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ABSTRACT
In this investigation, the mechanical modeling of nonlinear visco-hyperelastic resid-
ually stressed materials obtained from an invariant-based constitutive energy frame-
work is coupled with the phase field approach to fracture. The main target regards
the extension of the phase-field method to simulate pre-stressed cylindrical struc-
tures subjected to monotonic axial pulling load upon failure. This formulation is
incorporated into a numerical procedure using the Finite Element Method (FEM),
in particular, it is implemented in the commercial FE package ABAQUS as a user sub-
routine UMAT. Results suggest the dependence of the mechanical behavior and the
crack pattern of these structures on not only viscous parameters like the relaxation
time and the displacement rate, but also on the strength of the residual stress field,
which in turn depends on geometrical characteristics of the cylindrical structure
such as the radius or the length. A range of solutions related to crack propagation
is shown for different cylindrical structures, from azimuthal crack propagation to
axial one. The proposed framework aims to provide an extended application for the
already-defined visco-hyperelastic formulation by the inclusion of residual stresses.
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1. Introduction

Cylindrical structures (tube mechanics) are elements of considerable interest in ap-
plications concerning rubber-like materials and soft tissues and can be categorized as
either thin or thick-walled structures. Complying with this structural feature, the exis-
tence of residual stresses within the body does affect its mechanical behavior. Residual
stresses are associated with different processes used to manufacture materials [1] as
well as with living tissues growth [2], among other areas. Specifically, within the biome-
chanics field, residual stresses can be revealed by cutting (closed and unloaded) axial
segments of arteries since they deform when they are slit [3]. It is well known that
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residual stresses play an important role in the biological process of homeostasis, which
is the state of steady internal, physical and chemical conditions maintained during
optimal functioning by living systems [4]. A matter of upmost important to the scien-
tific community (with a clear benefit for the society) is the role that residual stresses,
and other factors, play in the understanding of arterial failure. From the mechani-
cal standpoint, arterial failure is affected by bulging- and bending-related instabilities
of inflated and extended tubes. These aspects have been lately investigated within
the context of aneurysms formation and rupture caused by high blood pressure and
weakening of the artery wall [5–8].

In order to analyze, mitigate and potentially prevent failure of pre-stressed cylin-
drical structures, the development of a rigorous and sophisticated theoretical anal-
ysis is required. This is usually complemented with the advent of reliable numeri-
cal techniques to obtain a general modelling framework that allows qualitatively and
quantitatively different aspects such as the nonlinear behavior of (visco-hyperelastic)
materials to be considered [9]. This constitutive material model is often related to
its microstructure including a network of highly flexible and mobile chains which are
three dimensional cross linked. Particularly, in polymers, the movement of the chains
is associated with viscous effects occurring in the rubber-like material, see [10] and
references therein. Moreover, as reported in [11], in materials prone to experience vis-
cous effects, the principal failure mechanism of a considerable number of elastomers is
strongly affected by the inelastic term and the rate of deformation. Accordingly, sev-
eral rheological models have been developed to describe the viscoelastic constitutive
law for elastomers which can be split into linear [12–16] and non-linear viscoelasticity
[17–19].

Within failure analysis of cracking events, fracture in elastomer-like materials is
often related to either nucleation of cavities (cavitation) [20] or crack propagation.
The latter is the focus of this work and a macromechanics approach is pursued. In
the literature, several methods have been proposed to model fracture for hyperelastic
materials [21]. These methods include fracture mechanics-based methodologies [22,
23], path-independent J-integral formulations [24–26], cohesive methods [27, 28] and
peridynamical approaches [29, 30], among others. Recently, the phase field approach to
fracture has emerged as a new modelling technique to simulate rate-dependent fracture
evolution. Based on the classical brittle fracture theory given by [31] (which defined the
crack growth when the energy release rate G reaches its critical value GC), Francfort
and Marigo [32] incorporated the phase field approach to formulate brittle fracture and
Bourdin and co-authors. [33] proposed the phase-field regularization of fracture as an
energy minimization problem of the fracture energy and the strain energy potential.
In addition to brittle fracture [34–37], the phase field technique has been extended
to ductile fracture [38–44], anisotropic fracture [45–51], dynamic fracture [52–54], and
failure of heterogeneous media [55–60]. It is also worth mentioning the breakthrough
implementation of the technique of phase field using Deep Neural Networks carried
out in [61]. In addition to this, some few approaches have been proposed to simulate
fracture phenomena in visco-elastic materials [62–66], along with another nonlocal
damage techniques like the element failure method [67, 68].

The first objective of this paper is, by employing the current visco-hyperelastic
theory, to formulate a phase field model able to capture fracture events in hyperelastic
and visco-elastic solids, a topic broadly covered as has been aforementioned. Once this
framework is implemented, the salient novelty of the present research is the subsequent
incorporation of residual stresses in order to model fracture for pre-stressed cylindrical
structures, being this combined modelling the main aim of the paper. For that last
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purpose, we use a constitutive law for residually stressed hyperelastic materials given
in terms of invariants, see [69–74].

In order to tackle the targets of this work, the phase field approach for visco-elastic
fracture proposed by [64] is combined with the rheological approach given in [10].
Accordingly, a new model is generated enabling the investigation fracture phenomena
for elastomers with viscous response. Furthermore, the model is extended to simulate
pre-stressed cylindrical structures using the constitutive framework proposed in [69].
The viscoelastic effect and the residual stresses are defined separately and are added
subsequently to give the total energy driving force of the system complying with
thermodynamic restrictions and establishing the corresponding modular format of the
theoretical framework.

The article is structured as follows. The formulation, which consists in the hy-
perelastic viscoelastic material law at hand, is developed in Sec. 2. The phase-field
governing functional along with its computational implementation in an UMAT sub-
routine is presented in Sec. 3. A benchmark example is carried out in Sec. 4.1 to
verify the hyper-visco elastic formulation. Cylindrical structures are simulated in Sec.
4.2 where a deep parametric study is carried out for viscosity-dependent parameters
such as relaxation time and displacement rate and for different residual stress fields.
Since many vanguard technologies are employing multi-layered structures with differ-
ent mechanical and fracture properties [75, 76], in Sec. 4.3, the analysis of a two-layer
hollow thick-walled cylinder is executed to address the dependence of shear modulus
mismatch between the layers, as well as fracture energy mismatch, and the presence
of pre-stresses on the mechanical performance of this structural element. Some final
remarks and conclusions are provided in Sec. 5.

2. Governing equations and constitutive formulation

This section outlines the fundamental concepts and definitions for hyperelastic and
visco-hyperelastic solids within the scope of the phase field approach to fracture.

2.1. Basic definitions

Complying with standard nonlinear Continuum Mechanics, the reference configuration
of an arbitrary body is denoted by Ω0 ⊂ Rn, being the arbitrary material points in the
reference placement denoted by the vectorX. Throughout the deformation process this
reference configuration is mapped at an arbitrary elapsed time t, with T = [0, t] onto
the corresponding current configuration Ω ⊂ Rn whose position vectors are identified
by the vector x(X, t)

The mapping of the material positions from the initial to the current configura-
tion is ruled by the non-linear deformation map φ(X, t), with x := φ(X, t). This
transformation is shown in Fig. 1. The deformation of the body is described by the
deformation gradient F, which is used to linearly map tangent vectors from the initial
to the current configuration:

F := ∇Xφ(X, t) = 1+H(X, t) (1)

where 1 is the second order identity tensor and H(X, t) is identified with the material
displacement gradient tensor. The determinant of F that is denoted by J should fulfill
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Figure 1. Deformation process from the reference configuration to the current one.

the condition J = det[F] ≥ 0.
The displacement vector is introduced to describe the motion of the body from the

reference to the current configuration at time t in Eq. (2), tracking the current position
of the material points from the reference state:

u(X, t) := x(X, t)−X (2)

From this, the right and left Cauchy-Green tensors are respectively obtained as

C := FTF; b := FFT (3)

Crack events in the proposed modelling framework are accounted for the consider-
ation of the phase field approach [33, 77]. The crack-phase field variable is described
via the material variable d(X, t):

d(X, t) : Ω0 × T → [0, 1] (4)

where the state d(X, t) = 0 identifies an intact stiffness at the material point level,
whereas d(X, t) = 1 denotes a fully deteriorated stiffness. This variable recalls the
level set of the crack in the reference configuration, see Fig. 2. The phase field method
is characterized by a regularization parameter ℓ that smears out the sharp crack by a
diffusive crack topology within a regularization region.

