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The swift and continuous evolution of mobile devices is encouraging both private and public organizations
to adopt the Bring Your Own Device (BYOD) paradigm. As a matter of fact, the BYOD paradigm drastically
reduces costs and increases productivity by allowing employees to carry out business tasks on their
personal devices. However, it also increases the security concerns, since a compromised device could
disruptively access the resources of the organization. The current mobile application distribution model
based on application markets does not cope with this issue. In a previous work the concept of secure
meta-market has been introduced as a mean to distribute mobile applications always guaranteed to
comply with any given BYOD policy. This is achieved through a suitable combination of static analysis
(i.e. model checking) and code instrumentation techniques. Although crucial, enforcing security policies
over individual applications is not sufficient in general. Indeed, several well documented threats arise
from the malicious interaction among applications which are harmless if isolated. In this paper, a novel
technique for the security verification of groups of mobile app is proposed. The approach relies on
partial model checking (PMC) to extend the existing security guarantees to groups of applications. The
experimental results demonstrate the viability of the approach. Moreover, we show through a case study
that even a fairly simple security policy can be violated by applications which are compliant if considered
one by one.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since it promises cost reduction and increased productivity, it is
not surprising that the BYOD paradigm is receiving a growing

The relentless evolution of mobile technologies is pushing
forward the interest for novel, ubiquitous paradigms. Among them,
the Bring Your Own Device [1] (BYOD) is polarizing attention and
investments [2]. The BYOD paradigm allows people to join an
organization and access its resources by using their own device.
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attention from organizations worldwide.

However, securing BYOD environments poses new challenges
due to the twofold role of devices. On the one hand, the personal
use of devices must comply with the security policy of the organi-
zation. Since the behavior of a device depends on the installed soft-
ware, some policy enforcement technology must verify or monitor
its execution. On the other hand, the enforcement of the se-
curity policy should not affect the user experience. It must be
noted that current mobile applications deployment frameworks,
mostly based on dedicated web services called applications mar-
kets (e.g. Apple Store, Google Play, Samsung Store, . . .), provide lit-
tle or even no support to tackle these challenges. Some application
markets implement a review process, see e.g., [3,4], featuring some
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form of security analysis, but they are poorly documented and it is
therefore unclear what kind of guarantees they provide. Moreover,
severe limitations have been reported. For instance, malicious apps
have been positively reviewed and published [5]. This lack of secu-
rity support is often mitigated by asking to the device owner to take
security-critical decisions, e.g. to decide whether to install an ap-
plication on the ground of the permission requested and the trust-
worthiness of the developer. Needless to say, the vast majority of
users lacks the skills to take informed decisions and this approach
therefore exposes organizations to dangerous threats.

The concept of Secure Meta-Market (SMM) [6,7] has been
put forward to tackle the above challenges, and it is now
receiving the attention of the mobile security community and some
implementations recently appeared (e.g. see [8]). A SMM masks
the actual application markets by mediating all the installation
requests and supports the enforcement of BYOD security policies
through formal analysis and monitoring inlining. This is achieved
by supporting (i) the definition of fine-grained security policies,
(ii) the static verification of applications through model checking,
and (iii) the security instrumentation necessary to monitor the
applications that fail the verification step.

As detailed in [7] where a prototype implementation is
proposed, these techniques rely on a model t, (formally describing
the behavior of an application a) and a formula ¢, (formally
specifying the behavior complying with a security policy p).
Verification is done by checking whether t, enjoys ¢,, in symbols
ts = ¢p. Instrumentation is done by turning a into a new
application a’ that, by construction, is guaranteed to enjoy ¢,
ie ty = ¢p.

Although the experimental results presented in [7] are encour-
aging, they are limited to the verification of individual applications.
Therefore the scalability of the approach on application configura-
tions, i.e. finite sets of applications, say a1, ..., a, is still to be as-
certained. This is an important problem, since attacks leveraging
the unexpected interplay of multiple applications are known. For
instance, in the confused deputy attack [9], a malicious application
that does not have the appropriate permissions to download a file
invokes a second one (e.g., a browser) to download it.

The problem of checking whether an application configuration
{aq, ..., a,} complies with a policy p can be reduced to checking
whether (t;, |- |lte,) = ¢p, where the t, are the models
of the applications a; and (| - - - ||lts,) denotes their parallel
composition. Unfortunately even state-of-the-art model checkers
scale poorly as n increases because of the well-known state-
explosion problem [10]. Partial Model Checking (PMC) [11] is a
technique that allows to reduce a model checking problem of the
form (t; || t2) = ¢ to the problem t; = ¢/ t1, where ¢/ t; is a
formula obtained by partially evaluating ¢ with respect to t;. The
key observation is that even though ¢/ t; can be larger than ¢, t;
is usually considerably smaller than (t; || t;). For this reason, PMC
can play a pivotal role in combating the state-explosion problem.

This paper shows that PMC can be effectively used to
mitigate the state-explosion problem and considerably improve
the scalability of the SMM paradigm. This is done by showing how
the verification of application configurations can be reduced to a
sequence of PMC problems and by presenting experimental results
showing that PMC can lead to verification times that are up to 3
orders of magnitude smaller than those obtained by traditional
model checking techniques only.

The rest of the paper is focused on static analysis only. Details
on the instrumentation and monitoring techniques adopted in the
SMM can be found in [7].

This paper is structured as follows. Section 2 puts the paper
in context by discussing the related work. The concept of SMM
is introduced in Section 3. The verification of mobile applications
through PMC is discussed in Section 4. The usage of PMC in
BYODroid is illustrated in Section 5. The experimental results are
reported and discussed in Section 6. Finally, Section 7 draws some
concluding remarks.

2. Related work

Since the BYOD paradigm has been proposed only recently,
the literature addressing the associated security concerns is very
limited at present. Nevertheless, several works propose solutions
for applications security analysis which might be considered for
implementing the BYOD security frameworks.

Android application security. The Android permission system is
the basic element for defining application privileges and enforce
them at runtime. However, since its first appearance it received
many criticisms, e.g., see [ 12], and many authors, e.g., see [13-15],
proposed modifications and improvements, mainly focused on
enhancing the security for user’s activities (e.g. E-commerce [16])
as well as reducing the exploitability of device vulnerabilities
(e.g. [17,18]). Still, permissions are not sufficient to define fine-
grained policies as those needed for BYOD systems.

Several authors presented approaches that extend or redefine
the Android security framework with a particular attention to data
flow analysis. For instance, FlowDroid [19] analyzes data-flows
over Android applications and, its extensions [20,2 1] also deal with
multiple Android applications interacting through IPC channels.
A similar approach explicitly dealing with enterprise data is put
forward in [22]. Instead, Scandroid [23] checks data flows through
applications against security specifications extracted from the
manifest, while [24] applies a reachability analysis to discover
whether applications leak sensitive information through the
network. Runtime enforcement solutions include TaintDroid [25],
i.e, a system-wide dynamic taint tracking system capable to
simultaneously track multiple sources of sensitive data, and
Kynoid [26], i.e., a monitoring framework for user-defined security
policies for data-items. Although relevant, data flow analysis
does not cover usage control aspects which are central in BYOD
environments. Moreover, these approaches mostly target the
validation of single applications while we are also interested in the
analysis of applications composition. Recently, a security enhanced
version of Android, namely SEAndroid [27], has been released for
defining system-wide mandatory access control (MAC) policies.
Furthermore, in [28] it has been extended to support security
policies specified through timed automata. Although SEAndroid
permits to define global MAC policies over the OS resources of the
device, it lacks the sufficient level of abstraction to deal with BYOD
environments.

Policy enforcement relying on formal methods. Formal security
analysis techniques require a rigorous, mathematical description
of both the security policy and the app behavior. For instance, a
common practice consists of a runtime monitor which compares
the execution trace of an application against the security policy.
Security frameworks based on this approach include [29] for Java
Standard Edition, [30] for. NET and [31] for Java Micro Edition.
Runtime monitoring can effectively control that the execution
of programs comply with a formally defined policy. Policy
languages provided with a formal semantics include temporal
logics, e.g., LTL [32], and finite state machines, e.g., security
automata [33]. Still, runtime enforcement must be carried out by
the execution environment, i.e., the mobile device, at the cost of
undesirable computational overhead and energy consumption.
On the other hand, static enforcement techniques typically
rely on a mathematical structure describing the behavior of the
application, namely a model. Models abstract away details that are
considered to be irrelevant for the security analysis. Usually, very
abstract models are more compact and easier to handle/analyze
while detailed ones lead to longer computations and, in certain
cases, can cause intractability. A common practice requires to
define a type and effect system [34] to infer a model from a piece
of code. In [35,6] we followed this approach on a minimal core
language [36]. Although simplified, such framework included most
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of the relevant aspects of the Android IPC and components. The
type and effect system infers a history expression [37] from each
Android component. Also, in [35] we showed that the type and
effect system generates safe history expressions, i.e., they over-
approximate the actual behavior of the application.

Although feasible, redefining the type system for the entire Java
language (and also for its bytecode) can be a cumbersome process
(due to its rich and redundant syntax) and many proposals only
address fragments of the full Java language. In [38] the authors
opted for generating history expressions out of control flow graphs
(CFG). A proof of the soundness of this approach is not available.
Nevertheless, several authors worked on the formalization of the
Java semantics (e.g., see [36,39,40]) which can be used for such a
proof. Remarkably, the CFG correctness has been already obtained
for Java 1.4 [41].

