
1

Optimal and Distributed Task Scheduling

in Volunteer Clouds
Stefano Sebastio

LIMS London Institute of Mathematical Sciences, London, UK

Email: stefano.sebastio@alumni.imtlucca.it

Giorgio Gnecco

IMT Institute for Advanced Studies, Lucca, Italy

Email: giorgio.gnecco@imtlucca.it

Alberto Bemporad

IMT Institute for Advanced Studies, Lucca, Italy

Email: alberto.bemporad@imtlucca.it

Abstract

The ever increasing request of computational resources has shifted the computing paradigm towards solutions

where less computation is performed locally. The most widely approach adopted nowadays is represented by cloud

computing. With the cloud, users can transparently access to virtually infinite resources with the same aptitude of

using any other utility. Next to the cloud, the volunteer computing paradigm has gained attention in the last decade,

where the spared resources on each personal machine are shared thanks to the users willingness to cooperate. In the

volunteer paradigm each user shares a quote of its unused resources (e.g., during night or web-browsing activity)

with other users, and receives other shared resources when he needs more than the local resources at his disposal.

Cloud and volunteer paradigms have been recently seen as companion technologies to better exploit the use of local

resources, also in perspective of green computing. Conversely, this scenario places complex challenges in managing

such a large-scale environment, as the resources available on each node and the presence of the nodes online are not

known a-priori. The complexity further increases in presence of tasks that have an associated Service Level Agreement

specified, e.g., through a deadline. Distributed management solutions have then be advocated as the only approaches

that are realistically applicable.

In this paper, we propose a framework to allocate tasks according to different policies, defined by suitable

optimization problems. Then, we provide a distributed optimization approach relying on the Alternating Direction

Method of Multipliers (ADMM) algorithm for one of these policies, and we compare it with a centralized approach.

Results show that, when a centralized approach can not be adopted in a real environment, it could be possible to rely

on the good suboptimal solutions found by the ADMM algorithm.

Keywords

cloud computing; distributed optimization; integer programming; combinatorial optimization; ADMM

stefano.sebastio@alumni.imtlucca.it
giorgio.gnecco@imtlucca.it
alberto.bemporad@imtlucca.it

2

I. INTRODUCTION

The ever growing demand of computational resources has shifted users from local computation on personal

devices towards the adoption of centralized cloud computing technologies. Using the virtualized resources available

on remote data centers, the cloud allows the access to virtually unlimited computational resources with the same

aptitude of using any other utility service.

Together with the latest advance on virtualization technologies adopted by the cloud, in the last decade also the

CPU manufacturers brought a great leap forward in performance starting the multi-core era even for the personal

devices. Nowadays, desktop and laptop devices have resources largely unused for great part of the time (e.g., during

web-browsing or text-editing activities) while having possibly scarce resources for other activities (e.g., for large-scale

simulations or graphic-editing). These scenarios have opened the door to the growth of another ICT trend of the last

years: the volunteer computing paradigm. Such a paradigm foresees the use of the spared resources on personal

devices by all other network participants, relying on the users’ willingness to cooperate. Therefore, the volunteer

network turns out to be a heterogeneous (in terms of shared resources) and highly dynamic (not knowing a-priori

the presence online of the volunteers) large-scale system (usually constituted from hundreds to thousands of nodes).

The cloud can then be enhanced through the combination with the volunteer paradigm. The combination is referred

as the volunteer cloud [1]. Indeed, in specific application domains, such as latency dependent environments, the

cloud still suffers its centralized nature where, obviously, its data-centers can not be located close to all the users.

Examples of such domains have been described by Microsoft [2] as cloudlets, where the computational burden on

mobile devices running virtual- or augmented- reality applications can be alleviated relying on low-latency (i.e.,

closely located) more powerful devices. The growing interest and success of the volunteer cloud is witnessed by

the large number of existing platforms and projects based on such a paradigm, e.g., BOINC [3], HTCondor [4],

OurGrid [5], Seattle [6] and SETI@home [7].

Typically, the volunteer nodes are organized and can communicate with each other through a Peer-to-Peer (P2P)

overlay network. An example of the volunteer cloud network is depicted in Figure 1. The inherent characteristics of

the volunteer cloud network makes impossible to rely on centralized solutions to effectively decide on the distribution

of execution-oriented applications. Indeed, in such scenario a central node can constitute a bottleneck without

being able to have updated knowledge on the nodes characteristics and their actual load in order to perform a

global optimization. Distributed managing solutions have then been advocated as the only practical solution. Several

distributed computing approaches [8]–[10] based on autonomic (i.e., self-managing) agents [11] have been explored

in the literature. We only mention some works without dwelling on them since all the proposed solutions are

pure heuristic solutions e.g., relying on Ant Colony Optimization [12], [13], Evolutionary Algorithm [14], Spatial

computing [15] or Reputation-based [16] techniques.

The present work aims at proposing a framework to distribute task execution requests, according to different

policies, each formalized as a mathematical optimization problem solved in a distributed fashion. In particular, we

focus on the Alternating Direction Method of Multipliers (ADMM) to decompose the optimization problem, which

3

Cloud Site A

Cloud Site C

Cloud Site B

Data center
node

Desktop/laptop
node

Fig. 1. Example of a volunteer cloud network: each cloud site can be constituted by data centers, personal devices or both.

is then distributed to and independently solved by the volunteer nodes.

Synopsis: The paper is structured as follows. Section II presents related work and particularly Section II-A

briefly presents the ADMM algorithm. Our volunteer cloud model is presented in Section III while the optimization

problem is formalized in Section IV. One of the policies allowed by our framework is accurately illustrated in

Section V and solved with a centralized solution and with two different distributed ADMM variants. The considered

scenario, its Matlab implementation relying on CVX [17] and Gurobi [18], is discussed in Section VI together with

results and a numerical comparison of the proposed solutions. The description of the objective functions for the

other policies of our framework is presented in Section VII. Finally, Section VIII concludes the work with some

final remarks and outlines other current and future research efforts.

II. RELATED WORK

Recently, the volunteer cloud has been modeled in [19] (called the cloud-assisted approach therein). Criticality

and infeasibility of a centralized solution, to determine if a subset of tasks would be better executed by the cloud

or by the volunteers, are highlighted in that paper referring to the problem as a cloudy knapsack problem i.e., an

online knapsack problem but in presence of a limited knowledge on the current status (cloudy view). Despite in the

paper motivation the authors argue for the need of a distributed decision making, later in the work the focus is

only on the characterization of the knapsack problem where the available budget (corresponding to the available

resources) is known only in terms of a probability distribution. Authors prove an upper bound on the performance

of their knapsack algorithm where a probability distribution models the budget uncertainty.

In [20] authors accurately model the hybrid cloud environment (i.e., composed by on-promise and off-promise

machines) as a mixed-integer nonlinear programming problem specified in AMPL [21]. The authors’ goal is

the minimization of the monetary cost to run a set of both compute- and data- intensive tasks. Actually, their

implementation takes even the deadline into account in the cost function, although not in a explicit way. Indeed, their

4

cost function mixes the time for completing the tasks with the actual price for using a given service. Although there

are similarities with our model, the major differences are represented by their indifference to distributed solutions

and by not considering the actual load on machines.

The above mentioned model is further extended in [22] to deal with workflows instead of independent tasks. The

authors define the workflow as a directed acyclic graph and then group the tasks into levels. In each level, tasks are

independent among them and intermediate deadlines are assigned.

DONAR [23] is a distributed system that aims at mapping replica selection in the cloud, i.e., the choice of a

particular location based on performance, load and cost in presence of geo-replicated services. Its optimization

problem is designed in a way to be easily decomposed into independent subproblems that can be solved locally

(since even the constraints can be split on the nodes). The global constraint (related to the bandwidth cap) could be

temporarily violated by the intermediate solutions of the algorithm. Moreover, the problem turns out to be a convex

optimization problem, where the optimization variables are constituted by the portions of traffic load that should

be mapped from each client to each node. A similar problem is dealt in [24]. There a parallel implementation of

ADMM is adopted to solve a convex optimization problem that has been validated on a trace-driven simulation

relying on the Wikipedia requests trace.

DONAR is extended in [25] considering energy efficient solutions as a “first-class” design constraint (i.e., a

priority) alongside performance, while distributing tasks in the cloud. In particular, the optimization function takes

into account the energy costs in the presence of data-intensive services deployed in the cloud. The objective

function of the convex optimization problem in [25] is constituted by the sum of local objective functions, and the

problem is solved using the dual decomposition and the consensus-based distributed projected subgradient method

(CDPSM) [26].