2.2. Constitutive formulation

With regard to the constitutive formulation, this subsection presents the particular
visco-hyperlasticity model adopted from [10]. This formulation relies on the considera-
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Figure 2. Phase field approximation of a sharp crack discontinuity in a deformable body in the reference

configuration. (a) sharp crack representation, (b) regularized crack representation in the spirit of the phase
field approach of fracture.

tion of its microstructure (highly mobile and flexible macro-molecules). The resulting
constitutive equations of rubber viscoelasticity are obtained under the assumption of
the polymer microstructure behaving like several idealized polymer networks. This me-
chanical response is characterized by macromolecules which are strongly cross-linked
in a network, where there is a sub-network with highly mobile and temporary entan-
glement mechanisms. The cross-linking is related to the elastic response, whereas the
subnetwork is responsible for the viscous behaviour. The macroscopic representation
of the system is seen in Fig. 3. Following this definition, the macroscopic finite rub-
ber response can be defined based on a volumetric-isochoric decomposition, where the
latter part itself is decomposed into an elastic and a viscous term, respectively.

Concerning the incorporation of residual stresses, a nonlinear constitutive law that
depends on a number of invariants is considered recalling the original framework de-
veloped in [69, 78]. This formulation presents the following advantages: (i) it can be
implemented into standard FE codes in a straightforward manner, (ii) it can be com-
bined with different kinds of mechanical problems, and (iii) it precludes the use of
the multiplicative descomposition as is proposed in [79]. With these arguments, the
Helmholtz free energy function Ψ(C,A,σ0) is postulated as follows:

Ψ(C,A,σ0) = Ψhyp(C) +

n∑
α=1

Ψvisco,α(C,A) + Ψres(C,σ0) (5)

where we have the expression for the free energy divided in three terms associated
to the main features of the model: (i) Ψhyp, related to the hyperelastic constitutive
part; (ii) Ψvisco,α, dedicated to every α viscous branch; and (iii) Ψres, referred to the
residual stresses present in the model. n makes reference to the number of viscous terms
considered in the rheological model; A, to the tensor that considers the stretches λ
from the microscopical system of polymer chains; and σ0, to the residual stress field
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Figure 3. Maxwellian rheological model of the response of the material consisting of the elastic branches,

representing the strongly cross-linked network, and the viscous branches, representing the highly mobile with

entanglements subnetwork.

in the reference configuration.
First, focusing on the hyperelastic term, Ψhyp, this also can be split into the corre-

sponding volumetric (Ψvol) and isochoric (Ψiso) contributions:

Ψhyp(C) = Ψiso +Ψvol (6)

which can be specialized to a standard neo-Hookean model:

Ψiso =
µ

2
(Ī1 − 3), Ψvol =

κ

2
(J − 1)2 (7)

where µ and κ denote the shear and the volumetric constant, respectively; and Ī1 is
the first invariant of the deviatoric left Cauchy-Green tensor which has the value of
Ī1 = J−2/3I1 = J−2/3tr[C].

The second Piola-Kirchhoff stress for the hyperelastic term Shyp is evaluated as:

Shyp := 2
∂Ψhyp

∂C
= 2J−2/3µ

(
I− I1C

−1

3

)
(8)

For the second term in Eq. (5), the viscous part of the model, Ψvisco, and the cor-
responding second Piola-Kirchhoff viscous overstress, Svisco, is particularized without
any loss of generality to the model proposed by Linder and co-authors [10]. In this work,
it is observed how the visco-elastic contribution is constructed from the microscopical
description of the polymer chains movement, being this microscopic-based approach
embedded into the current continuous framework of finite rubber viscoelasticity. The
temporary state of such system of polymer chains is measured by a probability func-
tion p(λ, t) obtained from the diffusion process. This magnitude is dependent from the
stretch state of the chain λ. By representing this probability function in a tensorial
form, we can associate a stretch space Lx connected locally to a material point with
position x in the current configuration Ω ⊂ Rn and map his evolution from the initial
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stretch space LX, linked to a material point with position X in the reference config-
uration Ω0 ⊂ Rn, by means of the microdeformation map P̄. More particular details
are omitted here for the sake of brevity and the reader is referred to [10]. Recalling
this constitutive model, via the definition of a so-called microdeformation map P̄, it
is possible to account for the micromechanics of the system by defining:

P̄ = F̄P̄X (9)

where P̄X stands for the pre-deformation map tensor, and F̄ is the isochoric part of
the deformation gradient at the macroscopic level.

After some operations, one reaches the definition of the tensor A

A = P̄XP̄T
X. (10)

Note that the tensorA provides the information concerning the microdeformation of
the visco-elastic subnetwork in the initial configuration and it depends on macroscopic
variables. Accordingly, the time evolution equation of this tensor reads

Ȧ =
1

τα
(C̄−1 −A) (11)

where C̄−1 is the inverse of the isochoric part of the right Cauchy-Green tensor, and
τα, the relaxation time associated to the viscous mechanism α.

After the previous definitions, the viscous counterpart of the free energy density is
obtained for every α polymer chain network

Ψvisco,α(C,A) =
1

2
µvisco,α[(A(α) : C̄)− ln(detA(α))] (12)

being µvisco,α the shear modulus for each mechanism.
After some algebraic manipulations, the resulting closed form expression for the

viscous part of the hyperelastic energy allows the computation of the second Piola-
Kirchhoff viscous overstress tensor S(visco,α) for each α mechanism, which reads

S(visco,α) = J−2/3P :
(
µvisco,αA(α)

)
(13)

where P is the fourth-order projector operator

P : (•) = • − 1

3
[(•) : C]C−1. (14)

Regarding the last term, associated with residual stresses, Ψres, in Eq. (5), a few
assumptions are made about the particular form of the stress field σ0 that is defined in
the reference configuration. Following [69], this stress field is assumed to be symmetric,
and fulfilling the conditions:
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div σ0 = 0 in Ω0, (15)

σ0N = 0 on ∂Ω0,t (16)

whereN is the normal vector to the boundary in the reference configuration. Exploiting
the previous assumptions, the particular form of Ψres(C,σ0) is given by

Ψres(C,σ0) =
f

2
(I5 − trσ0) +

1− f

4
(I6 − trσ0) (17)

where I5 = tr(σ0C) and I6 = tr(σ0C
2) are the invariants associated with the residual

stress field and f is a parameter that accounts for the weight of these invariants
in the equation. As this is a nonlinear problem, the residual stresses are necessarily
nonuniform and geometrically dependent, and the elastic response of the system will
be in-homogeneous [70].

For the subsequent numerical implementation, the contribution of the residual
stresses to the Second Piola-Kirchhoff stress is computed as:

Sres = 2
∂Ψres

∂C
= 2J−1/3

(
fσ0

2
− fI5C

−1

6

)
+ (1− f)J−2/3

(
1

4

∂I6
∂C

− I6C
−1

6

)
. (18)

where we have needed the forthcoming expressions to account for the derivative ∂Ψres

∂C

∂I5
∂C

= σ0,
∂I6
∂C

= σ0C+Cσ0 (19)

Considering Eqs. (8), (13) and (18), one reaches the complete form of total second
Piola-Kirchhoff stresses herein proposed:

S = Shyp +

n∑
α=1

Svisco,α + Sres. (20)

3. Governing functional and implementation details

3.1. Governing functional

The governing functional of the phase field approach to fracture (governing crack nu-
cleation, propagation and branching) is recalled by the definition of the corresponding
energy functional [34, 80]. In line with the ideas of [32], we define the energy functional
Π(u,Γ) of the system in the reference configuration as:

Π(u,Γ) = ΠΩ(u,Γ) + ΠΓ(Γ) =

∫
Ω0

Ψ(C,A,σ0, d)dΩ0 +

∫
Ω0

GCγ(d,∇Xd)dΩ0 (21)
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where Ψ(C,A,σ0, d) refers to the expression defined in Eq. (5), GC stands for the
fracture energy (independent of viscoelastic parameters); and γ is the crack energy
density functional. There are two different terms in Eq. (21), being ΠΩ(u,Γ) the one
that represents the energy stored in the solid and ΠΓ(Γ), the energy necessary to create
the crack according to Griffith theory.

Without loss of generality, the driving force for damage evolution is assumed to be
driven by the free energy function stated above, Ψ(C,A,σ0, d). Therefore, upon the
occurrence of cracking events, we postulate a degradation function g(d) affecting to
Ψ(C,A,σ0): Ψ(C,A,σ0, d) = g(d)Ψ(C,A,σ0).

