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Abstract: Min-max differential inequalities (DIs) can be used to characterize robust forward
invariant tubes with convex cross-section for a large class of nonlinear control systems. The
advantage of using set-propagation over other existing approaches for tube MPC is that they
avoid the discretization of control policies. Instead, the conservatism of min-max DIs in tube
MPC arises from the discretization of sets in the state-space, while the control law is never
discretized and remains defined implicitly via the solution of a min-max optimization problem.
The contribution of this paper is the development of a practical implementation of min-max
DIs for tube MPC using ellipsoidal-tube enclosures. We illustrate these developments with a
spring-mass-damper system.
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1. INTRODUCTION

Robust model predictive control (MPC) is a method-
ology that accounts for model uncertainty and process
noise as part of the control synthesis procedure. Unlike
nominal MPC, it provides a certain guarantee that the
system will remain feasible under given uncertainty sce-
narios. Many modern methods for robust MPC are based
on set-theoretical approaches (Blanchini, 1999; Blanchini
and Miani, 2008), which find their origin in viability
theory (Aubin, 1991; Kurzhanski and Filippova, 1993;
Kurzhanski and Vályi, 1997). In particular, tube MPC—
as formalised by the works by Langson et al. (2004);
Rakovic, et al. (2005); Mayne et al. (2009)—have become
popular over the last decade. The idea is to replace the
predicted trajectory used in standard MPC by a robust
forward invariant tube (RFIT), namely a time-varying
set-valued function enclosing all possible state trajectories
under a given feedback control law, independently of the
uncertainty realization (Langson et al., 2004).

Most practical implementations of tube MPC rely on the
discretization of the ancillary feedback law associated with
the predicted RFIT (Mayne et al., 2009). Affine feedback
parameterization are among the most studied directions
for discretizing the corresponding computations in robust
MPC (Goulart et al., 2006; Goulart and Kerrigan, 2007;
Zeilinger et al., 2014). They are also frequently used as
the basis for linear matrix inequality (LMI) based robust
MPC variants (Kothare et al., 1996). A discretization of
the control law comes along with an inevitable loss of
accuracy and introduction of conservatism, as discussed
in VanParys et al. (2013) in the context of linear systems.

In contrast to the aforementioned tube MPC methods,
which are based on a discretization of the feedback control
law, Villanueva et al. (2017) introduced an alternative
approach based on min-max DIs. There, the main idea is to
characterize RFITs with convex cross-sections via a differ-
ential inequality for their support functions. This leads to
a framework where the conservatism of the RFITs can be
controlled by choosing a set parameterization rather than
the control discretization. In this paper, we build upon
these recent developments by presenting an algorithm and
a prototype implementation for the automatic construc-
tion of ellipsoidal RFITs for their use in tube MPC. Our
main contribution is a derivation of explicit expressions for
the extra degrees of freedom introduced in the ellipsoidal
tube formulation. The presented methodology enables the
formulation of an optimal control problem (OCP) that can
be solved numerically using existing software.

The paper is organized as follows. Section 2 reviews min-
max DIs for tube MPC and set-discretization methods
based on ellipsoids. Section 3 presents the main contri-
bution of the paper, namely a simplified algorithm to
construct the tube dynamics based only on the nominal
control input. Section 4 presents a simple case study; and
Section 5 concludes the paper.

1.1 Notation

The support function of a given compact set Z, denoted
by V [Z] : Rn → R, is defined as

∀c ∈ Rn, V [Z](c) := max
z∈Z

cTz .

For a compact set-valued and Lipschitz continuous—with
respect to the Hausdorff metric—function Z, the notation
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V̇ [Z(t)](c) =
dσc,Z(t)

dt
is used to denote the weak derivative of the function
σc,Z(t) := V [Z(t)](c). The set of n×n positive semidefinite
(resp. definite) matrices is denoted by Sn+ (resp. Sn++ ).
An n-dimensional ellipsoid with center q ∈ Rn and shape
matrix Q ∈ Sn+ is given by

E(q,Q) :=
{
q +Q

1
2 v

∣∣∣vTv ≤ 1
}

.

The sets of interval vectors in Rn and n-by-m interval
matrices are denoted respectively by IRn, and IRn×m. The
interval extension of a function f is denoted by f I. The
upper bound of an interval y ∈ IR is denoted by max{y}.
By a small abuse of the notation, for a time-varying
function, in places where no confusion could arise, we use
the function name as a shorthand for the function value.

2. PROBLEM FORMULATION AND BACKGROUND

This section formulates the problem addressed in this
paper and reviews the tube MPC approach based on min-
max DI as proposed in Villanueva et al. (2017).

2.1 Nonlinear control systems

We consider control systems of the form

ẋ(t) = g(x(t), u(t), w(t)) := f(x(t), w(t)) +Gu(t) , (1)

where x : R → X and u : R → U are Lebesgue integrable
state and control trajectories; the closed sets U ⊆ Rnu

and X ⊆ Rnx denote the control and state constraints;
and the exogenous disturbance w : R → W is unknown
but bounded, with W ⊂ Rnw a compact set. Notice that
u enters the system affinely, which is the only structural
requirement on g, and G ∈ Rnx×nu is a given constant
matrix. The following considerations can be generalized
to the case that G depends on x(t). Throughout this
paper, f is assumed to be nonlinear and twice-continuously
differentiable in both arguments on the domain X ×W .