The task allocation problem in presence of hard deadlines and classes of priorities has been studied in [27] for

powertrain automotive applications. Their problem formulation turns out to be a mixed integer linear programming

problem solved using CPLEX [28]. The different characteristics of their domain of application makes difficult a

direct comparison with our approach, despite it is possible to recognize that their solution assumes a centralized

approach where an updated global knowledge on the load of the nodes is available (since their problem does not

need to deal with a large-scale system).

Main Contributions: All in all, our paper contributes to the existing literature related to the volunteer cloud in

that it proposes:

• a framework to accommodate different task distribution policies in large-scale distributed cloud environments;

• a mathematical formulation of the optimization problem associated with such a framework, which is driven by

real system requirements of the volunteer cloud and takes into account various issues, such as, FIFO queue,

tasks with deadlines, the actual load on the machines, the need to adopt a distributed solution;

• the application of the distributed ADMM algorithm for solving the above optimization problem.

5

A. The ADMM: Alternating Direction Method of Multipliers

The increasing size and complexity of many datasets pose challenges to analyze such problems especially when

the data under analysis originate from decentralized sources. Distributed solutions are thus advocated as promising

and desirable to work in such large-scale domains.

Recently the Alternating Direction Method of Multipliers (ADMM) is gaining momentum [29] in the field

of distributed optimization, despite the method has been developed almost fifty years ago. The ADMM is an

algorithm to solve convex optimization [30] problems in a distributed / parallelized fashion adopting a decomposition-

coordination method, in which the problem is subdivided in small problems that can be solved independently, under

the “coordination” of a central node, to solve the original problem. The method has its roots on the methods of dual

decomposition and augmented Lagrangian.

The method is usually applied to convex optimization problems of the form:

minimize f(x) + g(z) , (1a)

subject to Ax+Bz = c , (1b)

where f : Rn → R and g : Rm → R are convex functions, and x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp.

Then, given the penalty parameter ρ > 0, the augmented Lagrangian is expressed as:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22 (2)

and, finally, each iteration of the ADMM algorithm is defined as follows:

xk+1 := argmin
x

Lρ(x, z
k, yk) , (3a)

zk+1 := argmin
z

Lρ(x
k+1, z, yk) , (3b)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) , (3c)

where the penalty parameter in the augmented Lagrangian constitutes the step size while updating the dual variable

y. ADMM is often transformed in the equivalent scaled form for convenience of implementation, resulting in a

more compact expression. The scaled form of ADMM is expressed scaling the dual variable as u = 1
ρy.

We refer the interested reader to [29] for the proof of convergence (under mild conditions) and methods to

compute the stopping criteria of the ADMM algorithm. A method for the optimal choice of the ρ parameter in

ADMM that ensure the smallest possible convergence factor for quadratic problems is provided in [31].

If the problem is not convex, it is still possible to apply ADMM, despite this should be just considered as a

heuristic in that case. An extension of the ADMM algorithm for nonconvex problems through the use of heuristics

is proposed in [32]. There, integer and continuous variables of the problem are identified, and the source of non

6

convexity are the first variables. The continuous relaxation of the problem is initially considered obtaining bounds

on the optimal solution value of the original problem and thus using these hints to reduce the search space. The

basic idea is to start with ADMM and integer variables, but once these variables are observed to do not change

values for some iterations, their value is fixed (so actually excluding them from the variables set and changing

them to constants), to simplify the following ADMM iterations that could refine the solution for the continuous

variables. Their Release and Fix approach swings from the original to the simplified problem (i.e., without the

integer variables) at each iteration. Numerical results demonstrate that their distributed approach can reach a 1%

relative optimality gap with a superior solution time compared to a centralized solution, while it is executed on a

computer cluster.

Another interesting application of ADMM for nonconvex problems in computer vision is studied in [33]. There,

the authors adopt a tree-based decomposition of discrete labeling problems in large-scale random fields. The

decomposition exploits the submodularity of the non-convex subproblem functions allowing to solve them exactly.

Despite the lack of guarantees on convergence for the original problem, their empirical results are encouraging. A

parallel implementation relying on both CPU and GPU cores allowed the authors of [33] to obtain a significant

speed-up while benchmarking low-level vision problems such as stereo correspondence, image segmentation and

denoising.

III. MODEL

The volunteer cloud environment is constituted by a large number of nodes that share their computational and/or

storage resources with the other network participants. Usually the cloud architecture relies on a centralized load

balancer which collects information from and distributes commands to the nodes. Unfortunately, in the volunteer

cloud, the large-scale nature of such a kind of network (in the order of hundreds or thousands of nodes) and the

volatility of the nodes participation (i.e., it is not possible to know a-priori the time a node will join or leave the

network), makes the dissemination of resources and load characteristics to a central load balancer a hard, if not

impossible, job. Consequently, tasks execution requests cannot be distributed by solving a completely centralized

global optimization problem.

Distributed optimization techniques are then advocated as promising alternatives. In this work we focus on such a

technique, to optimize the task allocation among the volunteer nodes. This section presents the volunteer cloud

computing model that will be used in Section IV to define the optimization problem of interest. Since our focus is

on the distribution of tasks execution requests, the main component of our model are the tasks (Section III-A) and

the resources (Section III-B). In such a large-scale decentralized environment each node acts as both producer and

consumer of tasks execution requests.

A. Tasks

Application programs are modeled as sets of independent tasks. Each task is defined by its duration, the degree

of parallelism that it is able to exploit, and its minimum memory requirement. Our model assumes that the task

7

duration can be predicted with accuracy. Moreover, we assume a perfect linear speed-up for the parallelism.

Definition 3.1 (task): A task is a tuple 〈δ, ρ, µ〉, where δ ∈ R+ is the task duration (expressed in clock cycles),

ρ ∈ N+ is the degree of parallelism of the task, and µ ∈ N+ is the memory requirement of the task.

Adopting a perfect linear speed-up model, a degree of parallelism ρ means that a task with duration δ can be

ideally executed with a CPU that has ρ computational units (e.g., cores) in time δ/ρ. If less than ρ computational

units are available, the time to execute the task will be bounded in terms of the number of available units (as

expressed in the following Equation (4)).

Definition 3.2 (task execution request): A task execution request is a tuple 〈δ, ρ, µ, τa, τd〉, where 〈δ, ρ, µ〉 is a

task, τa ∈ R+ is the task arrival date, and τd ∈ R+ is its termination deadline. The deadline can constitute one of

the parameters specified in the task Service Level Agreement (SLA) [34].

We assume that for each task a single execution is required, i.e., it is enough that a single node takes the execution

request in charge.

B. Virtual Resources

The volunteer nodes provide an isolated environment for each task execution request through a Virtual Machine

(VM), modeled by memory and processing units. In our scenario, the main feature of interest of the VMs is the

latter since our main concern is the running time of tasks, which we consider to be computation-intensive (rather

than data- or communication- intensive). We assume that, given the voluntary participation of the nodes and the

not dedicate use of the physical machine (only spare resources are shared by users), each node runs a single VM.

Therefore, to provide an isolated environment for each user, tasks execution requests are processed one at a time.

For the sake of simplicity we consider that VMs have homogeneous processing units i.e., all the cores in the same

VM have the same clock frequency.

Definition 3.3 (Virtual Machine, VM): A VM is a tuple 〈κ, φ, ν〉 where κ ∈ N+ is the number of cores, φ ∈ N+

is their frequency, and ν ∈ N+ is the amount of memory.

Definition 3.4 (Execution time): The execution time e(T, V M) required for completing a task T = 〈δ, ρ, µ〉 on a

virtual machine VM = 〈κ, φ, ν〉 whose cores have frequency φ is defined by the following equation:

e(T, V M) =
δ

φ ·min{ρ, κ}
, (4)

i.e., the task duration on a single core which is equal to δ/φ is divided by the maximum degree of parallelism that

can be exploited, which is bounded by both the amount of available cores (κ) and the degree of parallelism of the

task (ρ).

A task T = 〈δ, ρ, µ〉 can be executed on a virtual machine VM = 〈κ, φ, ν〉 only if the following memory

requirement constraint is satisfied:

µ ≤ ν . (5)

8

Tasks accepted for execution are added to the node execution queue and executed according to a FIFO policy.

If not otherwise specified, a machine VM accepts a task T in its execution queue only if it can respect the task

deadline.

IV. THE OPTIMIZATION PROBLEM

In our model, resource capacities (i.e., memory and cores characteristics) and tasks already on the node execution

queue pose limits on the following task execution requests that a node can accept respecting the associated SLAs.

In a first approximation, task execution requests can be dispatched periodically according to an allocation period.

In each period, task requests should be distributed optimizing with respect to an allocation policy defined by the

volunteer cloud manager. All the tasks generated after an allocation period are assigned to the subsequent task set and

dispatched in the next allocation period. The period itself constitutes a parameter which can vary the performance of

the system. A short period could allow a more timely allocation of the tasks while resulting more computationally

expensive. Conversely, a large period can possibly reduce the chance to satisfy task requests that have more stringent

deadlines, despite they could be less computational demanding.

