen that the critical fracture energy
ratio Gc1/Gc2 influences the failure mechanism. The critical fracture energy ratio Gc1/Gc2 = 0.01 brings
to the failure of the upper layer only, without the propagation of the crack through the joint thickness (see
Fig. 14). For Gc1/Gc2 = 0.1, the damage firstly develops within the upper layer, and propagates vertically
in a second step (see Fig. 15). This difference is not as visible for Gc1/Gc2 = 1 (Fig. 9) as expected since
the two layer have the same parameters, as already noticed in the previous section.

It is worth pointing out that the multiple cracks developed in the upper layer in Fig. 14 are more distant
among themselves in the case with thickness t = 2mm compared to the case of t = 1mm. Considering
previous experimental tests on equivalent samples, the displayed numerical results exhibit a solid correlation
with the SEM images exhibiting the fracture of the thin gold layer - polymeric substrate specimens performed
in [101], which have also been addressed by [102], see Fig. 17.
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Fig. 13: Parametric study on the effect of critical fracture energy mismatch in a bilayer structure. For the lower layer, the PET
material parameters have been used (see Tab. 1), varying the upper layer value of Gc1.

t = 1mm t = 2mm

(a) u = 0.54mm (b) u = 0.30mm

(c) u = 0.80mm (d) u = 0.50mm

(e) u = 1.60mm (f) u = 1.40mm

Fig. 14: Crack evolution for the fracture energy ratio Gc1/Gc2 = 0.01.

Finally, for Gc1/Gc2 = 10, the crack starts in the lower layer, which has a lower value for Gb
c, and

propagates into the upper layer later (Fig. 16). This latter case shows a different crack path for the case
with t = 1mm and t = 2mm since in the thicker layer model, two symmetrical cracks developed from the
bottom edge reach the interface and propagate along it towards the central notch in the upper layer.

The length scale l0 is computed through the Eq. (12) assuming as input parameter Gc and σc. For
the simulations presented in previous paragraphs, the length scale has been considered constant, which
corresponds to an indirect variation of σc according to the given equation.

In order to address a case where σc is kept constant, and therefore l0 is changing, several tests have
been conducted to elucidate this possibility. For these numerical runs, the properties in Tab. 2 are employed
for the upper layer, keeping the Young Modulus and σc = 55MPa constant and varying the Gc ratio and
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t = 1mm t = 2mm

(a) u = 1.40mm (b) u = 1.00mm

(c) u = 2.00mm (d) u = 2.00mm

Fig. 15: Crack evolution for the fracture energy ratio Gc1/Gc2 = 0.1.

t = 1mm t = 2mm

(a) u = 1.66mm (b) u = 1.60mm

(c) u = 2.00mm (d) u = 2.00mm

Fig. 16: Crack evolution for the fracture energy ratio Gc1/Gc2 = 10.

the length scale parameter accordingly. The results reveal that the fracture pattern does not change for
the cases considered in this parametric study compared to the ones shown in Fig. 9, where the crack onset
is located in the center of the sample, see Fig. 18 for two examples. The corresponding reaction forces -
displacement curves are plotted in Fig. 19.

Material E σc l0 Gc Gc1/Gc2

[GPa] [MPa] [mm] [N/mm]

Substrate 2800 55 1.0 10.34

Test 1 2800 55 10.0 103.4 10

Test 2 2800 55 2.0 20.68 2

Test 3 2800 55 1.0 10.34 1

Test 4 2800 55 0.5 5.17 0.5

Test 5 2800 55 0.1 1.034 0.1

Tab. 2: Mechanical properties of linear elastic materials used for the bilayer plate simulations.

4.2. Thin linear elastic layer on hyperelastic substrate

The present section expands the results obtained in the previous subsection, considering more realistic
multi-material joints. In fact, in industrial applications, the components of structural joints do not differ
for only one material parameter at a time, but the mismatch regards all the mechanical properties. Hence,
in this section, the simulations are carried out considering a polymeric substrate joined to other materials
with very different properties.
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Fig. 17: Multiple cracking of gold films over polymeric PSF substrates. (a) gold layer thickness 50nm and crack spacing
≈ 30µm, (b) thickness 200nm and crack spacing. Reused with permission from [101].

(a) Gc1/Gc2 = 0.5 (b) Gc1/Gc2 = 2

Fig. 18: Crack evolution for Young’s Modulus ratio E1/E2 = 0.001 and different fracture energy ratios.