2.2 Robust Forward Invariant Tubes

A compact set-valued function Y (t) ⊂ Rnx is called an
RFIT, if there exists a feedback control law µ : R×X → U
such that the controlled system

∀t ∈ R, ẋ(t) = g(x(t), µ(t, x(t)), w(t)) (2)

with x(t1) ∈ Y (t1) satisfies x(t2) ∈ Y (t2) for all t1, t2 ∈ R
with t2 ≥ t1 and all w with w(t) ∈ W . In the following,
we denote the set of all RFITs for g by Y; i.e. writing
Y ∈ Y, indicates that Y is an RFIT. Notice that an RFIT
is constant if its cross-sections are robust forward invariant
sets (Blanchini and Miani, 2008).

2.3 Tube MPC

Tube MPC solves optimization problems of the form

inf
Y ∈Y

∫ T

0

�(Y (t))dt

s.t. Y (t) ⊆ X , ∀t ∈ [0, T ]

Y (0) = {x̂} ,

(3)

where � denotes the worst-case stage cost and Y the set
of all RFITs for (1) on [0, T ]. Here, x̂ denotes the noise-
free state measurement. Once the above problem is solved,
the optimal control action u(0) = µ(0, x̂) is applied to the
process. The current time is always set to 0.

2.4 Min-max Differential Inequalities

Villanueva et al. (2017) have shown that Y is an RFIT if
it satisfies the min-max differential inequality

∀c ∈ Rnx , V̇ [Y (t)](c) ≥ min
ν

V [Γg(ν, c, Y (t))](c) , (4)

with Γg(ν, c, Z) :=


g(ξ, ν, ω)

∣∣∣∣∣∣
cTξ = V [Z](c)

ξ ∈ Z

ω ∈ W



 .

By invariance of the support function with respect to a
rescaling of c, it is enough to enforce the above inequality
for all vectors c in the nx-dimensional unit sphere.

2.5 Ellipsoidal Discretization of Min-Max DIs

Our approach to tackling the min-max DI (4) entails a
parameterization of the tube cross-sections as ellipsoids,
Y (t) = E(qx(t), Qx(t)). The support function is given by

V [Y (t)](c) = cTqx(t) +
√

cTQx(t)c ,

and we assume herein that the ellipsoidal cross-sections
are non degenerate, Qx(t) ∈ Snx

++. The expression for the
weak time-derivative of V satisfies

V̇ [Y (t)](c) = cTq̇x(t) +
cTQ̇x(t)c

2
√
cTQx(t)c

,

assuming that qx and Qx are weakly differentiable. Condi-
tions for qx and Qx such that Y is an RFIT can be derived
by substituting these expressions into (4). We also assume
that the uncertainty and control sets are ellipsoids,

U := E(qu, Qu) and W := E(qw, Qw) ,

with Qu ∈ Snu
++ and Qw ∈ Snw

++. It has been established
by Villanueva et al. (2017, Theorem 3) that Y (t) is an
RFIT if there exist functions λ, κ, γ : R → R++, ux : R →
Rnu , and S : R → Rnx×nu such that

q̇x(t) = f(qx(t), qw) +Gux(t) ,

Q̇x(t) = Φg(qx(t), Qx(t), ux(t), λ(t), κ(t), γ(t), S(t)) , (5)

κ(t) > 0 , λ(t) > 0 , 0 < γ ≤ 1 ,

Qx(t) � 0 , Ru(ux(t), γ(t)) � 0 , I − S(t)S(t)T � 0 .

Here, we have introduced the short-hand notation

Φg(qx, Qx, ux, λ, κ, γ, S) := A(t)Qx +QxA(t)T

+ λ−1Qx + λB(t)QwB(t)T + κ−1Qx + κΩn(qx, Qx)

+Q
1
2
xSR

1
2
u (ux, γ)G

T +GR
1
2
u (ux, γ)S

TQ
1
2
x ,

(6)

with matrices

A(t) :=
∂f

∂x
(qx(t), qw) , B(t) :=

∂f

∂w
(qx(t), qw) , (7)

Ru(ux, γ) := (1− γ)Qu +

(
1− 1

γ

)
a(ux)a(ux)

T , (8)

and a(ux) := (ux − qu). Moreover, Ωn : Rnx × Snx
+ → Snx

+
parameterizing the nonlinearity enclosure must satisfy

f(ξ, ω)− f(qx(t), qw)−A(t)(ξ − qx(t))

−B(t)(ω − qw) ∈ E(0,Ωn(qx(t), Qx(t))) ,
(9)

for all ξ ∈ E(qx(t), Qx(t)) and all ω ∈ W .
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2.6 Tractable Reformulation of Tube MPC

Combining the results from the previous sections, a con-
servative reformulation of (3) as an OCP, with a finite
number of differential and path constraints, is given by

inf
Qx,S,

qx,ux,γ,
λ,κ

∫ T

0

�(E(qx(t), Qx(t)))dτ

s.t. Sufficient Conditions (5) ∀t ∈ [0, T ]

E(qx(t), Qx(t)) ⊆ X, ∀t ∈ [0, T ]

ux(t) ∈ E(qu, Qu) ∀t ∈ [0, T ]

E(qx(0), Qx(0)) = {x̂} .