This section presents the data structures (Section IV-A) used in the definition and in the resolution of our

optimization problem. Moreover a brief description of some allocation policies that can be implemented within our

framework is presented at the end of the section (Section IV-B).

A. Data structures

In each allocation period, having K tasks and N nodes, the data structures used hereinafter (following the

notations used in the definitions in Sections III-A and III-B) are as follows:

• taskSet =

(
τa1 τd1 ρ1 δ1 µ1

... ··· ··· ···
...

)
∈ RK×5, where the tasks are sorted according to their deadline τd, from closest

to farthest (this sorting should increase the chance to execute more tasks respecting their deadline, see the

notes at the end of this section).

• nodeSet =

(
φ1 κ1 ν1

... ···
...

)
∈ RN×3, with the characteristics of the VMs.

• freeT imest =

(
freet1

...

)
∈ RN , with the times at which each node completes the execution of all the tasks

that are already in its execution queue (i.e., execution requests that have been assigned to the nodes in the

previous allocation periods but that have not yet been completed).

• X(:= taskAlloc) ∈ ZK×N2 is the task allocation matrix, a binary matrix (Z2 = {0, 1}) where the element xij

is equal to 1 if the task i is executed on node j and 0 otherwise. Thus, reading it by column one gets the tasks

accepted by each node in the current allocation period; while, reading it by row one gets the node(s) that has

(have) accepted the task for execution, if any. This matrix represents the decision variable of our optimization

problem.

• execEndX ∈ RK , collects the times at which each task execution is completed, taking into account the subset

of tasks each node has accepted for execution in the current allocation X (a more formal definition and a

9

step-to-step computation is given in the following, see Section V). The components of execEndX assume

value 0 for the tasks that are not accepted by any node.

• executedTasks :=
∑K−1
l=0 X(l, j) ∈ RN , collects the number of tasks, belonging to the current allocation

period, that each node has taken in charge to execute.

In each allocation period, tasks are sorted and evaluated for execution according to their deadline, thus the

considered allocation scheduling policy is the EDF (Earliest Deadline First). While, as stated before, once the tasks

have been accepted are executed according to a FIFO policy. This choice is dictated by the willingness to increase

the chance to accept as many tasks as possible (respecting their deadline), while maintaining a low complexity,

avoiding to rearrange the execution queue every time new tasks are accepted for execution in the next allocation

period.

It is worth noting that the choice of the scheduling policies (for both allocation and execution) affects the selection

of tasks that are assigned to the nodes. Indeed, a different sorting in the tasks to be executed or allocated could

bring to a different time for completing the tasks (execEndX) and in turn to a different allocation of the tasks (X).

In other terms, with a different sorting of the execution requests a feasible allocation could become unfeasible and

vice-versa.

For instance, let us consider a long-running task with a relaxed deadline that is evaluated for allocation before other

small-running tasks but with high demand on deadline: the first task can constitute a bottleneck for all other tasks,

which could not be executed respecting their SLAs. A simple tasks sorting (where the tasks with a high demand

on deadline are evaluated first) could allow to execute more tasks, while the tasks with a relaxed deadline could

be executed later without any effect on their SLA. Obviously, other, more sophisticated and effective scheduling

disciplines could be implemented and evaluated.

B. Allocation policies

The optimization function considered in our framework could take into account different performance metrics

while allocating the tasks to the nodes. In this section we briefly describe five different allocation policies:

• Number of executed task: it attempts to maximize the number of executed tasks (Section V).

• Termination time: it attempts to minimize the time at which the execution ends for the entire task set (Section

VII-A).

• Response time: it attempts to minimize the sum of the response times for each task in the set, even ignoring

the SLA if needed. Thus, all the execution requests are assigned (Section VII-B).

• Fair strategy: it attempts to evenly distribute the tasks among the participant nodes (Section VII-C).

• Green strategy: it attempts to consolidate the tasks among few participant nodes (Section VII-D).

Each of the above mentioned policies, during the formalization of the optimization problem, will require one or a

subset of the constraints which are listed here:

1) each node can execute a task only if it has enough memory:

µ ≤ ν ∀ task executed on a node ; (6)

10

2) each task must be assigned to one and only one node, even if there is no node that can satisfy its deadline

requirement:
N−1∑
j=0

X(l, j) = 1 ∀ l ∈ {0, 1, ...K − 1} . (7)

If it is impossible to satisfy all the tasks deadlines, other node policies will discern which tasks should be

executed first and which ones discarded or completed lately (i.e., on a best-effort basis not fulfilling the

deadline specified in the SLA);

3) each task should be executed respecting its deadline:

execEndX(l) ≤ τd ∀ task l executed on a node j ; (8)

4) each task can be executed by only one node:
N−1∑
j=0

X(l, j) ≤ 1 ∀ l ∈ {0, 1, ...K − 1} . (9)

V. MAXIMIZE THE NUMBER OF EXECUTED TASKS

In this section we focus on the accurate description of one of the policies of our framework, namely, the

maximization of the number of executed tasks. Without loss of generality other policies can be implemented

straightforwardly as exemplified later in Section VII.

The policy described in this section aims at optimizing the number of tasks that are executed respecting their

deadline. The associated optimization problem can then be written as the maximization of:
N−1∑
j=0

K−1∑
l=0

taskAlloc(l, j) , (10)

where the inner summation counts the tasks executed on the node j. The constraints 1, 3 and 4 must be met.

Thus, more formally, the optimization problem is:

maximize
N−1∑
j=0

K−1∑
l=0

X(l, j) , (11)

subject to:
N−1∑
j=0

(diag(µ) ·X)(l, j) ≤ X · ν ∀ l ∈ {0, ...K − 1} , (12a)

N−1∑
j=0

X(l, j) ≤ 1K ∀ l ∈ {0, ...K − 1} , (12b)

execEndX(l) ≤ τd ∀ task l ∈ {0, ...K − 1} executed on a node j ∈ {0, ...N − 1} , (12c)

where all the inequalities are component-wise comparison and the · symbol denotes the matrix product. The left

side of Equation (12c), with the implicit dependency from X , expresses the time required to complete the execution

of each task l according to the node j that has taken in charge its execution, if any.

11

Throughout the paper, if not otherwise specified, the index l refers to a task, j refers to a volunteer node, while i

refers to one of the constraints related to the optimization problem under study.

The above mentioned optimization problem has been solved in Matlab relying on the CVX modeling system,

which is based on the Disciplined Convex Programming ruleset (DCP). The DCP ruleset [35] allows one to describe

problems that are convex by construction. Objective functions and constraints are expressed relying on a set of basic

atoms and a restricted set of operation rules that preserve convexity. In this way, DCP is able to keep track of affine,

convex and concave expressions. If a problem does not adhere to the DCP it is rejected even if it is convex, the

converse instead can not happen (i.e., a problem recognized as convex by DCP is always convex). CVX [17], [35] is

a modeling system that, relying on DCP, is able to simplify the task of specifying the problem for: linear (LPs),

quadratic (QPs), second-order cone (SOCPs) and semidefinite (SDPs) programs. Recently, CVX has been extended

to support mixed-integer models where one or more variables have integer or binary values (as X in our problem).

These models are defined as Mixed-Integer Disciplined Convex Problems (MIDCPs). Strictly speaking, these are

nonconvex optimization problems for which, if the integrality constraint is removed, one obtains a Disciplined

Convex Problem.

While all other constraints can be written straightforwardly, the implementation of Equation (12c) in CVX requires

some computations to respect the DCP, since the ruleset implies that convexity should be an explicit goal of the

modeling process itself. In the following we describe the computations required to express the last constraint in

CVX. Recalling that:

e(δ, φ, ρ, κ) :=
δ

φ ·min{ρ, κ}
∈ RK×N , (13)

in the full matrix in Equation (13) each element elj represents the computational time required to execute the task l

on node j.

A vector initT ime with the times at which each node can start the execution in the current allocation period, can

be built considering the current time t and the residual computation from the previous time periods (freeT imest):

initT ime := max{t, freeT imest} ∈ R1×N . (14)

Thus, in order to evaluate the time required to execute the tasks in the current period, the node should consider

the computation in progress and the tasks already in its queue (and accepted for execution in the previous allocation

periods). An intermediate step of computation requires adding the initT ime to the tasks execution times:

timeToExecTask = e+

initT ime
0

 =


e11 + tt1 e12 + tt2 · · ·

e21 e22 · · ·
...

. . .
...