Fig. 19: Reaction forces for different Gc ratios according to Tab. 2.

Compared to the previous section, where the investigation focus on the influence of only one parameter
at a time, the simulations here involve layers with different E, ν, Gc and l0 values. In particular, Tab. 3
reports the mechanical properties of the considered materials: silicone, aluminium and copper. In flexible
electronics and solar cells application, the PET polymer is coupled to these materials, and it is more flexible
than the linear elastic layer.

For the simulations carried out under plane strain hypothesis, the upper layer is considered linear elastic
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Material E ν λ µ Gc σc l0
[GPa] [GPa] [GPa] [N/mm] [MPa] [mm] Ref.

PET (substrate) 2.80 0.37 2.91 1.02 10.34 55 1.00 [84, 99]

Aluminium 64 0.33 46.70 24.06 20.00 190 3.73 [103]

Copper 120 0.34 95.15 44.78 0.57 222 0.15 [104]

Silicone 130 0.16 26.37 56.03 0.04 72 0.10 [84]

Tab. 3: Mechanical properties of the materials used for the bilayer plate simulations.

using the Kirchhoff-Saint Venant constitutive law. In contrast, the lower layer is modeled as Neo-Hookean
material (see Sec. 2.2 for the difference between these two constitutive models).

The first application considers the coupling of a silicone layer with a PET substrate, using the geometry
and boundary conditions shown in Fig. 20. Compared to the previous model, only the materials are different.

Fig. 20: Geometry (a) and boundary conditions (b) for a bilayer joint with linear elastic and hyperelastic components. The
simulations consider t = 1, 2, 3, 4, 5mm.

The influence of the upper layer thickness is shown in Fig. 21. For each simulation, the crack pattern is
depicted through different snapshots in Figs. 22, 23 and 24.

Fig. 21: Thickness influence on the response of a bilayer structure composed by a linear elastic silicone layer (top) and a
hyperelastic PET layer (bottom).

For the silicone layer thickness equal to 1mm, current results predict that the crack starts propagating
from the notch and reaches the interface between both components (Fig. 22a). This causes a first drop of
the load in the force-displacement curve. With the increase of the applied displacement, while the first one
propagates horizontally (Fig. 22b), new equidistant cracks commence at the upper layer in the proximity
of the lateral edges, corresponding to other load drops. The phenomenon repeats creating crack pattern
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composed by equidistant cracks in the upper layer (Fig. 22c and 22d) until the complete debonding from
the substrate (Fig. 22e).

t = 1mm

(a) u = 0.08mm (b) u = 0.18mm

(c) u = 0.19mm (d) u = 0.40mm

(e) u = 1.64mm

Fig. 22: Crack evolution for the joint composed by the PET substrate and silicone layer of thickness t = 1mm.

For thicker silicone layers (t = 2.0, 3.0, 4.0, 5.0mm), the crack stemming from the notch firstly propa-
gates vertically within the upper layer, causing a first drop in the relative load-displacement curve. At the
interface with the polymeric substrate, the crack is deflected and branches horizontally until the debonding
of the substrate, without another initiation of a new crack from the upper edge. The phase-field evolution
is very similar to each other for all current the simulations, being depicted in Figs. 23 and 24.

t = 2mm t = 3mm

(a) u = 0.03mm (b) u = 0.03mm

(c) u = 0.20mm (d) u = 0.32mm

(e) u = 1.40mm (f) u = 0.60mm

Fig. 23: Crack evolution for the joint composed by the PET substrate and silicone layer with t = 2.0, 3.0mm.

The second set of simulations compares the results already obtained for the silicone-PET joint with the
response of the same polymeric substrate coupled with thin aluminum and copper layers. The displacement-
force curves are shown in Fig. 25 considering the upper layer thickness equal to t = 1mm and t = 2mm.

The load-displacement curve for the aluminium layer corresponds to a crack propagation that commences
from the notch and propagates vertically through the two layers, as shown in Fig. 26, for both the upper
layer thicknesses 1mm and 2mm. Moreover, it can be noticed that the failure of the aluminium-PET joint
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t = 4mm t = 5mm

(a) u = 0.02mm (b) u = 0.02mm

(c) u = 0.24mm (d) u = 0.02mm

(e) u = 1.23mm (f) u = 1.42mm

Fig. 24: Crack evolution for the joint composed by the PET substrate and silicone layer with t = 4.0, 5.0mm.