(10)

For a tracking objective l(x) = (x−xref)
TD(x−xref) with

weighting matrix D ∈ Snx
++, it is possible to find a closed-

form expression for the generalized inertia, i.e.

�(E(qx, Qx)) = (qx−xref)
TD(qx−xref)+

Tr (DQx)

nx + 2
. (11)

Computing a numerical solution of (10) with state-of-the-
art optimal control software is challenging, since:

(1) It comprises a large number of extra time-varying
degrees of freedom, including S, γ, λ, and κ, which
have no clear physical interpretation. The use of
local optimization routines requires suitable initial
guesses for all the variables, due to the presence of
nonconvexities. In practice, finding suitable initial
values for these variables can be a difficult task.

(2) The linear matrix inequalities in (5) can be handled
by modern LMI solvers. However, to date, there is no
generic optimal control software that can deal with
such constraints without further reformulation.

3. PRACTICAL CONSTRUCTION OF AN
ELLIPSOIDAL RFIT

This section presents a computational approach to con-
structing a simplified right-hand side function

Φ̂g : Rnx × Snx
++ × Rnu → Snx

++ ,

such that Y (t) = E(qx(t), Qx(t)) is an RFIT if the ODEs

q̇x(t) = f(qx(t), qw) +Gux(t)

Q̇x(t) = Φ̂g(qx(t), Qx(t), ux(t)) ,
(12)

are satisfied for a given control input ux ∈ E(qu, Qu). An
ad-hoc choice for the functions λ, κ S, and γ involves
minimizing

min
λ,κ
γ,S

Tr (Φg(qx, Qx, ux, λ, κ, γ, S)

s. t. λ > 0 , κ > 0 , γ ∈ (0, 1]

Qx � 0 , Ru(ux, γ) � 0 , I − SST � 0 ,

(13)

Possibly after a re-scaling of the states.

In order to proceed systematically, we treat the following
four terms of Φg independently, which is possible due to
the separable structure of the problem. The first term,

Φx(t) := A(t)Qx(t) +Qx(t)A(t)
T , (14)

is independent of any auxiliary degree of freedom and thus
it does not require any manipulation. The second term,

Φw(t) := λ(t)−1Qx(t) + λ(t)B(t)QwB(t)T , (15)

depends on λ and describes the linear effect of the distur-
bance w. The third term,

Φn(t) := κ(t)−1Qx(t) + κ(t)Ωn(qx(t), Qx(t)) , (16)

depends on κ and collects the nonlinear effects of f , via
the nonlinearity bounder Ωn. The last term,

Φu(t) := Q
1
2
x (t)S(t)R

1
2
u (ux(t), γ(t))G

T

+GR
1
2
u (ux(t), γ(t))S(t)

TQ
1
2
x (t) ,

(17)

depends on S and γ via Ru and describes describes the
effect of the control action on the tube.

Notice that the functions Φx, Φw, Φn, and Φu depend on
the ellipsoidal states, nominal control and extra degrees
of freedom, which are not reported explicitly. Likewise we
will often not report these dependencies throughout, e.g.
we write Ωn(t) = Ωn(qx(t), Qx(t)).

3.1 A closer look at the nonlinearity bounder Ωn

The construction of the nonlinearity bounder Ωn may
proceed in several ways, including explicit estimates,
the use of computer algebras based on polynomial
models (Makino and Berz, 2003; Rajyaguru et al. ,
2016), and interval analysis tools (Moore and Bierbaum,
1979). Instead, the focus here is on the construction of
smooth nonlinearity bounders using the procedure out-
lined in Villanueva et al. (2017, Lemma 7). This con-
struction requires, for each function fi, the existence
of a bound Fi ≥ max(ξ,ω)∈D ‖∇2

x,wfi(ξ, ω)Wi‖F, where
D ⊇ E(qx(t), Qx(t))×E(qw, Qw) and Wi is some invertible
square matrix. The ellipsoidal bound is then given by

Ωn(t) =
1

4
diag

(
F 2
i

∥∥W−1
i Q(t)

∥∥2
F

)
1≤i≤nx

, (18)

with Q(t) = diag (Qx(t), Qw). Lemma 2 provides a compu-
tational procedure to construct the nonlinearity estimate.
The main difference with Villanueva et al. (2017, Lemma
7) is that the weightsWi are updated at every time instant.

Lemma 1. Let Ĥi(t) ∈ R(nx+nw)×(nx+nw) be symmetric

and invertible, and let Q(t) ∈ S(nx+nw)
++ . Then,

W ∗
i (t) =

(
Ĥi(t)

−1
(
Ĥi(t)Q

2(t)Ĥi(t)
) 1

2

Ĥi(t)
−1

) 1
2

is the minimizer of
∥∥∥Ĥi(t)Wi(t)

∥∥∥
2

F

∥∥Wi(t)
−1Q(t)

∥∥2
F
.