Building a CFG from a Java program is a rather common
operation and some tools exist. For instance, CONFLEX [42]
translates bytecode programs into BIR, an intermediate, stack-less
language, and creates a CFG without losing critical information.
Similarly, Soot [43] relies on Jimple (Java sIMPLE), a stack-less,
three address language, to carry out a similar procedure. Also, the
generation of a CFG is a rather efficient process as discussed in [44].

Security policy adaptation. The implementation of a policy re-
finement/specialization procedure based on partial model check-
ing [11] is a further contribution of this paper. At the best of
authors’ knowledge, the present work is the first proposal for the
application of partial model checking to the verification of con-
figurations of applications. Nevertheless, few works exploited this
technique in different fields, in particular, in presence of modular/-
compositional contexts. For instance, in [45] partial model check-
ing was applied for synthesizing a specialized security controller.
Briefly, the authors considered an agent, e.g., a web browser, which
interacts with a possibly malicious module, e.g., a third-party plu-
gin. Starting from a security policy for the whole system, they
obtain a security controller which effectively enforce the global
policy by only monitoring the untrusted module. Following a sim-
ilar approach, in [46] the same authors use partial model check-
ing for verifying whether a web service composition complies
with a security specification. Alternative implementations of par-
tial model checking are included in existing application analysis
frameworks like CADP [47] and mCRL2 [48].

3. Secure Meta-Markets

In the current mobile world, the application deployment is
carried out through application markets. An application market
(Google Play, Samsung Store, ...) is an OS-specific store where
developers upload and sell their mobile applications. Mobile
devices are usually equipped with a client application able to
interact with the application market, thereby allowing the user to
browse among applications and select those to install.

From a security point of view, application markets put much
of the responsibility on the shoulder of the user which takes
the decision whether to install an application or not. To support
the decision, application markets often attach some coarse-
grained information to each application (e.g., application rating
and reputation of the developer). In a few cases (e.g., Google
Bouncer'), application markets carry out some sort of security
analysis on the applications. However, these solutions are scarcely
documented and provide little assurance [49]. All in all, current
application markets do not meet the requirements posed by the
BYOD paradigm.

1 http://googlemobile.blogspot.it/2012/02/android-and-security.html.

The concept of SMM aims at overcoming these difficulties. As
shown in Fig. 1, a SMM acts as a security-enabled application
market which enforces corporate BYOD policies on personal
devices. Each corporation can install its own SMM and define the
security policies suitable to its needs by using appropriate policy
specification languages (e.g., ConSpec [50]—see Section 6). The
SMM masks the actual application markets. For each application
that the user wants to install, the SMM retrieves the application
package directly from the official application market. Then, it
verifies the compliance of the application against the current
personal device configuration (i.e. the set of installed applications)
and the BYOD policy. In case of non-compliance, the SMM proceeds
by instrumenting the application. Thus, the installation deploys
a piece of software (original or instrumented) which keeps the
device configuration compliant with the BYOD policy.

It must be emphasized that the SMM is transparent to both the
users and the application markets. The SMM features are supported
through the workflow depicted in Fig. 2.

The workflow works as follows: code producers compile (P.0)
and generate mobile applications (P.1); then, they publish their
applications (P.2) on a standard application market which stores
(M.0) the software packages in a database (ADB). When a user
requires an application from the meta-market, the corresponding
application is retrieved. Then, a model extraction procedure is
applied to the application (B.0) to generate an application model
(B.1). Since the model is extracted from the application code, no
further validation is required. Hence, the model can be directly
passed (B.2) to a verification process which checks its compliance
against the security policy (B.3). Security policies are retrieved (B.4)
from a policy database (PDB) handling policy instances customized
over the devices configuration.

If the verification succeeds (B.5 — YES) the policy database is
updated by means of PMC (B.6) and the application is delivered to
the user’s device with no further action (B.7). Otherwise (B.5 —
NO), the SMM attaches monitoring information to the application
(B.8). Mainly, monitoring information consists of a digital signature
which will be used by the code consumer to obtain a correct
instrumentation of the application. When the consumer receives
a mobile application package, she checks whether it was marked
for monitoring (C.0). If this is the case, before installation the
mobile device instruments the application package with security
checks by using information attached by the meta-market (C.1).
Otherwise, it is directly installed.

4. Formal security assessment

Static verification is a core activity of the SMM and, together
with code instrumentation, guarantees that no security violations
occur at runtime. The verification process consists of three steps:
(i) the extraction of behavioral models from the application
packages, (ii) the exhaustive search for illegal execution traces
via model checking, and (iii) the partial evaluation of the security
policy with respect to the verified models. Below we present these
three steps and discuss the existing approaches and technologies
implementing them.

4.1. Application modeling

Android software packages (APKs) carry application code and
non executable resources (e.g., pictures and multimedia files).
Application code primarily consists of Android VM bytecode and,
possibly, machine executable, a.k.a. native, modules. Every access
to the valuable resources of the execution platform is performed
by invoking a corresponding API or system call.

Control flow graphs. A control flow graph (CFG) is a data structure
representing the possible execution flows of a piece of software.
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ldc wv3, "file://sdcard/f"
ldc v4, "path"
ivk wv2, wv4,

class C extends .getExtra(String)

BroadcastReceiver mvr v5
{ new v6, Jjava.io.File
void onReceive ivk wve6, v3, .<init>(String)
(Context c, mvr vé
Intent i) | new v7, Jjava.io.File
String s = ivk wv7, v5, .<init>(String)
"file://sdcard/f"; mvr v7
String t = ivk wvé6, v7, .equals()
i.getExtra("path"); mvr v8
File f = new File(s); ifz wv8, 11
File g = new File(t); 10:
if(f.equals(qg)) { ivk v6, .delete()
f.createNewFile(); ivk w7, .createNewFile ()
} goto 12
else { 11:
f.delete(); ivk wve, .createNewFile ()
g.createNewFile(); 12:
} new v9,
Intent j = android.content.Intent
new Intent ( sget v10, someService.class
Cy ivk wv1, wvl10,
someService.class); .<init>(Context, Class)
j.putExtra ("uri", s); mvr v9
c.startService (Jj); ldc wvl1l, "uri"
} ivk wv9, wvl1l, v3,
} .putExtra(String, String)
ivk wvl, wv9,

.startService (Intent)
ret

Fig. 3. A (simplified) example of the model extraction process.

Intuitively, control flow instructions, i.e., conditional branches,
unconditional jumps and loops, result in edges connecting the

nodes of the CFG. Nodes can be either basic blocks, i.e., linear,
jump-free sequences of instructions, or conditional nodes, i.e.,
those representing the guard of a branching instruction. The
level of abstraction of a CFG mostly depends on the instructions
appearing in its nodes. Let assume two sets of instructions A and
I', denoting the security-relevant relevant operations and the IPC
invocations, respectively, are defined. Clearly, the content of A
corresponds to the alphabet of the security policy under evaluation
and typically changes when a new policy is considered. Instead,
I' is constantly defined as the set of the Android IPC APIs. To
disambiguate, let us write ¢, 8 € I to denote that ¢ isanincoming
action and B an outgoing one. The following simple example will
provide the basic intuition.

Example 1. Consider the fragment of Java code on the left of
Fig. 3. It represents a minimal implementation of an Android
BroadcastReceiver. It defines a method onReceive which canbe
triggered by sending an appropriate intent through the invocation
sendBroadcast. The method creates two File objects (f and g)
pointing to the constant path "file://sdcard/f" and a location
carried by the received intent, respectively. If the two files are equal
(i.e., they have the same path), f is created, otherwise f is deleted
an g created. The method terminates by invoking an Android
service called someservice. To this end, a new intent is created,
populated with some data (here with the pair of values "uri" and
"file://sdcard/f")and passed to the method startservice.
Upon compilation, a piece of bytecode, resembling that re-
ported on the right-hand side of Fig. 3, is generated. Method in-
vocations (instruction ivk) contain a list of registers (e.g., v1i, vé)
for the actual parameters and a pointer to the invoked method
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init(f, “file://sdcard/f")
init(g, i)

delete(f)

createNewFile(g) createNewfFile(f)

N/

startService(c,j)

sl

sendBroadcast(c,i)

s2

init(f, "file://sdcard/f")

s3 s7

init(g, t) startService(c,j)

s4 s6

[f=g], createNewFile(f)
>

[f=g], delete(f) createNewFile(g)

s5

Fig. 4. A (simplified) example of the model extraction process (contd.)

(e.g., .startService (Intent) ). The other involved instructions
are 1dc (load a constant in a register), new (creates an instance of
the given class type), mvr (puts the result of the previous operation
in the specified register), i £z (jumps to an instruction if the value
of aregisteris 0/t rue), goto (jumps to the given instruction), sget
(gets the value of a static field) and ret (exit the current block).

The bytecode consists of four blocks. Labels separate blocks and
are placed either after a jump instruction or at the location pointed
by a jump. For instance, 10 is located after a conditional instruction
ifz, while 12 is pointed by the goto before 11 (notice that 11
satisfies both the conditions).