 . (15)

Then, assuming a FIFO policy during the task execution, if every task was executed by each node, one would

12

obtain:

execCum = cumulativeSum(timeToExecTask) =


e11 + tt1 e12 + tt2 · · ·

e21 + e11 + tt1 e22 + e12 + tt2 · · ·
...

. . .
...

 , (16)

where the cumulativeSum function (cumsum in Matlab) returns a matrix containing the cumulative sums for each

column starting from the first row.

Defining X as the complement matrix of the binary matrix X with the tasks that are not executed by the nodes,

with further computation it is possible to compute the time at which the execution of each task is completed

(execEndX) according to the node that has taken it in charge, if any:

execRemovedNotExec = execCum−X. ∗ execCum , (17a)

finishingT imeDirty = execRemovedNotExec− cumulativeSum(X. ∗ e) , (17b)

execEndX = finishT ime = max
∀ row l

{finishingT imeDirty} =
∑
by row

(finishingT imeDirty+) , (17c)

where .∗ is the element-by-element product of the matrices. Equation (17a) sets to zero the cells for the tasks that

are not executed by the corresponding node in Equation (16). However, this operation is not enough to obtain the

time needed to complete the tasks executions. Indeed, observing Equation (16), it is possible noting that since we

are considering a FIFO policy, setting to zero the cells for the tasks not executed is not enough. For instance, if the

first node executes the second but not the first task, with Equation (17a) the first cell is set to zero but the element

in the second row first column still maintains a dependency from a task that is not actually executed (e11 in this

example). Equation (17b) is introduced to remove these undesired dependencies. Conversely, this operation builds a

dirty matrix, since its matrix elements could have negative values while subtracting from cells that where already

set to zero from the first operation (Equation (17a)). Finally, Equation (17c) builds the tasks finishing times for the

tasks that are actually executed, considering the nodes that have accepted their executions (where the f+ operator

chops off the negative values). Note that the last equality in Equation (17c) is obtained considering that for each

row there can be only one positive element.

Other simpler operations could have led to the same result but requiring, at some point, the product of the

optimization variable with itself (i.e., X. ∗X). For instance, a possible easily attained computation of execEndX

could be given by cumulativeSum(e. ∗X). ∗X + tmp. ∗X , where the cumulativeSum is needed by the FIFO

queue and the second element-by-element product sets to zero the matrix elements corresponding to the tasks not

executed by a node. Unfortunately, despite in our definition X is binary, this operation brings the expression to

be not convex as well as not comply with the DCP ruleset that considers the operation just as the square of the

optimization variable.

13

Note on our optimization problem: The problem formulated above (Equations (10)-(12c)) can be seen as an Integer

Programming (IP) problem (since X assumes integer values) whose goal consists in finding an optimal allocation

of the tasks. With a significant implementation effort, particularly when K and / or N are large, Equation (17c)

can be reformulated substituting the max operator with linear inequalities, therefore obtaining an Integer Linear

Programming (ILP) problem. ILP problems are well known to be NP-complete in literature. Moreover, in our

formulation the optimization variable is binary. The 0-1 ILP (also referred as Binary ILP, BILP) expressed as a

decision problem constituted by only restrictions without an optimization function, has been classified as one of the

Karp’s 21 NP-complete problems [36].

Relaxing the X variable in the real domain, a convex problem could be obtained which could provide an useful

upper bound for the optimal solution value of the original problem.

A. ADMM: unscaled form and augmented Lagrangian

The optimization problem, as expressed in the previous section, allows CVX and Gurobi to solve the problem,

but it is still formulated as a completely centralized approach. As stated above, such an approach can be hard to be

applied in practice in the domain of our interest, since distributing resource characteristics and load of each node

(with hundreds or thousands of nodes) is challenging. A possible way to solve the problem in a distributed fashion

can be constituted by the iterative ADMM algorithm [29].

The original optimization problem is reported here:

maximize

N−1∑
j=0

K−1∑
l=0

X(l, j) , (18)

subject to:

µX ≤ Xν , (19a)

N−1∑
j=0

X(l, j) ≤ 1K , (19b)

execEnd(X) ≤ τd . (19c)

For ease of exposition, we rename the functions as: f(X) = −
∑N−1
j=0

∑K−1
l=0 X(l, j), µX = mr(X) (the

requested memory), Xν = ma(X) (the memory available) and then mr(X)−ma(X) = m(X) (memory constraint),∑N−1
j=0 X(l, j) = s(X) (number of executions / nodes for each task), execEnd(X) = e(X). Finally, the problem

in Equations (18)-(19) can be rewritten as a minimization problem as follows:

minimize f(X) , (20)

14

subject to:

m(X) ≤ 0K , (21a)

s(X) ≤ 1K , (21b)

e(X) ≤ τd . (21c)

The ADMM method (and more in general the augmented Lagrangian) does not explicitly allow the use of

inequality constraints, thus the use of a slack vector z for each constraint is required [37]. The inequality is implicitly

considered in the optimization function requiring z to be positive through the indicator function I+(z) (that can be

seen as an infinite penalty on the optimizing function when z is negative, and is zero otherwise).

minimize f(X) + I+(z1) + I+(z2) + I+(z3) , (22)

subject to:

h1(X, z1) = m(X) + z1 = 0 , (23a)

h2(X, z2) = s(X)− 1 + z2 = 0 , (23b)

h3(X, z3) = e(X)− τd + z3 . (23c)

The augmented Lagrangian used in the ADMM algorithm can thus be easily written as:

Lρ(X, z, y) = f(X) +

3∑
i=1

yTi hi(X, zi) +

3∑
i=1

ρ

2
‖hi(X, zi)‖22 + I+(z1) + I+(z2) + I+(z3) , (24)

and the ADMM (in unscaled form) is expressed as:

Xk+1 = argmin
X

Lρ(X, z
k
i , y

k
i) , (25a)

zk+1
i = max{argmin

zi

Lρ(X
k+1, zi, y

k
i), 0} , (25b)

yk+1
i = yki + ρ(hi(X

k+1, zk+1
i)) , (25c)

with i = 1, 2, 3 and ρ > 0 (the augmented Lagrangian parameter).

It is worth noting that the update of zi in Equation (25b) has required the use of the max operator to take into

account that zi cannot be negative (recalling the introduction of the I+ function in the optimization problem to deal

with the inequality constraints).

B. ADMM: scaled form and augmented Lagrangian

For ease of implementation the ADMM can be rewritten in scaled form. The terms in the augmented Lagrangian

containing ri = hi(X, zi) can be transformed as:
3∑
i=1

yTi ri +

3∑
i=1

ρ

2
‖ri‖22 =

3∑
i=1

ρ

2
‖ri +

1

ρ
yi‖22 −

3∑
i=1

1

2ρ
‖yi‖22 =

ui=
1
ρyi

3∑
i=1

ρ

2
‖ri + ui‖22 −

3∑
i=1

ρ

2
‖ui‖22 , (26)

15

becoming:

Lρ(X, z, u) = f(X) + I+(z1) + I+(z2) + I+(z3) +

3∑
i=1

ρ

2
‖hi(X, zi) + ui‖22 −

3∑
i=1

ρ

2
‖ui‖22 , (27)

and finally the ADMM expressed in scaled form is:

Xk+1 = argmin
X

(
f(X) +

3∑
i=1

ρ

2
‖hi(X, zi) + uki ‖22

)
, (28a)

zk+1
i = max

{
argmin

zi

(3∑
i=1

ρ

2
‖hi(X, zi) + uki ‖22

)
, 0
}
, (28b)

uk+1
i = uki + hi(X

k+1, zk+1
i) . (28c)

The scaled form makes easier the implementation in Matlab expressing the ADMM in a more compact and

convenient form. Obviously, the two forms (scaled and unscaled) are equivalent.

C. Distributed ADMM using Global Consensus

The ADMM formulations defined in the previous Sections V-A and V-B allow only a marginal parallelization

of the algorithm on zi and yi (ui), where i = {1, 2, 3}. Reasoning about a real implementation of one of these

formulations in the volunteer cloud environment, the ADMM turns out to be parallelized in only three computational

threads but definitely not distributable on all the volunteers. To better exploit the distribution capabilities of the

ADMM algorithm on all the volunteers, it is required to have X partitionable and f separable with respect to

this partition. The original problem can be rewritten as a Global Consensus problem where the N nodes want

to converge towards an optimal shared solution X . Expressing as fj(X) = −
∑K−1
l=0 X(l, j) the number of tasks

per node (the “minus” sign is used to express the optimization problem as a minimization one), the problem in

Equations (22)-(23) has the form:

minimize
N−1∑
j=0

fj(X) +
3∑
i=1

I+(zi) , (29)

subject to:

hi(X, zi) = 0 ∀i , (30)

that can be distributed over the nodes introducing the local variables Xj , one for each node. Each Xj is a copy of

the original X , and is updated locally and independently by each node. The global consensus variable Z is added.