Moreover, in order to prevent self-healing at the material point level, the engineering
formulation proposed by Miehe and co-authors [34] is used. This formulation assumes
a time-dependent t history variable parameter H:

H = maxt∈[0,tf ]Ψ(C,A,σ0, t). (22)

The so-called crack density functional defined above, γ(d,∇Xd), depends upon the
length-scale parameter ℓ and the continuous scalar-valued phase field variable d. In
line with [34], a possible choice for γ(d,∇xd) renders

γ(d,∇Xd) =
1

4cw

(
1

ℓ
w(d) + ℓ|∇Xd|2

)
(23)

where w(d) is the geometric crack function and cw is a parameter, which, like the pre-
vious one, depends on the applied phase field approach and determines the dissipation
function.

It is important to remark the necessity to propose a formulation where crack growth
only accounts while in a tension state. Therefore, to distinguish these states, we will
consider the approach proposed by Borden and co-authors [40]. In here, there is a
decomposition of the elastic strain energy density Ψ to distinguish between tensile Ψ+

and compressive states Ψ−. With these ingredients at hand, Eq. (21) is reformulated
as:

Π(u, d) =

∫
Ω0

[g(d)Ψ+(C,A,σ0, J) + Ψ−(J)]dΩ0

+

∫
Ω0

GC

4cw

(
1

ℓ
w(d) + ℓ|∇Xd|2

)
dΩ0.

(24)

In order to define the tensile and compressive states for the strain energy density,
we employ the isochoric-volumetric decomposition of Amor and co-authors [81]:

Ψ+(C,A,σ0, J) =

{
Ψhyp(C) +

∑n
α=1Ψ

visco,α(C,A) + Ψres(C,σ0) if J ≥ 1

Ψiso(C) +
∑n

α=1Ψ
visco,α(C,A) + Ψres(C,σ0) if J < 1

(25)

Ψ−(J) =

{
0 if J ≥ 1

Ψvol(J) if J < 1
(26)
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where the expressions for the isochoric Ψiso and the volumetric Ψvol can be found in
Eq. (7).

Therefore, as the degradation function only multiplies the positive cases Ψ+, the
history field variable is defined upon them H+.

H+ = maxt∈[0,tf ]Ψ
+(C,A,σ0, t). (27)

For the particularization to the so-called AT2 model [33], the degradation function
is formulated using a quadratic function:

g(d) = (1− d)2 +K (28)

being K a parameter of residual stiffness which avoids, at the same time, the system
to become ill-conditioned with numerical instabilities. For the dissipation conditions
of AT2, we set w(d) = d2 and cw = 1

2 .
The solution of Eq. (28) can be obtained by solving it as a minimization problem.

Determine (u, d) from

(u∗, d∗) = argmin
S

Π(u, d), (29)

with S = {ḋ ≥ 0 for all X ∈ Ω0}.
Following a standard Galerkin procedure, the weak form of the coupled displacement

u and fracture problem d in Eq. (24) can be obtained as:

δΠ(u, δu, d, δd) =

∫
Ω0

S : δEdΩ0︸ ︷︷ ︸
δΠu

int

−

∫
Ω0

[g′(d)(δd)Ψ+]dΩ0 +

∫
Ω0

GCℓ

[
d

ℓ2
δd+∇Xd · ∇X(δd)

]
dΩ0︸ ︷︷ ︸

δΠd
int

.

(30)

where E refers to the Green-Lagrange strain tensor, which reads as E = 1
2(C − 1),

being 1 the identity matrix. Upon the exploitation of the product rule and the Gauss’
divergence theory on Eq. (30), the phase field evolution equation is obtained as

−2(1− d)Ψ+(C,A,σ0)︸ ︷︷ ︸
H+

+GC

(
1

ℓ
− ℓ∇2d

)
= 0. (31)

Despite the robustness of the proposed formulation, convergence issues may arise
due to local instabilities. Therefore, according to [64], a pseudo-viscous resistance
against phase field evolution χ is added as a positive viscous damping term. This is
a parameter is employed in order to increase the numerical stability and to account
for the results of quasi-brittle fracture, which are obtained for χ = 0. By increasing χ,
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the fracture gets delayed compared to brittle fracture. However, χ should be kept as a
very small number, since large values of this parameter leads to numerical instabilities
in achieving equilibrum solutions. The term is added to Eq. (31) and it yields

−2(1− d)Ψ+(C,A,σ0)︸ ︷︷ ︸
H+

+GC

(
1

ℓ
− ℓ∇2d

)
+ χḋ = 0. (32)

3.2. Implementation details

This section briefly describes the numerical implementation of the current phase field
model for hyperelastic (rate independent) and visco-hyperelastic (rate dependent) me-
dia including residual stresses.

3.2.1. General remarks

The numerical implementation of the current model complies with the use of a thermo-
mechanically coupled FE formulation. This scheme has been already exploited by dif-
ferent authors, see Ostwald and co-authors [82] for its application to nonlocal regular-
ized damage models and Navidtehrani and co-authors. [83, 84] for phase field methods.
In particular, we exploit a modified version of the numerical approach developed in
[83] in the software ABAQUS using a user material subroutine UMAT in conjunction to
the functionality HETVAL, that provides an internal heat generation in heat transfer
analysis at the integration point level1. The principal reason motivating this option for
the current numerical framework is twofold: (i) from the user’s perspective, it is not
required to implement a user-defined element via the subroutine UEL of ABAQUS for the
phase field governing functional and, (ii) the use of the initial state dependent variable
routine SDVINI for the incorporation of residual stresses can be employed without any
restriction.

According to Navidtehrani and coauthors [83, 84], the resulting coupled thermo-
mechanical problem is solved using a staggered iterative solution for the obtention of
the solution of the displacement and the phase field variables. Note that staggered
iterative solution procedures generally require the use of sufficiently small load incre-
ments in order to ensure that the solution does not deviate from the equilibrium one
[34]. Concerning the FE mesh characteristics, the present formulation are integrated
into first-order hexahedral (quadrangular in 2D) hybrid elements with full integration.

Regarding the mechanical sub-problem, the mechanical user-defined material model
using the UMAT capability requires the computation of the Cauchy stress tensor (STRESS
in ABAQUS), the mechanical tangent (DDSDDE in ABAQUS), and the state dependent
variables vector STATEV. In line with the derivation presented in Sec. 2.2, the material
formulation is formulated in terms of the right Cauchy-Green deformation tensor C
and the second Piola-Kirchhoff stress tensor S. The Cauchy stress tensor σ can be
obtained from a weighted push-forward of S such that σ = J−1φ∗[S], see Eq. (35)
for the corresponding definition. The mechanical tangent can be accordingly derived
as is presented in Sec. 2.2. Finally, a set of state dependent variables is also defined
encompassing: (i) the current value of the free-energy function, (ii) the maximum value
of the driving force H throughout the loading process, (iii) the fracture toughness, and

1This is required since previous versions of ABAQUS 2019 do not compute properly the volumetric heat gener-

ation.
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(iv) the length scale parameter.
With respect to the thermal problem, we start the derivation from the local spatial

form of the heat equation. Assuming an homogeneous and temperature independent
mass density ρ, a homogenous and temperature independent heat capacity cp, and
thermal isotropy recalling the Duhamel’s law of heat conduction that yields to Fourier’s
law, q = −k∇xϑ (where q is the heat flux, thermal conductivity k and ∇xϑ is the
gradient of the temperature ϑ), the heat equation can be expressed as:

ρcp
∂ϑ

∂t
− k∇x · [∇xϑ] = rϑ, (33)

where rϑ is the spatial heat source.
The governing equation, Eq.(32) for the phase field resembles the form of the heat

equation given in Eq. (33) after rearranging some of the terms. The main difference
between both expressions lies in the computation of the gradient of phase field variable
that should be mapped onto the current configuration. For this purpose we recall
standard push-forward operations, where the gradient of the phase field in analogy
with the temperature:

∇xd = F−T∇Xd (34)

Moreover, in line with Hortig [85], a unit mass density can be defined yielding to the
identification of the variable χ with the heat capacity cp, whereas the heat generation
should be also activated and setting as material property the thermal conductivity k
equal to 1.

3.2.2. Derivation of the numerical implementation of the constitutive model

To fully implement the UMAT subroutine, the stress field and the Jacobian matrix are
required to be computed for the current system of coordinates. For that reason, there
is a need to perform a push-forward operation for these magnitudes to obtain the
Cauchy stress and the spatial constitutive tensor. It is important to highlight that all
the calculations are made for the reference configuration and then, we push-forward
the required variables at the end to adjust to the requirements of the UMAT subroutine.