The CFG obtained from the given bytecode could resemble
that on the left of Fig. 4, where A = {File.<init> (String),
File.delete(), File.createNewFile ()} (init, delete and
createNewFile are defined for brevity).” The nodes of the CFG
correspond to the basic blocks of the bytecode. Moreover, a
branching node ¢ is placed where the control flow can take
two different paths. In this example, the instruction .equals is
interpreted as testing the equality of f and g. Also notice that the
actions not appearing in A U I" (here the only actions in I” which
also appearinthe CFG are startService and sendBroadcast)are
dropped from the nodes.> O

CFGs are exploited in several analysis techniques and many au-
thors proposed algorithms for the extraction of safe, i.e., correctly
representing all the execution paths, graphs. As a consequence,
several tools exist for extracting a CFG from binaries and byte-
code. Among them, Androguard* and CoNFLEX [42] are the most
suitable for the SMM aim. Androguard consists of a suite of tools
for the static analysis of Android applications and is specifically
designed for processing the Android bytecode. Instead, CONFLEX
generates CFGs from Java bytecode even when some components
are statically unspecified. Moreover, CONFLEX implements an in-
cremental CFG building procedure which is both sound and rather

2 Notice that, for the sake of presentation, in this examples polyadic actions are
used instead of monadic ones. The interested reader can find more details on this
aspectin [51,52].

3 Notice that these operations are removed through simplifications, rather than
simply discharged. For instance, constant propagation [53,54] can be applied before
dropping references to variables.

4 https://github.com/androguard/androguard.

precise. CFGs obtained in this way can be composed when a miss-
ing module becomes available so resulting in model refinement.
Needless to say, this features is very appealing when extracting
models from Android applications as they often use IPC for invok-
ing statically unknown components. When a component of an ap-
plication is dovetailed with others to form an execution context,
their models compose in a single, refined one.

Thus, each CFG is translated into a corresponding STS.
The translation is straightforward and several results exist
guaranteeing that no information loss occurs (e.g., see [55,56]).
The resulting transition systems are then composed. To clarify the
translation process we finalize Example 1.

Example 2. Consider again the CFG of Fig. 4 extracted through the
steps sketched in Example 1. The CFG is converted into the STS
graphically depicted on the right of Fig. 4. Each transition is labeled
with the action appearing in the corresponding node of the CFG.
The equality check labeling the branching node results in a pair of
constraints appearing in the corresponding transitions (elsewhere
the constraints amount to the constant true and can be omitted
for brevity). Since the receiver begins its computation upon
receiving an invocation, it is extended with the initial transition
sendBroadcast. Such transition states that the computation of
this STS cannot start autonomously, but needs to be triggered by
anintent. O

Naively, one could consider the parallel composition of all
the models obtained in this way. Although such composition
would safely represent the actual behavior of the applications,
it would include many traces which never arise in actual
executions. Indeed, in several cases the Android components do
not execute concurrently. More commonly, when a component
invokes another one, itis suspended or even terminated. According
to the Android intent mechanism specification [57], component
invocations usually transfer the execution flow from the caller
to the callee. This causes a significant reduction of the actual
number of states obtained from the composition of two or more
agents. Notice that, when required, parallel composition is still
used, e.g., for Services and asynchronous tasks.

Further reductions concern the return flows. In many cases,
upon termination components return the execution flow to their
caller. For instance, this happens when the caller invokes the callee
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through startActivityForResult (...).In this case, when the
callee terminates, it returns some data and the caller resumes
its execution. By applying this reasoning, several flows can be
removed, i.e., those representing wrongly delivered responses.
Although this step cannot be proved to preserve the soundness
of the models, there are strong evidences, e.g., the platform
documentation, supporting it.

Summing up, for each Android application the presented
approach generates an inter-procedural model representing its
security-relevant behavior. Application models carry transitions
labeled with synchronization actions. These transitions represent
the fact that two applications can interact through IPC, possibly
transmitting data. Two or more models can be composed similarly
to what has been done for the components of the same application.
Intuitively, a composition of models represents the execution
context in which the applications (the models have been extracted
from) will operate at runtime. Instead, the composed model is
context-insensitive w.r.t. the executing platform (i.e., the Android
0S).

4.2. Model checking

Model checking [58] is a verification technique that systemat-
ically explores the computation tree of a finite-state system t by
looking for an execution path, called counterexample, witnessing
the violation of a given formula ¢. If no counterexample exists, then
t satisfies ¢, in symbols t = ¢. Otherwise, the model checker re-
turns the discovered counterexample w.

Model checking proved remarkably successful in a variety of
application domains and it is currently routinely used to support
the verification of both hardware and software components of
real-world complexity. However, model checking large models
is computationally very intensive. In particular, models grow
extremely rapidly when allowing the parallel composition as we
want to do for representing Android application configurations
(see 4.1). This issue, known as the state explosion problem [10],
is inherent to model checking. Also the adopted specification
formalism matters. For instance, model checking LTL formulae is in
PSPACE [59] (w.r.t. the size of models). The situation is even worse,
i.e., the problem is n-EXPTIME complete for n-recursive schemes,
when considering the modal p-calculus [60]. This happens because
the w-calculus is an extremely expressive logic which allows for
the definition of many security properties of interest [61]. More
precisely, the u-calculus is strictly more powerful than other
modal logics including LTL and CTL [62]. Mitigation techniques are
needed for making the approach scale on real numbers.

Here the equational p-calculus is adopted. Equations systems
have the same expressive power of the u-calculus, i.e., for each -
formula ¢ there exists an equivalent set of equations E, and vice
versa. The syntax of the equations is as follows.

E,E :=X=,AE | X=AF | ¢
AA =T | F| (@@®)A | [a@]A | (1)A | [t]A| A
ANA |AVA | X.

An equation system is a finite sequence (being ¢ the empty one)
of equations X =, A (with 0 € {u, v}) where X is a variable
(appearing only once on the left-hand side of the equations) and
A is a formula. A formula can be a truth value T or F, a variable
X (which must appear on the left-hand side of some equation)
and is built out of the following connectives: conjunction (A),
disjunction (V), existential modality ((-)), and universal modality
([-1). Modalities are defined over parametric actions a(x), 8(y)
(belonging to the alphabet A U {t} where  is the silent action).
Actions can be either inputs or outputs (input actions are denoted
a and it is possible to assume ¢ = «) and their parameters are

resource names (e.g., Android URI) or variables x, y. Finally, each
specification E must have an entry variable X, written E | X.

GivenaSTSt = (i, S, — ), the semantics of an equations system
E, written [[E ]|, (where p is a mapping from variables to sets of
states), associates to each variable X, appearing on the left-hand
side of an equation X =, A of E, a set of states of t satisfying the
assertion A. The set of such states, in symbols [A ]]p, is inductively
defined as

IT1, =S5
IF1, =9
IX1, = p(X)

[AAAT, =[AT, NIAT,
[AVAT, =[AT, UIA],
[le)IAT, = {s €S| Vs, 0.5 22 ¢ and

6+ [x=y]; ¢ implys” € [0A],}
[e@)ATl, = (s €5 |35,0.s 2% s and 6 + [x = j1; ¢

ands’ € [0A],}

[rIAD, = {s €S| Vs, 6.5 L5 5 and
6+ ¢implys' € [0A],}

[()Al, ={s€S |35, 6.5 %> s and 6 + ¢ and
s € [6AT,}.

Thus, a STS t satisfies a specification E | X if and only if
its initial state i is among those satisfying the entry equation,
ie,i € [[E];(X) (where [] is the empty mapping). The main
difference with the original rules given in [11] is the presence
of symbolic constraints in the rules for [a(X)]A and (a(X))A.
Intuitively, symbolic names can be handled by means of a unifier
6. A unifier maps a name into another name or a value. Let us
say that a unifier 6 satisfies a constraint ¢ (in symbols 6 F ¢)
if, after applying 6, ¢ reduces to a tautology. Slightly abusing the
notation, let us write 6A to denote the formula obtained from A
after applying 6 to its names. Also notice that, X has the side
effect of creating in E a new equation (if it does not already exist)
X? =, 6A where X =, A € E. The following example clarifies the
rules given above.

Example 3. Consider the following system consisting of a single
J-equation.

E£X=,(t)X V[init(x, y)](createNewFile(x))T.

Let t be the model of Fig. 4. To check whethert = (E | X) it
is necessary to check if s; € [[E JI;;(X). A way to proceed is by
applying the Tarski’s fixed point theorem [63]. Let Uy = @ and
po = [X — Up], then

U; = [{7)X V [init(x, y)](crea‘ceNewFile(x))T]]p0
={s|3,0s 2% and 6 Fe¢ands € ¥ =[X1,}

¢,init(z,w)
—

U{s|Vs, 0.
s' € [0(createNewFile(x))T ], }

s'and @ - [z = x, w = y]; ¢ imply

=ﬂU{s|Vs’,0.sM>s’and
0 F[z=x,w=yl]; ¢imply

, , ¢ .0createNewFile(k)
- 5

35", 05
s" €S =TT,

s"and ' - 0([k = x]; ¢') and

http://dx.doi.org/10.1016/j.future.2016.06.014
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Intuitively, all the states of t having no outgoing transitions
labeled with init(. - -) satisfy the definition above (by definition
of the universal quantifier) and, consequently, belong to U;, which
means {sq, S4, S5, Sg, S7} < Ujp. Thus, let us restrict to verifying
whether s, and s3 belong to U; or not. For s, it must checked
whether the following holds.