Observe that selecting the weight matrices W ∗
i (t) per

Lemma 1 minimizes the effect of the nonlinearity in each
direction in the state-space, i.e., it minimizes the length of
the semi-axes of the ellipsoid E(Ω(t)).
Lemma 2. Let H1, . . . , Hnx

∈ IR(nx+nw)+(nx×nw) with

Hi ⊇
{
∇2

x,wfi(ξ, ω)

∣∣∣∣
ξ ∈ E(qx(t), Qx(t))

ω ∈ E(qw(t), Qw)

}
.

Choose the invertible Hessian approximation Ĥi(t) ≈
∇2

x,wfi(qx(t), qw), and Q(t) = diag (Qx(t), Qw). Let
W ∗

1 (t), . . . ,W
∗
nx
(t) be constructed per Lemma 1. Then, the

matrix

Ωn(t) :=
1

4
diag

(
F̄ 2
i (t) Tr

((
Ĥi(t)Q

2(t)Ĥi(t)
) 1

2

))

1≤i≤nx

with F̄i(t) =

√
max

{
TrI (HiW ∗2

i (t)Hi)
}
satisfies (9).
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2.6 Tractable Reformulation of Tube MPC

Combining the results from the previous sections, a con-
servative reformulation of (3) as an OCP, with a finite
number of differential and path constraints, is given by

inf
Qx,S,

qx,ux,γ,
λ,κ

∫ T

0

�(E(qx(t), Qx(t)))dτ

s.t. Sufficient Conditions (5) ∀t ∈ [0, T ]

E(qx(t), Qx(t)) ⊆ X, ∀t ∈ [0, T ]

ux(t) ∈ E(qu, Qu) ∀t ∈ [0, T ]

E(qx(0), Qx(0)) = {x̂} .

(10)

For a tracking objective l(x) = (x−xref)
TD(x−xref) with

weighting matrix D ∈ Snx
++, it is possible to find a closed-

form expression for the generalized inertia, i.e.

�(E(qx, Qx)) = (qx−xref)
TD(qx−xref)+

Tr (DQx)

nx + 2
. (11)

Computing a numerical solution of (10) with state-of-the-
art optimal control software is challenging, since:

(1) It comprises a large number of extra time-varying
degrees of freedom, including S, γ, λ, and κ, which
have no clear physical interpretation. The use of
local optimization routines requires suitable initial
guesses for all the variables, due to the presence of
nonconvexities. In practice, finding suitable initial
values for these variables can be a difficult task.

(2) The linear matrix inequalities in (5) can be handled
by modern LMI solvers. However, to date, there is no
generic optimal control software that can deal with
such constraints without further reformulation.

3. PRACTICAL CONSTRUCTION OF AN
ELLIPSOIDAL RFIT

This section presents a computational approach to con-
structing a simplified right-hand side function

Φ̂g : Rnx × Snx
++ × Rnu → Snx

++ ,

such that Y (t) = E(qx(t), Qx(t)) is an RFIT if the ODEs

q̇x(t) = f(qx(t), qw) +Gux(t)

Q̇x(t) = Φ̂g(qx(t), Qx(t), ux(t)) ,
(12)

are satisfied for a given control input ux ∈ E(qu, Qu). An
ad-hoc choice for the functions λ, κ S, and γ involves
minimizing

min
λ,κ
γ,S

Tr (Φg(qx, Qx, ux, λ, κ, γ, S)

s. t. λ > 0 , κ > 0 , γ ∈ (0, 1]

Qx � 0 , Ru(ux, γ) � 0 , I − SST � 0 ,

(13)

Possibly after a re-scaling of the states.

In order to proceed systematically, we treat the following
four terms of Φg independently, which is possible due to
the separable structure of the problem. The first term,

Φx(t) := A(t)Qx(t) +Qx(t)A(t)T , (14)

is independent of any auxiliary degree of freedom and thus
it does not require any manipulation. The second term,

Φw(t) := λ(t)−1Qx(t) + λ(t)B(t)QwB(t)T , (15)

depends on λ and describes the linear effect of the distur-
bance w. The third term,

Φn(t) := κ(t)−1Qx(t) + κ(t)Ωn(qx(t), Qx(t)) , (16)

depends on κ and collects the nonlinear effects of f , via
the nonlinearity bounder Ωn. The last term,

Φu(t) := Q
1
2
x (t)S(t)R

1
2
u (ux(t), γ(t))G

T

+GR
1
2
u (ux(t), γ(t))S(t)

TQ
1
2
x (t) ,

(17)

depends on S and γ via Ru and describes describes the
effect of the control action on the tube.

Notice that the functions Φx, Φw, Φn, and Φu depend on
the ellipsoidal states, nominal control and extra degrees
of freedom, which are not reported explicitly. Likewise we
will often not report these dependencies throughout, e.g.
we write Ωn(t) = Ωn(qx(t), Qx(t)).

3.1 A closer look at the nonlinearity bounder Ωn

The construction of the nonlinearity bounder Ωn may
proceed in several ways, including explicit estimates,
the use of computer algebras based on polynomial
models (Makino and Berz, 2003; Rajyaguru et al. ,
2016), and interval analysis tools (Moore and Bierbaum,
1979). Instead, the focus here is on the construction of
smooth nonlinearity bounders using the procedure out-
lined in Villanueva et al. (2017, Lemma 7). This con-
struction requires, for each function fi, the existence
of a bound Fi ≥ max(ξ,ω)∈D ‖∇2

x,wfi(ξ, ω)Wi‖F, where
D ⊇ E(qx(t), Qx(t))×E(qw, Qw) and Wi is some invertible
square matrix. The ellipsoidal bound is then given by

Ωn(t) =
1

4
diag

(
F 2
i

∥∥W−1
i Q(t)

∥∥2
F

)
1≤i≤nx

, (18)

with Q(t) = diag (Qx(t), Qw). Lemma 2 provides a compu-
tational procedure to construct the nonlinearity estimate.
The main difference with Villanueva et al. (2017, Lemma
7) is that the weightsWi are updated at every time instant.