Starting with the terms for the stresses, these are known to be easily computed by
doing the following product to the different terms for the second Piola-Kirchhoff stress
in Eq. (20)

σ = J−1FSFT. (35)

This operation is straightforward for the terms related to the hyperelastic (Eq. (8))
and the prestresses (Eq. (18)). However, it is important to highlight some remarks
about the evolution in time of the viscous stresses (Eq. (13)), regarding the time
dependence of the tensor A, which needs to be properly addressed. This magnitude is
updated for every iteration in the staggered scheme following the expression:

A
(α)
n+1 = A(α)

n +∆tȦ
(α)
n+1 (36)
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which can be developed by considering the expression for Ȧ(α) in Eq. (11) as

A
(α)
n+1 =

(
1

1 + ∆t/τ (α)

)[
A(α)

n +
∆t

τ (α)
(C̄−1

n+1)

]
. (37)

Subsequently after this, we decide to perform the push-forward operation in the

tensor A(α) like: a
(α)
n+1 = Fn+1A

(α)
n+1F

T
n+1. The reason on why performing this action

here rather than when computing S
(visco,α)
n+1 relies on a considerable improvement in the

convergence rate. Therefore, after doing some algebra, the expression for the Cauchy
viscous overstress in the UMAT is found

σ
(visco,α)
n+1 = J−5/3

(
µvisco,α

1 + ∆t/τ (α)

)[
a
(α)
n+1 −

1

3
tr
(
a
(α)
n+1

)
1

]
. (38)

Next, in order to compute the material Jacobian in the current configuration, it is
considered two separate terms: at first, one for the material (hyper-viscoelastic law),
which has the formula of

Cmat
ijkl =

1

2
J−1

(
Flm

∂(Jσij)

∂Fkm
+ Fkm

∂(Jσij)

∂Flm

)
(39)

where

∂(Jσij)

∂Fkm
= µJ−2/3

(
δikFjm + δjkFim − 2

3
δijFkm − 2

3
bijF

−1
mk +

2

9
(trb)δijF

−1
mk

)
+ κδijF

−1
mk +

∑
α

{
J−2/3

(
µvisco,α

1 + ∆t/τ (α)

)[
− 2

3
F−1
lk (F̄n+1A

(α)
n F̄T

n+1)ij

+
2

9
F−1
lk tr(F̄n+1A

(α)
n F̄T

n+1)δij + δik(A
(α)
n F̄T

n+1)lj + (F̄n+1A
(α)
n )ilδjk

− 1

3
(A(α)

n F̄T
n+1)lkδij −

1

3
(F̄n+1A

(α)
n )klδij

]}
.

(40)

On the other hand, the other Jacobian term accounts for the residual stresses con-
tribution. Its stiffness matrix can be computed as

Cres
ijkl = Cc,res

ijkl +
1

2
(δikσ

res
lj + δilσ

res
kj + δjlσ

res
ik + δjkσ

res
il ), (41)

Cc,res
ijkl =

4

J
FiαFjβFkγFlδ

∂2Ψres

∂C2

∣∣∣∣
αβγδ

. (42)

For the second derivative, the following terms are needed
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Table 1. Mechanical properties of the double-notched plane strain specimen.

Property (Unit) µ (MPa) κ (MPa) µvisco (MPa) GC (N/mm) ℓ (mm) f χ

Value 0.41 3.96 0.36 20.0 2.0 0.5 10−16

∂C−1

∂C

∣∣∣∣
ijkl

=
1

2
(C−1

ik C−1
lj + C−1

il C−1
kj ), (43)

∂2I6
∂C2

∣∣∣∣
ijkl

=
1

2
(δikσ0lj + δilσ0kj + δjlσ0ik + δjkσ0il). (44)

By employing them, one reaches

∂2Ψres

∂C2

∣∣∣∣
αβγδ

= J−1/3

[
− f

6
(σ0 ⊗C−1 +C−1 ⊗ σ0) +

fI5
18

C−1 ⊗C−1 − fI5
6

∂C−1

∂C

]
+ (1− f)J−2/3

[
I6
9
C−1 ⊗C−1 − 1

6

(
C−1 ⊗ ∂I6

∂C
+

∂I6
∂C

⊗C−1

)
− I6

∂C−1

∂C
+

1

4

∂2I6
∂C2

]
.

(45)

Finally, both terms of Eqs. (39) and (41) are added to form the material Jacobian

Cijkl = Cmat
ijkl + Cres

ijkl. (46)

4. Representative applications

4.1. Verification example

In order to verify the present hyperelastic and visco-hyperelastic formulation, a bench-
mark application is first considered. For this purpose, a two-dimensional plane strain
example of a double-notched specimen conducted by Hocine and co-authors. [24] is
taken as reference solution in conjunction with the corresponding correlation with
experimental data. The geometric description is displayed in Fig. 4(a), whereas the
material properties are listed in Tab. 1.

The topmost and bottommost edges of the specimen are subjected to a prescribed
monotonic displacement along the Y -direction until complete failure. Current sam-
ples are discretized using two-dimensional 8000 first-order quadrangular elements of
ABAQUS, considering only half of the domain due to symmetry conditions. Each sim-
ulation requires up to one hour of running time for one 16GB RAM computing station
with a 11th Gen Intel(R) Core(TM) i7-11800H processor.
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(a) (b)

Figure 4. a) Geometry setup of the double-notched specimen conducted by [24] with b) the corresponding

load-displacement curves (numerical, Num, and experimental, Exp) for verification

, precluding viscous effects.

In line with previous phase field models [86, 87], the current formulation is first
validated under rate-independent fracture evolution conditions. Fig. 4(b) shows the
different load-displacement evolution curves for different sizes of the initial notches,
exhibiting a very satisfactory correlation with respect to the available experimental
tests for a = [12, 20, 28] mm.

This application is further analyzed in order to elucidate the rate-dependent re-
sponse, analyzing the effect of a series of relaxation times τ = [0.05, 0.1] s and veloci-
ties v = [125, 250, 500, 1000] mm/s for a length of the prescribed notch a = 20 mm
considering only one viscous sub-domain. The corresponding force-displacement evo-
lution curves are depicted in Figs. 5(a)-5(b). Analyzing this graph it is possible to
observe that the maximum force increases and the peak displacement decreases as the
loading rate augments (both reported in Tab. 2).

Examining the mechanical response with respect to the relaxation time, the be-
haviour of a specimen at a constant loading rate v = 500 mm/s is compared in Fig.
6 for relaxation times τ = [0.01, 0.05, 0.1, 0.5] s. This graph evidences that smaller
values of the relaxation times leads to higher values for the maximum displacement
and smaller lower forces (see Tab. 3 for the values of these magnitudes). This response
shows a very good qualitative correlation with the findings reported in [64]. The phase
field evolution for one representative case is plotted in Fig. 7, where, as it is expected,
the initiation and evolution of the crack complies with Mode I fracture.

A further verification of this case is reported in Appendix A, where this parametric
study is repeated for a square single-notched plate and the outlined results display a
similar behavior to the ones aforementioned in this Section.
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(a) (b)

Figure 5. Load-displacement curves for tests with (a) τ = 0.1 s and (b) τ = 0.05 s and different
displacement rates on the double-notched specimens.

Table 2. Comparison of the maximum force and displacement for different test rates on the double-notched

specimen.

Displacement rate (mm/s) 1000 500 250 125
Relax time (s) 0.05 \ 0.1 0.05 \ 0.1 0.05 \ 0.1 0.05 \ 0.1

Maximum Force (N) 18.60 \ 19.57 17.60 \ 18.52 16.41 \ 17.58 15.38 \ 16.40
Maximum Displacement (mm) 37.60 \ 36.00 41.15 \ 36.75 45.95 \ 40.68 48.12 \ 45.68

4.2. Cylindrical structures

The main objective of this section concerns the simulation of pre-stressed cylindrical
structures using the current modelling framework. For this purpose, a parametric
analysis for hollow cylinders is conducted. Particularly, this is performed by modifying
the viscous and residual intensity parameters in order to assess their influence on the
mechanical performance of the structure.

The general features of the tests are presented in Sec. 4.2.1, which are used for
the simulation of two baseline configurations: (i) intact hollow cylindrical structures
(Sec. 4.2.2), and (ii) samples with a initial notch at the centre of the major axis (Sec.
4.2.3). It is worth mentioning that this initial notch is inserted via setting a prescribed
boundary condition on the phase field value d = 0.5.