VOO [x=fy="file://sdcard/f"]implies

¢’ ,createNewFile(k) ”
—_—> S

3s”, 0’ .s3 and

0 +0(k=x];¢)ands” €S

However, this condition is trivially not satisfied. As a matter
of fact, a counterexample can be found by setting 6 = {f \
X, "file://sdcard/f" \ y}. Although 6 satisfies the premise of
the implication, the conclusion is false (there are no outgoing
transitions labeled with createNewFile(---) ins3).

For what concerns ss, it belongs to U, if and only if the following
formula is satisfied.

V0.0 F [x =g,y = t] implies

¢’ ,createNewFile(k)
Els”, 0/.54 —_—> S,/ and

0 FO(k=x];¢)ands” €S

In this case there is a single candidate for s”, that is ss. Hence,
by instantiating the existential quantifier, the following result is
obtained:

V0.0 F [x =g,y = t] implies
3060 FO(f=x,f=g])andsg € ¥ =S.

It can be trivially observed that, for every 6,0 - [x = g,y = t]
iff 6(x) = v = 6(g) and 6(y) = u = 6(t). Then, assuming
0(f) = w,0([f =x,f=g]) = [w = v, w = u] which is satisfied
by any 6’ assigning the same value to u, v and w. This suffices to
state that s3 € U;. Thus, U; = {sq, $3, S4, S5, Sg, S7}.

Let us iterate the previous reasoning to compute U, by setting
p1 = [X — U] Following the same approach used above, it is
possible to infer that {sq, s4, S5, Sg, S7} € U,. Again, it reduces to
checking s, and s3. The two cases are analogous to the previous
step and it is possible to conclude that only s3 € Us.

Since U, = U, a fixed point have been found and, since s; € U,
it is possible to conclude thatt =E. O

4.3. Symbolic Partial Model Checking

In [11] Partial Model Checking (PMC) was proposed as a
technique for extending the applicability of model checking to
large models consisting of the parallel composition of simpler
ones. It consists of a partial evaluation procedure which specializes
a formula of the w-calculus against a model. Here an extension
is provided to support symbolic analysis. Formally, the partial
evaluation corresponds to applying a quotienting operator E' =
E/, mt where E is a specification, t is a STS, L and M are sets of
(input and output) actions/channels that t uses for synchronizing
with other agents. L is the set of restricted actions and M is the
set of input/output ones (thus t can only synchronize through the
actions of L N M—where L stands for A \ L). Notice that, in this
contextL = Aand M = AU T UT. Specifications E, E’ are lists of
(least u and greatest v) fixed point equations.

The quotienting operator originally presented in [11] was
defined for being applied to LTS models. Here we extend such
definition for dealing with STS models. The new rules are given in
Table 1.

The partial evaluation of a specification E is defined by
induction. As expected, (i) the partial evaluation of a specification

Table 1
Symbolic PMC quotienting operator.

(i) ELX) )it =E[mb) | Xswhere t = (so, {So, S1, . -
(ii) efimt=¢
(iii) X=eAE)/imt= K =0AfLpS0: i Xsy =0 Al Sn: EfLmt)
(iv) X//L_.MS =X .
(v) (@GNA) s = ()AL ms) vV Y, $.a() /(GA//L,M s)

with § = mgu([x = y]; iP) ’
(vi) (DA Lms = (OVA)Lus V'V FAN (OALm s)

vV @) O'A L)

s——>¢

with y fresh and 6 = mgu(¢) and 6’ = mgu([x = y]; ¢')
i) (@A ps = [@IA) L) AN pow  OALMS)

with & = mgu([x = y]; ¢)
wiil) - [TIA/ s = [TJA/ D AN o OA)LuS)

AN @O Ay s)

s—>s

with y fresh and 8 = mgu(¢) and 0’ = mgu([x = y]; ¢')
(ix) AVA i us=AiuSV A s
X)) A A us=A)iuSsANA i uS
(xi) Ffms=F
(xii) T)ius=T

.y Sn)s =)

(E | X) begins from its entry variable X. Clearly, (ii) if the system
of equations is empty it remains unchanged. Otherwise, (iii) each
equation generates a list of new ones, one for each state s; of t. The
right-hand side of these new equations is the partial evaluation
of the original formula A against the states sg, ..., S,. Rules from
(iv) to (xii) are for the partial evaluation of formulae against a
state s. Thus, (iv) the partial evaluation of a variable X against a
state s consists in generating a fresh new variable X;. According
to (v), a modality {(«(X))A generates a disjunction including one
modality-free disjunct for each «(y) transition starting from the
node s and one keeping the modality (representing the fact that

also t’ could perform «/(x)). For each of the transition s $e0) s,

the formula A is both rewritten by applying the name substitution
6 where 6 is the most general unifier (mgu) of [x = yl;¢
and partially evaluated against s'. Briefly, the mgu is the smaller
substitution which satisfies a set of constraints (the interested
reader can refer to [64]). The case (vi) for (t)A is similar. However,
since T actions can arise from synchronous communications, new
branches modeling such behavior are added. In particular, for
each input (output) « that t might receive (produce, respectively),
a modality for the complementary action «(y) is added (where
y is a fresh variable name). Again, this operations requires to
rewrite A through the mgué’. The [« (X)]A and [7]A cases, i.e., (Vii)
and (viii), behave symmetrically to the previous two. Finally, the
partial evaluation of a disjunction/conjunction, (ix) and (x), is the
disjunction/conjunction of the partial evaluation of its branches
and truth values, (xi) and (xii), are unaffected by the partial
evaluation.

The main property of PMC is that it transforms an instance of
the model checking problem involving many, concurrent models
into a new one with a single model. Such property is stated by the
following theorem (which extends that given in [11]).

Theorem 1. If E' = E/, \, t, then forallt' holds that t' ||, , t |= E if
andonlyif t' = E'.

Theorem 1 states that, for every t', model checking t'||; y t
(i.e., the parallel composition of the two STS) against E can be
reduced to model checking t’ against E’. In the following L, M are
not used when clear from the context. Since the size of t’ is usually
much smaller than the size of t' || t, verifying t' = E’ requires

5 The proof is provided in the Appendix.
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a smaller search space. It must be noted that the application of
PMC does not affect the worst-case complexity of the problem. As
a matter of fact, by using Theorem 1 one trades a smaller model
for a longer specification. Nevertheless, as outlined in [11], several
simplification techniques can be carried out on E’. As a result, in
many practical cases the size of E’ grows more slowly than the size
of t’ || t and this leads to better performances.

Example 4. Consider again the specification of Example 3. We
define L and M as follows.°

L = {init, createNewFile}

M = {sendBroadcast, startService}.

The partial evaluation of E | X against t generates the following
equation system.

Xs; =, (1)X;, V (sendBroadcast(xc, xi))sz
V [init(x, y)](createNewFile(x))T

X5, =u(1)X;, V ([init(x, y)[{createNewFile(x))T
A (createNewFile(f))T)

Xs; =u(1)Xs; V ([init(x, y)[{createNewFile(x))T
A ({createNewFile(g))T Vv T))

X5, =u(1)X;, V [init(x, y)]({createNewFile(x))T
V (createNewFile(f))T)

E' & Xos =1 (T)Xss Vv [init(x, y)]((createNewFile(x))T
V (createNewFile(g))T)

Xsg =u(1)Xss V (startService(y, yj))Xf;
V [init(x, y)](createNewFile(x))T

Xs; = (1)X, V [init(x, y)]{createNewFile(x))T

X:; =M(‘L')XSH2 V ([init(x, y)](createNewFile(x))T
A {createNewFile(f))T)

Xg :H(‘E)Xg V [init(x, y)]{createNewFile(x))T

where 6 = {c\xc,1\x;}and 0 ={c\yc,j\y;}. O

As shown by Example 4, PMC can increase the size of
the original specification. This phenomenon can be effectively
countered by applying the following simplifications proposed
in [11] (and slightly modified to cope with symbolic actions).

o Simple Evaluation (SE), replace instances of AV T and A A F
with T and F, respectively, and replace A vV F and A A T with A;

e Reachability Analysis (RA), remove equations that are un-
reachable from the entry variable;

e Constant Propagation (CP), remove equations of the form
X =, T and X =, F and replace all the instances of X with the
corresponding truth value;

e Unguardedness Removal (UR), collapse groups of variables
that do not appear in modal assertions;

e Trivial Equation Elimination (TEE), replace X =, (@ (X))F and
X =4, [a@(®)]T with X =, F and X =, T, respectively;

e Equivalence Reduction (ER), collapse equations whose right-
hand side assertions are equivalent;

o Implication Reduction (IR), collapse the right-hand side of two
equations when one implies the other.

Example 5. Let E’ be as in Example 4. The following simplifications
can be applied. Eq. (3) can be reduced to Xy, =,(7)X;; V
[init(x, y)]{createNewFile(x))T (by applying SE two times).

6 For the sake of presentation, the two sets only contain the minimal number
of elements necessary for the evaluation. Actual executions include in L all the
security-relevant operations and in M all the Android IPC methods. Both would have
no effect on the current example.

Listing 1: Verification Procedures for App Configurations.