Lemma 1. Let Ĥi(t) ∈ R(nx+nw)×(nx+nw) be symmetric

and invertible, and let Q(t) ∈ S(nx+nw)
++ . Then,

W ∗
i (t) =

(
Ĥi(t)

−1
(
Ĥi(t)Q

2(t)Ĥi(t)
) 1

2

Ĥi(t)
−1

) 1
2

is the minimizer of
∥∥∥Ĥi(t)Wi(t)

∥∥∥
2

F

∥∥Wi(t)
−1Q(t)

∥∥2
F
.

Observe that selecting the weight matrices W ∗
i (t) per

Lemma 1 minimizes the effect of the nonlinearity in each
direction in the state-space, i.e., it minimizes the length of
the semi-axes of the ellipsoid E(Ω(t)).
Lemma 2. Let H1, . . . , Hnx

∈ IR(nx+nw)+(nx×nw) with

Hi ⊇
{
∇2

x,wfi(ξ, ω)

∣∣∣∣
ξ ∈ E(qx(t), Qx(t))

ω ∈ E(qw(t), Qw)

}
.

Choose the invertible Hessian approximation Ĥi(t) ≈
∇2

x,wfi(qx(t), qw), and Q(t) = diag (Qx(t), Qw). Let
W ∗

1 (t), . . . ,W
∗
nx
(t) be constructed per Lemma 1. Then, the

matrix

Ωn(t) :=
1

4
diag

(
F̄ 2
i (t) Tr

((
Ĥi(t)Q

2(t)Ĥi(t)
) 1

2

))

1≤i≤nx

with F̄i(t) =

√
max

{
TrI (HiW ∗2

i (t)Hi)
}
satisfies (9).
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3.2 Effect of disturbances Φw and nonlinearity Φn

Once the nonlinearity bounder Ωn has been computed,
λ(t) and κ(t) can be computed as the minimizers of the
trace of Φw(t) and Φn(t) respectively. The following lemma
provides explicit expressions for these functions.

Lemma 3. The functions λ, κ : R → R++ given by

λ∗(t) =

√
Tr (Qx(t))√

Tr (B(t)QwB(t)T)
and κ∗(t) =

√
Tr (Qx(t))√
Tr (Ωn(t))

are the pointwise-in-time minimizers of Tr (Φw(t)) s.t.
λ(t) > 0 and Tr (Φn(t)) s.t. κ(t) > 0, respectively.

This result has been established in the context of the com-
putation of (open-loop) reachable tubes with ellipsoidal
cross-sections (Villanueva et al., 2015).

3.3 Contributions of the controlled terms Φu

Choosing S and γ in order to minimize the trace of Φu(t)
given by (17) presents two main difficulties: 1) due to
the matrix square root, it is not possible to get explicit
expressions for both S and γ simultaneously; and 2)
Φu(t) is blind to first order effects of the dynamics. To
address these points, we introduce a reparameterization of
the problem, restricting the search to stabilizing feedback
gains. This is achieved by solving the continuous-time
algebraic Riccati equation

Â(t)TP (t) + P (t)Â(t)− P (t)GGTP (t) + I = 0 , (19)

with Â(t) = A(t) +
(

1
λ(t) +

1
κ(t)

)
I, and setting

S(t) := −Qx(t)
1
2P (t)GŜ(t)R

− 1
2

u (ux(t), γ(t)) (20)

with a new parameter Ŝ(t) ∈ Snu
+ such that

Φu(t) = −Qx(t)P (t)GŜ(t)GT−GŜ(t)GTP (t)Qx(t) . (21)

Therefore, we now consider the following problem

min
Ŝ(t),γ(t)

−Tr
(
Qx(t)P (t)GŜ(t)GT

)

s. t. Ru(ux(t), γ(t))− Ŝ(t)Q̂(t)Ŝ(t) � 0 ,

Ru(ux(t), γ(t)) � 0 , γ(t) ∈ (0, 1] .

(22)

Problem (22) can now be solved simultaneously for γ(t)

and Ŝ(t), as summarized in the following lemma.

Lemma 4. Let ux : R → Rnu satisfy ux(t) ∈ E(qu, Qu) for

all t ∈ R. The functions γ∗ : R → (0, 1] and Ŝ∗ : R → Snu
+

given by

γ∗(t) =

∥∥∥Q
1
2
x (t)P (t)G (ux(t)− qu)

∥∥∥
2√

Tr
(
Q

1
2
x (t)P (t)GQuGTP (t)Q

1
2
x (t)

)

Ŝ∗(t) = Q̂− 1
2 (t)

(
Q̂

1
2 (t)Ru(ux(t), γ

∗(t))Q̂
1
2 (t)

) 1
2

Q̂− 1
2 (t)

with Q̂(t) := GTP (t)Qx(t)P (t)G, are the pointwise-in-
time minimizers of Problem (22).

