June 30, 2016

International Journal of Control RTI'LTV'Seb'3

To appear in the International Journal of Control
Vol. 00, No. 00, Month 20XX, 1-23

From Linear to Nonlinear MPC: Bridging the Gap via
Real-Time Iteration.

Sébastien Gros** and Mario Zanon® and Rien Quirynen® and Alberto Bemporad® and Moritz Diehl

aSignals & Systems, Chalmers University of Technology, Goteborg, Sweden; "Elec. Eng. Dept. (ESAT-SCD) and the
Optimization in Engineering Center (OPTEC), K.U. Leuven, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee;
¢IMT Institute for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy; ¢ IMTEK, University of
Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany

(November 2015)

Linear Model Predictive Control (MPC) can be currently deployed at outstanding speeds, thanks to recent progress
in algorithms for solving online the underlying structured Quadratic Programs. In contrast, Nonlinear MPC (NMPC)
requires the deployment of more elaborate algorithms, which require longer computation times than linear MPC.
Nonetheless, computational speeds for NMPC comparable to those of MPC are now regularly reported, provided that
the adequate algorithms are used. In this paper we aim at clarifying the similarities and differences between linear
MPC and NMPC. In particular, we focus our analysis on NMPC based on the Real-Time Iteration (RTI) scheme,
as this technique has been successfully tested and, in some applications, requires computational times that are only
marginally larger than linear MPC. The goal of the paper is to promote the understanding of RTI-based NMPC within
the linear MPC community.

Keywords: linear MPC, real-time NMPC

1. Introduction

Linear Model Predictive Control is an advanced control technique able to deal with multiple input multiple
output constrained linear systems [36, 43]. Recent algorithmic developments have significantly sped up
computational times, allowing for the deployment of MPC at outstanding speeds [17, 19, 20, 21, 39].

Nonlinear Model Predictive Control (NMPC) is an effective way of tackling problems with nonlin-
ear constraints and dynamics. Although not as widely used as linear MPC, NMPC has a long history
of deployment in the process industry [3], where the relatively slow systems at hand leave room for
computation-intensive control algorithms. However, thanks to progress in algorithms for optimal control
and embedded control platforms, NMPC is getting more and more considered also for fast applications
[2, 23,24, 25, 26, 27, 33, 44, 45, 48, 51].

One of the most successful and largely used approaches to fast NMPC is arguably based on the Real-Time
Iteration (RTT) [13] and its predecessors [35, 38]. The RTT approach exploits the fact that NMPC requires
to successively solve optimal control problems (OCPs) that are closely related, in the sense that at every
time instant the solution of the OCP at hand is very similar to the solution obtained at the previous time
instant. RTI achieves the convergence of the NMPC solution “on-the-fly”, i.e. conjointly to the evolution
of the system dynamics. The reliability of this strategy hinges on the fast contraction rate of Newton type
optimisation techniques. It has been formally studied in [16], and has been verified in many deployments
of the RTT approach.

In this paper, we aim at bridging the gap between linear and RTI-based nonlinear MPC by highlighting

*Corresponding author. Email: grosse @chalmers.se

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

the similarities and differences of the two approaches. Because the NMPC problem is solved approximately
by solving only one properly formulated QP per sampling instant, RTI can be seen as a special case of linear
time-varying MPC with two important features:

(1) the linearisation of the system dynamics occurs online and is done at the current state and control
prediction rather than on the reference trajectory;
(2) the system dynamics are simulated using a numerical integration scheme.

A theoretical justification for this approach has been provided in [13]. An intuitive justification can instead
be provided by the so-called real-time dilemma, which we describe in Section 3.3.

We remark that the connection between linear and nonlinear MPC has already been highlighted from
an algorithmic point of view in [5, 6]. Highlighting the similarity between linear and nonlinear MPC was
however not the main focus of these contributions, where the emphasis was rather on approximate RTI
implementations and efficient computations. In this paper we aim instead at clarifying the connection be-
tween the two techniques from the point of view of control engineers, based on a more tutorial and less
algorithm-focused approach.

The paper is organised as follows. Sections 2 and 3 formulate, respectively, the linear and nonlinear MPC
problems. Section 4 describes in detail the RTI-based NMPC approach, establishing its connection to linear
MPC in Section 4.3. Section 5 describes numerical methods to obtain the discrete-time nonlinear prediction
model from a continuous-time description of the system. A discussion on how to reliably implement RTI-
based NMPC is given in Section 6. Conclusions are drawn in Section 7.

2. Linear Model Predictive Control (MPC)

At every discrete-time instant ¢, for a given state estimate &; of the system, the control policy u; is defined
by solving the following optimal control problem

A ref ref
QPMPC (miv T, U;) =

N-1 T
. 1 A:Eak Al‘i’k

arg min kzo 3 [Ay] Wik [Ay g (la)

s. t. A.CI?@() = .i'i — :B;:ag (lb)

Ax; g1 = Aj KAz) + By g Aug g + 7, k=0,...,N -1, (Ic)

Ci Az) + D; g A i + hig <0, k=0,...,N -1, (1d)

where sclr-ef, ugef are the reference trajectories provided at time ¢, constraint (1b) enforces that the pre-

diction starts at the current state, constraint (I1c) enforces the system dynamics and constraint (1d) en-
forces path constraints which include e.g. actuator limitations, obstacle avoidance, etc. We use here and

in the following the notation xieg with & = 0,...,N to denote the k'™ element of the reference tra-
jectory chmf provided at time i. The same applies to uzr.ef with & = 0,..., N — 1. The trajectories
Ax; = (Azip,...,Az; N), Au; = (Au,p,...,Au; nv—1) are the deviation of the system trajectories

x;, u; predicted at time ¢ from the reference trajectories mgef, u;"ef provided at time ¢, i.e.:
f f
AZCZ‘J.C :xi,kz_x;?ka kIO,...,N, Aui,k :ui,k—ufk, k‘ZO,...,N—l. (2)
At every discrete-time instant ¢, the input applied to the system is given by:

uMPC = u]{eg + Auio, (Azi, Au;) = QPype (ﬁ:i, xrel uref) . 3)

K3 (2 2

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

Matrices W; ;, are symmetric positive semidefinite. For the sake of brevity, we omit the terminal cost
in this section. Formulation (1) is a structured Quadratic Program (QP). In case matrices A;;, B; ;, are
constant, we refer to linear MPC based on a Linear Time-Invariant (LTT) model, otherwise to Linear Time-
Varying (LTV) MPC. If the reference trajectories « ref ref satisfy the dynamics of the prediction model,
the affine terms r; ;, are zero in the dynamlc constralnts (lc) Otherwise, the affine term r; j, is non-zero and
given by the offset terms 7; j, = A; kmz A f+ B; kuie,g — a:ﬁﬁ 1

Linear MPC is often deployed to control nonlinear dynamlcal systems. Consider a time-invariant discrete
nonlinear system:

at = f(z,u), 4
with the inequality constraints
h(z,u) <0. 5)

In order to deploy linear MPC on (4)—(5), one needs to prepare the QP problem (1) (offline, whenever

possible), where the matrices A; ., B;x, Cik, D;r stem from the linearisation of the dynamics and of the
ref ref

inequality constraints at the reference trajectory x;, u;', i.e.:
of (x,u) Of (z, u)
Ai,k P}) Bi,k = T7 ’ (63)
T et o et
Oh(x,u) Oh(x,u)
Cik = 87’ v Dik = 87’ ; (6b)
R L R
f f f f f
rik = [(%r,ek, Uiek) Tig1s hik=h (xzr',ek’ Uiek) : (6¢)

The dynamic constraints (1c) and inequality constraints (1d) then approximate the nonlinear dynamics (4)
and inequality constraints (5) at the reference trajectories, i.e.:

Azigi1 = AipAzig + BipAuig + f (el ;‘35) — a2, 7
Ci kA + Dy pAugy, +h(el fe,g) <0. ®)

If the reference trajectory a:“’f ref is feasible for the system at hand, i.e. it satisfies (4) and (5), then
r; = 0 such that the task of the MPC consists solely in rejecting disturbances and the error yielded by the
linear model (7). Feasible reference trajectories are typically designed off-line via e.g. open-loop optimal
control. For a given reference trajectory computed offline, the corresponding linearisation (7) ensues, and
can also be computed offline. If an infeasible reference trajectory is used, then the term r; ;. does not vanish,
and triggers a first-order correction in the QP (1) for the infeasible trajectory.

When a set-point regulation problem is considered, a fixed reference trajectory is used. In this case
mgef, uref are constant, and satisfy the stationarity condition xiekf 41 = :c;ekf =f (xiekf , uie,f), resulting in

Tik = 0. At every discrete time instant &, the input applied to the system is given by (3).