Procedure VerifyConfVl (App d, DevID d)
output: OK or Trace O
effect: modify CDB

ty := extract_model (a)

t := CDB.get_configuration (d)

E := SYSTEM POLICY

0 := model_check (f]|t, E)

if 0 # NO_TRACE then
return o

else
CDB.seticonfiguration(d,&“t)
return OK

endif

End

Procedure VerifyConfV2 (App 4, DevID d)
output: OK or Trace O
effect: modify PDB

ty := extract_model (a)

E := PDB.get_policy (d)

0 := model_check (tg, E)

if 0 # NO_TRACE then
return O

else
L := {a,@ | @ is an Android IPC action}
M :={B | BE€E}
E* := quotient (E,L,M,ty)
E* := simplify (E¥)

PDB.set_policy(d, E*)
return OK
endif
End

Also, by applying RA it derives that from X;, only sz is
reachable. Thus, the following system of equations is obtained:

Xs; = (1)X;, V (sendBroadcast(x., Xi))Xf2
V [init(x, y)](createNewFile(x))T

sz :M(T)sz V ([init(x, y)](createNewFile(x))T
A (createNewFile(f))T). O

E' &

5. BYODroid, a prototype Secure Meta-Market

BYODroid’ is the first, prototype implementation of a Secure
Meta-Market for Android devices and supports the specification,
verification and enforcement of fine-grained security policies over
a network of federated devices. BYODroid v.1 has been presented
in previous work [7]. Here the focus is on the latest version
of BYODroid, namely BYODroid v.2, which unlike BYODroid v.1,
features a verification procedure leveraging the PMC techniques
discussed in Section 4.3.

The verification procedures implemented in BYODroid v.1 and
v.2, VerifyConfvl and verifyConfv2 respectively, are outlined
in Listing 1. The verification procedure verifyConfvl extracts
the model t, from application a. Then, it retrieves the current
configuration of device d, stored as an STS t in a configuration
database cpB, and the given policy E. Then model checking is
applied to verify whether ¢, || t = E. If a counterexample trace o
is found, then the procedure terminates by returning it. Otherwise,
the configuration of d is extended with (the model of) a and the
algorithm terminates.

7 http://csec.it/software/byodroid/index.html.
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Similarly to verifyconfvi, the verification procedure
VerifyConfv2 extracts a model t, from the application a and re-
trieves the current policy for d, namely E, from the policy database
pDB. Then, model checking is applied to check whether t, = E. If
counterexample trace o is discovered, then it is returned and the
procedure terminates. Otherwise PMC is applied. To this end, the
procedure builds sets L and M (cf. Section 4.3) and then applies the
quotienting operator E /| ,; to. Then, simplifications are applied un-
til a fixed point, i.e., a policy E* admitting no further reduction, is
reached. Finally, ppB is updated with E* and the algorithm termi-
nates.

Other techniques implemented in BYODroid are discussed in
the following paragraphs.

Model checking. Several model checkers have been proposed in
the literature (see [65-67] for surveys on model checking tools
and their application to some problems of interest). Among them,
SPIN [68] is a major proposal with a long-standing tradition in
software analysis and verification [69]. Pragmatically, SPIN offers
some advantages when coming to applications. As a matter of
fact, it has been effectively exploited in industrial processes and
products (e.g., see [70]). Moreover, it has been recently extended
for supporting concurrent, multi-core verifications. For these
reasons SPIN version 6.2.5 [7 1] has been adopted as model checking
engine.

SPIN is an LTL model checker for the Promela specification
language. Unlike other model checkers, e.g., mCRL2 [72], SPIN does
not natively support the p-calculus. Thus, formulae must be
translated into agents which reach a faulty state whenever
the corresponding policy is violated. To do that we follow
the reasoning presented in [73] and [74] for mapping formula
satisfiability into (bi)simulation relation between agents. Then, we
follow the procedure defined in [75] to append the agent to the
original Promela specification obtained from the application model
(see Section 4.1). Notice that our implementation significantly
simplifies the general version of [75]. As a matter of fact, we do
not need to implement a generic framework for checking relations
between agents. Under our assumptions, we only need to check a
precise relation, i.e., strong simulation. Moreover, we do not need
to be parametric with respect to the observable channels/actions as
they are statically defined as the elements of A (see Section 4.1).

The verification using SPIN consists of three steps. First,
SPIN generates a C source file, called pan.c, implementing the
verifier for the given agents and specification. Then, a C compiler is
used to obtain the verification program (i.e. PAN) which is finally
executed. The adopted compiler is gcc version 4.6.3.

The main difference between BYODroid v.1 and v.2 resides in
the instance of the model checking problem being processed by
SPIN. As a matter of fact, BYODroid v.1 does not include PMC. Hence,
it verifies a configuration ay, ..., a, (against a specification E) by
directly solving to, || - - - ||ta, = E. The differences between the two
approaches for the verification of configurations are also reported
in Listings 1 (see below).

Other model checkers can be considered for the implemen-
tation of the SMM. For instance, nuSMV [76] (and its extension
nuXMV) relies on a symbolic representation of states. This ap-
proach can actually reduce the problem search space in many
cases. Another possibility is provided by CADP [77]. Briefly, CADP
is a toolbox including several modules for the design and analysis
of software. Also, it includes a model checker, namely the EVALU-
ATOR module, natively accepting p-calculus specifications [78]. A
further candidate is mCRL2 [72] which has the desirable features of
directly handling w-calculus specifications. These alternatives re-
quire further investigation and a systematic evaluation which lay
out of the scope of the present work.

Model extraction. Model extraction, being exploited in both BYO-
Droid v.1 and v.2, consists of few steps. CFGs are generated by

means of (a slightly modified version of) Androguard 1.3 [79]. An-
droguard has been adopted since it is an off-the-shelf technol-
ogy for Android (while CONFLEX would require to be adapted from
pure Java). The extraction process produces a distinct CFG for each
method of the target code. These graphs are simplified, as detailed
in Section 4.1, in order to reduce their size by removing irrele-
vant paths. Moreover, information about internal application in-
vocations, i.e., how methods of the application invoke each other,
is maintained. Such information is then used for the CFGs of the
application components. The list of existing components is ob-
tained by inspecting the implemented interfaces. For each of them,
a general CFG is created by starting from interface methods, e.g.,
startActivity for activities. If the CFG of such methods contains
invocations to other parts of the application, the corresponding
sub-graphs are attached. Each of these CFG is then converted to
a corresponding STS as explained in Section 4.1.

Partial model checking. The PMC engine is included in BYODroid v.2.
Only recently partial model checking tools have been presented.
At the best of our knowledge, two implementations exist. CADP
has been extended with a (non symbolic) PMC component [80].
Similarly, the tool formulaquotient implements a PMC algorithm for
mCRL2 specifications. At the best of our knowledge, these tools are
in a preliminary development stage and their applicability to our
environment needs further investigation. For the implementation
of BYODroid v.2 we opted for developing a PMC engine from
scratch. The tool is a straight implementation of the algorithm
described in Section 4.3.

As explained in Section 4.3, simplification play a crucial role
for the effectiveness of PMC. Apart from the Implication Reduction
(which relaxes the specification and may therefore introduce false
positives), all the simplifications presented above are implemented
in BYODroid v.2.

6. Experiments

This section presents an extensive experimental evaluation
aimed at assessing both the effectiveness and the feasibility of the
proposed approach. Previous papers reported preliminary exper-
imental results confirming the feasibility of some components in
isolation (e.g., model extraction and model checking) and applied
to individual applications. Here, the whole verification chain is
considered, namely model extraction, model checking and (sym-
bolic) PMC. Experiments belong to two distinct categories dedi-
cated to testing effectiveness and performances/scalability.

6.1. Experimental setup

To evaluate the performances of the prototype the two versions
of BYODroid described in Section 5 are tested against a large
number of application configurations and a real-world BYOD
policy. Instead, to show that the prototype can effectively detect
policy violating applications, the evaluation focuses on a smaller
set of applications. In particular, a few dozens of applications which
were very likely to violate the security policy (see below for details)
have been identified.

Security policy. Each app configuration was tested against a security
policy drawn by the BYOD security guidelines of the White
House [81]. The policy consists of few rules stating how the
mobile devices should access and manage the resources of the
organization. Albeit simple, it is a significant excerpt of a real-
world BYOD security policy. Informally, it can be summarized as
follows:

(R1) Never download business data on the mobile device.
(R2) Always delete locally stored sensitive data (e.g., emails).
(R3) Never transfer data to non-agency devices.

http://dx.doi.org/10.1016/j.future.2016.06.014
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The policy can be seen as restricting the usage of some security-
relevant APIs® and can be formally recast to the ConSpec spec-
ification in Listing 2.° ConSpec [50] is a specification language
that has been designed to specify security policies and con-
tracts and it has been already exploited for the security enforce-
ment on mobile environments (e.g., see [31]). For instance (R1),
data download consists of network requests, e.g., HTTP-GET, for
some critical URL, e.g., https://agency.gov/, followed by a file sys-
tem writing action. The involved Java APIs are java.net.URL.
iinit¢ (String s), which creates an URL object from a string,
java.net.URL.openConnection (), which sets up a connection
to the given URL and java.io.FileOutputStream.
write (...), which writes data in a given file object. The se-
quence of these actions may cause a policy violation. To repre-
sent the security state, which changes as a consequence of the
observed actions, the policy exploits state variables. The syntax of
ConSpec statements and expressions resembles that of most im-
perative programming languages. The policy uses a three-variable
state (agency_host, agency_url, and connected). Variables are
labeled as sEssIoN as they only refer to a single execution of a
single program (as opposed to MULTISESSION and GLOBAL). Pol-
icy rules refer to events, i.e., guarded API invocations, and can be
activated BEFORE or AFTER the event is observed. When this hap-
pens, the clauses below the rule are evaluated and, if their guards
are satisfied, executed. For instance, the first rule says that, af-
ter observing d java.net.URL.<init> (String addr) oOpera-
tion, the policy evaluates whether the url address contains the
string "agency.gov/". If this is the case, the returned URL object
is stored for checking its usage in future events. Otherwise (ELSE)
nothing happens (skip). Similarly, the second rule states that, be-
fore permitting a java.net .URL.openConnection () invocation,
the policy compares the current url this with that stored in vari-
able agency_url, e.g., as a result of the application of the previous
rule. If the two objects are equal, the policy assigns true to con-
nected. Otherwise, the state is not changed. Finally, notice that the
third rule has a single guard for the case ! connected. This implies
that the policy is violated, since no transition is allowed, whenever
the rule is triggered in a state such that connected = true.