4.2.1. Test characteristics

This section describes the specimen geometry and the particular form of the residual
stress field henceforth considered. In conjunction with the constitutive models for the
bulk described above, we adopt the following form for the residual stress field, adapted
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Figure 6. Load-displacement curves for tests with v = 500 mm/s and different relaxation times on the

double-notched plane strain specimens.

Table 3. Comparison of the maximum force and displacement for different relaxation times of the double-
notched specimen.

Displacement rate (mm/s) 500 500 500 500
Relax time(s) 0.01 0.05 0.1 0.5

Maximum Force (N) 18.95 18.58 17.60 15.36
Maximum Displacement (mm) 52.50 41.15 36.75 32.85

from [73, 88]:

σ0RR = αc(R−A)(R−B) (47)

σ0RZ =
αd

R
[(R−A)(R−B)(4Z3 − 6Z2L+ 2ZL2)] (48)

σ0ΘΘ = αc[3R
2 − 2(A+B)R+AB] +αd[(R−A)(R−B)(12Z2 − 12ZL+2L2)] (49)

σ0ZZ = −αd

R
[(2R−A−B)(Z(L− Z))2] (50)

σ0ΘZ = σ0RΘ = 0 (51)

where A and B are the inner and outer radius, respectively, of the cylindrical structure;
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Figure 7. Zoom in the notched area during: Mode I (1) crack initiation and (2) propagation for the case with
parameters v = 500mm/s and τ = 0.1 s. Plotted is the phase field parameter isocontourn with the legend

case, where blue and red denote intact and broken states, respectively.

Table 4. Mechanical properties of the cylindrical structures.

Property (Unit) µ (MPa) κ (MPa) µvisco (MPa) GC (N/mm) ℓ (mm) f χ

Value 25.00 616.67 21.74 3.0 2.0 0 10−10

αc and αd are coefficients which follow the formula αc = µᾱc/2BT and αd = µᾱd/2L
4;

and T and L are the thickness and length of the cylinder.
The strength of the residual stress field is controlled by the dimensionless parameters

ᾱc and ᾱd which account for the dependence of the system on the R and Z coordinates
of the cylindrical system. It follows that by setting ᾱd = 0, the pre-stress field only
relies on R. Further research on how to obtain a qualitative behavior of the residual
stress field for their different components can be found in [88].

Without any loss of generality, we prescribe the following dimensions for the cylin-
der: length L = 150 mm, diameter D = 5 mm and thickness T = 0.5 mm. Several
simulations for the parametric tests are conducted by changing the displacement rate,
relaxation time and the residual stresses field on cylinders with or without a phase
field initial condition on the center for d = 0.5.

The mechanical properties for the current applications are listed in Tab. 4. Note that
a nearly incompressible neo-Hookean material (ν=0.49) is set. Concerning the spatial
discretization of the system, we employ 23250 8-node hexahedral elements with one
viscous subdomain in the bulk material description.

In line with [69], present computations consist of two steps: (i) the first step is
defined for the application of the residual stresses field presented in Eqs. (47)-(51),
without prescribing any additional action, and (ii) the second step comprises the ap-
plication of a pulling action along the longitudinal axis of the cylinder till the complete
failure of the structure. Every numerical experiment requires one or two hours of com-
putational run in the aforementioned station until its completion.

The BCs configuration for the geometry is like it follows: for the first step, the cylin-
der is restricted completely in the azimuthal direction in both topmost and bottomost
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(a) (b)

Figure 8. Load-displacement curves for cases with different (a) relaxation times and (b) displacement veloc-
ities for the non pre-stressed cylinders.

Table 5. Comparison of the maximum force and displacement for the tests with different relaxation times

and v = 25 mm/s for the non pre-stressed cylinders.

Relax time (s) 0.05 0.1 0.2 0.5

Maximum Force (N) 48.60 51.79 55.93 59.16
Maximum Displacement (mm) 16.90 16.30 14.55 12.25

surfaces along the major axis in order to let the radial coordinate free for the applica-
tion of the residual stresses. For the final step, the bottomost surface is fixed whereas
the topmost surface is pulled in the Z direction until the failure of the cylindrical
specimen.

4.2.2. Pristine cylinders

4.2.2.1. Dependence on visco-elastic parameters. The first series of parametric
tests concerns the analysis of rate-dependent effects on crack propagation, in line with
Sec. 4.1. Without the application of residual stress, the effect of different relaxation
times τ = [0.05, 0.1, 0.2, 0.5] s and displacement rates v = [10, 25, 500, 100] mm/s on
the mechanical response of the current hollow cylinders are examined.

Results for the reaction force-imposed displacement evolution curves of the probes
for different relaxation times and imposed velocities are obtained. Fig. 8(a) shows
these curves for the different relaxation times setting v = 25 mm/s, whereas Fig. 8(b)
depicts the results for τ = 0.1 s and various displacement rates. Analyzing these plots,
it can be seen that the dependence of the results on these viscoelastic parameters is in
line with the verification results reported in Sec. 4.1, i.e. for higher relaxation time or
test velocity the estimated peak force increases but ultimate displacement decreases.
This trend is identified for all the cases under consideration as it is reported in Tabs.
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Table 6. Comparison of the maximum force and displacement for the tests with different displacement rates

and τ = 0.1 s for the non pre-stressed cylinders.

Displacement rate (mm/s) 100 50 25 10

Maximum Force (N) 58.80 55.93 51.79 47.91
Maximum Displacement (mm) 12.70 14.55 16.30 16.90

Figure 9. Phase field isocontour at the moment of failure for the non pre-stressed hollow cylinder.

5 and 6.
A representative phase field isocontour at the end of the computation is shown in

Fig. 9 displaying that the crack initiates from the center of the probe and propagates
axially provoking the failure of the specimen.

4.2.2.2. Dependence on residual stress parameters. Continuing with the nu-
merical tests for pre-stressed pristine cylinders, the next two series of parametric com-
putations are dedicated to the examination of the dependence of the results on both
residual stress intensity factors ᾱc and ᾱd. The effect of both parameters are analyzed
separately in order to assess the damage that they cause to the cylindrical structures.

First, results for cases with plane residual stresses are considered (ᾱc > 0 and ᾱd =
0) with a prescribed velocity equal to v = 25 mm/s and a relaxation time of τ = 0.1
s. Current predictions qualitatively coincide with that reported in [69] for the same
residual stress field, whose von Mises stress isocontour at the step of the application of
the residual stress is shown in Fig. 10. The reaction-force displacement curves for plane
residual stress cases are depicted in Fig. 11. This graph reveals that both ultimate force
and ultimate displacement decrease for greater values of the coefficient ᾱc. This can
be concluded as expected since the inclusion of residual stresses is associated with a
decrease in both strength and stiffness properties, which leads to premature failure.

For the sake of quantifying the curves, in Tab. 7, it is plotted both peak load and
displacement for the overall experiment. It is worth highlighting that applications with
higher residual stresses associated with ᾱc > 3.5 have been carried out but they are
not considered since an abrupt change in the pattern of failure occurs, provoking in
the model a severe radial strain.

Subsequently, specimens with both R- and Z-dependent residual stresses (ᾱc = 0
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Figure 10. Von Mises stresses distribution for a residual stress with ᾱc = 1.

Figure 11. Load-displacement curves for cylinders with different residual stress intensity parameter ᾱc, along
with the phase field isocontour in the final step.

and ᾱd > 0) are taken into consideration in this last series of tests. Under these
circumstances, a typical von Mises stresses isocontour is shown in Fig. 12 exhibiting
an increase in the value of this magnitude (von Mises stress) while approaching the
center of the major axis of the cylinder. This is in accordance with the patterns
displayed in [88].

In line with the previous analysis for plane residual stresses, current load-
displacement curves plotted in Fig. 13 show an overall similar trend, with some nu-
ances: the higher the value of ᾱd is set, the lower the values of the maximum force and
maximum displacement are obtained, being considerably increased this difference for
ᾱd > 50, when the peak values collapse due to this effect (see Tab. 8 for exact results).
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Table 7. Comparison of the maximum force and ultimate displacement for the tests with different ᾱc.

ᾱc 0 1 2 3 3.5

Maximum Force (N) 51.79 45.47 36.41 30.91 27.19
Maximum Displacement (mm) 16.30 16.15 16.05 14.35 13.50

Figure 12. Von Mises stresses distribution associated with a residual stress field in which ᾱd = 500.

Figure 13. Load-displacement curves for cylinders with different residual stress intensity parameters ᾱd.

In addition to this, it can be identified that the nucleation zone for failure is more
concentrated towards the centre of the major axis for higher values of ᾱd, see Fig. 14.
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Table 8. Comparison of the maximum force and ultimate displacement for the tests with different ᾱd.