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

3. Nonlinear MPC (NMPC)
NMPC is sometimes preferred over linear MPC because it can treat the nonlinear dynamics and constraints

directly and explicitly, as opposed to using linear approximations. We consider here a generalization of the
linear MPC formulation (1) to nonlinear systems of the form (4):

NLP (3: el u;fef> _

N T a7 xip — 't
S S B 0 e)
s. t. 1‘1,0 = ii, (9b)
xi,k+1 = f (HﬁiJg, ui,k) y k= 0, e ,N — 1, (9C)
h($i’k,ui7k) < 0,]C:O,...,N—l. (9d)

While we restrict here to a quadratic positive (semi-)definite stage cost, in the context of nonlinear MPC
more generic costs can be preferable. However, the use of a non positive-definite stage cost makes it hard
to ensure closed-loop stability [42] and additional care might be needed at the algorithmic level [40]. Note
however that, as proven in [49, 50], the feedback control law of any locally stabilising non positive-definite
NMPC formulation can be approximated up to first-order by an (N)MPC formulation with positive-definite
stage cost.

Similarly to Section 2, for the sake of brevity, we omit the terminal cost in this Section. At every time
instant ¢, Problem (9) provides the NMPC control solutions for system (4), given by:

WP — i, (@i, wi) = NLP (&, @i, i) (10)

Problem (9) is a structured Nonlinear Program (NLP), which can be solved efficiently using various
solution approaches. We briefly recall next the Sequential Quadratic Programming (SQP) approach, which
iteratively solves quadratic approximations of the NLP until convergence is achieved.

3.1 Sequential Quadratic Programming (SQP) for NMPC

In the SQP approach, Problem (9) is sequentially approximated by QPs delivering Newton directions for
performing steps towards the solution starting from the available guess. The iteration is repeated taking (not
necessarily full) Newton steps until convergence.

At a guess (22" u$""), Problem (9) is approximated by the QP:

K3 7

N guess guess _ref ref \ __
QPxyvpe (xz Ty U Ty) -

N1
. 1 AJJi’k Axi’k T A{L‘Z‘,k

arg mwip rard 92 [Au; g,] Hi [Ay, +Jik A g, (11a)

s. t. Al‘i,g = i‘i - xi%ess, (llb)

Ax; g1 = Aj KAz) + By g Aug g + 7, (11c)

Ci Az) + Dj g A j + hij <0, (11d)

International Journal of Control RTI'LTV'Seb'3

where
of (z,u) of (x, u)
Ak = “on ; By = “ou ; (12a)
T e s U gaess s
Oh(z,u) Oh(xz,u)
Ci,k‘ = O) Di,k = ou) (12b)
e s a8 s
guess ref
o guess guess guess hin —h guess guess T =W J,‘Z ko Ii,k
rig = [Tik Uik Tkt ik = M\ T Ui, | ik = Wik | guess _ ref
i,k ik

(12¢)

and H; j is some approximation for the Hessian of the Lagrangian in Problem (9). The popular Gauss-
Newton Hessian approximation [4] is given directly by H; ;, = W, in this case. The SQP algorithm at
time instant ¢ is detailed in Algorithm 1.

Algorithm 1: SQP for NMPC at discrete time %

Input: current state estimate Z;, reference trajectory (z;
while Not converged do
1 Evaluate 7; i, h; 1, and the sensitivities A; 1., B, Cik, D;k, H;j, J; 1 using (12)
2 | Construct and solve QPyyipc (24, 25", wf"*, el ref) as in (11) to get the Newton
direction (Ax;, Au;)
Compute step-size o € |0, 1] to guarantee descent [37]
Update (", u$"“™) with the Newton step:

()

ref ref) guess guess)

and initial guess (x7"" ", u;

(mguess’ ugueSS) — (mguess’ gueSS) + O[(Aml’ A’U,Z) (13)

K3 3 2

end
return NMPC solution (x;, u;) = (23", u?"?)

7) 1

The NMPC solution is then obtained from the SQP Algorithm 1 as follows:

NMPC __ _ I guess guess f f
u,; — ui,Oa (mi7 u’l) - SQP (‘r’ia Z; , W, P a;re) ur‘e)) (14)

(3 1 K3 7

where by SQP (&;, ", uf"™, @i°f, ul°") we denote the solution of NLP (&;, @i, u!°") obtained by
applying the SQP Algorithm 1 starting from the initial guess (", u?"“")

We aim here at stressing the similitudes and differences between computing the control solution using
the linear MPC approach (3) and using the NMPC approach (14). Both (1) with (6) and (11)-(12) form
a QP approximation of the NMPC problem (9). This statement is true by construction for QPxypc- By
inspection, it is also easy to verify that QPypc in (1) is an approximation of (9) if the reference trajectory
ref " 4*f) is used as the linearisation point and a Gauss-Newton Hessian approximation is used. This

(i, u;
similarity can be formally construed via the following Lemma:

Lemma 1: If a Gauss-Newton Hessian approximation is used, i.e. H; ;. = W 1., then the following equiv-
alence holds:

. £ vef _ref ref - £ ref
QPNMPC (miv mge) uzr'e) m]ire) uge > = QPMPC (.732', m;@e) uzr‘e) : (15)
Proof. by inspection, the linearisation (12) taken at 27, = xielf, ug > = urekf is identical to the lineari-
sation (6) used in QPypc in (1). Additionally, J; & evaluated at xguess = xie]f , ui‘,zess = u“}f is zero. Con-

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

EE RS ‘ 5 Thnear MPC]
or @ ® T st (ul) SGP step
- L4 & 00 Converged SQP
% 5]
o ob0onp
oo o &
0 ‘ "tofeesevese
0 5 10 15 20
A& 5 1
<2t 8 8]
> @
0 ® g o XXX R
ooDEH8e
%8599 ‘
0 5 10 15 20
0.2§ .
0 4
502 i
0'4 —O©—Linear MPC

99 —F—1st (full) SQP step
0 5 t_10 —E—Converged SQP |20
ime

Figure 1. Comparison between the open-loop predicted trajectories obtained via linear MPC (circles), via performing a single iteration of Algo-

rithm 1 using a full step (o = 1) and 5% = 1°f, w5 = ul°f (crosses), and via running Algorithm 1 to full convergence (squares).

sequently, the solution of QPypc given by (1) is identical to the solution of QPyypc given by (11). O

If the SQP Algorithm 1 is fed with the reference trajectory as an initial guess, i.e. is run as

x;, u; = SQP (ﬁ;i, aref | uref et u§6f> . (16)
Then the first Newton direction (Ax;, Awu,;) computed in Algorithm 1, line 2 is identical to the solution

of the linear MPC problem computed via (3). This observation is illustrated in Figure 1 for the simple
problem:

N N-1
min ikl 420 Y flwsel3 (17a)
k=0 k=0
s.t. xip0= T4, (17b)
sin(| 0 1 |z
ZTigk+1 = 0.9z + [(u[.+ Ulk i*) } ; (17¢)
2y 7,
ik <05, k=0,... N—1, (17d)

with state x; , € R2, input u; € R, and N = 19. The optimal trajectories obtained via linear MPC (1) are
reported using circles (o). The trajectories obtained from performing a single iteration of Algorithm 1, with
a full step (o = 1) and 28" = zI*f, u$"** = u!*f as the initial guess are displayed using plus signs (+).
The trajectories resulting from running Algorithm 1 to full convergence are displayed using squares (LJ).

3.2 Warm-started SQP for NMPC

guess guess
i Uy

Algorithm 1 requires the initial guess x 5 as an input. Selecting an adequate initial guess is
crucial for obtaining a fast and reliable convergence of the SQP iterations. First, a good initial guess allows
for avoiding the SQP algorithm to exit with an infeasible solution; secondly, it allows for taking full Newton
steps (o« = 1) in the SQP algorithm, hence allowing for a fast convergence rate.

In the previous section, we showed that when the reference trajectory is provided as an initial guess,

the first SQP step, if full, provides the same solution as linear MPC. However, the reference trajectory is

June 30, 2016

International Journal of Control

RTI'LTV'Seb'3

& & O Solution at time i-1
& @ @ O Shifted solution at time i
w2r @ & & + Solution at time i 4
-
&g
of Poovmeeed

2 4 6 8 10 12 14 16 18 20

4 @ O Solution at time i-1
) O Shifted solution at time i
a2r & + Solution at time i 4
&
L &
. esssesscesscsss

2 4 6 8 10 12 14 16 18 20

—&=—Solution at time i-1u

05F —6-Shifted solution at time iu | |
—+—Solution at time iu
-1 L L L L L L L 1 1 1
2 4 6 8 10 12 14 16 18 20
time

(a) In the absence of disturbance and model error, the guess ob-
tained via shifting the previous solution is typically an excellent ap-
proximation of the current solution. In this graph, the guess for time

O Solution at time i-1
O Shifted solution at time i
+ Solution at time i 8

o ngg
,_27+$9 QQ
ot F20300000es
2 4 6 8 10 1‘2 1‘4 1‘6 1‘8 26

4 ? O Solution at time i-1
Q O Shifted solution at time i
§2r Q + Solution at time i B
g
. Pesssesssesceses

2 4 6 8 10 12 14 16 18 20

—&—Solution at time i-1u
—O—Shifted solution at time iu|
——Solution at time iu

2 4 6 8 10 12 14 16 18 20
time
(b) In the presence of disturbances, &; diverges significantly from
the predicted one x;_1,1, and therefore the guess x$"*** obtained
via shifting needs a correction.