The ConSpec policy showed above is then translated into a
corresponding set of p-equations. This process is always possible
as the p-calculus is more expressive than ConSpec. Briefly, the
conversion proceeds by creating a p-equation for each possible
state of the ConSpec policy. The left-hand side of the equation is a
variable X3 representing a state of the policy, i.e., an assignment of
values v toits variables.'? Hence, the right-hand side is obtained by
a finite disjunction of the type \/({(i1))Xs; where « is the action
labeling the ConSpec rule,'' # are the values to the parameter
(including the target object) of action @ and w are the values after
the application of the rule. The disjunction only contains variables
corresponding to (states reachable through) the guards which are
satisfied by the values v and u. Since variables can only appear once
in the left-hand side of an equation system, all the equations of
type X =, A; are collapsed in X =, \/; A;. The entry variable of the
equation system is the X3} such that v are the values of the initial
assignments. To illustrate, consider the second rule of the block
(R1) and the initial state of the White House policy. They result
in the equation

X[agencygov/,null,false] =un \/ (OpenconneCtiOn(Oj))

X X[agency.gov/.null,false]

8 For brevity only few of them are considered here.
9 The syntax has been slightly simplified for the sake of readability.
10 Notice that this step is feasible since ConSpec uses finite type domains.

11 More precisely, special actions «p and oy are introduced for discriminating
between BEFORE and AFTER.

Listing 2: ConSpec encoding of US government BYOD rules.

SECURITY STATE
SESSION Str agency_host = "agency.gov/";
SESSION Obj agency_url = null;
SESSION Bool connected = false;

/* (R1) Never download business data

on the mobile device */
AFTER Obj url = java.net.URL.<init> (Str addr) PERFORM
(addr.contains (agency_host)) -> { agency_url := url; }

ELSE -> { skip; }

BEFORE Jjava.net.URL.openConnection () PERFORM
(this.equals (agency_url)) -> { connected := true; }
ELSE -> { skip; }

BEFORE java.io.FileOutputStream.write(Nat i) PERFORM
(!connected) -> { skip; }

/* (R2) Always delete locally stored sensitive data */

AFTER Obj file = java.io.File.createTempFile () PERFORM
(true) -> { file.deleteOnExit(); }

/* (R3) Never transfer data to non-agency devices */

BEFORE android.bluetooth.BluetoothSocket.getOutputStream(
PERFORM
(!connected) -> { skip; }

where {04, ..., o} is the finite domain for this.'? Indeed, since
it never holds that o; .equals (null), the only satisfied guard is
ELSE. As the statement skip does not cause state changes, it results
in a self loop on variable X{agency.gov/,null, talse]-

The resulting equation system consists of 4 p-equations for a
total size of 64. The size of a policy is computed as the number
of terminal symbols, i.e., constants, variables and modalities,
appearing in a specification. For instance, the equation given above
has size 2k, as it consists of a disjunction of k formulae of size 2.

App configuration testbed. To assess the scalability of the proposed
approach, Android applications drawn from the Google Play
service have been used. The sheer size of the store, which
contains more than 1 million applications [82], does not permit
an exhaustive analysis of all possible configurations. A smaller,
but still interesting set is represented by the “top free chart”
applications, which contains the most popular free applications in
Google Play."® This includes over 800 applications from a number
of heterogeneous categories, e.g., entertainment, productivity, and
games. From this set of applications, six sets of 30 applications each
have been randomly selected. For any such set of applications ¢ =
{aq, ..., az} the following 30 configurations C, = {ay, ..., ax}
fork = 1, ..., 30 have been considered. This results in a total of
180 app configurations that have been used in the experiments. It
must be noted that the size of the largest considered configurations
(i.e. 30) exceeds the average number of applications installed on
mobile devices which statistics'# set to 26.

For what concerns the effectiveness of the policy violation
detection procedure, two sets N and B are identified. They contain
applications using the network and the bluetooth interfaces,
respectively. Network and bluetooth usage can be predicted
by considering the permissions requested by an application,
that is, by checking whether android.permission.INTERNET
and android.permission.BLUETOOTH appear in the application
manifest. Then, the configurations in N x B, i.e., all the possible

12 Assuming {o4, ..., 0k, null} to be the domain for objects, it is possible to
always force the variable this # null as the self reference must exist inside a when
invoking non static methods.

13 https://play.google.com/store/apps/collection/topselling_free (accessed on
September 30, 2014).

14 http://www.statista.com/chart/1435/top-10-countries-by-app-usage/ (ac-
cessed on September 15, 2014).
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pairs of applications, have been submitted to the prototypes.
Finally, reverse engineering techniques have been applied and the
configurations have been manually tested to confirm or reject the
reported violations.

Evaluation criteria. The experiments have been run using a Dell
Optiplex 9010 server with an Intel Core i7 3.40 GHz and 16 GB
of RAM, equipped with Java JDK version 1.7. The time out for PAN
verification was set to 20 min.

The main goal of the experiments on scalability is to highlight
the advantage of including PMC in the verification process. Hence,
experiments must compare the behavior of the two procedures
of Listing 1, i.e., the algorithms used for the implementation of
BYODroid v.1 and v.2. In particular, three aspects are crucial:

Memory usage. Model checkers using an explicit representation
of the state space (as SPIN does) can rapidly occupy
the available memory. More applications means larger
models and increased memory usage.

Execution time. Model checking requires a significant time span
for validating an application. Also, other tools involved
in the verification chain may cause further delay.
Understanding how the tools contribute to the whole
execution time can help in identifying bottlenecks and
possible optimizations.

Policy growth. The application of PMC may increase the side
of the policies. This is countered by the simplification
techniques outlined in Section 4.3 but the effectiveness
of the simplification must be ascertained.

Instead, for the effectiveness of the approach, only BYODroid v.2
has been tested. For each execution the evaluation result
(i.e. whether there is a violation or not) is reported. Then, the
violation is tested to check whether it can be actually be replicated
or not, in order to point out false positives. Also, to show the actual
behavior of a configuration violating the security policy, reverse
engineering and manual code inspection have been carried out.

6.2. Experimental results

Briefly, tests covered the automatic model generation process
and the verification of configurations. In particular, the verification
has been carried out with the two versions of BYODroid. The two
executions are then compared for highlighting the impact of PMC
on the proposed solution.

Model extraction. Model size and extraction time are affected by
the security policy. For BYODroid v.1, it is reasonable to expect
that for any given policy, the size of models grows (exponentially)
with the size of the app configuration. However, it must be
noted that models undergo several manipulation steps aiming
at reducing their size. Moreover, SPIN internally applies several
reduction techniques which often lead to even more compact
representations. Fig. 5 shows the (geometric) mean of the number
of states visited by SPIN during the verification of models. This
value is indicative of the actual size of the search space associated
to the model. Clearly, when time out occurs, the value only
corresponds to the states explored by the model checker before
the forced termination. For this reason, Fig. 5 is truncated when all
the verifications result in a time out (i.e., for configurations of more
than 11 apps). As expected, the number of states tends to grow very
rapidly (notice that Y axis is in logarithmic scale) and the expected
exponential trend can be observed.

Model verification. When applying BYODroid v.1, verification of
models tq, ..., t, against policy E amounts to solving t; || --- ||
t, E E. Instead, with BYODroid v.2, it amounts to verifying
whether t, = ((Ef mt1) - /imtao1). The scatter plots in
Fig. 6 provide a comparative analysis of the two approaches,

10%

107

106

Model size (states)

102 L L L I I I I I I
1 2 3 4 5 6 7 8 9 10 11

Configuration size (apps)

Fig. 5. Size of models generated from groups of applications.

i.e., verification with v.1 and v.2. The left plot compares the
required verification time for each app configuration considered.
The right plot compares the number of states actually stored and
visited by the model checker. Symbolic PMC leads to a substantial
improvement of both the computation time and the size of the
search space. This improvement is even more evident as the size of
models increases, since they require longer verification times. Also
notice that several points are clustered on the top edge of the graph
area since, for the corresponding experiments, the verification with
PMC terminates successfully, while BYODroid v.1 leads to a time
out.”

The trend of the execution time for the two approaches is
reported in Fig. 7. The two lines correspond to the average times
for running the verification program, i.e., the PAN executable,
with (solid line) and without (dashed line) PMC. The dotted line
indicates the time out threshold (i.e., 1200 s). Lines are truncated
where experiments result in time outs only: 12 for MC-only and 21
for PMC. Although both of them show an exponential trend, using
PMC substantially postpones the cut-off point corresponding to the
time limit. This allows the system to process significantly (75%)
larger configurations.