Fig. 25: Thickness and material properties influence on the response of a bilayer structure composed by a PET layer (lower
layer, hyperelastic) and different linear elastic layers: aluminium, copper and silicon, with different thicknesses.

.

shows a discontinuity corresponding to the state at which the crack meets the interface in Figs. 26a and
26b, before propagating across it as captured in Figs. 26c and 26e for t = 1mm and in Figs. 26d and 26f for
t = 2mm.

Analyzing the copper-PET joint crack evolution for the thickness t = 1mm, the phase-field evolution
shows the formation of cracks equidistant from the notch that grow until the central crack propagates through
the interface until the complete failure of the joint (see Fig. 27). Silicone and copper have Young’s Modulus
of the same order of magnitude, which is reflected in a similar failure mode at the initial stage. However, the
different Gc1/Gc2 ratio, equal to 0.57N/mm for the copper joint and 0.04N/mm for the silicone, determines
the different response since the mismatch for the other mechanical parameters does not reach an order of
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t = 1mm t = 2mm

(a) u = 0.40mm (b) u = 0.28mm

(c) u = 0.45mm (d) u = 0.30mm

(e) u = 0.48mm (f) u = 0.37mm

Fig. 26: Crack evolution for the bilayer joint with aluminium layer of thickness t = 1.0, 2.0mm.

magnitude. The thicker case t = 2mm, depicted in Fig. 28, starts with a horizontal crack propagation (as in
the corresponding silicone case), but the higher critical energy release rate translates into the propagation
of the crack in the PET layer and the failure of the joint.

t = 1mm

(a) u = 0.12mm (b) u = 0.28mm

(c) u = 0.58mm (d) u = 0.59mm

Fig. 27: Crack evolution for the bilayer joint with copper layer of thickness t = 1mm.

t = 2mm

(a) u = 0.05mm (b) u = 0.07mm

(c) u = 0.22mm (d) u = 0.28mm

Fig. 28: Crack evolution for the bilayer joint with copper layer of thickness t = 2mm.
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4.3. Interface contribution

In order to address how the fracture simulation is affected by the presence of prescribed interfaces
featuring a cohesive-like response, previous simulations are reproduced in the following subsection but with
the incorporation of such interfaces separating both material regions. As reported below, this plays an
important role in the fracture of the joint, especially in the crack propagation. In line with previous results,
parametric studies are conducted by changing both bulk and interface properties: for the bulk, as in the
previous section, the Young’s Modulus ratio mismatch between both regions; regarding the interface, the
critical traction values are changed. For the layers, the same material properties as in the subsection 4.2
have been employed. The thickness of the thin layer is fixed to t = 1mm, while the critical interface gaps
are set: gnc = gtc = 1mm.

The addition of the interface between both layers leads to the competition between crack deflection and
propagation as explained in Fig. 29.

Crack starts at the notch Crack propagates along 
the interface

DΦ

Fig. 29: Details of the crack path and the damage at the interface for the case with E1/E2 = 1 and σc = τc = 0.5MPa.

The reaction force-displacement curves for Young’s Modulus ratio E1/E2 = 1 are plotted on Fig. 30. It
can be deducted that the increase in the critical interface tractions causes a reduction in the final displace-
ment but also a slight increase in the maximum force.

Fig. 30: Reaction force-displacement curves for different cohesive traction values and for Young’s Modulus ratio E1/E2 = 1.

The curves with lower critical tractions (σc = τc < 2MPa) show a step where the force decreases,
corresponding to the crack reaching the interface that acts as a barrier. In such scenarios, the interface
toughness might determine the cracking mechanism, which is more easily explained with the plots in Fig. 31,
where is envisaged the competition between crack deflection and propagation. When a lower strength

25



characterizes the interface, the crack is deflected for a more significant distance through the interface until
it has enough energy to propagate, reaching the extremities when σc = τc = 0.1MPa. The increasing
debonding length during the simulation for this case is represented in Fig. 32 in terms of normalized position
at the interface vs. damage variable at the interface. The damage evolution is shown at different imposed
displacements u.

t = 1mm

(a) σc = 0.1MPa (b) σc = 0.5MPa

(c) σc = 1.0MPa (d) σc = 2.0MPa

(e) σc = 5.0MPa (f) σc = 10.0MPa

Fig. 31: Crack evolution for different values of the cohesive critical traction σc and for layers’ Young’s Modulus ratio E1/E2 = 1.

Fig. 32: Damage of the interface at different imposed displacements for the case with E1/E2 = 1 and σc = τc = 0.1MPa.