3.4 Summary of the Algorithm For Constructing Φ̂g

Algorithm 1 summarizes the construction of the right-hand

side function Φ̂g. The functions λ∗ and κ∗ constructed

per Lemma 3 not only satisfy λ∗(t), κ∗(t) > 0, but
are also optimal with respect to the chosen criterion.
Moreover, after the reparameterization introduced in the

previous section, Ŝ∗ and γ∗ satisfy the required feasibility
constraints and minimize the trace of Φu(t).

Theorem 5. Let ux : R → Rnu be any given reference
control with ux(t) ∈ E(qu, Qu). If the functions qx : R →
Rnx and Qx : R → Snx

++ satisfy (12) with Φ̂g computed
per Algorithm 1, then Y (t) = E(qx(t), Qx(t)) describes an
RFIT for (1). Moreover, for each t ∈ R, the shape matrix
Qx(t) has minimal trace.

Algorithm 1. Evaluation of Φ̂g(qx(t), Qx(t), ux(t))

Input: Center vector qx(t) • Shape matrix Qx(t) • control
ux(t) • Optional: Interval bounders H1, . . . , Hnx of
∇2

x,wf1, . . . ,∇2
x,wfnx on a compact D ⊂ Rnx×nw ,

with D ⊇ E(qx(t), Qx(t))× E(qw, Qw), for all t.

1 Compute the nonlinearity estimate Ωn(qx(t), Qx(t)):
1a If no Hessian bounders are given, compute intervals

Dx(t) ⊇ E(qx(t), Qx(t)), Dw ⊇ E(qw, Qw) and evaluate
Hi = ∇2

x,wf I
i (Dx(t), Dw) for each i ∈ {1, . . . , nx} .

1b Compute Ωn(qx(t), Qx(t)) according to Lemma 2.

2 Evaluate matrices A(t) and B(t) using (7), and compute:

Φx(t) = A(t)Qx(t) +Qx(t)A(t)T .

3 Evaluate λ∗(t) and κ∗(t) per Lemma 3 and compute:

Φwn(t) =
1

λ∗(t)
Qx(t) + λ∗(t)B(t)QwB(t)T

+
1

κ∗(t)
Qx(t) + κ∗(t)Ωn(qx(t), Qx(t)) .

4 Compute P (t) by solving (19).

5 Compute the multiplier γ∗(t) per Lemma 4 and evaluate

Ru(ux(t), γ∗(t)) using (8). Compute the multiplier Ŝ∗(t) per
Lemma (4) and compute

Φu(t) = −Qx(t)P (t)GŜ∗(t)GT −GŜ∗(t)GTP (t)Qx(t).

6 Compute the value of the right-hand side function Φ̂g :

Φ̂g(t) = Φx(t) + Φwn(t) + Φu(t) .

Return: Value of the right-hand side function Φ̂g at t.

Overall, a robust tube MPC for (1) on [0, T ] can be
computed by solving the OCP

inf
qx,ux

Qx

∫ T

0

�(E(qx(t), Qx(t)))dt

s.t. q̇x(t) = f(qx(t), qw) +Gux(t) ∀t ∈ [0, T ]

Q̇x(t) = Φ̂g(qx(t), Qx(t), ux(t)) ∀t ∈ [0, T ]

X ⊇ E(qx(t), Qx(t)) ∀t ∈ [0, T ]

ux(t) ∈ E(qu, Qu) ∀t ∈ [0, T ]

Qx(t) � 0 ∀t ∈ [0, T ]

qx(0) = x̂ , Qx(0) = εI .

(23)

where ε is a small positive constant.

Remark 1. The derivations herein are based on the as-
sumption that certain matrices, especially Qx(t) are posi-
tive definite. Thus, a small regularization is needed ifQx(t)
is only positive semi-definite. In our implementation, we

have regularized the matrix Q̂(t) directly, i.e., we use
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Q̂(t) = GTP (t)Qx(t)P (t)G+ δI

for a small regularization δ > 0. This ensures that the

matrix Q̂(t) is invertible, i.e., the Ando geometric mean in
the Proof of Lemma 4 can be evaluated directly without
generalizing this formula to degenerate cases. For a large
enough δ, the shape matrix Qx(t) propagated through
Algorithm 1 is guaranteed to remain positive definite, thus
the constraint Qx(t) � 0, does not need to be enforced
explicitly in (23). One caveat is that the tube cross-sections
may only converge to a nondegenerate ellipsoid, whose size
depends on δ, even when the controller is able to fully
reject the uncertainty.

4. IMPLEMENTATION AND CASE STUDY

We consider a spring-mass-damper system given by(
ẋ1(t)
ẋ2(t)

)

︸ ︷︷ ︸
ẋ(t)

=

(
x2(t) + w1(t)

−k(x)x1(t)
M − hdx2(t)

M + w2(t)
M

)

︸ ︷︷ ︸
f(x(t), w(t))

+

(
0
1
M

)

︸ ︷︷ ︸
G(x(t))

u(t) ,

where x1 and x2 denote displacement with respect to the
equilibrium position [m] and its velocity [m/s], respec-
tively; M = 1 kg is the mass; k(x) := 0.33 exp (−x1),
the stiffness of the spring [N/m]; and hd = 1.1 Ns/m,
the damping factor. Bounds for the disturbance and the
control sets are given by the ellipsoids E(Qw) and E(Qu),
with Qw = diag(0.1 m2/s2, 2.5 N2) and Qu = 36 N2. The
length of the prediction horizon is set to T = 10 s, and the

initial state of the system is xstart = (0.7 m, 0.7 m/s)
T
.