Partial policy evaluation. PMC preprocessing consists of the
application of the quotienting operator and the simplifications as
described in Section 4.3. As previously outlined, the growth of the
policy size is a crucial aspect. Fig. 8 shows the growth of the size
of the policy. The average value is represented by the solid line,
while vertical bars represent the whole range of results for the
experiments with the given configuration size.

Time distribution per technique. As mentioned in Section 6.1,
application verification is the result of the application of a tool
chain, i.e., SPIN, gcc and PAN. On large models, verification tends
to become the dominating factor. Nevertheless, understanding the
distribution of the verification time over these three steps can
be useful for discovering bottlenecks and possible optimizations.
Fig. 9 reports the percentage of time taken by the verification
steps, i.e., black for SPIN, white for gcc and gray for PAN. Times for
the approach without PMC are not reported as, compared to the
verification time, SPIN and gcc times are negligible.

Interestingly, PMC reduces the impact of PAN verification over
the total time. Still, when models grow, it is responsible of the
main computational effort. This suggests that, even though further
optimizations of SPIN and gcc could lead to better performances,
on the long run, PAN verifier remains the main bottleneck.

Policy violations and false results. Let us consider the 100
configurations obtained by pairing the elements of N with those
of B (with #N = #B = 10). As expected many of them were
recognized as illegal. The 38 policy-violating pairs are labeled with
xand #(while v denotes the configuration passing the verification).

15 Marks in the top-right corner correspond to time outs of both v.1 and v.2.
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For the validation of the results, we manually run a decompiler
to reconstruct the source code of the 38 policy-violating configu-
rations and we identified the components invoking the security-
relevant APIs. In some cases it is possible to identify that the policy
is not actually violated by the considered configurations, i.e., there
are false positives. These 13 (34.2%) cases have been marked with ¢.

The reasons of the false positives are manifold, but it is possible to
identify at least two factors.

1. Some applications do not connect to any URL, but they
include the Google Ads Library. Google Ads use the network to
establish a connection with a remote server owned by Google.
Reasonably, that library cannot be exploited to access arbitrary
network locations, but the analysis fails in discovering it.

2. One of the applications of a pair uses IPC in a way that
actually prevents the interaction with the second one. Again,
this behavior derives from the over-approximation generated
by the modeling process.

The experimental results are summarized in Table 2.

Checking the absence of false negatives is more tricky. Indeed,
positive results, i.e., detected policy violations, have the side
effect of indicating some, suspicious components that one can
use for aimed testing. Instead, negative ones produce no similar
information. As a consequence, searching false negatives would
require to execute extensive penetration testing on all the
application pairs. That would be a cumbersome task and, still, since
testing is not exhaustive by definition, the result itself could suffer
from false negatives. As discussed above, false negatives can only
arise when unsafe models are generated. Although possible, there
are strong, yet informal, guarantees that CFGs correctly represent
the actual behavior of programs (see Section 2).

As a further step, we report the policy violation occurring on
a specific configuration, i.e., the pair composed by the Dolphin
browser and the Bluetooth Transfer Any File (BTAF) utility. By means
of existing platforms for reverse engineering and code analysis,
i.e., Dexter'® and Maveric [83], it has been possible to inspect the
structure of the applications. Although the code consists of 7095
(mostly obfuscated) Java files, it has been possible to identify few
relevant classes and their relationships (reported in Fig. 10).

As expected, the Dolphin browser allows one to connect to an
arbitrary URL, being accessed through a openConnection () call.
Then, from the main activity, the user can press a button “Share”
which sends the content of the current web page to another
application via an Intent acTroN_sEND. If the application BTAF is
installed, it candidates to receive the Intent (carrying the sensitive
data). When the user selects it as the actual receiver, BTAF is
launched and the data can be transmitted to a nearby bluetooth
device. The sequence of operations leading to the violation of the
policy are showed in Fig. 11.

16 http://dexter.dexlabs.org/.
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Table 2
Policy verification result of 100 suspicious configurations.
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Fig. 10. The (simplified) class diagram showing the interaction between Dolphin
and BTAF.

6.3. Discussion

The experiments presented above outline two facts: (i) the
proposed approach can effectively discover configurations of
applications violating a fine-grained security policy and (ii) the
application of PMC is crucial for the scalability of the SMM
architecture.

Although the approach can generate false positives, it can
effectively point out dangerous app configurations and, vice versa,
certify the legal ones. Also, even without theoretical guarantees
that PMC always counters the state explosion, the experimental
results confirm that in most cases it significantly simplify the
model checking problem.

Moreover, some of the involved technologies are still subject to
active research which are likely to lead to better implementations
and new features. For instance, recently, in [84] another extension

of PMC has been proposed. Roughly, it exploits boolean equation
systems for representing symbolic conditions over the transitions
of labeled transition systems. This approach is equivalent to
the symbolic PMC as it evaluates the guards of a program
for simplifying a specification while applying the quotienting
operator. The authors present preliminary results which confirm
that their algorithm could lead to a further extension of the
applicability domain of model checking (w.r.t. the standard PMC).
Using their technology would require minor changes of the SMM
architecture.

Model inference is another point of possible optimization. As
already mentioned, better models could reduce the number of false
positives and also improve the overall performances. An intriguing
proposal in this direction is Sawja/BIR [85]. Sawja translates Java
bytecode in a compact, but formally defined, language called BIR.
BIR admits the implementation of a Type and Effect system as
described in Section 4.1 which might be a valid alternative to CFG
extraction.

7. Conclusion

The BYOD paradigm requires the enforcement of corporate
security policies on personal devices. To this aim, some proposals
have been put forward, being Secure Meta-Markets a major
one. SMMs lay in the middle of the application distribution
infrastructure, mask standard application markets and provide
formal security guarantees on the mobile code. A SMM gets a
formally defined BYOD policy from the corporation and enforces
it on personal mobile devices, by means of static verification and
application instrumentation techniques.

The static verification ensures that all the applications installed
on a personal device comply with the BYOD policy, even
considering all their possible interactions. Such verification is
carried out via model checking which suffers from the state
explosion problem. Hence, actual implementations might not scale
over large numbers of applications. Therefore, in this paper a
solution based on Partial Model Checking (PMC) techniques has
been proposed for granting the applicability of the approach to
real-world scenarios.

The feasibility of the approach has been proved by validating
groups of applications, chosen among the most popular of the
Google Play store, against a policy encoding security guidelines
of the US Government. The experimental results outline that
the proposed PMC solution enables SMMs to assess the security
verification of configurations of applications in actual BYOD
scenarios. The size of the configurations which have been taken
into account during the experimental validation is closed to the
average number of applications commonly installed on actual
mobile devices.
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Although the presented prototype, namely BYODroid, is mature
enough for the application to real BYOD environments, further im-
provements can be achieved. In particular, some novel techniques
have been identified which could effectively enlarge the applica-
bility domain of formal verification.

Appendix. Technical proofs

Definition 1. Resource constraints are defined as follows.
¢.¢ =1 [x=y]| [x#y] | ;¢

where %, y are defined as for actions. Let us use @ to denote the set
of all the formulae ¢, ¢’.

Definition 2. A substitution 6 : Var — Nam is a finite mapping
from variables to names. The application of a substitution 6 to
actions is defined as follows.

br=r1
O(a(x) = a(6x)
O(a(x) = a(dx).

Let us trivially extend the domain of 6 to Nam by defining
O(v) = vifv € Val.

Definition 3. A substitution 0 satisfies ¢ (6 F ¢) according to the
following inductive rules.

0% = 7 = 0 0x=2 0y =w

N oriAy T
o-¢  OF¢
0+ ;¢

Definition 4. A symbolic transition system (STS) is a triple (S, —, i)
where

e S is a finite set of states ranged over by s, s/, .. .;
e —>C S x @ x Ev x §Sis asymbolic transition relation, and;
e i € Sis the initial state

with Ev = Act x (Var U Nam).

Definition 5. Givena STSt = (S, —, i), the set of states satisfying
an assertion A is denoted with [A |¥ where p is an environment
assigning a value to each variable (t can be omitted when it is clear
from the context). Let us use {} for the empty environment, p{X <«

U} for the environment behaving as p but for X which is mapped to
U and p o p’ for the composition of the two environments p and p’.
The function [[- ]| is defined as follows.

[FIf =9 [T1f =S [XIf =pX)
[AVATL =[ATI7UIA' T, TAAATY = [AT7 NIA" D7
[G)AT’ = {s €S |35, 0.5 22% ¢ and

0k ¢: [k =zlands € [0ATY)

DAL = (s €S |35 25 s ands e [AT)

J(2)

MaGIAT, = (s €S| Vs, 0.5 22% ¢ and
0 ¢; [x = z] implies s’ € [6A ]/}

[z1ATf

Slightly abusing the notation, it is possible to apply 6 to an as-
sertion A to represent the assertion obtained from A by applying 6
to its actions.

The solution of a set of assertion equations E is an environment
p assigning a set of states to each variable. Hence, let us extend [[- ]|
to E in the following, inductive way.

el = {)
IX =, AET{ = (E T U)X < U')
where U’ = o U.JA] ¥ Vv
and y (U) = [ET7Y Y.

[seS|Vss LY impliess' € [A17}.

Also, let us define [E | X ]I, = [E ]]i’ (X). In general, let us say
that t satisfiesE | X, insymbolst =E | X,ifi € [E | X ],.

Instead, it is possible to use {(-)) to denote the semantic function
for LTS of [11].