For ease of presentation the range of j index is shifted from 1 to N in the following:

minimize

N∑
j=1

fj(Xj) +

3∑
i=1

I+(zi) , (31)

16

subject to:

Xj − Z = 0 ∀j = 1, . . . , N , (32a)

hi(Z, zi) = 0 ∀i = 1, 2, 3 . (32b)

The augmented Lagrangian is:

Lρ(X1, . . . , Xj , . . . , XN , Z, z1, z2, z3, Y1, . . . , YN , yN+1, yN+2, yN+3)

=

N∑
j=1

(
fj(Xj) + Yj(Xj − Z) +

ρ

2
‖Xj − Z‖22

)
+

3∑
i=1

(
yN+ihi(Z, zi) +

ρ

2
‖hi(Z, zi)‖22 + I+(zi)

)
.

(33)

The ADMM for the global consensus problem becomes:

Xk+1
j = argmin

Xj

(
fj(Xj) + Y kj (Xj − Zk) +

ρ

2
‖Xj − Zk‖22

)
∀j = 1, . . . , N , (34a)

Zk+1 = argmin
Z

(
N∑
j=1

(
− Y kj Z +

ρ

2
‖Xk+1

j − Z‖22
)

+

3∑
i=1

(
yki+Nhi(Z, z

k
i) +

ρ

2
‖hi(Z, zki)‖22

))
, (34b)

zk+1
i = max

{
argmin

zi

(
yki hi(Z

k+1, zi) +
ρ

2
‖hi(Zk+1, zi)‖22

)
, 0
}
∀i = 1, 2, 3 , (34c)

Y k+1
j = Y kj + ρ(Xk+1

j − Zk+1) ∀j = 1, . . . , N , (34d)

yk+1
i = yki + ρ(hi−N (Zk+1, zk+1

i)) ∀i = N + 1, N + 2, N + 3 . (34e)

Thus, the steps for updating Xj and Yj can be executed locally on each node, while Z performs the role of

the central collector for the optimization problems solved locally. Summing up, the ADMM formulation of the

problem expressed in this section, compared to the solution proposed in the previous section, is characterized by an

increase in the computation performed locally by the nodes. Some steps of the algorithm still need to be executed

in a centralized fashion (i.e., Z, zi, yi), while others could be executed locally (i.e., Xj , Yj).

D. Distributed ADMM using Global Consensus, scaled form

Similarly to what has been done in Section V-B, substituting Rj = Xj − Z, ri = hi(Z, zi) and ui = 1
ρyi,

Uj = 1
ρYj , the augmented Lagrangian can be rewritten as:

Lρ(X1, . . . , Xj , . . . , XN , Z, z1, z2, z3, U1, . . . , UN , uN+1, uN+2, uN+3)

=

N∑
j=1

(
fj(Xj) +

ρ

2
‖Rj + Uj‖22 −

ρ

2
‖Uj‖22

)
+

3∑
i=1

(ρ
2
‖ri + ui+N‖22 −

ρ

2
‖ui+N‖22 + I+(zi)

)
.

(35)

17

Then, the scaled ADMM for the global consensus problem becomes:

Xk+1
j = argmin

Xj

(
fj(Xj) +

ρ

2
‖Xj − Zk + Ukj ‖22

)
∀j = 1, . . . , N , (36a)

Zk+1 = argmin
Z

(
N∑
j=1

(ρ
2
‖Xk+1

j − Z + Ukj ‖22
)

+

3∑
i=1

(ρ
2
‖hi(Z, zki) + uki+N‖22

))
, (36b)

zk+1
i = max

{
argmin

zi

(ρ
2
‖hi(Zk+1, zi) + uki+N‖22

)
, 0
}
∀i = 1, 2, 3 , (36c)

Uk+1
j = Ukj +Xk+1

j − Zk+1 ∀j = 1, . . . , N , (36d)

uk+1
i = uki + hi−N (Zk+1, zk+1

i) ∀i = N + 1, N + 2, N + 3 . (36e)

Note: the fairness and distributed capabilities of this approach (problem formulated as global consensus and

solved with ADMM) relies on the fact that each node can take its decision autonomously without a central decision

system. Conversely, this approach compared to Section V-B has incremented the number of the constraints: from

the initial 3 up to N + 3 with the distributed (global consensus) approach.

E. A More Distributed ADMM using Global Consensus

Observing the global consensus problem in Equation (31) and the ADMM steps in Equations (34), it is worth

noting that each yi depends on the constraint hi, which in turn depends on the global variable Z. This dependency

does not allow to execute the step to update yi in a distributed fashion. It is thus possible to define an equivalent

problem considering the Xj local on each node even for which concern the constraints hi. Using Xj even for the

constraints it is thus possible to increase the degree of distribution of the ADMM, applying it to the following

equivalent optimization problem:

minimize

N∑
j=1

fj(Xj) +

3∑
i=1

I+(zi) , (37)

subject to:

Xj − Z = 0 ∀j = 1, . . . , N , (38a)

hi(Xj , zi) = 0 ∀i = 1, 2, 3 ∧ j = 1, . . . , N . (38b)

Thus the original constraints are distributed on each node becoming a total of 3 ·N . In this way one obtains the

augmented Lagrangian:

Lρ(X1, . . . , Xj , . . . , XN , Z, z1, z2, z3, Y1, . . . , Yj , . . . , YN , y11, . . . , yij , . . .)

=

N∑
j=1

(
fj(Xj) + Yj(Xj − Z) +

ρ

2
‖Xj − Z‖22

)
+

N∑
j=1

(
3∑
i=1

(
yijhi(Xj , Zi) +

ρ

2
‖hi(Xj , zi)‖22 + I+(zi)

))

=

N∑
j=1

(
fj(Xj) + Yj(Xj − Z) +

ρ

2
‖Xj − Z‖22 +

3∑
i=1

(
yijhi(Xj , Zi) +

ρ

2
‖hi(Xj , zi)‖22 + I+(zi)

))
,

(39)

18

and then, the ADMM steps (where, through the yij each node j can manage its own subset i of constraints):

Xk+1
j = argmin

Xj

(
fj(Xj) + Y kj (Xj − Zk) +

ρ

2
‖Xj − Zk‖22 +

3∑
i=1

(
ykijhi(Xj , Z

k
i) +

ρ

2
‖hi(Xj , Z

k
i)‖22

))
(40a)

∀j = 1, . . . , N ,

Zk+1 = argmin
Z

(N∑
j=1

(
− Y kj Z +

ρ

2
‖Xk+1

j − Z‖22
))

, (40b)

zk+1
i = max

{
argmin

zi

(
N∑
j=1

(
ykijhi(X

k+1
j , zi) +

ρ

2
‖hi(Xk+1

j , zi)‖22

)
, 0

}
∀i = 1, 2, 3 , (40c)

Y k+1
j = Y kj + ρ(Xk+1

j − Zk+1) ∀j = 1, . . . , N , (40d)

yk+1
ij = ykij + ρ

(
hi(X

k+1
j , zk+1

i)
)
∀ij = {i = 1, 2, 3} × {j = 1, . . . , N} = {i× j} . (40e)

This new version of the distributed ADMM algorithm has more steps that can be executed in parallel (i.e., the

updates of the yij) than the approach presented in Section V-C.

F. About distributing the optimization problem with ADMM

Despite the ADMM algorithm does not allow to obtain a fully distributed approach, due to the presence of the

central collector, great part of the problem is solved locally on the nodes, while the centralized effort is significantly

reduced. In Table I we report the steps and the parallelism achievable with the three formulations of the ADMM

algorithm. The steps identify the barriers (synchronization points) required by the parallelization, namely, the points

in time where one variable depends on one or more variables computed in previous steps.

TABLE I

PARALLELISM CAPABILITIES OF THE ADMM FORMULATIONS

Step
ADMM centralized ADMM distributed ADMM more distributed

Variable Parallelism Variable Parallelism Variable Parallelism

I X 1 Xj N Xj N

II zi 3 Z 1
Z 1

4
zi 3

III yi 3
zi 3

3 +N
Yj N

N + 3 ·N
Yj N yij 3 ·N

IV yi 3

In the two distributed ADMM approaches described above (see Sections V-C and V-E), for each iteration of the

algorithm it is required to exchange a total of 2N messages among the nodes: N to distribute the local computation

19

TABLE II

NODE ATTRIBUTES

CPU frequency (GHz) CPU (cores) RAM (GBs)

1− 3 1− 4 0.5− 8

of Xj and Yj to the central collector (distribution phase), and N to receive from the central collector the computation

of Zk (gathering phase).