4 and the corresponding solution are indistinguishable.

Figure 2. Illustration of the shifting procedure.

sometimes a rather poor initial guess for the SQP strategy, e.g. when the actual system trajectory is not in
the neighbourhood of the reference.

In the specific context of SQP for NMPC, a very good initial guess for the discrete time instant ¢ can be
constructed, provided that a good solution has been obtained at the previous time instant ¢ — 1. In such a

case, the following shifting procedure can be used. Shifting constructs an initial guess x5, u?"“" for
time ¢ using the solution:
A uess uess f f
(xi—h ui—l) = SQP <.Ti_1, m@gfl) ulgfl) $§e_17 Uge_1) ’ (18)

obtained for time ¢ — 1. Shifting assumes that the system evolution follows closely the predicted trajectory,
i.e. it assumes Z; ~ x;—1,1. The shifting procedure then reads as follows

uess

a:ik =Ti1k+1, k=0,..,N—1, (19a)
uess

U =gy, k=0, N =2, (19b)
guess __ guess guess

TiN = f (%N—pui,N—l) . (19¢)

It shall be observed that if the solution (x;_1, u;—1) is feasible, then the shifted solution is feasible with
respect to the dynamic constraints. Additionally, if the guess for the time instant ¢ obtained via the shifting
procedure is sufficiently close to the exact solution of the NMPC problem (9), then the following statements
hold [14]:

o full Newton steps are selected in the SQP iterations, i.e. « = 1 at line 3 of Alg. 1;
e the first iteration of Alg. 1 provides already an excellent approximation of the exact solution to the
NMPC problem (9).

The guess for the last control input uflﬁsfl can be selected via different approaches. Whenever available,

a control law x(x) which locally stabilises the system while enforcing the path constraints can be used to
compute uf ™ = k(z¥\"")). In the absence of unmodelled perturbations, this choice guarantees recursive

1y

feasibility of the MPC scheme, i.e. feasibility not only with respect to the system dynamics, but also with

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

e . f m ‘ m ‘ m ‘ m
‘ r r ‘ r
m m m > T >
|
|
|
t
I

,,

3
t
I
I
I
f
|

I
I
I
f
|

s X u y v 2 w N

| | | t t
j i j i k !

(a) SQP: a model-based prediction of the state estimate Z; (b) RTI: every time a state estimate &; is obtained from the

can be obtained at time ¢ — 1 in order to start the next SQP measurements, the feedback phase of the RTI step is trig-

algorithm after the latest control policy ulﬂ’[}) C is delivered. gered. Once the feedback phase is completed, a new prepara-

The prediction can be used to account for the physical time tion phase is started. RTI takes successive full Newton steps,

elapsing while the SQP algorithm is running. However, sub- always using the latest information available on the system.

sequent measurements of the system evolution occurring as
the SQP algorithm is running are not incorporated in the SQP
iteration, and are therefore ignored.

Figure 3. Illustration of the SQP and RTI timelines. Note that the sampling time for the two approaches is different, so that tZSQP > t?TI.

respect to the path constraints. Under some mild assumptions, it moreover ensures a decrease in the MPC
cost, therefore enforcing stability of the closed-loop system [43]. In practice, simpler approaches are often
used. The simplest one is to create a copy of the control input at stage N — 2, i.e.

guess __ guess
Ui N—1 = Uy N—g = Wi—1,N-1- (20)

The shifting procedure is illustrated in Figures 2(a) and 2(b). It can be seen how, for the unperturbed case,
shifting provides a guess which is extremely close to the solution. In the perturbed case, a correction of the
guess is necessary but shifting is nevertheless close to the solution. These observations provide an important
intuitive justification of the Real-Time Iteration approach, described in Section 4. Before presenting it in
detail, we first review the real-time dilemma.

3.3 The real-time dilemma

Upon obtaining a new state estimate &;, the SQP procedure can be started. The real-time dilemma stems
from the fact that while the SQP iterations are performed, the physical system evolves, and the information
used to compute the state estimate &; becomes outdated.

Clearly, this problem can be partially addressed by using a prediction of what the state of the system
will be at the time the SQP algorithm will be completed, as opposed to directly using the current state
estimate. However, even when using such a prediction approach, since updating the control policy requires
the completion of the SQP algorithm, the SQP procedure introduces a potentially large delay between
gathering measurements from the physical system and delivering the corresponding required control action.
It follows that even if the SQP computational time is accounted for via a state prediction, the SQP algorithm
is nonetheless based on outdated system information. We illustrate this key issue in Fig. 3(a).

The key idea of the RTI procedure detailed in Section 4, and first presented in [14] is to consistently incor-
porate the latest information on the system evolution in the iterations computing the NMPC solutions. The
real-time dilemma then consists in choosing between applying an exact solution computed using outdated
information versus applying an approximate solution computed using the most up-to-date information.
Summary of the section

e When SQP is deployed on NMPC, and the reference trajectory is used as an initial guess, the first
step of a full step Gauss-Newton SQP delivers the same control solution as linear MPC (Lemma 1).

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

e In the context of NMPC, the SQP iteration can be efficiently warm-started by shifting the solution
obtained at the previous time instant (Sec. 3.2). In the presence of reasonably small disturbances, the
SQP algorithm then needs only a couple of full Newton steps to reach full convergence.

e When running SQP to full convergence, only the first iteration is using an up-to-date estimate of the
system state ;. Subsequent iterations are still performed based on Z;, while the system state evolves,
making z; outdated (Sec. 3.3).

4. The Real-Time Iteration (RTI)

In this section we recall the RTI approach first introduced in [14]. It is important to remark that several
approaches for real-time NMPC have been proposed in the literature. The Newton-Type Controller [35]
shares many similarities with the RTI approach, in particular the fact that it performs only one full Newton
step per sampling time. The main difference is that it does not use the generalised tangential predictor of
the initial value embedding [15] and it is based on a sequential discretisation of the system dynamics. The
Continuation/GMRES Method [38] is also based on taking a single full Newton step per sampling instant.
However, rather than on SQP it is based on an interior-point like approach where the barrier parameter
is fixed at a prescribed value and the barrier function is not self concordant. Convergence is improved
by making use of a tangential predictor. The advanced step controller [52] is based on an interior point
approach and consists in solving the NLP to convergence at each iterate. However, (a) the computational
delay is accommodated for by using a prediction of the future initial state and (b) once the actual state is
known, the solution is corrected using a tangential predictor, similarly to the Continuation/GMRES method.
In this paper, we decided to further restrict our attention to the RTI approach because of the stronger
similarities to linear MPC, since both are based on the solution of a QP at each sampling instant and can
therefore account for active set changes [15].

RTI approach consists in performing the Newton steps always using the latest information on the system
evolution. For the sake of clarity, we first introduce a simplified version of the RTI algorithm (Section
4.1), then the complete RTT algorithm (Section 4.2). Finally, we establish a comparison between RTI-based
NMPC and linear MPC that will reveal a strong connection between the two approaches (Section 4.3).

4.1 Single full Newton step in SQP

To introduce the RTT algorithm, it is useful to first consider the following Algorithm 2, which is a simplified
version of Algorithm 1 with the addition of a shifting procedure for constructing the initial guess. Here,
at every discrete time instant ¢, the NMPC solution is updated using a single full Newton step, instead
of performing the SQP algorithm to full convergence. The Newton step is taken on the NMPC solution
obtained at the previous time ¢ — 1, after the shifting procedure (19) is applied.