Definition 6. Givenan STSt = (S, —,i) andan LTS t = (S, =, i)
a state s € S instantiates to s € S through substitution 6 (in

symbols s >>¢ s) if and only if for all transitions s 9% ¢ there exists

a transition s 2% s’ and s’ >4S.

t instantiates to t through substitution 6 (in symbols t > t) if
and only if i >>¢ i.

Let us write U >4 U if and only if Vs € U.3s € U.s >>¢ s. Given
an environment p let us write | o, to denote the environment p
such that VX.p(X) >4 p(X).

http://dx.doi.org/10.1016/j.future.2016.06.014
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Lemma 1.
Vo, A, p, t-«A»twe = (0A)] Lplo

Proof. Let us proceed by induction on A. Most cases are
straightforward since either A = 6A, i.e, cases T, F and X, or
they trivially reduce to the inductive hypothesis, i.e., cases A; A A;,
A1V Ay, (t)A" and [t]A’. The remaining two cases, i.e., (@ (X))A" and
[a(X)]A, are symmetrlc IfA = (a(X)A it must be proved that
Vs eSs e «(“(X))A/»ng iffs € (0 ({a(x))A )))Lm

By definition 0 ({x(X))A") = (a(6X))(0A"). Also, s'=s only
if one of the following two cases occurs. Either a(x) = a(u)_ (by
definition fu = u which suffice to conclude) or a(x) = B(z).
In the second case, #z = v and it must be proved that s €

(((B(z)) ’))twe iffs € (((ﬂ(v))@A/))U,JH Clearly, by setting z = v,
(((/S(v))QA/)) Lols implies s € {((B(2))A )) Lolo® Vice versa, since

)

e (A) o), DY inductive hypothesis, s € (((ﬂ(z))A/))twg implies
€ «<ﬂ<v>>9A/»‘LpJg. 0

Lemma 2. Given a SISt = (S, —, i) and a set of equations E, for
every t = (S, =, i) and 0 such that t 3>y t then VX, s.s € [E ]V (X)
ifand only if 3s € (E)* Lolo (X)ands>ys.

Proof. The proof starts by proving that (under the assumption of
the lemma) for all A.

ALY 6 (A)Y,),-
By induction on A

e Cases T and F. Trivially from S 3>y S and ¥ >, 0.

e Case X. By definition p(X) = U ¢ U = [p]s(X).

e Cases A A A" and A v A'. The proof reduces to the inductive
hypothesis applied to A and/or A'.

e Case (7)A. By the inductive hypothesis it is possible to infer that
[ATY > «A»tLpJ@' Since t >>4 t, if there eXxists s € S such that

s= ¢/, there is also s € S such that s 2% ¢ and 6 = ¢. The

(A1)

other way round, if exists s € S such thats ﬂ sand 6 = ¢
then there must be s € S such that s=>s'. In both cases the
inductive hypothesis suffices to conclude.

e Case (x(x))A. The proof proceeds similarly to the previous case.
Only note that, to reduce to the inductive hypothesis, Lemma 1
must be applied.

e Cases [7]A and [a(X)]A. Both are symmetrical to the previous
two cases.

Then, it is possible to proceed by induction on E. If E = ¢ the
property trivially holds. Instead, if E is of type Y =, AE’, there are
two cases. If Y # X it must be proved thats € [[E’ ]]f{XHU}(Y)
iff s € [[E’]]t“’ J"{XHU}(Y). To reduce to the inductive hypothesis

it must be shown that U >4 U. Since both U and U are obtained
through fixed point computation, induction must be applied.

e Base case Dependingon o itcanbe U = U = J (6 = u)or
U =SandU = S (0 = v). Both are trivial since ¥ >4 # and
S >4 S (by assumption).

o Inductive step It shows the proof foro = u (the caseforo = v
is symmetric). Let us assume U >>4 U and show that

{X<U}oyr (U)
IAT? > ((A»tw@{XHUbﬂ(U)

where the ¥ is defined as in [11]. Trivially, U >> U implies
that [p]e{X <= U} = [p{X <= U}],. Moreover, it is possible
to prove that y(U) >>¢ ¥ (U). Indeed, by inductive hypothesis

TE 17 30 (N x oy, Thus, 1o)X < U} o yr(U) =
Lp{X <= U} o ¥ (U)], and it conclude by applying (A.1).

Instead, if Y = X there just the need to show that U > U, as done
in the previous case. O

Theorem 2. Given a STS t and a specification E | X, for every t and
6 such that t g ttheni € [E | X1, ifand only if i € (E | X)".

Proof. A corollary of Lemma 2. O

Definition 7. GiventwoSTSt = (S, —, i) andt’' = (§', =/, 1), let
us define the STS ¢ ||, t" = (4, ~+, 1) as follows.

e 85=Sx5
o= (i,i)

e »=TUT UT"
where

T ={((s,5),a,¢,5",5))| s, ¢,a,5") e> As' €5}

T = {((55),2,0,(55)) | 5, ¢,a,5") € " rs €S}
and

(51,0, a(%),s3) € > A
1, ¢, a@),sy) € ='A
aeLNMA

9" =¢; 4" [k =7

T// = ((sl»sll)i ¢//5 T, (527 5/2)) |

Definition 8. Given two STSt = (S, —,i) and t’' = (§/, >/, 1)
and an environment p : Var — 25%5 let us define p/ t as the
environment such that

pltXs) =1{s' €5 : (s,5) € p(X)}.

Lemma 3.

$,s) € [[A]]fllmf’ ifandonlyif s’ e [[A//LMs]]p//t.

Proof. By induction on A.

e Cases T and F. Trivial.
e Case X. The property is instantiated to

/ p
.8 € Xy, v

which is true by definition of p/ t.

e Cases A A A and A v A'. It is possible to directly apply the
inductive hypothesis

e Case (a)A. There are two sub-cases fora = «(x) and a = 7. If
a = «/(x) it must be shown that

s,5) € Ma@)ATY, o iffs € @A/ ysT "

Hence, the proofis split in two parts.
(=) By definition (5, s) € [{a¢(*))A]”

ifand only if s € [X; ]]p//[

e | if and only if there

exist (§,5) and 0 such that (s, s) —> (s,5)and 6 +
¢; [x = y] implies (5,5) € [[GA]][H . Moreover, by
definition of t ||y, t’, there are two p0551bilities. Either

g 2O, S (ands = s)ors S, 5(and §¥ =

s’). By applying the quotienting operator it follows that
(@ )A/ s 17 reduces to
LG} Ay 9 I U U Az
¢.a@)
s—>s
where y = mgu(¢; [x = y]). However, since (5',s) €
[[6?A]]tH »» by applying the inductive hypothesis it

happens that s’ € [(A/ ) ]]p//[ Also, being a y the

most general unifier for ¢; [x = y] it is possible to
use it in place of 6. This suffices to conclude that s €

{wGO)A/ Ly T .
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(«) Sinces’ € [[(a(x))A//LMs]]p// there are two possible cases
(by definition of quotienting operator). Either (a) s €

L) Ay ) 1 or(b)s' € U_ o0, [[yA//LMs]]”/“.
If (a) holds, then there ex1sts s such that 5 €
[OA) M s)]]f,//[ (where 6 is obtained as in the previ-

ous case). Hence, by inductive hypothesis, it follows that
#F,s) € [[OA]]t I which suffices to conclude. Instead,

if (b) holds, there must be at least one § such that s’ €
[yA/ims ]]f,// ‘ (where y is the mgu of the previous case).
Then, by inductive hypothesis, it follows that (s',5) €
[yATf,,,, » Which implies (5", s) € [{w(*)A T that
is the théSIS.
Finally, if a = t there are three cases: s admits a 7 transition,
s admits a  transition or s’ and s admit a synchronization step.
The first two are analogous to the previous case (it is enough to
consider 7 in place of «(%)). Thus let us only develop the third

case. By assumptlons u) s and s M) s. By definition

t|| t

of ||, (s, 5) —'> (5, 5) where ¢" = ¢’; ¢; [x = y]. Again, the
proof is split in two parts.

(=) Here it follows that (5, 5) € [6A]" v (where 6 = ¢”)

and it must be shown thats’ € [t A//L uS ]]”// *. Applying

the definition of /, it suffices to prove that
olt

tliLm

aelnM
sell V@) A/uD

$a(ky)
s—>§ 1%

which can be reduced to s € [{a(%)) YA/ u s]]p//
considering the transitions of s’ and s in the assumptlons
of this case (i.e., by setting x = x;). This statement
holds if 5 e [0’ (yA)//LMs]]p// Clearly, it is possible
to combine 6’ and y in a single substitution & such that
0(x) = 0'(y(x)). Hence, it can be concluded by applying
the inductive hypothesis.

(<) In this case the assumption is that s € [(t)A/} s ]]f,// ‘.
By definition of / this implies (at least) one of the
following three possibilities.

15 € [(@) Ay 10"
25 €V oo AL

3.5 € w“iﬁ?flf (AT

where y and y’ are defined as usual. The first two cases
are trivially satisfied by applying the definition of ||. In the
third case the two transitions for s’ and s in the hypothesis
must be considered, i.e., it is possible to setx = y and s” =
s. Again, the proof concludes by applying the inductive
hypothesis.

e Case [a]A. Analogous to the previous case. O

Theorem 3.

t'lumt EE X ifandonlyif

t = (E LX)/t

Proof. A corollary of Lemma 3. O
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