It is worth noting that it could be possible to further parallelize the algorithm in Section V-E acting on zi and

introducing separate variables zij for each node, similarly to what has been done for yij in Section V-E.

VI. IMPLEMENTATION AND NUMERICAL RESULTS

The methods have been implemented in Matlab with the CVX toolbox for the definition of the optimization

problems and using the Gurobi solver which allows one to use integer variables *. This section presents the evaluated

scenario (Section VI-A) and some numerical results (Section VI-B) comparing the two different versions of the

ADMM (presented in Sections V-B and V-D) with the initial IP formulation (see the beginning of Section V). The

IP formulation provides the global maximum, while, as shown in this section, the ADMM formulations provide

good suboptimal solutions.

A. Scenario

We focus on two main aspects: the network and the workload models. As a matter of fact each simulation run

has two stages: one for generating the network configuration (cloud participants), and another one for evaluating the

actual activity period.

The nodes characteristics are showed in Table II, where values are uniformly distributed within the specified

intervals. We consider the communication overhead for transferring data as negligible. Since our problem formulation

assumes a task distribution through allocation periods, the dynamism in the online presence of the volunteer nodes

can be managed similarly. Evaluating allocation periods with a reasonable short duration, the optimization problem,

in a first approximation, could consider only the nodes actually online at the beginning of such period. If a node

correctly leaves the network (informing the other participants of its action), the tasks in its queue could be evaluated

for re-execution in the subsequent allocation period. While, if a node abruptly leaves the network, all the tasks in its

execution queue are lost.

For the workload characterization, our main reference is the Google Cloud Backend described in [38]. There,

tasks are characterized according to their duration, CPU and memory requirements, each abstracted as either small

(s) or large (l). For confidentiality reasons, the Google Cluster dataset [39] provides obfuscated information about

*For the convenience of the reviewers the implemented Matlab code is available at https://www.dropbox.com/s/j2r043wu3kmpfzt/optimization

codeSubmitted 150912.zip?dl=0

https://www.dropbox.com/s/j2r043wu3kmpfzt/optimization_codeSubmitted_150912.zip?dl=0
https://www.dropbox.com/s/j2r043wu3kmpfzt/optimization_codeSubmitted_150912.zip?dl=0

20

TABLE III

TASK ATTRIBUTES

size duration (hours) CPU (cores) RAM (GBs) Deadline offset (percentage on duration) Poisson mean arrival (ms)

large 1− 12 1− 4 1− 4 0.4 600

12

10

frequency * parallelism = φ ·min{ρ,κ} (GHz)

8

6

4

Evaluation of Execution Time : e(T,M) = δ
φ·min{ρ,κ} (hours)

2

00

2

duration * 1 GHz = δ (hours*GHz)

4

6

8

10

12

12

10

8

6

4

2

0

ex
ec
u
ti
on

ti
m
e
(h
ou

rs
)

Fig. 2. Required execution time with varying tasks / nodes characteristics

the real hardware characteristics of the Google cluster nodes: every reported value is normalized to the capacity

of the best cluster node. Another obfuscated information relevant for the purpose of our work regards the QoS

properties such as deadlines. For these reasons we have made some assumptions. We consider that the CPUs of the

cluster have a frequency of 1 GHz. In this work we have considered only the tasks of type large, whose attributes

are uniformly distributed within the intervals (grouped by qualitative coordinates), as reported in Table III.

Evaluating the task execution time as defined in Equation (4), while using the characteristics of nodes and tasks

considered during our experiments and defined above, it is possible to plot the time required to execute the tasks. In

Figure 2, the z and x axes represent, respectively, the task duration and the execution capability that the node can

exploit while the y-axis shows the required execution time. From the plot is possible noting that the task duration is

largely affected by the node capabilities. In fact observing Table III the considered tasks have a good degree of

parallelism that can be exploited to reduce the required execution time (the blue region in the plot).

21

B. Results

In this section, we compare the optimal solution value of the original IP optimization problem with values obtained

applying the two versions of ADMM discussed in Section V. In particular, the quality of the ADMM solutions has

been evaluated. Since the ADMM algorithm, in presence of nonconvex problem, should be considered as a heuristic

without any guarantee on convergence, we assume as stopping criteria 1000 iterations of ADMM.

All the experiments have been performed on a machine running Linux 3.16.0-46 64-bit equipped with an Intel

Core i5-4460 and 32 GB of RAM, using Matlab 2015a with CVX 2.1 and the Gurobi solver version 6.0.4. A single

run, with the largest problem, considering that our Matlab implementation is not able to exploit the parallelism

of the algorithm, has required around one hour of execution to perform 1000 iterations of the ADMM algorithm

(recalling that no other stopping criteria has been adopted). Increasing the parallelism, the subproblems for the

computation of the ADMM variables become easier, and so the computational time for each iteration decreases.

To evaluate the scalability of the approach, we have considered different sizes of the problem (X) varying K

(number of tasks) and N (number of nodes). The results shown in this section are the averages of 5 runs, where the

random seed changes the characteristics of nodes and tasks at each run according to the previous two Tables. CVX

currently supports three solvers for problems that make use of integer variables, namely, Gurobi, MOSEK and GLPK.

Unfortunately, none of the these solvers compatible with CVX allow obtaining all the solutions in a straightforward

way (it is only possible to apply some tricks to force the solver to skip the solutions already found, e.g., applying

cuts that make the solutions already found unfeasible). Thus, comparing the approaches, not all the solutions of X

found by the two ADMM implementations are identical. The main metric of interest during our experiments is the

hit rate, defined as the number of tasks successfully executed (i.e., the value found for the optimization function

normalized over K). This is evaluated at the best solution found by each method.

Figure 3 shows the numerical results of our comparisons. Increasing the size of the problem the relative number

of tasks that can be executed increase (scaling X , the relative number of K and N is kept constant at about 1 : 2).

The global maximum (red line) and the best value found by the ADMM formulations for the hit rate are shown in

Figure 3a. It is worth noting that, for each size of the problem, the ADMM formulations have found the global

maximum in 2/3 out of the 5 runs. The relative error, defined as the relative difference of the ADMM solutions

with the IP one, is reported in Figure 3b.

Despite the ADMM is not always able to find the global optimum, in relation to the goodness of the local

maximum and considering its ability to fairly distribute the execution on all the volunteer nodes, it should be

considered a compelling approach in a real distributed implementation, when the centralized approach can not be

practically applied.

It is worth observing that the size of the optimization variable could be reduced through a simple pre-filtering on

the nodes’ memory. Indeed, the memory is a hard-constraint (Equation (12a)) that must be satisfied by each node

independently from the choices of all other nodes and from the other accepted tasks. Thus, it is possible that, for

each optimization period, all the nodes perform an initial bid with the set of tasks for which they can satisfy the

22

 0

 5

 10

 15

 20

 25

 30

 35

 40

 40 50 60 70 80 90 100

H
it
 r

a
te

 (
%

)

Problem complexity (elements of X)

IP

ADMM

distributed ADMM

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 50 60 70 80 90 100

R
e
la

ti
v
e
 e

rr
o
r

o
f
th

e
 s

o
lu

ti
o
n
s

Problem complexity (elements of X)

ADMM

distributed ADMM

(b)

Fig. 3. Numerical results on the ADMM formulations: hit rate (left) and relative error (right).

memory constraint. The original problem can then be subdivided in simpler problems, where the memory constraint

can be removed.

VII. THE OPTIMIZATION FRAMEWORK

In this section, we briefly formulate other task distribution policies which can be modeled according to our

framework. The definition of these policies has proved to be straightforward and only minor changes in the

optimization function have been required while the ADMM implementation can be basically used as-is, changing

the f(X) in Section V, as described in this section. The implementation of all the following policies has been

necessary to us to obtain an upper bound for the global optimum while evaluating our other simulation-based studies

e.g., [10], [13], [16], [40], [41].

A. Minimize the termination time for the task set

In this scenario, we want to minimize the time needed to complete all the tasks in the set. With this approach,

the nodes become sooner free, and thus can more easily execute future requests in the subsequent allocation period.

The first step is the construction of the execEndX vector as described in Equation (12c), according to the actual

choice of the executor nodes. Since the execution end time is zero for the tasks that are not executed, a trivial solution

could be constituted by no task executed by any node. This misleading behavior can be eliminated stimulating the

execution by adding a penalty factor for the tasks that are not actually executed:

penalty := c×
(
K −

N−1∑
j=0

executedTasks(j)
)
, (41)

where c is the penalty factor for non executing a task. The penalty factor can be varied according to the importance

given to the execution of the tasks.

23

The optimization problem can then be expressed as the minimization of the sum of the total time needed to

execute the tasks and the penalty term mentioned above:

minimize

K−1∑
l=0

execEndX(l) + penalty , (42)

subject to the constraints 1, 3 and 4.