Algorithm 2: Newton iteration for NMPC at discrete time ¢

Input: state estimate Z;, reference trajectory (ar:;”ef

1 Shift (x;_1, u;—1) according to (19) to construct (x
2 Evaluate 7; ;;, h; ;, and the sensitivities A; i, B; x, Ci i, Dik, Hip, Jik at (x
3 Construct and solve QPnype (24, 25", uf"™™

7
4 Apply the full Newton step

, u?’f) and previous NMPC solution (x;—1, w;—1)
guess guBSS)

; _— guess guess
coa U)

, 2) asin (1) to get (Az;, Aw;)

1

using (12)
, U

(xi, u;) (23", uf") + (A, Auy)

return NMPC solution (x;, u;)

The efficiency of Algorithm 2 at providing a good approximation of the fully converged NMPC solution

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

O Solution at time i-1
O Shifted solution at time i
+ Single step at time i

o @ @ % % ¢{ Solution at time i
2 4 Q% g

ol 90000000 e
2ot e o atTime T

O Shifted solution at time i

4 ¢ ‘ ‘ ‘ ‘ i ime i
? & Soton artmer
N2r 3{9
(AT YPTTTIIIITLLL
2 4 6 8 10 12 14 16 18 20

—&—Solution at time i-1u
—&—Shifted solution at time iu
——Single step at time i

2 4 6 8 10“me12 —&—Solution at time iu

Figure 4. Tllustration of the single full Newton step approach, including state noise in the closed-loop simulation.

hinges on the assumption that the shifted NMPC solution obtained at time 7 — 1 is a good initial guess
for the NMPC solution at time 7. Under this assumption, a full Newton step can be taken (o« = 1), and
provides an excellent approximation of the fully converged NMPC solution. An illustration of this fact is
given in Figure 4, where a single full Newton step strategy is compared to a fully converged SQP method.
Algorithm 2 computes the RTI feedback control policy. However, as we will present in the next section, the
genuine RTI algorithm divides the computations in two phases so as to achieve shorter feedback latencies.
It is also interesting to note that Algorithm 2 constructs the QP using the shifted solution guess directly,
even though the initial state might be different from the state estimate Z; in this trajectory. This concept is
typically referred to as initial value embedding and it allows for a generalized tangential predictor from one
time step to the next, as discussed in more detail in [15].

4.2 The RTI algorithm: preparation-feedback split

The RTI algorithm is an improved version of Algorithm 2, where its feedback time is reduced. The im-
provement is using the fact that steps 1 and 2 of Algorithm 2 do not require the knowledge of the state
estimate %;, and can therefore be performed before the state estimate &; becomes available.

The RTI scheme (see Algorithm 3) thus proposes to split the operation between:

e a preparation phase, performing the computations involved in the steps 1 and 2 of Algorithm 2 prior
to obtaining the new state estimate ;.

e a feedback phase, performing the computations involved in steps 3 and 4 upon obtaining the latest
state estimate Z;.

Note that usually the Gauss-Newton Hessian approximation [4], i.e. H;j = W;}, is used because
(a) it does not require the computation of second order derivatives and (b) it always delivers a positive
(semi)definite Hessian approximation. For a detailed overview on the RTI scheme, including a proof of
nominal stability, we refer to [11, 12, 16].

It is important to remark that:

e The delay introduced by the feedback time can be accommodated as in linear MPC, by including a
corresponding prediction in the state estimate.

e The overall sampling time ¢; — ¢;_; that can be achieved by the RTI scheme is limited by the total
time spent in solving both the feedback phase and the preparation phase.

e The time required to perform the feedback phase is practically the same as the time required to solve

10

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

Algorithm 3: RTI for NMPC at discrete time ¢
Preparation phase performed over the time interval [t;_1, ;]

Input: previous NMPC solution (x;—1, u;_1), reference (mgﬁfl, u{efl)
1 Shift (x;_1, w;_1) according to (19) to construct (2", u"")
2 Evaluate r; i, h; and the sensitivities A; k, B, x, Cik, Dig, Hig, Jig at (22", uf""") using (12)
3 Form QP (11) omitting ;, prepare all possible computations (e.g. condensing, matrix factorisations)
return QP (11)

Feedback phase performed at time ¢; upon availability of Z;

Input: z;, prepared QP (11)
4 Compute (Ax;, Au;) by introducing #; in QP (11) and solving it
5 Apply the full Newton step

(x;, u;) < (mfuess, ulguess) + (Az;, Au;)

return NMPC solution (x;, u;)

the linear MPC problem.

e Part of the computations related to the QP solution can often be moved to the preparation phase, e.g.
using a technique called condensing [4, 44].

e The sampling time that can be achieved via RTI-based NMPC increases from standard linear MPC
by the time required for the preparation phase.

e Itis typically desirable that the feedback time is only a fraction of the overall sampling time. Because
the preparation phase can often fit in the time after the feedback phase and before the next state
estimate is available, RTI NMPC can in many cases be applied at the same sampling frequency of
linear MPC based on a model pre-linearised offline.

An illustration of the RTI timeline is displayed in Figure 3(b).

4.3 Extending linear MPC to NMPC via the RTI

We want to first establish a clear connection between linear MPC and the RTT approach described in Al-
gorithm 3, and then clarify how linear MPC can be extended to NMPC. First it is useful to observe the
following:

Lemma 2: When a Gauss-Newton Hessian approximation is used, i.e. H;) = ik and ;1 =
ref ref

%, u;_1 = w;° are fed as inputs to the preparation and feedback phases of Algorithm 3, then RTI
delivers the same solutions as the linear MPC scheme (1)-(3).

Proof. Follows from Lemma 1. [

As a consequence of Lemma 2, linear MPC can be regarded as an RTI scheme where the preparation
phase is performed only once, usually offline, based on the reference trajectory. Linear MPC then runs
only the feedback phase of Algorithm 3. This observation entails that a linear MPC scheme can be easily
extended to an approximate NMPC scheme via the RTT approach. The extension requires that one performs
the preparation phase online, i.e. that a new linearisation of the NMPC problem is performed at every
discrete time instant, based on a shifting of the previous NMPC solution. Note that algorithms which could
be classified as intermediate between linear MPC and RTI based NMPC have been proposed in [5, 6].

The difference between linear MPC, RTI NMPC and fully converged NMPC is illustrated in Fig-
ures 5, 6(a) and 6(b). Figure 5 shows the open loop predictions at time instant ¢ = 2 in the presence of

11

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

state noise. It can be seen that, while the RTI prediction is close to the fully converged SQP solution, the
linear MPC scheme delivers a different solution. Figure 6(a) displays the closed-loop trajectory in the ab-
sence of state noise. Again, RTI and fully converged SQP are indistinguishable, while linear MPC differs
significantly. Figure 6(b) proposes the same simulation with the addition of state disturbances. The same
behaviour is observed also in this case.

4.4 Global vs. local optimality

Linear MPC can be preferred because the convexity of the underlying optimisation problem guarantees
one to compute its global solution at every time instant. In contrast, the nonconvexity of the optimisation
problem underlying NMPC problems prevents such guarantees to be provided. We will argue here, however,
that under some assumptions, the solution provided by the RTI scheme will follow the global solution of
the NMPC problem. The required assumptions are the following ones:

(1) the RTI scheme is warm-started at the global optimum,

(2) the sampling frequency is sufficiently high,

(3) there are no jumps in the reference and the state,

(4) the OCP underlying the NMPC problem fulfills Second Order Sufficient Conditions (SOSC) [37] for
every feasible initial condition,

(5) the global optimum depends continuously on the initial state and reference.

A formal proof of this statement is rather involved and can be found in [11] for local optimality. Assump-
tion 1 additionally ensures that the local optimum followed by RTI is also the global one. In order to give
an intuitive understanding, we remark that Assumption 4 guarantees that the solution manifold is smooth
and has no bifurcation. This entails that the RTT will keep track of the global solution manifold as long as
it starts on that manifold and the initial conditions Z; are sufficiently close to the predicted ones. The latter
is guaranteed by Assumptions 1, 2, and 3. Faster sampling results in a larger set of disturbances for which
RTT tracks the global solution manifold. Assumption 5 ensures that the solution manifold is continuous in
time. In practice, the warm starting can be performed by setting the system at a reference steady state and
initialising the RTT algorithm accordingly. Consequently, RTI is initialised at the global optimum.

In Section 4.3 we established the connection between RTI and linear MPC. We remark that, when con-
trolling a nonlinear system, linear MPC can be seen as a specific case of RTI initialised at the reference
rather than at the current state and control prediction. In this framework, it becomes clear that the global op-
timum achieved by linear MPC is actually a local approximation of the NMPC solution in a neighbourhood
of the reference. Therefore, the linear MPC solution is not the global optimum for the nonlinear problem.
Summary of the section:

e NMPC based on RTI performs a single full Newton step at every discrete time instant, relying on
the fast convergence of Newton-type optimisation. This approach allows for performing the Newton
steps using the latest information on the system evolution.

e RTI can be divided in a preparation phase and a feedback phase, minimising the delay between
obtaining a new state estimate and updating the control policy.

e Linear MPC can be regarded as an RTI scheme where the preparation phase is performed only once,
offline. In this context, the extension of linear MPC to RTI-based NMPC then simply requires that
the preparation phase is repeatedly performed online.