The optimization problem in the tube MPC controller is
based on (23) and involves minimizing∫ T

0

(
‖qx(t)‖22 +

1

4
Tr (Qx(t)) + ux(t)

2

)
dt .

This cost corresponds to the sum of the generalized ro-
tational inertia and ux(t)

2, a control regularization term.
Moreover, we consider the constraint X := {x|x1 ≤ 0.85}.

Fig. 1. The optimal ERFIT for x̂ = xstart. Selected cross
sections and the central path qx are shown in red. The
constraint X = {x|x1 ≤ 0.85} is shown in grey. The
reference trajectory xref = 0 is shown in black.

Figure 1 presents the result of the tube-base MPC con-
troller (23). The OCP was implemented in ACADO
Toolkit (Houska et al., 2011), with a piecewise constant

discretization of ux over 40 equidistant intervals. The
numerical parameters used in the implementation were
δ = 10−4 and ε = 10−8. As expected, the controller is able
to steer the central path to the origin at t = 10. It is also
shown that the controller is not able to completely reject
the disturbance. Comparing the results of the proposed
approach with those presented in (Villanueva et al., 2017)
we can observe that although the controller based on the
reduced approach is able to steer the system so as to avoid
violating the constraint, eliminating the extra degrees of
freedom has an effect on the ability of the tube to rotate.
In order to assess the effect of the nonlinearity estimate,
we have compared the construction per Lemma 2 to an
explicit estimate (See Appendix F). The comparison is
not shown as both estimates yielded similar results. A full
comparison of the proposed construction to an optimal
ERFIT computed using all the extra degrees of freedom is
outside the scope of this paper.

5. CONCLUSION

This paper, has presented a practical approach to tube
MPC for input-affine nonlinear systems. This approach
relies on the construction of RFITs based on min-max dif-
ferential inequalities, which avoids the discretization and
construction of future control policies by parameterizing
the RFIT a priori. Similar to Villanueva et al. (2017), the
focus is on ellipsoidal tubes, and the main contribution is
a simplified computational procedure for such ellipsoidal
RFITs based on the solution of an augmented standard
optimal control problem using state-of-the-art software.
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Q̂(t) = GTP (t)Qx(t)P (t)G+ δI

for a small regularization δ > 0. This ensures that the

matrix Q̂(t) is invertible, i.e., the Ando geometric mean in
the Proof of Lemma 4 can be evaluated directly without
generalizing this formula to degenerate cases. For a large
enough δ, the shape matrix Qx(t) propagated through
Algorithm 1 is guaranteed to remain positive definite, thus
the constraint Qx(t) � 0, does not need to be enforced
explicitly in (23). One caveat is that the tube cross-sections
may only converge to a nondegenerate ellipsoid, whose size
depends on δ, even when the controller is able to fully
reject the uncertainty.

4. IMPLEMENTATION AND CASE STUDY

We consider a spring-mass-damper system given by(
ẋ1(t)
ẋ2(t)

)

︸ ︷︷ ︸
ẋ(t)

=

(
x2(t) + w1(t)

−k(x)x1(t)
M − hdx2(t)

M + w2(t)
M

)

︸ ︷︷ ︸
f(x(t), w(t))

+

(
0
1
M

)

︸ ︷︷ ︸
G(x(t))

u(t) ,

where x1 and x2 denote displacement with respect to the
equilibrium position [m] and its velocity [m/s], respec-
tively; M = 1 kg is the mass; k(x) := 0.33 exp (−x1),
the stiffness of the spring [N/m]; and hd = 1.1 Ns/m,
the damping factor. Bounds for the disturbance and the
control sets are given by the ellipsoids E(Qw) and E(Qu),
with Qw = diag(0.1 m2/s2, 2.5 N2) and Qu = 36 N2. The
length of the prediction horizon is set to T = 10 s, and the

initial state of the system is xstart = (0.7 m, 0.7 m/s)
T
.

The optimization problem in the tube MPC controller is
based on (23) and involves minimizing∫ T

0

(
‖qx(t)‖22 +

1

4
Tr (Qx(t)) + ux(t)

2

)
dt .

This cost corresponds to the sum of the generalized ro-
tational inertia and ux(t)

2, a control regularization term.
Moreover, we consider the constraint X := {x|x1 ≤ 0.85}.

Fig. 1. The optimal ERFIT for x̂ = xstart. Selected cross
sections and the central path qx are shown in red. The
constraint X = {x|x1 ≤ 0.85} is shown in grey. The
reference trajectory xref = 0 is shown in black.