However, in cases with σc = τc > 2MPa, the primary mechanism is crack propagation from the upper
layer penetrating the bottom layer. Therefore, the delamination length, which can be seen as a second phase
in the cracking evolution, is considerably smaller, barely visible in σc = τc = 10MPa where the interface is
not affected at all.

The different debonding lengths corresponding to different values of critical tractions at the final displace-
ment u = 2 mm are represented in Fig. 33 in terms of normalised position along the interface vs. damage
variable. It can be noticed that lower values of the critical normal and tangential tractions correspond to
higher debonding lengths.
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Fig. 33: Damage of the interface at displacement of u = 2mm for the cases with E1/E2 = 1.

By changing the Young’s Modulus ratio to E1/E2 = 5, it can be seen at the reaction force-displacement
curves plotted in Fig. 34 that the difference in terms of maximum displacement is increased between probes
whose primary mechanism of fracture is crack propagation and those with crack deflection, having the latter
ones a slight decrease in this parameter. Taking a look at the damage plots in Fig. 35, the same pattern as
before is observed: lower critical traction in the interface is associated with more deflection.

Fig. 34: Reaction force-displacement curves for different cohesive traction values and for Young’s Modulus ratio E1/E2 = 5.

Finally, the reaction force-displacement curves for E1/E2 = 10 are plotted in Fig. 36 and the associated
phase-field isocontour plots in Fig. 37. They show the same mechanical behaviour when changing interface
properties as with the previous probes of this section.

4.4. Ceramic Islands

For this last subsection, the proposed analysis is examined against practical applications that concern
ceramic islands disposed periodically on a polyimide (PI) substrate (Fig. 38), see [3]. This series of tests
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t = 1mm

(a) σc = 0.1MPa (b) σc = 0.5MPa

(c) σc = 1.0MPa (d) σc = 2.0MPa

(e) σc = 5.0MPa

Fig. 35: Crack evolution for different values of the cohesive critical traction σc and for Young’s Modulus ratio E1/E2 = 5.

consists of the horizontal pulling of these structures to address how the mechanism of failure was affected
by the dimension of the island, being the experimental results of this study published in Fig. 39, where it is
seen that bigger thickness or smaller island size is associated to a fracture mechanism of crack debonding.
In this plot, at the frame, the size and thickness of the island will be considered within this approach. It
is worth highlighting that these structures have been approximated with a plane-strain configuration, like
in [3, 105], and that a CZM analysis in 3D for this example has been tackled by Reinoso et al. [106] to
simulate cohesive fracture.

For this numerical analysis, one ceramic island is considered with the dimensions that are displayed in
Tab. 4 and the geometry in Fig. 40. These numerical samples intend to replicate the fracture results with
those obtained experimentally. The materials employed for both layers are listed in Tab. 5. The parametric
study is performed by changing: (i) the island thickness, (ii) the critical interface tractions, and (iii) the
critical interface gaps.

Island size L 20µm
Island thickness h 0.1− 0.3− 0.5µm
Substrate size S 30µm
Substrate height H 7.5µm

Tab. 4: Dimensions used for the simulations regarding ceramic islands on polymeric substrate.

E [MPa] ν Gb
c [N/mm] l0 [µm]

Island Linear Elastic 200000 0.3 0.1 0.1
Substrate Hyperelastic 9200 0.3 10 0.1

Tab. 5: Mechanical properties used for the simulations regarding ceramic islands on polymeric substrate, taken from [3].

The simulations results are summarized in Tab. 6 for each configuration and interface properties and
referred to the same imposed displacement. According to the maximum values reached by the phase-field
and the damage variables, the failure mechanism has been classified as cracking (ϕmax ≥ 0.9), debonding
(Dmax ≥ 0.9), or Mixed Mode (ϕmax ≥ 0.9 and Dmax ≥ 0.9).

All the cases with the thinnest ceramic layer (0.1µm) result in cracking, with only some of them experi-
encing subsequent debonding. An example of the debonding failure mechanism is shown in Fig. 41a, while
the Mixed Mode failure is plotted in Fig. 41b.