5. MPC and NMPC for continuous-time systems
The preparation phase of Algorithm 3 requires to compute online the evaluation of the discretised system

dynamics (4) with the associated sensitivities, namely V f (x, u). In the case the system is readily described
as a discrete dynamic system, computing f (x,u) and Vf (x,u) is straightforward. However, in many

12

June 30, 2016

International Journal of Control RTI'LTV Seb'3

O Linear MPC
10 — T T T T T T RTI
000 0 Fully converged
(o} (o}
5F & @ o}
* & 4w F # o
of © ¥ *t38000c0ese
5 L L L L L L L L L .
2 4 6 8 10 12 14 16 18 20
O Linear MPC
4r—1 T T T T : —~ + RTI
@& & O Fully converged
(Y] 2r Q
x E 9
or stsee e
Bogsghd
2 4 6 8 10 12 14 16 18 20
0.2 |- | —©—Linear MPC
“[|—RTI o @G .
0 | [—B&—Converged =0
S - 5
.0_2»
04F = . o o d
-0.6

Figure 5. Tllustration of the RTT solution vs. the linear MPC solution at the discrete time instant ¢ = 2, with state disturbances.

O Linear MPC| | @ ° O Linear MPC
+ RTI sl o + RTI
0 Converged | & o S O Converged
1 =2r g0 h 88
O] 1+ Eﬂ;ﬂl 38
088 of 83950993 &
bteoseesesedessssse ®pgePesePad
10 15 20 25 30 0 5 10 15 20 25 30
4&8& 1 4633
3 om' 1 3r oq]'m
o2 o 4 2f o
1 o# 1 N
P o®
o &
0 of o @ & &
ofs eﬂagnaaeaaaaatwaeaeaaaT OBGQQQQQQ spoteP ety
0 5 10 15 20 25 30 0 5 10 15 20 25 30

0-26-
ol
S
0.2t
0.4 G-
L L L L & ’cﬂl £ L L L L L
15 20 25 30 0 i 10 15 20 25 30
time time

(a) No state disturbances. (b) State disturbances of covariance 0.1.

Figure 6. Illustration of the RTT solution vs. the linear MPC solution in closed-loop simulations, with and without state disturbances.

applications, the system dynamics are available in a continuous form, typically as an Ordinary Differential

Equation (ODE) of the form:

where we use s(¢) and v(t) to denote the continuous-time states and controls and, thus, distinguish them

from their discrete-time counterparts.

In this section, we will present a family of numerical methods for simulation and sensitivity generation.
It is important to stress that the well-known matrix exponential can also be considered as such a method
for numerical simulation. However, depending on the system considered, other methods might be more

13

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

accurate and less computationally intensive. We also want to stress the fact that several integration steps
can be taken inside each control interval in order to increase the accuracy of the simulation. We will also
sketch how the sensitivities can be propagated in case multiple integration steps are taken.

For the sake of simplicity we consider here an explicit ODE having time-invariant dynamics, though the
following developments can be easily extended to the time-varying case and to implicit ODE or Differential
Algebraic Equation (DAE) systems. We consider a piecewise constant parametrization of the control inputs
v(t) with parameters wuo, ..., un_1, such that v(t) = wug, t € [tg,tr41]. Note that, in principle, the
restriction to piecewise constant control parameterizations is not required as long as local basis functions
are used to maintain the structure of the resulting OCP. Also note that piecewise constant controls are most
commonly used in practice for the ease of implementation using zero-order holders. The following notation
will be used further to refer to the respective Jacobian evaluations of the ODE in (21):

Fu(w,u) = W . Fu(a,u) = 8F§f}’“) - 22)

s=x,v=u s=x,v=u

5.1 First linearise then discretise

In the context of linear MPC, it is common to compute the linearisation in (6) by directly linearising the
continuous time formulation using the reference trajectory. Subsequently, a discrete time description can
be obtained via the matrix exponential. This means that for any time instant ¢ in the reference trajectory,
matrices Ay, By are given by:

T.
ref , ref ref , ref .
A = eF‘S(‘Zi,k7ui,k)T‘s, By = / P (@i wish) (T 7F, (a:fkf, ui’eg) dr. (23)
0

Note that T; is the chosen physical sampling time satisfying Ty = t; — t;—1, i.e. Ty = % in case of an
equidistant grid over the control horizon with length 7T'.

For a fully predefined reference, (23) can be performed off-line, prior to deploying the linear MPC
scheme such as performed e.g. in [7, 10]. If the reference is time-invariant and feasible, Eq. (23) pro-
vides an exact linearisation of the continuous dynamics as long as the system resides in this steady state.
In all other cases, the linearisation provided by (23) becomes inexact. Therefore, it can be preferable to
first discretise the system using numerical integration. In the following, we will illustrate some integration
schemes which allow for highly accurate discretisations for any chosen sampling time.

5.2 First discretise then linearise

The exact discrete dynamics (4) corresponding to the system in (21) are formally given by:
. () = F (s(1),ux), T € [tk tri1]

, =s(t , with 24

f(@g,ug) == s (tg+1) { s(th) = zh, (24)

where Ty = t;1 — t; and the piecewise constant control parameterization has been used. In case 75 is
not negligible compared to the time constant of the nonlinear dynamics of the system, it is not advisable
to use the matrix exponential (23) to obtain the discrete linearisation (11c). A more generally applicable
approach is to numerically approximate the discrete dynamics from (24), in order to obtain a linearisation
with a specific desired accuracy. This requires the numerical simulation of a nonlinear system of differential
equations, see [28, 29] for a detailed overview.

For the purpose of this article, let us restrict the discussion to the class of one-step methods, an important
family which includes Runge-Kutta (RK) methods. Unlike multistep schemes, these one-step methods have
the advantage that they do not require any start-up procedure which makes them rather suitable for short

14

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

simulation times. In addition we will consider the integration over one shooting interval using a fixed step
size Tj resulting in Ng = * integration steps per shooting interval. It is important to note that these choices
are made only for the sake of simplicity, while in general any integration method could be used, e.g. a
multistep method and/or an adaptive step size implementation.

5.2.1 Explicit Euler

Let us start with the simplest but also typically not the most efficient integration scheme, known as the Euler
method and detailed in Algorithm 4. This first order method provides us with the following approximation
of the exact discrete dynamics

I f (zk, ur) — feuer (Tk, ur) || = O (T3) , (25)

which corresponds to the global or transported error [28].

The resulting discrete time nonlinear system needs to be linearised to obtain (12a), which can be per-
formed efficiently using the principle of Internal Numerical Differentiation [4], which computes the needed
sensitivities Ay, By by differentiating the integration method itself. The required derivatives can be eval-
uated using the techniques of Algorithmic Differentiation (AD) [22] and propagated forward through the
integration algorithm using the chain rule as detailed in Algorithm 4, where we denote the identity matrix
by I. Note that while the numerical integration scheme is approximating the real system dynamics up to the
integrator order, the sensitivities computed via the approach described here are the exact derivatives of the
integration scheme, up to machine precision. Hence the approach departs from computing the sensitivities
using e.g. variational approaches, where both the integration of the system dynamics and the sensitivities
are inexact [8]. For more information on the application of AD to explicit integration schemes and an
extension to adjoint sensitivity analysis, we refer the reader to [46].

Algorithm 4: Ng steps explicit Euler with forward AD

Input: T, Uk

1:13+:$k, Ak:I, Bk:O

2 forn=1: Ngdo

3 v — 2T+ T F (x7, ug)

4 [Ak Bk] — (I—i—Ti F (x+,uk)) [Ak Bk] + [0 T F, (x+,uk)]
end

return =+, A, B

5.2.2 Alternative explicit schemes

Even though the explicit Euler scheme is very simple, it typically does not yield the most efficient approach
to obtain the desired accuracy because it is only of order one. Indeed, many more explicit integration
methods have been developed and can be found e.g. in [28]. A popular example is the 4-stage Runge-Kutta
method of order 4, detailed in Algorithm 5 together with its forward sensitivity propagation. Unlike explicit
Euler, this scheme results in a global error which satisfies

I f (zhs k) — frxa (T, ug) | = O (T7) (26)

where 7; is again the chosen step size. Similar to our previous discussion on Euler, the computed sensitivi-
ties are the exact derivatives Ay = %ﬁ“uk) By, = M and can be interpreted as applying this
RK scheme to the forward system of variational differential equatlons (VDE) [46].

Note that both Algorithm 4 and 5 have been included mostly for illustration purposes, while efficient

implementations typically rely on AD tools (often implemented using either operator overloading or source

15

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

code transformation) as described in e.g. [22, 46]. The open-source ACADO Toolkit software [32] provides
a high-level framework for deploying a code-generated RTI approach, including auto generated integrators
with tailored sensitivity propagation [41].