In the penalty factor assignment, a more sophisticated strategy could take into account the class s of “importance”

for the tasks that are not executed. This point will be considered in a future work.

B. Minimize the response time

The minimization of the response time proceeds similarly to the minimization of the termination time for the

task set (Section VII-A). The main difference relies on the choice of the constraints. In this problem, each task is

assigned to a node, even if is not possible to satisfy the deadline requirement. This constraint makes useless the

inclusion of a penalty factor and thus the problem is formulated as:

minimize

K−1∑
l=0

execEndX(l) , (43)

subject to the constraints 1 and 2.

C. Maximize nodes fairness

In this case, the goal is the maximization of the distribution of tasks among nodes. Thus, the highest number of

nodes should participate in the execution of the task set. The objective function is the difference of tasks executed

by the node that executes more tasks to the node that executes less:

∆task = max(executedTasks)−min(executedTasks) . (44)

This strategy, if implemented trivially brings to a situation where none of the nodes execute tasks since this

situation allows to have ∆task = 0. To prevent this vicious behavior from behalf of the nodes, the number of

executed tasks is checked and for each not executed task a penalty is assigned (Equation (41)). It is possible to

express this problem as a maximization problem: maximize(node fairness(· · ·)), or dually as a minimization

one: minimize(node unfairness(· · ·). Our implementation follows the latter approach:

minimize ∆task + penalty , (45)

subject to the constraints 1, 3 and 4.

D. Maximize nodes greenness

In this case, the goal is the reduction of the number of nodes performing computation in a given allocation period,

while taking into account the nodes that are already active and running tasks belonging to previous periods. The

underlying idea is that in this way the nodes that do not execute any task can shift towards an energy-saving state.

24

The executed tasks must still respect the deadline constraints, but solutions that use a lower number of nodes are

preferred.

This green policy consolidates the tasks in the smallest possible number of nodes but, to prevent that no tasks will

be executed, a penalty factor is added (Equation (41)). Maximizing the greenness (i.e., maximizing the number of

nodes off) is analogous to minimizing the green cost (i.e., minimizing the number of nodes on). We have followed

the latter approach. The computation of the green cost is articulated in a few steps:

activeNodest = min{
K−1∑
l=0

X(l, j), 1N} , (46a)

switched = activeNodest−1 − activeNodest , (46b)

greenCost = c2 ×
N−1∑
j=0

|min{switched(j), 0N}| − b×
N−1∑
j=0

max{switched(j), 0N}+ penalty . (46c)

The active nodes are evaluated in Equation (46a), where the min function is used to count a node as active

disregarding the number of tasks it is executing (since just one task is enough to require the node to be running).

Then, in Equation (46b) the nodes that should change their status in the current allocation period t are evaluated,

i.e., each element of the vector switched ∈ RN is 1 if a node can be switched to an energy-saving state, −1 if a

new node needs to be activated, and 0 if no change of the status occurs. It follows that the undesired situations

occur for the −1 elements of switched, while 1 represents the preferred value. Finally, the greenCost is computed

in Equation (46c), where the penalty factor c2 takes into account the nodes that are required to wake-up, while b is

a bonus for the nodes switched to energy-saving status.

In fact, the green optimization problem as formulated in Equations (46), turns out to be a multi-criteria optimization

problem, where a trade-off among the benefit of executing more tasks (last terms of Equation (46c)) and the use

of fewer nodes (the middle term) should be weighted with the need to wake-up further nodes. The optimization

problem considers the minimization of the greenCost (Equation (46c)) and it is subject to the constraints 1, 3 and

4 of our framework.

VIII. CONCLUSIONS AND FUTURE WORK

The volunteer cloud computing is characterized by a large-scale heterogeneous and dynamic environment. Such a

complex environment makes it hard, if not impossible, to perform global optimization algorithms, and to distribute

tasks execution requests (often with associated deadline requirements), in a centralized fashion. Distributed algorithms

are thus advocated, as the only solution methods applicable in a real environment.

In this work, we propose a distributed framework defining the optimization problem related to the allocation

of the tasks execution requests according to different policies. Our problem formulation has been driven by the

requirements of a real environment that we considered in our other previous simulative works [10], [13], [16], [40],

[41] based on pure heuristic solutions. At the best of our knowledge, those requirements are instead often neglected

25

in the literature related to the volunteer cloud, simplifying the domain specification while formalizing the problem

as an optimization problem. Example of the key elements of our modeling are: execution queue with FIFO policy,

tasks with associated deadline, and evaluation of the actual load on the machines. Without loss of generality in

the context of our framework, one of these policies has been implemented relying on the ADMM algorithm, with

various parallelism capabilities. The numerical results show that, despite the ADMM is just a heuristic in presence

of a non-convex problem (as in our formulation), it can still be used successfully. Up to the authors’ knowledge, the

application of ADMM for task scheduling in the context of the volunteer cloud is novel.

We conclude by mentioning that, in a real domain, a single policy could be driven by multiple goals. We are

investigating how to fruitfully integrate multi-criteria optimization techniques [42] in our framework. A further

point that can be investigated to increase the realism of our model is related to the time required to transfer the

task towards the executor node (recalling that, in the volunteer cloud, each node acts as both task producer and

consumer). E.g., evaluating the execT ime is possible to build a “local-view” for each node. In each allocation

period the tasks could be sorted (preferred) by each node according to the above mentioned transmission cost.

ACKNOWLEDGMENT

This research was partially supported by the EU through the HOME/2013/CIPS/AG/4000005013 project CI2C.

The contents of the paper do not necessarily reflect the position or the policy of funding parties.

REFERENCES

[1] V. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa, “Volunteer computing and desktop cloud: The cloud@home paradigm,” in Network

Computing and Applications, 2009. NCA 2009. Eighth IEEE International Symposium on, July 2009, pp. 134–139.

[2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for VM-Based Cloudlets in Mobile Computing,” Pervasive Computing,

IEEE, vol. 8, no. 4, pp. 14–23, oct.-dec. 2009.

[3] D. P. Anderson, “Boinc: A system for public-resource computing and storage,” in Proceedings of the 5th IEEE/ACM International

Workshop on Grid Computing, ser. GRID ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 4–10. [Online]. Available:

http://dx.doi.org/10.1109/GRID.2004.14

[4] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in practice: the Condor experience.” Concurrency - Practice and Experience,

vol. 17, no. 2-4, pp. 323–356, 2005.

[5] F. Brasileiro, E. Araujo, W. Voorsluys, M. Oliveira, and F. Figueiredo, “Bridging the high performance computing gap: The ourgrid

experience,” in Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid, ser. CCGRID ’07.

Washington, DC, USA: IEEE Computer Society, 2007, pp. 817–822. [Online]. Available: http://dx.doi.org/10.1109/CCGRID.2007.28

[6] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Seattle: A platform for educational cloud computing,” SIGCSE Bull.,

vol. 41, no. 1, pp. 111–115, Mar. 2009. [Online]. Available: http://doi.acm.org/10.1145/1539024.1508905

[7] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “Seti@home: An experiment in public-resource computing,”

Commun. ACM, vol. 45, no. 11, pp. 56–61, Nov. 2002. [Online]. Available: http://doi.acm.org/10.1145/581571.581573

[8] O. Babaoglu, M. Marzolla, and M. Tamburini, “Design and implementation of a p2p cloud system,” in Proceedings of the 27th

Annual ACM Symposium on Applied Computing, ser. SAC ’12. New York, NY, USA: ACM, 2012, pp. 412–417. [Online]. Available:

http://doi.acm.org/10.1145/2245276.2245357

[9] E. Di Nitto, D. J. Dubois, and R. Mirandola, “On exploiting decentralized bio-inspired self-organization algorithms to develop real

systems,” in Proceedings of the 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, ser. SEAMS ’09.

Washington, DC, USA: IEEE Computer Society, 2009, pp. 68–75. [Online]. Available: http://dx.doi.org/10.1109/SEAMS.2009.5069075

http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/CCGRID.2007.28
http://doi.acm.org/10.1145/1539024.1508905
http://doi.acm.org/10.1145/581571.581573
http://doi.acm.org/10.1145/2245276.2245357
http://dx.doi.org/10.1109/SEAMS.2009.5069075

26

[10] M. Amoretti, A. Lafuente, and S. Sebastio, “A cooperative approach for distributed task execution in autonomic clouds,” in Parallel,

Distributed and Network-Based Processing (PDP), 2013 21st Euromicro International Conference on, Feb 2013, pp. 274–281.