Figure 1 presents the result of the tube-base MPC con-
troller (23). The OCP was implemented in ACADO
Toolkit (Houska et al., 2011), with a piecewise constant

discretization of ux over 40 equidistant intervals. The
numerical parameters used in the implementation were
δ = 10−4 and ε = 10−8. As expected, the controller is able
to steer the central path to the origin at t = 10. It is also
shown that the controller is not able to completely reject
the disturbance. Comparing the results of the proposed
approach with those presented in (Villanueva et al., 2017)
we can observe that although the controller based on the
reduced approach is able to steer the system so as to avoid
violating the constraint, eliminating the extra degrees of
freedom has an effect on the ability of the tube to rotate.
In order to assess the effect of the nonlinearity estimate,
we have compared the construction per Lemma 2 to an
explicit estimate (See Appendix F). The comparison is
not shown as both estimates yielded similar results. A full
comparison of the proposed construction to an optimal
ERFIT computed using all the extra degrees of freedom is
outside the scope of this paper.

5. CONCLUSION

This paper, has presented a practical approach to tube
MPC for input-affine nonlinear systems. This approach
relies on the construction of RFITs based on min-max dif-
ferential inequalities, which avoids the discretization and
construction of future control policies by parameterizing
the RFIT a priori. Similar to Villanueva et al. (2017), the
focus is on ellipsoidal tubes, and the main contribution is
a simplified computational procedure for such ellipsoidal
RFITs based on the solution of an augmented standard
optimal control problem using state-of-the-art software.
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Appendix A. ANDO GEOMETRIC MEAN

The derivations below use the following technical lemma.

Lemma 6. Let A,B ∈ Sn++. The equation ZAZ = B has
as solution the Ando geometric mean of A and B,

Z = A− 1
2

(
A

1
2BA

1
2

) 1
2

A− 1
2 ∈ Sn++ . (A.1)

See Lawson and Lim (2001) for a proof of this statement.

Appendix B. PROOF OF LEMMA 1

Differentiating the objective function, gives

α2
0Q

2(t) = W 2
i (t)Ĥ

2
i (t)W

2
i (t) , α0=

‖Ĥi(t)Wi(t)‖F
‖W−1

i (t)Q(t)‖F
.

Notice that, for any optimal W ∗
i (t), αW ∗

i (t) is also an

optimal weighting matrix for any α > 0. Setting α = α
− 1

2
0

and applying Lemma 6, provides the desired result. �

Appendix C. PROOF OF LEMMA 2

Since the interval matrix Hi is a bound of the Hes-
sian ∇2

xwfi on E(0, Q(t)), F̄i(t) is an upper bound for
max(ξ,ω)∈E(0,Q(t)) ‖∇2

x,wfi(ξ, ω)Wi(t)‖F. Therfore, F̄i sat-
isfies the assumption of Lemma 7 in (Villanueva et al.,
2017). Thus, the result follows from Eq. (18) with

∥∥W ∗
i (t)

−1Q(t)
∥∥2
F
= Tr

((
Ĥi(t)Q

2(t)Ĥi(t)
) 1

2

)
. �

Appendix D. PROOF OF LEMMA 3

The result for λ∗ follows by setting to zero the derivative
of λ(t)−1 Tr (Qx(t)) + λ(t)B(t)QwB(t)T. Since Qx(t) is
positive definite, its trace is positive, thus λ(t) > 0 is
satisfied and the expression λ−1(t) is well defined. A
similar argument yields the result for κ∗. �

Appendix E. PROOF OF LEMMA 4

The proof proceeds in two steps, first we minimize the

trace of Φu(t) with respect to Ŝ(t). Since Φu(t) is linear in

Ŝ(t), its trace is minimal if Ru(ux(t), γ(t)) � Ŝ(t)Q̂(t)Ŝ(t)
is active. Applying Lemma 6 to the active constraint,

yields a parametric minimizer Ŝ(t, γ(t)).

For the second step we minimize Tr (Φu(t)) with respect to

γ(t) by substituting Ŝ(t, γ(t)) into Tr (Φu(t)). As the ma-
trix square-root is monotonic with respect to the Löwner
partial order in the positive semidefinite cone, minimizing
the trace of Φu(t) is equivalent to

min
γ(t)

−Tr
(
Q̂

1
2 (t)Ru(ux(t), γ(t))Q̂

1
2 (t)

)

s. t Ru(ux(t), γ(t)) � 0, γ(t) ∈ (0, 1] .
(E.1)

Since the extremum of this problem always occurs in the
interior of (0, 1], setting the derivative of the objective
function to zero and solving the resulting quadratic equa-
tion, yields the desired expression for γ∗(t). The result

follows from setting Ŝ∗(t) = Ŝ(t, γ∗(t)).

Appendix F. EXPLICIT NONLINEARITY ESTIMATE
FOR THE SPRING-MASS-DAMPER SYSTEM

The explicit nonlinearity estimate for the spring-mass-
damper system used in Section 4 is constructed using the
following expressions:

m2(qx(t), Qx(t)) :=
1

2

∣∣∣qx1
(t) +

√
Qx1,1

(t)
∣∣∣ e
√

Qx1,1 (t) + 1

n2(qx(t), Qx(t)) :=
1

3
e−qx1 (t)

∣∣Qx1,1
(t)

∣∣m2(qx(t), Qx(t))

Ωn(qx(t), Qx(t)) =

(
0 0
0 n2

2(qx(t), Qx(t)))

)
.
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