Algorithm 5: Ng steps Runge-Kutta 4 with forward AD
Input: zy, uy

1x+:xk, Ak:I, Bk:O

2 forn=1: Ngdo

3 ki <+ F(z™,ug)
4 du G| Fo(at) [Ae Bl + [0 Fy (a7, u)]
5) k‘z_ <—F($++%k1,uk)
6 dhe da | Fo(at + Sk, ug) [(Ak + %%) (Bk + %%)} +[0 Fy(at + Lk, up)]
7) ks] <—F(x+—|—%k2,uk)
s | [o] e R+ Sk [(A+58) (Be+382)]+0 Rt + Lk w)]
9) k4_<—F(x+—|—Tik3,uk)
0 | [f g8] e R+ Tk) [(AcrTd) (BerTd)] 40 Fulet + Tiks,u)
11 xt F$++%(1€1+2k2+2]€3+k4)
T dky dky dks dko dks dks dks dka
end

return =+, A, B

5.2.3 Implicit integration schemes

In case of a stiff system of differential equations, it is advised to use an implicit integration scheme in-
stead [29]. In contrast to the previous methods, they require the solution of an implicit system of equations
to perform each integration step. Their improved stability properties typically result in a better numerical
accuracy for a given computational effort. An implicit integration scheme can readily be extended to deal
with an implicit ODE system or with a DAE of index 1. To keep our discussion compact, we do not detail
any implicit or semi-implicit methods [29] nor the computation of their sensitivities in this article. More
information and a possible implementation can be found in [1, 30]. Additionally, auto generated implicit
integrators with tailored sensitivity propagation are presented in [41].

5.3 Exponential integrators: integration by linearisation

In our discussion on how to compute the discretised and linearised dynamics from (11c), we distinguished
between two seemingly different approaches. Inspired by linear systems theory, the first approach linearises
the continuous ODE system and uses the matrix exponential to obtain its discrete time representation.
However, this can be considered a special case of the more general family of exponential integrators [31].
This means that it can actually be considered part of the second approach in which the exact nonlinear
dynamics (24) are numerically approximated.

Exponential integrators are based on a linearisation of the nonlinear ODE from Eq. (21) in a point (Z,)

A$(t) = Fy(7, 1) As(t) + Fo(z, @) Av(t) + g(As(t), Av(t)), 27)

16

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

where As(t) = s(t) — z, Av(t) = v(t) — u and g(As(t), Av(t)) denotes the nonlinear remainder. Be-
cause the linear part of the latter equations is integrated exactly, this type of methods are popular for stiff
differential equations. The simplest numerical scheme holds the value of the function g(-) constant over
the integration step resulting in the first order exponential Euler approximation. The linearisation based ap-
proach from Section 5.1 can also be obtained by applying the latter method directly to the nonlinear ODE,
using the reference trajectory as a linearisation point. This directly shows the limitations of that approach,
since only one integration step is performed and this in an offline manner instead of applying an integration
method based on the actual current state of the system.
Summary of the section
In the literature, one can find many NMPC implementations using a special case of the more general
framework of using an integration method to approximate (24) resulting in a discrete time model which can
be linearised by propagating the corresponding sensitivities. In [34], the nonlinear system is for example
discretised and linearised using a single step forward Euler integrator. In [18], a similar approach is used but
the linearisation is done at the current initial state and it is kept constant throughout the prediction horizon
in order to reduce computations.

It is important to note that:

e when the system is in steady state, the matrix exponential approach provides an exact linearisation
of the nonlinear system dynamics. In all other cases, this linearisation however becomes inexact;

e numerical integration methods can provide an arbitrarily accurate approximation of the nonlinear
discrete dynamics of the system for any given sampling time;

o the technique of Internal Numerical Differentiation in combination with AD allows one to efficiently
propagate the sensitivities of any integrator to obtain the exact linearisation of the system’s approxi-
mated discrete time dynamics;

e cfficient numerical methods are available, which make it possible to simulate the system dynamics
and sensitivities in extremely short times.

6. Reliable Implementation of RTI for Continuous Time Systems

Because the RTI scheme only takes one single full Newton step per sampling instant, this scheme is ex-
pected to work better for systems which are mildly nonlinear, while more nonlinear systems could be harder
to stabilise. This remark is true for discrete-time systems, however for continuous-time systems a careful
implementation of the algorithm makes it possible to control also highly nonlinear systems. Important tun-
ing parameters are: (a) the sampling time, (b) the horizon length, (c) the integrator accuracy, (d) the use of
a shifting strategy (e) passing the reference in a smart way, and (f) the cost tuning matrices.

The choice of the cost tuning matrices is usually done by trial and error, using knowledge of the system
to be controlled. If the problem has a clear economic criterion, a cost design strategy has been proposed
in [49, 50]. If the problem is instead of tracking nature, the cost can be chosen so as to not only stabilise
the system, but also help convergence of the algorithm. Rough guidelines include weighting every state and
control and avoiding large differences between the weights associated with each state or control.

In the following, we illustrate points (a)-(e) using as an example a pendulum mounted on top of a cart.
The derivation of the model, as well as a tutorial on integrators for fast NMPC is given in [41]. The cart can
only move on the (horizontal) x-axis and its position is given by wg. The angle of the pendulum is denoted
by 0, using the convention that § = Orad corresponds to the pendulum hanging down in the negative
(vertical) y direction. The system dynamics are given by the explicit ODE

mlsin(0)0% + mg cos(6) sin() + u i ~ ml cos(f) sin(0)62 4 u cos(0) + (M + m)gsin(6)

o= M +m — m(cos(0))? ’ (M +m — m(cos(0))?) ’

where M = 1kg, m =0.1kg,l =0.5m, g =9.81 m/s2 are respectively the mass of the cart, the mass

17

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

attached at the end of the massless pendulum rod, the rod length and the gravitational acceleration. The
NMPC controller (9) has been set up using weighting matrices Wj, = diag([10 10 0.1 0.1 0.01 })
and the terminal cost :E]Tvdiag([10 10 0.1 0.1])m ~- No path constraints have been introduced for
simplicity. All other tuning parameters are specified separately for each simulation.

For the following simulations, we consider a swing-up of the pendulum with a step in the reference for the
angle ¢ from O to 7 occuring at ¢ = 2 s. We used a prediction horizon T}, = 2 s, a sampling time 75 = 0.1 s,
an explicit Runge Kutta integrator of order 4 (RK4) with a fixed stepsize = 0.025 s (see Algorithm 5)
and we made use of the shifting strategy (19)-(20). Using the control provided by NMPC, the closed-
loop trajectories have been simulated using the integrators with error control available in Matlab. In the
following, we will study the effect of varying each one of the given parameters singularly, while keeping all
others fixed. In all figures, we will plot the closed-loop solutions obtained using RTI and converged NMPC
using thick dashed and thin continuous lines respectively, unless differently specified.

Sampling Time. When implementing NMPC for continuous-time systems, one can reduce the nonlineari-
ties in the problem by choosing a sampling time which is short enough. For different sampling times, the
closed-loop solutions are displayed in Figure 7. It can be seen that, as the sampling time gets larger, the RTI
delivers closed-loop solutions which can be quite different from the ones obtained using converged NMPC.
We also remark that, when this effect starts to become noticeable, the control performance of both RTI and
converged NMPC deteriorates significantly. It can therefore be noted that, on the proposed example, RTI
yields a better closed-loop response than fully converged NMPC when a shorter sampling time is chosen
for the former. We remark that, in order to make the comparison fair, we set the terminal cost to 0, such that
the cost functions approximate the same continuous-time cost functional.

Prediction Horizon. We illustrate now how the prediction horizon affects the controller performance by
using a prediction horizon 7}, = 0.5, 0.8, 1, 2, 4 s. In order to better visualise the performance of the
different NMPC controllers, we introduce the step in the reference at ¢ = 4 s. The closed-loop solutions
are displayed in Figure 8. It can be seen that, when the prediction horizon becomes too short, the controller
performance visibly degradates and the RTI solutions start to diverge from the converged solutions.

Integrator Accuracy. Because the integrator accuracy determines the accuracy of the discrete-time model
used by NMPC, one must choose an integrator which delivers predictions that are accurate enough to predict
the evolution of the system in time. The closed-loop solutions are displayed in Figure 9 using a sampling
time 7g = 0.15 s and an explicit Euler integrator with a number of integration steps Ng = 20, 10, 5, 2, 1
over one shooting interval. It can be seen that, as the accuracy becomes lower, the RTI solutions start to
diverge from the converged solutions and the control performance worsens.