ᾱd 0 10 25 50 100 250 500

Maximum Force (N) 51.79 51.39 50.79 49.70 44.93 28.94 14.12
Maximum Displacement (mm) 16.30 15.90 15.55 13.80 10.65 6.80 3.70

(a) ᾱd = 0 (b) ᾱd = 50

(c) ᾱd = 250

Figure 14. Phase field isocontour at the moment of failure for the residually stressed hollow cylinder with

different values of ᾱd.

4.2.3. Cylinders with a initial flaw prescribing the phase field values at the center of
the geometry

This section is focused on analyzing cases with a prescribed initial defect at the center
of the cylinder. This is incorporated into the simulation by setting an initial value of
the phase field variable at this location of d = 0.5. Current simulations are carried out
with a displacement rate of v = 25 mm/s and a relaxation time τ = 0.1 s for a
cylinder with the material parameters given in Tab. 1.

The corresponding reaction-force displacement curves for these cases are shown in
Fig. 15. These results display that while the peak force is reduced slightly with the
application of the phase field initial condition, the main difference between scenar-
ios with and without prescribed initial defect concerns the premature failure of the
structure, which is predicted to occur when initial flaw is considered, see Tab. 9.

Figs. 16(a) and 16(b) depict the initial state of the phase field variable and its
propagation, respectively, in a representative case for a hollow cylinder with an initial
flaw.
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Figure 15. Load-displacement curves comparing the tests on cylinders with no residual stress, with ᾱc = 1

and ᾱd = 40 and additional cases with d = 0.5 as it is indicated in the labels of the curves.

Table 9. Comparison of the maximum force and ultimate displacement obtained in the tests with and without

flaw for both pre-stressed and non pre-stressed cylinders.

Residual stresses No ᾱc = 1 ᾱd = 50

d BC d = 0.5 d = 0 d = 0.5 d = 0 d = 0.5 d = 0
Maximum Force (N) 51.59 51.79 45.14 45.46 49.58 49.70

Maximum displacement (mm) 11.85 16.30 10.50 16.15 11.20 13.80

(a) (b)

Figure 16. Axial propagation of the phase field parameter for the cylinders with the BC of d = 0.5: (a) first
step and (b) last load step (axial propagation).
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(a) (b)

Figure 17. (a) Isommetric and (b) zoomed-in-the-notch view of the cylindrical structure with two layers,

distinguishing the layer by the color.

4.3. Two-layered cylinders

4.3.1. Test characteristics

The simulation capabilities of the proposed model are further examined by considering
multilayered cylindrical structures. The two-layered cylinder systems are particularized
as follows: (i) a prescribed flaw over the thickness with a radius of 0.1 mm is defined
at the center of the outer layer, and (ii) a residual stress field with ᾱc = 0.5 and
ᾱd = 40 is set at the inner layer of the system, see the details displayed in Figs.
17(a)-17(b). The goal is to show that the methodology at hand can be used to handle
these structures. A residual stress field is established in the inner layer of the cylinder,
which
triggers a residual stress field in the outer layer, as, in general, displacements and radial
components of traction have to be continuous through the interface. Numerically, some
iterations might be needed to establish the initial equilibrium of the residually-stressed
tube.

For the particularization of the system, a nearly incompressible neo-Hookean ma-
terial is employed (ν =0.49) using a finite element mesh of 50024 8-node hexahedral
elements. Each test requires a run time in the aforementioned station between 1-2
hours for its the completion.

The test conditions are as follows: a displacement rate of v = 25 mm/s and a
relaxation time τ = 0.1 s for only one viscous subdomain are employed. The BCs do
coincide with those presented in Sec. 4.2, with the exception that now in the step for
the application of the residual stresses, only the inner bottomost and topmost surfaces
are restricted in the azimuthal direction.

A parametric study is conducted to analyze the influence of the mismatch in several
mechanical parameters on the behaviour of the sample, in particular, on the crack
initiation region and on the mechanical performance of the sample. Special attention

is paid to the effect of: (i) different shear modulus ratios (Sec. 4.3.2) and (ii) different
critical fracture energy ratios (Sec. 4.3.3).

For the current parametric analysis, the inner region is kept unchanged in terms of
some mechanical properties with respect to previous analyses, and those values are
listed in Tab. 10. The only parameter that takes different values (compared to the

25



Table 10. Mechanical properties of the inner cylindrical layer.

Property (Unit) µ (MPa) κ (MPa) µvisco (MPa) GC (N/mm) ℓ (mm) f χ

Value 10 500 12 0.1 1.2 0 10−10

Figure 18. Values of hoop and radial residual stresses along the thickness of the cylinder structure for a path

located at Z = L/4.

(a) (b)

Figure 19. Von Mises stress isocontourn for (a) the inner and (b) the outer layer, respectively, for a pre-
stressed bi-layered cylindrical structure.

previous cases) is the residual stress field since it is considered simultaneously that
ᾱc = 0.5-ᾱd = 40 [88]. Hoop (σθθ0) and radial (σRR0) stresses are represented across
the thickness of the cylinder at Z = L/4 in Fig. 18. Results for both stresses in the
inner layer of the cylinder

(
R−A
T ≤ 0.5

)
replicate qualitatively those obtained in Figure

10 of [69], and shows that the procedure captures the initial stress field. In the outer
layer, it is observed the presence of residual stresses. To compliment this result, the
von Mises stresses in the inner and outer layer are displayed in Figs. 19(a)-19(b), where
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Figure 20. Reaction force-imposed displacement curves for the parametric study changing the shear modulus
ratio without residual stress.

Table 11. Comparison of the maximum force and displacement for non pre-stressed two-layered cylinders

with different µ1/µ2 ratios.

µ1/µ2 0.2 0.5 1 2 5

Maximum Force (N) 6.83 7.84 9.35 11.94 17.95
Maximum Displacement (mm) 8.36 7.36 6.26 4.94 3.28

the difference in the magnitude of the stress field for both layers is pinpointed in the
legend box of both isocontours.

4.3.2. Shear modulus influence

First, it is analyzed the role of the shear modulus ratio between both layers µ1/µ2,
where the index 1 refers to the outer layer and the index 2 refers to the inner
layer. The particular cases that are henceforth detailed concern the ratios: µ1/µ2 =
[0.2, 0.5, 1, 2, 5]. Note that as the bulk modulus κ depends on µ and a fixed ratio
of µvisc/µ = 1.2 is considered, these parameters are also affected by the mismatch
between µ1 and µ2.

Load-displacement curves for cases without residual stresses are depicted in Fig. 20.
The failure displacement is increased for decreasing values of the ratio µ1/µ2 and, as
it is expected, results feature a compliant response since the greater the ratio µ1/µ2 is,
the greater is the mismatch between other corresponding mechanical properties ratios
between the two layers. Failure reaction and imposed displacements are reported in
Tab. 11 for several cases. From a qualitative point of view, the phase field isocontour
at the final step is plotted, which displays a damage initiation region concentrated
around the initial flaw for both outer and inner layers.
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Figure 21. Reaction force-imposed displacement curves for the parametric study changing the shear modulus
ratio with residual stress parameters ᾱc = 0.5-ᾱd = 40.

Table 12. Comparison of the maximum force and ultimate displacement for residually stressed (ᾱc = 0.5−
ᾱd = 40) two-layered cylinders with different µ1/µ2 ratios.

µ1/µ2 0.2 0.5 1 2 5

Maximum Force (N) 6.10 7.07 8.52 11.03 16.91
Maximum Displacement (mm) 6.34 5.66 4.86 3.92 2.70

The residual stress field at the inner layer notably affects the response of the system.
Force-displacement evolution curves are shown in Fig. 21, which exhibit the same
behaviour as the non pre-stressed cases. Nevertheless, the effect of the residual stress
can be appreciated in the specific failure magnitudes detailed in Tab. 12, where the
values for both peak force and displacement are subtly smaller than the bi-layered
cylinders without residual stress (see Tab. 11).

The effect of the shear modulus ratio on the pre-stressed cylinder is shown in Figs.
22(a)-22(e). From these graphs, it can be observed that the crack is captured to be
initiated at the center, where the notch is located. Note also that the peak residual
von Mises stress is at the center in the inner layer, see Fig. 19(a). Analyzing all the
cases, one envisages that the µ ratio influences the crack initiation and propagation
mode, displaying a dominant azimuthal pattern for µ1/µ2 < 1 (Figs. 22(a)-22(b))
which is switched to a Mixed-Mode propagating crack with both axial and circumfer-
ential modes for greater values of µ1/µ2 (Figs. 22(d)-22(e)).
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(a) (b)

(c) (d)

(e)

Figure 22. Crack pattern for the different critical Shear Modulus ratios with residual stress parameters
ᾱc = 0.5-ᾱd = 40. Here displayed (a) µ1/µ2 = 0.2, (b) µ1/µ2 = 0.5, (c) µ1/µ2 = 1, (d) µ1/µ2 = 2 and (e)

µ1/µ2 = 5.