[11] D. Talia, “Cloud computing and software agents: Towards cloud intelligent services,” in Proceedings of the 12th Workshop on Objects and

Agents, Rende (CS), Italy, Jul 4-6, 2011, ser. CEUR Workshop Proceedings, G. Fortino, A. Garro, L. Palopoli, W. Russo, and G. Spezzano,

Eds., vol. 741. CEUR-WS.org, 2011, pp. 2–6. [Online]. Available: http://ceur-ws.org/Vol-741/INV02 Talia.pdf

[12] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Trans.

Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[13] S. Sebastio, M. Amoretti, and A. Lluch Lafuente, “A computational field framework for collaborative task execution in volunteer clouds,”

in Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, ser. SEAMS 2014.

New York, NY, USA: ACM, 2014, pp. 105–114. [Online]. Available: http://doi.acm.org/10.1145/2593929.2593943

[14] J.-T. Tsai, J.-C. Fang, and J.-H. Chou, “Optimized task scheduling and resource allocation on cloud computing environment using improved

differential evolution algorithm,” Computers & Operations Research, vol. 40, no. 12, pp. 3045 – 3055, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S030505481300169X

[15] F. Zambonelli and M. Mamei, “Spatial Computing: An Emerging Paradigm for Autonomic Computing and Communication,” in Autonomic

Communication, ser. Lecture Notes in Computer Science, M. Smirnov, Ed., vol. 3457. Springer Berlin Heidelberg, pp. 44–57. [Online].

Available: http://dx.doi.org/10.1007/11520184 4

[16] A. Celestini, A. Lluch Lafuente, P. Mayer, S. Sebastio, and F. Tiezzi, “Reputation-Based Cooperation in the Clouds,” in Trust Management

VIII, ser. IFIP Advances in Information and Communication Technology, J. Zhou, N. Gal-Oz, J. Zhang, and E. Gudes, Eds. Springer

Berlin Heidelberg, 2014, vol. 430, pp. 213–220. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-43813-8 15

[17] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[18] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2015. [Online]. Available: http://www.gurobi.com

[19] H. Haridas, S. Kailasam, and J. Dharanipragada, “Cloudy knapsack problems: An optimization model for distributed cloud-assisted systems,”

in Peer-to-Peer Computing (P2P), 14-th IEEE International Conference on, Sept 2014, pp. 1–5.

[20] M. Malawski, K. Figiela, and J. Nabrzyski, “Cost minimization for computational applications on hybrid cloud infrastructures,” Future

Generation Computer Systems, vol. 29, no. 7, pp. 1786–1794, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0167739X13000186

[21] R. Fourer, D. M. Gay, and B. Kernighan, AMPL: A Modeling Language for Mathematical Programming, 2nd ed., S. W. Wallace, Ed.

Cengage Learning, 2002.

[22] M. Malawski, K. Figiela, M. Bubak, E. Deelman, and J. Nabrzyski, “Scheduling Multilevel Deadline-Constrained Scientific Workflows

on Clouds Based on Cost Optimization,” Scientific Programming, vol. 2015, pp. 680 271:1–680 271:13, 2015. [Online]. Available:

http://dx.doi.org/10.1155/2015/680271

[23] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford, “DONAR: decentralized server selection for cloud services,” SIGCOMM Comput.

Commun. Rev., vol. 41, no. 4, pp. –, Aug. 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=2043164.1851211

[24] H. Xu and B. Li, “Joint request mapping and response routing for geo-distributed cloud services,” in INFOCOM, 2013 Proceedings IEEE,

April 2013, pp. 854–862.

[25] B. Li, S. Song, I. Bezakova, and K. Cameron, “EDR: An energy-aware runtime load distribution system for data-intensive applications in

the cloud,” in Cluster Computing (CLUSTER), 2013 IEEE International Conference on, Sept 2013, pp. 1–8.

[26] A. Nedic, A. Ozdaglar, and P. Parrilo, “Constrained Consensus and Optimization in Multi-Agent Networks,” Automatic Control, IEEE

Transactions on, vol. 55, no. 4, pp. 922–938, April 2010.

[27] Q. Zhu, H. Zeng, W. Zheng, M. D. Natale, and A. Sangiovanni-Vincentelli, “Optimization of Task Allocation and Priority Assignment in

Hard Real-time Distributed Systems,” ACM Trans. Embed. Comput. Syst., vol. 11, no. 4, pp. 85:1–85:30, Jan. 2013. [Online]. Available:

http://doi.acm.org/10.1145/2362336.2362352

[28] IBM, “ILOG CPLEX optimizer.”

[29] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Optimization and Statistical Learning via the Alternating Direction

Method of Multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[30] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.

http://ceur-ws.org/Vol-741/INV02_Talia.pdf
http://doi.acm.org/10.1145/2593929.2593943
http://www.sciencedirect.com/science/article/pii/S030505481300169X
http://dx.doi.org/10.1007/11520184_4
http://dx.doi.org/10.1007/978-3-662-43813-8_15
http://cvxr.com/cvx
http://www.gurobi.com
http://www.sciencedirect.com/science/article/pii/S0167739X13000186
http://www.sciencedirect.com/science/article/pii/S0167739X13000186
http://dx.doi.org/10.1155/2015/680271
http://dl.acm.org/citation.cfm?id=2043164.1851211
http://doi.acm.org/10.1145/2362336.2362352

27

[31] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal Parameter Selection for the Alternating Direction Method of Multipliers

(ADMM): Quadratic Problems,” Automatic Control, IEEE Transactions on, vol. 60, no. 3, pp. 644–658, March 2015.

[32] M. J. Feizollahi, M. Costley, S. Ahmed, and S. Grijalva, “Large-scale decentralized unit commitment,” International Journal of

Electrical Power & Energy Systems, vol. 73, no. 0, pp. 97–106, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S014206151500191X

[33] O. Miksik, V. Vineet, P. Pérez, and P. Torr, “Distributed Non-convex ADMM-based inference in large-scale random fields,” in Proceedings

of the British Machine Vision Conference. BMVA Press, 2014.

[34] “The Service Level Agreement,” Sep. 2015. [Online]. Available: http://www.sla-zone.co.uk

[35] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control, ser.

Lecture Notes in Control and Information Sciences, V. Blondel, S. Boyd, and H. Kimura, Eds. Springer-Verlag Limited, 2008, pp. 95–110,

http://stanford.edu/∼boyd/graph dcp.html.

[36] R. M. Karp, “Reducibility among Combinatorial Problems,” in Complexity of Computer Computations, ser. The IBM Research

Symposia Series, R. Miller, J. Thatcher, and J. Bohlinger, Eds. Springer US, 1972, pp. 85–103. [Online]. Available:

http://dx.doi.org/10.1007/978-1-4684-2001-2 9

[37] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York: Springer, 2006.

[38] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards Characterizing Cloud Backend Workloads: Insights from Google

Compute Clusters,” ACM SIGMETRICS Performance Evaluation Review, vol. 37, no. 4, pp. 34–41, 2010.

[39] J. L. Hellerstein, “Google cluster data,” Google research blog, Jan. 2010, posted at http://googleresearch.blogspot.com/2010/01/

google-cluster-data.html.

[40] S. Sebastio, M. Amoretti, and A. Lluch Lafuente, “AVoCloudy: a simulator of volunteer clouds,” Software: Practice and Experience, vol.

In Press. [Online]. Available: http://dx.doi.org/10.1002/spe.2345

[41] S. Sebastio and A. Scala, “A Workload-Based Approach to Partition the Volunteer Cloud,” in Proceedings of the 1st IEEE International

Conference on Collaboration on Internet Computing, ser. CIC’15. to appear in IEEE Computer Society, 2015.

[42] M. Ehrgott, Multicriteria Optimization (2. ed.). Springer, 2005. [Online]. Available: http://dx.doi.org/10.1007/3-540-27659-9

http://www.sciencedirect.com/science/article/pii/S014206151500191X
http://www.sciencedirect.com/science/article/pii/S014206151500191X
http://www.sla-zone.co.uk
http://stanford.edu/~boyd/graph_dcp.html
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://dx.doi.org/10.1002/spe.2345
http://dx.doi.org/10.1007/3-540-27659-9

	Introduction
	Related Work
	The ADMM: Alternating Direction Method of Multipliers

	Model
	Tasks
	Virtual Resources

	The Optimization Problem
	Data structures
	Allocation policies

	Maximize the number of executed tasks
	ADMM: unscaled form and augmented Lagrangian
	ADMM: scaled form and augmented Lagrangian
	Distributed ADMM using Global Consensus
	Distributed ADMM using Global Consensus, scaled form
	A More Distributed ADMM using Global Consensus
	About distributing the optimization problem with ADMM

	Implementation and Numerical Results
	Scenario
	Results

	The Optimization Framework
	Minimize the termination time for the task set
	Minimize the response time
	Maximize nodes fairness
	Maximize nodes greenness

	Conclusions and Future Work
	Acknowledgment
	References