It is important to note that, using 2 steps of RK4 yields a closed-loop behaviour which is very close to
that obtained by using 30 steps of explicit Euler, but its preparation phase takes only about 26% of the time
needed when using 30 steps of explicit Euler. As described in Section 5, RK4 consists of 4 stages, while
explicit Euler consists of 1 stage: this is reflected in the computational times for the preparation phase
which become similar when using 2 steps of RK4 or 8 steps of explicit Euler. The closed-loop trajectories
displayed in Figure 9 also highlight another important fact: the difference between using 10 or 20 steps of
explicit Euler is marginal. Indeed, high integration accuracies are not always needed and the closed-loop
trajectories become insensitive to integrator accuracy when it gets high enough. Moreover, when deploying
NMPC on real systems, unmodeled dynamics and external perturbations dominate over the integration
error, so that it can be preferrable to favour faster sampling times and rather use a reduced integration
accuracy in order to meet tight timing constraints. For the considered scenario, 10 steps of explicit Euler
or the cheaper choice of 1 step of RK4 could already yield an accurate enough integrator. We remark
however that the studied example has been chosen for illustration and all the proposed schemes have an
overall computational time well below 1 ms on a 2,3 GHz Intel Core i7 with 16 Gb of RAM so that the
computational effort is not a concern.

Shifting. As already highlighted in Section 3.2, constructing an initial guess by shifting the trajectory ob-
tained at the previous sampling time can be very beneficial when implementing NMPC using the RTI

18

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

Figure 7. Closed-loop simulations of a pendulum swing-up using several sampling times 75 = 0.025, 0.05, 0.1, 0.2, 0.5 s. The trajectories
obtained using RTI and converged NMPC are plotted in thick dashed and thin continuous lines respectively.

1

05—

40 —

Figure 8. Closed-loop solutions of a pendulum swing-up using several prediction horizons T, = 0.5, 0.8, 1, 2, 4 s and a step in the reference
occuring at t = 4 s. The trajectories obtained using RTI and converged NMPC are plotted in thick dashed and thin continuous lines respectively.

scheme. This fact is also highlighted in Figure 10, where it can be seen that, using a sampling time
Ty = 0.05 s the closed-loop trajectories obtained using RTI without shifting yield poor control perfor-
mance. Instead, by using the shifting strategy, the RTI solution matches the converged NMPC solution very
closely. We remark that, by using a sampling time 75 = 0.1 s, the RTI solution without shifting becomes
unstable, while the RTI solution with shifting still matches the converged NMPC solution very closely.

Choice of the Reference. The choice of the reference trajectory is also a crucial element for ensuring a
reliable implementation of the RTI scheme. In the ideal case, one would pre-compute a feasible trajectory
so that the NMPC controller only needs to reject perturbations. Sometimes this is not possible and the
NMPC controller needs to both reject perturbations and plan the trajectory that the system must follow.
The simulations we performed in this section fall into the second category: we used a step in the reference
that was passed to the RTI-NMPC controller. Because it is a large step, we decided to introduce it after
2 s instead of having it at the beginning of the horizon. This is beneficial because it progressively enters
the NMPC prediction horizon and leaves the time to the RTI scheme to converge to the solution before the
system starts to move. Indeed, reference changes which occur far from the beginning of the horizon do not
affect the initial part of the predicted trajectory. This fact is illustrated in Figure 11, where we display the
closed-loop solutions obtained by introducing the step in the reference at time ¢t = 0, 1, 2, s. It can be seen
that, when the step enters at the end of the horizon, the RTI and converged solutions are indistinguishable.
When the step is provided at the beginning of the horizon instead, the RTI solution is very far from the

19

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

0 05 1 1.5 2 25 3 35 4 4.5 5

0 0.5 1 15 2 25 3 35 4 4.5 5

Figure 9. Closed-loop solutions of a pendulum swing-up using different integrator accuracies with a sampling time 75 = 0.15 s and an explicit
Euler integrator with a number of integration steps Ng = 20, 10, 5, 2, 1 over one shooting interval. The trajectories obtained using RTI and
converged NMPC are plotted in thick dashed and thin continuous lines respectively.

RTI with shift

e 1 RTI without shift
= o ~ \\ / T converged NMPC
E— N —
05
1 | | | | | | | | | |
0 05 1 15 2 25 3 35 4 45 5
4
T //’
s e
2 | | | | | | | | | |
0 05 1 15 2 25 3 35 4 45 5

u [m/
o
g
T
[
1
0
1

50 | I |
0

Figure 10. Closed-loop solutions of a pendulum swing-up using RTI with and without shifting as well as converged NMPC. The solutions obtained
using RTI with and without shifting are displayed in continuous blue and red line respectively, while the converged NMPC solution is displayed in
dashed yellow line.

converged one and its performance is very poor. When the step occurs at ¢ = 1 s instead, the RTI solution
differs from the converged NMPC solution, but its performance is still good.

Summary of the section

The RTI scheme is able to closely track the converged NMPC solution, provided that the algorithm is im-
plemented carefully. In particular, the sampling time should be chosen small enough, the prediction horizon
long enough, the integrator should be accurate, the shifting strategy should be used and the reference should
be chosen adequately. Moreover, tuning the cost appropriately is also important for guaranteeing good per-
formance. Examples of successful implementations of the RTI scheme for nontrivial nonlinear systems can
be found in [2, 9, 23, 24, 26, 47, 51].

7. Conclusions
In this paper, we have clarified the similarities and differences between linear MPC and the RTI-based
NMPC approach. On the one hand, RTI can be seen as a straightforward extension of linear MPC, which

makes use of an integrator to re-linearise the system dynamics and path constraints at the current prediction
rather than on the reference. On the other hand, RTI is an SQP-type solver for NMPC, which, under mild

20

June 30, 2016 International Journal of Control RTI'LTV'Seb'3

Figure 11. Closed-loop solutions of a pendulum swing-up using a step in the reference occuring at times t = 0, 1, 2, s. The trajectories obtained
using RTI and converged NMPC are plotted in thick dashed and thin continuous lines respectively.

assumptions, tracks the NMPC solution manifold. Therefore, in many cases, the RTI strategy can be de-
ployed to implement a genuine NMPC scheme with a limited additional computational burden and coding
effort compared to linear MPC.

References

[1]

(2]
[3]
[4]

[5]

[6]

[7]
(8]
[9]

[10]

J. Albersmeyer and H.G. Bock. Sensitivity Generation in an Adaptive BDF-Method. In Modeling,
Simulation and Optimization of Complex Processes: Proceedings of the International Conference on
High Performance Scientific Computing, 2006, Hanoi, Vietnam, pages 15-24. Springer, 2008.

T. Albin, D. Ritter, D. Abel, R. Quirynen, and M. Diehl. Nonlinear MPC for a two-stage turbocharged
gasoline engine airpath. In 54th IEEE Conference on Decision and Control, 2015.

F. Allgéwer, Z. Nagy, and R. Findeisen. Nonlinear model predictive control: From theory to applica-
tions. In Proc. Int. Symp. Design, Operation and Control of Chemical Plants (PSE), 2002.

H.G. Bock. Recent advances in parameter identification techniques for ODE. In P. Deuflhard and
E. Hairer, editors, Numerical Treatment of Inverse Problems in Differential and Integral Equations,
pages 95-121. Birkhauser, Boston, 1983.

H.G. Bock, M. Diehl, E.A. Kostina, and J.P. Schloder. Constrained Optimal Feedback Control of
Systems Governed by Large Differential Algebraic Equations. In L. Biegler, O. Ghattas, M. Heinken-
schloss, D. Keyes, and B. van Bloemen Waanders, editors, Real-Time and Online PDE-Constrained
Optimization, pages 3-22. SIAM, 2007.

H.G. Bock, M. Diehl, P. Kiihl, E. Kostina, J.P. Schloder, and L. Wirsching. Numerical Methods
for Efficient and Fast Nonlinear Model Predictive Control. In Proceedings of “Int. Workshop on
assessment and future directions of Nonlinear Model Predictive Control”. Springer, 2005.

I. Bonis, W. Xie, and C. Theodoropoulos. A linear model predictive control algorithm for nonlinear
large-scale distributed parameter systems. AIChE J., 58:801-811, 2012.

M. Caracotsios and W.E. Stewart. Sensitivity analysis of initial value problems with mixed ODEs and
algebraic equations. Computers and Chemical Engineering., 9:359-365, 1985.

F. Debrouwere, M. Vukov, R. Quirynen, M. Diehl, and J. Swevers. Experimental Validation of Com-
bined Nonlinear Optimal Control and Estimation of an Overhead Crane. In Proceedings of the 19th
World Congress of the International Federation of Automatic Control, 2014.