4.3.3. Critical energy release rate influence

Considering now the role of GC , a mismatch of this parameter between both layers
is studied, in particular, it is considered GC,1/GC,2 = [0.2, 0.5, 1, 2, 5]. In the load-
displacement curves depicted in Fig. 23 for cases without residual stresses, it is exhib-
ited an expected behavior: when the GC ratio (toughness) is increased the area under
the curve grows i.e. the maximum load and displacement augment, being these values
quantified in Tab. 13. Regarding a qualitative standpoint, by taking a look at the crack
pattern, it is observed that nucleation is again located at the area (for both inner and
outer layers) close to the notch, in agreement with the results for non pre-stressed
probes from Sec. 4.3.2.

Taking into account residual stresses (ᾱc = 0.5 and ᾱd = 40), the load-displacement
curves are plotted in Fig. 24. These curves follow the same behavior than the curves
of Fig. 23 for non pre-stressed tubes, in the sense that peak force and displacement are
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Figure 23. Reaction force-imposed displacement curves for the parametric study changing the critical energy
release rate ratio without residual stress.

Table 13. Comparison of the maximum force and displacement for the tests with different GC ratios in non

pre-stressed two-layered cylinders.

GC,1/GC,2 0.2 0.5 1 2 5

Maximum Force (N) 5.90 7.90 9.35 10.55 11.61
Maximum Displacement (mm) 3.44 5.04 6.26 7.28 8.18

directly proportional to the ratio of critical strength (see Tab. 14). Nevertheless, the
effect of the residual stresses is clearly observed in the crack pattern plotted for each
case in Figs. 25(a)-25(e). The crack patterns display a fracture propagating azimuthally
from the flawed region, being again consistent with the Von Mises stresses isocontourn
displayed in Figs. 19(a)-19(b). The failure mechanism for different GC,1/GC,2 ratios is
observed in the fracture initiation region, which shrinks for increasing values of the
critical energy ratio.

5. Final remarks

Phase field methods for fracture simulation have evidenced several appealing aspects
stemming from its inherent versatility to accommodate different mechanical behavior
at the material point level. Exploiting a modular formalism, in this investigation, a
novel phase field approach has been developed to simulate fracture events for residually
stressed hyperelastic (rate independent) and visco-hyperelastic (rate dependent) hol-
low cylinders. The current computational model relies on the already proposed visco-
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Figure 24. Reaction force-imposed displacement curves for the parametric study changing the critical energy
release rate ratio with residual stress parameters ᾱc = 0.5-ᾱd = 40.

Table 14. Comparison of the maximum force and ultimate displacement for residually stressed (ᾱc = 0.5−
ᾱd = 40) two-layered cylinders with different GC ratios.

GC1/GC2 0.2 0.5 1 2 5

Maximum Force (N) 5.76 7.39 8.52 9.44 10.25
Maximum Displacement (mm) 2.88 3.98 4.86 5.62 6.32

hyperelasticity theoretical formulation and it has been extended to consider residual
stress fields in terms of an invariant-based formulation.

The proposed methodology was first validated against available experimental data
featuring quasi-static fracture evolution. Subsequent parametric analysis examined the
role of different mechanical aspects of the system in line with other works that use
alternative phase field models for hyperelastic and visco-hyperelastic solids. Current
simulations assessed the fracture of one-layered and two-layered cylindrical structures
evaluating both viscous (τ and u̇) and mechanical (GC and µ mismatch) effects for
several residual stress fields (which depend on the coordinates R and Z of the cylinder).
Interestingly, the incorporation of residual stress fields in multi-layered cylindrical sys-
tems led to (a priori) unexpected results in terms of crack initiation and propagation
mechanisms. This evidenced the need of the development of robust numerical frame-
works that can take into consideration such effects.

Therefore, further extensions of this research would concern the application of this
code to the analysis of bending and bulging instabilities in these kind of structures to
simulate the fracture of arteries which suffer aneurysms, as well as the incorporation
of anisotropic material laws in the layer-definition.
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(a) (b)

(c) (d)

(e)

Figure 25. Crack pattern for the different critical energy release rate ratios with residual stress parameters
ᾱc = 0.5-ᾱd = 40. Here displayed (a) GC1/GC2 = 0.2, (b) GC1/GC2 = 0.5, (c) GC1/GC2 = 1, (d) GC1/GC2 = 2

and (e) GC1/GC2 = 5.
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[6] A. Alhayani, J. Rodŕıguez, J. Merodio, Competition between radial expansion and ax-
ial propagation in bulging of inflated cylinders with application to aneurysms propaga-
tion in arterial wall tissue, International Journal of Engineering Science 85 (2014) 74–89.
doi:https://doi.org/10.1016/j.ijengsci.2014.08.008.

[7] H. Demirkoparan, J. Merodio, Bulging bifurcation of inflated circular cylin-
ders of doubly fiber-reinforced hyperelastic material under axial loading
and swelling, Mathematics and Mechanics of Solids 22 (4) (2017) 666–682.
doi:https://doi.org/10.1177/1081286515600045.

[8] J. Merodio, D. Haughton, Bifurcation of thick-walled cylindrical shells and the mechanical
response of arterial tissue affected by marfan’s syndrome, Mechanics Research Commu-
nications 37 (1) (2010) 1–6. doi:https://doi.org/10.1016/j.mechrescom.2009.10.006.

[9] N. Jha, J. Merodio, J. Reinoso, A general non-local constitutive relation for
residually stressed solids, Mechanics Research Communications 101 (2019) 103421.
doi:https://doi.org/10.1016/j.mechrescom.2019.103421.

[10] C. Linder, M. Tkachuk, C. Miehe, A micromechanically motivated diffusion-based
transient network model and its incorporation into finite rubber viscoelastic-
ity, Journal of the Mechanics and Physics of Solids 59 (10) (2011) 2134–2156.
doi:https://doi.org/10.1016/j.jmps.2011.05.005.

[11] C. Miehe, J. Keck, Superimposed finite elastic–viscoelastic–plastoelastic stress response
with damage in filled rubbery polymers. experiments, modelling and algorithmic im-
plementation, Journal of the Mechanics and Physics of Solids 48 (2) (2000) 323–365.
doi:https://doi.org/10.1016/S0022-5096(99)00017-4.

[12] J. Simo, On a fully three-dimensional finite-strain viscoelastic damage model: Formulation
and computational aspects, Computer Methods in Applied Mechanics and Engineering

33



60 (2) (1987) 153–173. doi:https://doi.org/10.1016/0045-7825(87)90107-1.
[13] S. Govindjee, J. C. Simo, Mullins’ effect and the strain amplitude dependence of the

storage modulus, International Journal of Solids and Structures 29 (14) (1992) 1737–
1751. doi:https://doi.org/10.1016/0020-7683(92)90167-R.

[14] G. A. HOLZAPFEL, On large strain viscoelasticity: Continuum formulation and finite
element applications to elastomeric structures, International Journal for Numerical Meth-
ods in Engineering 39 (22) (1996) 3903–3926. doi:https://doi.org/10.1002/(SICI)1097-
0207(19961130)39:22¡3903::AID-NME34¿3.0.CO;2-C.

[15] M. Kaliske, H. Rothert, Formulation and implementation of three-dimensional viscoelas-
ticity at small and finite strains, Computational Mechanics 19 (3) (1997) 228–239.
doi:https://doi.org/10.1007/s004660050171.

[16] N. Jha, J. Reinoso, H. Dehghani, J. Merodio, Constitutive modeling framework for resid-
ually stressed viscoelastic solids at finite strains, Mechanics Research Communications 95
(2019) 79–84. doi:https://doi.org/10.1016/j.mechrescom.2019.01.003.

[17] J. Bergström, M. Boyce, Constitutive modeling of the large strain time-dependent behav-
ior of elastomers, Journal of the Mechanics and Physics of Solids 46 (5) (1998) 931–954.
doi:https://doi.org/10.1016/S0022-5096(97)00075-6.