The configuration having the ceramic layer thickness equal to 0.3µm exhibits all the possible failure
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Fig. 36: Reaction force-displacement curves for different cohesive traction values and for Young’s Modulus ratio E1/E2 = 10.

t = 1mm

(a) σc = 0.1MPa (b) σc = 0.5MPa

(c) σc = 1.0MPa (d) σc = 2.0MPa

(e) σc = 5.0MPa

Fig. 37: Crack evolution for different values of the cohesive critical traction σc and for Young’s Modulus ratio E1/E2 = 10.

mechanisms. In particular, the configurations with the minimum value of critical traction, σc = τc = 1MPa,
display uniquely delamination at the interface, while the cases with the highest traction values also experience
cracking of the upper layer. In these last samples, the values of the critical gaps assume a determinant role
to distinguish between only cracking or Mixed Mode failure. The thickest ceramic layer (0.5µm) displays a
predominant debonding mechanism of failure. This pattern of failure is displayed in detail in Fig. 42.

In summary, it can be stated from current results that by increasing the thickness of the island, the
failure mechanism switches from mainly crack propagation in the layer to debonding of the interface, being
this result in accordance with the experimental results from Fig. 39.
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Fig. 38: Ceramic islands (size L and thickness h) on PI (polyimide) substrate stretched horizontally. Source [3].

Fig. 39: Experimental failure mechanisms for different islands configurations. C - only cracking occurs, D - only debonding, M
- Mixed Mode failure. The results highlighted by the yellow rectangle correspond to the cases simulated in this work. Adapted
from [3].

Fig. 40: Geometry and boundary conditions used for the simulations regarding ceramic islands on polymeric substrate.

5. Final remarks

Fracture simulation in joint structures with rubber-like materials has been studied through a phase-field
approach for hyperelastic materials. The phase-field approach has been formulated in the framework of
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Experimental Island σc = τc gtc = gnc [µm]
result [3] thickness [MPa] 0.05 0.1 0.2

Cracking 0.1µm

1
Mixed Mode Failure Mixed Mode Failure Cracking
ϕmax = 1; Dmax = 1 ϕmax = 1; Dmax = 0.9 ϕmax = 1; Dmax = 0

2
Mixed Mode Failure Cracking Cracking

ϕmax = 1; Dmax = 0.9 ϕmax = 1; Dmax = 0.45 ϕmax = 1; Dmax = 0.2

3
Cracking Cracking Cracking

ϕmax = 1; Dmax = 0.3 ϕmax = 1; Dmax = 0.3 ϕmax = 1; Dmax = 0

Mixed 0.3µm

1
Debonding Debonding Debonding

ϕmax = 0.07; Dmax = 1 ϕmax = 0.08; Dmax = 1 ϕmax = 0.09; Dmax = 1

2
Mixed Mode Failure Cracking Cracking
ϕmax = 1; Dmax = 1 ϕmax = 1; Dmax = 0.47 ϕmax = 1; Dmax = 0.22

3
Mixed Mode Failure Cracking Cracking
ϕmax = 1; Dmax = 1 ϕmax = 1; Dmax = 0 ϕmax = 1; Dmax = 0.17

Debonding 0.5µm

1
Debonding Debonding Debonding

ϕmax = 0.03; Dmax = 1 ϕmax = 0.03; Dmax = 1 ϕmax = 0.03; Dmax = 1

2
Debonding Debonding Debonding

ϕmax = 0.1; Dmax = 1 ϕmax = 0.1; Dmax = 1 ϕmax = 0.1; Dmax = 1

3
Mixed Mode Failure Mixed Mode Failure Mixed Mode Failure
ϕmax = 1; Dmax = 1 ϕmax = 1; Dmax = 1 ϕmax = 1; Dmax = 1

Tab. 6: Simulated failure mechanisms according to the interface properties for different values of island thickness.

(a) Cracking failure of the island obtained with
σc = τc = 1MPa and gtc = gnc = 0.2µm

(b) Mixed mode failure of the island obtained with
σc = τc = 1MPa and gtc = gnc = 0.05µm

Fig. 41: Details of the failure mechanisms for cases with ceramic layer thickness equal to 0.1µm, which show cracking and
mixed-mode fracture, respectively. Phase-field isocontours in the top figures and interface damage in the bottom ones. For
visualization purpose, the deformation has been magnified by a factor of 15.

Fig. 42: Details of the ceramic island layer for the case with thickness 0.5µm in the case of only debonding. Obtained with
σc = τc = 1MPa and gtc = gnc = 0.05µm. Phase-field isocontours in the top figure and interface damage in the lower one.
For visualization purpose, the deformation has been magnified by a factor of 15.
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finite elasticity and used to study the effect of material properties mismatch on the crack propagation in
bilayered structures.