S. Di Cairano, D. Yanakiev, A. Bemporad, I. V. Kolmanovsky, and D. Hrovat. Model Predictive
Idle Speed Control: Design, Analysis, and Experimental Evaluation. IEEE Transactions on Control
Systems and Technology, 20:84-97, 2012.

21

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

[11] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes. PhD thesis, Universitit
Heidelberg, 2001.

[12] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes, volume 920 of Fortschr.-Ber.
VDI Reihe 8, Mef3-, Steuerungs- und Regelungstechnik. VDI Verlag, Diisseldorf, 2002.

[13] M. Diehl, H.G. Bock, and J.P. Schldder. A real-time iteration scheme for nonlinear optimization in
optimal feedback control. SIAM Journal on Control and Optimization, 43(5):1714-1736, 2005.

[14] M. Diehl, H.G. Bock, J.P. Schléder, R. Findeisen, Z. Nagy, and F. Allgower. Real-time optimization
and Nonlinear Model Predictive Control of Processes governed by differential-algebraic equations.
Journal of Process Control, 12(4):577-585, 2002.

[15] M. Diehl, H. J. Ferreau, and N. Haverbeke. Nonlinear model predictive control, volume 384 of Lecture
Notes in Control and Information Sciences, chapter Efficient Numerical Methods for Nonlinear MPC
and Moving Horizon Estimation, pages 391-417. Springer, 2009.

[16] M. Diehl, R. Findeisen, F. Allgéwer, H.G. Bock, and J.P. Schloder. Nominal Stability of the Real-
Time Iteration Scheme for Nonlinear Model Predictive Control. IEE Proc.-Control Theory Appl.,
152(3):296-308, 2005.

[17] A. Domahidi, A. Zgraggen, M.N. Zeilinger, M. Morari, and C.N. Jones. Efficient Interior Point
Methods for Multistage Problems Arising in Receding Horizon Control. In IEEE Conference on
Decision and Control (CDC), pages 668 — 674, Maui, HI, USA, December 2012.

[18] P.Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. E. Tseng. A Linear Time Varying Model Predictive
Control Approach to the Integrated Vehicle Dynamics Control Problem in Autonomous Systems. In
Proceedings of the 46th IEEE Conference on Decision and Control, 2007.

[19] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl. qpOASES: A parametric active-
set algorithm for quadratic programming. Mathematical Programming Computation, 6(4):327-363,
2014.

[20] J. V. Frasch, S. Sager, and M. Diehl. A Parallel Quadratic Programming Method for Dynamic Opti-
mization Problems. Mathematical Programming Computations, 7(3):289-329, 2015.

[21] G. Frison, H.B. Sorensen, B. Dammann, and J.B. Jorgensen. High-performance small-scale solvers
for linear model predictive control. In Proc. 2014 European Control Conference (ECC), pages 128—
133, June 2014.

[22] A. Griewank and A. Walther. Evaluating Derivatives. SIAM, 2 edition, 2008.

[23] S. Gros, R. Quirynen, and M. Diehl. Aircraft Control Based on Fast Nonlinear MPC & Multiple-
shooting. In Conference on Decision and Control, 2012.

[24] S. Gros, R. Quirynen, and M. Diehl. An Improved Real-time NMPC Scheme for Wind Turbine
Control using Spline-Interpolated Aerodynamic Coefficients. In Conference on Decision and Control,
2014.

[25] S. Gros, M. Vukov, and M. Diehl. A Real-time MHE and NMPC Scheme for the Control of Multi-
Mega Watts Wind Turbines. In Conference on Decision and Control, 2013.

[26] S. Gros, M. Zanon, and M. Diehl. Control of Airborne Wind Energy Systems Based on Nonlinear
Model Predictive Control & Moving Horizon Estimation. In European Control Conference, pages
1017-1022, 2013.

[27] S. Gros, M. Zanon, M. Vukov, and M. Diehl. Nonlinear MPC and MHE for Mechanical Multi-Body
Systems with Application to Fast Tethered Airplanes. In Proceedings of the 4th IFAC Nonlinear
Model Predictive Control Conference, Noordwijkerhout, The Netherlands, pages 86-93, 2012.

[28] E. Hairer, S.P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations 1. Springer Series in
Computational Mathematics. Springer, Berlin, 2nd edition, 1993.

[29] E. Hairer, S.P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations Il — Stiff and
Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer, Berlin,
2nd edition, 1996.

[30] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, and C.S. Woodward.
SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM Transactions on
Mathematical Software, 31:363-396, 2005.

22

June 30, 2016

International Journal of Control RTI'LTV'Seb'3

[31] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica, 19:209-286,
52010.

[32] B.Houska, H. J. Ferreau, and M. Diehl. ACADO Toolkit — An Open Source Framework for Automatic
Control and Dynamic Optimization. Optimal Control Applications and Methods, 32(3):298-312,
2011.

[33] B. Houska, H. J. Ferreau, and M. Diehl. An Auto-Generated Real-Time Iteration Algorithm for
Nonlinear MPC in the Microsecond Range. Automatica, 47(10):2279-2285, 2011.

[34] T. Keviczky and G. J. Balas. Software-Enabled Receding Horizon Control for Autonomous Un-
manned Aerial Vehicle Guidance. Jounal of Guidance, Control, and Dynamics, 29:680-694, 2006.

[35] W.C. Li and L.T. Biegler. Multistep, Newton-Type Control Strategies for Constrained Nonlinear
Processes. Chem. Eng. Res. Des., 67:562-577, 1989.

[36] David Q. Mayne. Model predictive control: Recent developments and future promise. Automatica,
50(12):2967 — 2986, 2014.

[37] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer, 2 edition, 2006.

[38] T. Ohtsuka. A Continuation/GMRES Method for Fast Computation of Nonlinear Receding Horizon
Control. Automatica, 40(4):563-574, 2004.

[39] P. Patrinos and A. Bemporad. An accelerated dual gradient-projection algorithm for embedded linear
model predictive control. Automatic Control, IEEE Transactions on, 59(1):18-33, Jan 2014.

[40] R. Quirynen, B. Houska, M. Vallerio, D. Telen, F. Logist, J. Van Impe, and M. Diehl. Symmetric
Algorithmic Differentiation Based Exact Hessian SQP Method and Software for Economic MPC. In
Conference on Decision and Control, pages 2752-2757, 2014.

[41] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl. Autogenerating Microsecond Solvers for Nonlinear
MPC: a Tutorial Using ACADO Integrators. Optimal Control Applications and Methods, 36:685-704,
2014.

[42] J. B. Rawlings, D. Angeli, and C. N. Bates. Fundamentals of economic model predictive control. In
S1st IEEE Conference on Decision and Control, 2012.

[43] J.B. Rawlings and D.Q. Mayne. Model Predictive Control: Theory and Design. Nob Hill, 2009.

[44] M. Vukov, A. Domabhidi, H. J. Ferreau, M. Morari, and M. Diehl. Auto-generated Algorithms for
Nonlinear Model Predictive Control on Long and on Short Horizons. In Proceedings of the 52nd
Conference on Decision and Control (CDC), 2013.

[45] M. Vukov, W. Van Loock, B. Houska, H.J. Ferreau, J. Swevers, and M. Diehl. Experimental Validation
of Nonlinear MPC on an Overhead Crane using Automatic Code Generation. In The 2012 American
Control Conference, Montreal, Canada., 2012.

[46] Andrea Walther. Automatic differentiation of explicit Runge-Kutta methods for optimal control. Com-
putational Optimization and Applications, 36(1):83—-108, 2006.

[47] M. Zanon, J. V. Frasch, M. Vukov, S. Sager, and M. Diehl. Model Predictive Control of Autonomous
Vehicles. In Proceedings of the Workshop on Optimization and Optimal Control of Automotive Sys-
tems, pages 41-57. 2014.

[48] M. Zanon, S. Gros, and M. Diehl. Model Predictive Control of Rigid-Airfoil Airborne Wind Energy
Systems. In U. Ahrens, M. Diehl, and R. Schmehl, editors, Airborne Wind Energy. Springer, 2013.

[49] M. Zanon, S. Gros, and M. Diehl. Indefinite Linear MPC and Approximated Economic MPC for
Nonlinear Systems. Journal of Process Control, 24:1273-1281, 2014.

[50] M. Zanon, S. Gros, and M. Diehl. A Tracking MPC Formulation that is Locally Equivalent to Eco-
nomic MPC. Journal of Process Control, 2016. (accepted).

[51] M. Zanon, G. Horn, S. Gros, and M. Diehl. Control of Dual-Airfoil Airborne Wind Energy Systems
Based on Nonlinear MPC and MHE. In European Control Conference, pages 1801-1806, 2014.

[52] V. M. Zavala and L.T. Biegler. The Advanced Step NMPC Controller: Optimality, Stability and
Robustness. Automatica, 45:86-93, 2009.

23