[18] S. Reese, S. Govindjee, A theory of finite viscoelasticity and numerical as-
pects, International Journal of Solids and Structures 35 (26) (1998) 3455–3482.
doi:https://doi.org/10.1016/S0020-7683(97)00217-5.

[19] J. Merodio, K. R. Rajagopal, On constitutive equations for anisotropic nonlinearly
viscoelastic solids, Mathematics and Mechanics of Solids 12 (2) (2007) 131–147.
doi:https://doi.org/10.1177/1081286505055472.

[20] O. Lopez-Pamies, M. I. Idiart, T. Nakamura, Cavitation in elastomeric solids: I—a defect-
growth theory, Journal of the Mechanics and Physics of Solids 59 (8) (2011) 1464–1487.
doi:https://doi.org/10.1016/j.jmps.2011.04.015.

[21] W. G. Knauss, A review of fracture in viscoelastic materials, International Journal of
Fracture 196 (1) (2015) 99–146. doi:https://doi.org/10.1007/s10704-015-0058-6.

[22] M. L. Cooke, D. D. Pollard, Fracture propagation paths under mixed mode loading within
rectangular blocks of polymethyl methacrylate, Journal of Geophysical Research: Solid
Earth 101 (B2) (1996) 3387–3400. doi:https://doi.org/10.1029/95JB02507.

[23] A. J. Pons, A. Karma, Helical crack-front instability in mixed-mode fracture, Nature
464 (7285) (2010) 85–89. doi:https://doi.org/10.1038/nature08862.

[24] N. A. Hocine, M. N. Abdelaziz, A. Imad, Fracture problems of rubbers: J-integral es-
timation based upon η factors and an investigation on the strain energy density dis-
tribution as a local criterion, International Journal of Fracture 117 (1) (2002) 1–23.
doi:https://doi.org/10.1023/A:1020967429222.

[25] R. A. Schapery, Correspondence principles and a generalizedj integral for large deforma-
tion and fracture analysis of viscoelastic media, International Journal of Fracture 25 (3)
(1984) 195–223. doi:https://doi.org/10.1007/BF01140837.

[26] M. Kroon, Steady-state crack growth in rubber-like solids, International Journal of Frac-
ture 169 (1) (2011) 49–60. doi:https://doi.org/10.1007/s10704-010-9583-5.

[27] G. Geißler, M. Kaliske, M. Nase, W. Grellmann, Peel process simulation of sealed poly-
meric film computational modelling of experimental results, Engineering Computations
24 (6) (2007) 586–607. doi:https://doi.org/10.1108/02644400710774798.

[28] I. Zreid, R. Fleischhauer, M. Kaliske, A thermomechanically coupled viscoelastic cohesive
zone model at large deformation, International Journal of Solids and Structures 50 (25)
(2013) 4279–4291. doi:https://doi.org/10.1016/j.ijsolstr.2013.08.031.

[29] T. L. Warren, S. A. Silling, A. Askari, O. Weckner, M. A. Epton, J. Xu, A non-
ordinary state-based peridynamic method to model solid material deformation and
fracture, International Journal of Solids and Structures 46 (5) (2009) 1186–1195.
doi:https://doi.org/10.1016/j.ijsolstr.2008.10.029.

[30] Y. Huang, S. Oterkus, H. Hou, E. Oterkus, Z. Wei, S. Zhang, Peridynamic model for
visco-hyperelastic material deformation in different strain rates, Continuum Mechanics

34



and Thermodynamics (Nov 2019). doi:https://doi.org/10.1007/s00161-019-00849-0.
[31] A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions

A, 221 (1920) 163–198. doi:https://doi.org/10.1098/rsta.1921.0006.
[32] G. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization

problem, Journal of the Mechanics and Physics of Solids 46 (8) (1998) 1319–1342.
doi:https://doi.org/10.1016/S0022-5096(98)00034-9.

[33] B. Bourdin, G. A. Francfort, J. J. Marigo, Numerical experiments in revisited brit-
tle fracture, Journal of the Mechanics and Physics of Solids 48 (4) (2000) 797–826.
doi:https://doi.org/10.1016/S0022-5096(99)00028-9.

[34] C. Miehe, F. Welshinger, M. Hofacker, Thermodynamically consistent phase-field
models of fracture: Variational principles and multi-field FE implementations, In-
ternational Journal for Numerical Methods in Engineering 83 (2010) 1273–1311.
doi:https://doi.org/10.1002/nme.2861.

[35] C. Kuhn, R. Müller, A continuum phase field model for fracture, Engineering Fracture Me-
chanics 77 (18) (2010) 3625–3634. doi:https://doi.org/10.1016/j.engfracmech.2010.08.009.

[36] J.-Y. Wu, A unified phase-field theory for the mechanics of damage and quasi-
brittle failure, Journal of the Mechanics and Physics of Solids 103 (2017) 72–99.
doi:https://10.1016/j.jmps.2017.03.015.

[37] J.-Y. Wu, V. P. Nguyen, A length scale insensitive phase-field damage model for
brittle fracture, Journal of the Mechanics and Physics of Solids 119 (2018) 20–42.
doi:https://10.1016/j.jmps.2018.06.006.

[38] F. P. Duda, A. Ciarbonetti, P. J. Sánchez, A. E. Huespe, A phase-field/gradient damage
model for brittle fracture in elastic-plastic solids, International Journal of Plasticity 65
(2015) 269–296. doi:https://doi.org/10.1016/j.ijplas.2014.09.005.

[39] C. Kuhn, T. Noll, R. Müller, On phase field modeling of ductile fracture, GAMM Mit-
teilungen 39 (1) (2016) 35–54. doi:https://doi.org/10.1002/gamm.201610003.

[40] M. J. Borden, T. J. R. Hughes, C. M. Landis, A. Anvari, I. J. Lee, A phase-field formu-
lation for fracture in ductile materials: Finite deformation balance law derivation, plastic
degradation, and stress triaxiality effects, Computer Methods in Applied Mechanics and
Engineering 312 (2016) 130–166. doi:https://doi.org/10.1016/j.cma.2016.09.005.

[41] R. Alessi, M. Ambati, T. Gerasimov, S. Vidoli, L. De Lorenzis, Comparison of Phase-Field
Models of Fracture Coupled with Plasticity, in: M. C. E. Oñate, D. Peric, E. de Souza-
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Appendix A. Additional benchmark example

Further verification simulations are carried out on a square single-notched plate, whose
dimensions are shown in Fig. A1(a). The discretization of the plate has been per-
formed using 10000 elements for these series of examples with a common element
size of h = 2.5 mm, see Fig. A1(b). The mechanical properties can be found in Tab.
A1. These computations have been carried out with the exclusive consideration of
hyper-viscoelastic effects for verification purposes using a staggered solution scheme.
Regarding the boundary conditions of the 2-D model: the bottommost surface is fixed
along the Y-direction, with the right corner also being in X-direction; and the topmost
surface is submitted to a monotonically increasing vertical displacement.

A parametric study has been done to study the rate-dependency of phase field
approach. Therefore, a set of relaxation times τ = [0.05, 0.1, 0.2] h and displacement
rates v = [5, 10, 20] mm/h are applied.

The phase field isocontour evolution at the crack initiation and propagation is shown
in Figs. A1(c)-A1(d). The crack starts at the notch tip and propagates straight to-
wards the end of the notch. This finding agrees with what is found in similar cases in
viscoelastic
phase field fracture like [51] and with alternative phase field models without including
viscoelastic effects [24, 34].

The reaction forces comparing the tests at different relaxation times with v = 10
mm/h (Fig. A2) and at different displacement rates with τ = 0.1 h (Fig. A3) show
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(a) (b)

(c) (d)

Figure A1. (a) Dimensions in mm, (b) mesh (c) and phase field isocontour for Mode I crack initiation and

d) propagation of the single edge notched plate.

the clear effect of the viscosity on the specimen response. Analyzing these plots, it
can be seen that for higher relaxation time, the peak force increases but the ultimate
displacement becomes lower. Related to the velocity, both the final displacement and
maximum force increase along with the increasing of the strain rate. The postpeak
behavior shown at both of these curves, where the failure of the structure is prolonged,
is in good agreement with the experimental results of [63] in a qualitative manner.
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Figure A2. Load-displacement curves for tests of the single-

notched square plate with different relaxation times.

Table A1. Mechanical properties of the single edge notched square plate.

Property Value

µ (MPa) 480
κ (MPa) 1440
µvisco (MPa) 576
Gc (MPa ·mm) 5
ℓ (mm) 1
f 0.5
χ 10−5
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Figure A3. Load-displacement curves for tests of the single-

notched square plate with different testing rates.
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