Moreover, the framework has been enriched by considering the existence of imperfect interfaces between
the joint components modeled using the CZM, providing a plausible tool of interest in industrial uses. The
employed framework has been applied in various numerical examples; among the most important conducted
analyses, the dependence on the material (ceramic, polymer, metal) of the thin layer, and the competition
between crack propagation in the bulk and delamination at the interface have been addressed within thin
layer-flexible substrate systems.

Although the phase-field approach already captures the crack propagation at the interface in some
configurations, the coupling with CZM provides a better insight into the different failure mechanisms and
in particular, into the accuracy of the simulations for Mixed Mode failure.

Future investigation of this computational framework will be dedicated to couple the phase-field damage
for both the bulk and the interface considering two damage fields to model the interface state. In addition
to this, an extension to structured interfaces is desired, with the possibility of combining the PF-CZM
numerical approach with experimental testing that validates the work.
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Appendix A. Benchmark tests for the phase-field approach

Appendix A.1. 2D formulation: penny shaped model

In order to demonstrate the capability of our formulation, a first benchmark test has been performed
to compare to results available in [66] for the same problem. A penny-shaped specimen with a pre-existing
notch in the center has been considered, with geometry and boundary conditions depicted in Fig. A.43.
The test consists of a rectangular plate of 0.4mm height and 2mm width with a central horizontal notch
of 0.2mm width and 0.01mm height. A monotonically increasing displacement u has been applied on the
upper boundary while the bottom boundary is fixed.

Fig. A.43: Geometry and boundary conditions of a rectangular plate with a central notch under remote displacement u.

The finite element discretization of the plate consists of around 64700 elements (characteristic element
length h = 0.002mm as in [66]). A magnification of the mesh in the area close to the central notch is shown
in Fig. A.44.

Following the benchmark test proposed in [66], the plate has shear modulus µ = 5N/mm2 and Poisson
ratio ν = 0.45 which corresponds to β = 9. The critical fracture energy is Gb

c = 2.4N/mm and the length
scale is l0 = 0.01mm, while the residual parameter k has been set to 1.0× 10−6 (the same value is used in
all the simulations of this work).

Different simulations have been performed comparing the result of the 2D plane stress and plane strain
assumptions with the solution in [66]. The crack path at different imposed displacements until the complete
rupture for the plane strain configuration is shown for the deformed pattern in Fig. A.45.
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Fig. A.44: Mesh of the rectangular plate with the central notch.

(a) u = 0.40mm (b) u = 0.45mm

(c) u = 0.52mm (d) u = 1.00mm

Fig. A.45: Phase-field evolution during the crack propagation for the rectangular plate under plane strain assumption.

Fig. A.46: Central notched plate response in terms of reaction force-imposed displacement considering plane strain and plane
stress hypotheses. Comparison between the present approach and the results obtained in [66] and using standard Abaqus
hyperelastic elements.

The corresponding load-displacement curves are plotted in Fig. A.46. In these series of graphs, results
with label Abaqus correspond to the same geometry solved with standard finite elements available in Abaqus
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using the same material parameters for the Neo-Hookean model. They have been juxtaposed to the phase-
field elements results in order to observe that they overlap perfectly when the plate is still undamaged, as
expected. The results are in line with the benchmark test taken from [66], verifying the formulation.

Appendix A.2. 3D formulation: thin cylindrical structure

The coded phase-field element with hyperelastic material model has been used to simulate the crack
initiation and propagation in a thin cylinder with a central notch. For saving computational time, only half
of a cylinder has been modeled and solved considering symmetrical boundary conditions at the vertical faces
and equal applied displacement at the top and bottom face. Dimensions of the cylinder are: height equal to
60mm, internal radius equal to 52.5mm and thickness 5mm, as shown in Fig. A.47. The layer has a central
notch with dimensions 10mm× 1mm.

(a) (b)

Fig. A.47: Geometry (a) and boundary conditions (b) for the cylindrical layer. The dimensions are reported in mm.

The material taken into account for the simulation is the polymer PET, whose mechanical properties
are shown in Tab. 1. The mesh uses 3D elements with h = 1mm (see Fig. A.48) and it has been chosen in
order to provide accurate results within a reasonable computational time for the simulation.

(a) (b)

Fig. A.48: Mesh of the cylinder.

The structure response in terms of reaction force-imposed displacement and the crack path are shown in
Fig. A.49.

38



Fig. A.49: Load-displacement curve for the simulation of the cylindrical polymeric layer and snapshots of the crack path
evolution.
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