
OPTIMAL CONTROL APPLICATIONS AND METHODS
Optim. Control Appl. Meth. 2015; 36:685–704
Published online 26 November 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/oca.2152

Autogenerating microsecond solvers for nonlinear MPC: A tutorial
using ACADO integrators

R. Quirynen1,*,† , M. Vukov1, M. Zanon1,2 and M. Diehl1,2

1KU Leuven, ESAT-STADIUS, B-3001 Leuven, Belgium
2University of Freiburg, IMTEK, 79110 Freiburg, Germany

SUMMARY

Nonlinear model predictive control (NMPC) allows one to explicitly treat nonlinear dynamics and con-
straints. To apply NMPC in real time on embedded hardware, online algorithms as well as efficient code
implementations are crucial. A tutorial-style approach is adopted in this article to present such algorith-
mic ideas and to show how they can efficiently be implemented based on the ACADO Toolkit from
MATLAB (MathWorks, Natick, MA, USA). Using its code generation tool, one can export tailored Runge–
Kutta methods—explicit and implicit ones—with efficient propagation of their sensitivities. The article
summarizes recent research results on autogenerated integrators for NMPC and shows how they allow to for-
mulate and solve practically relevant problems in only a few tens of microseconds. Several common NMPC
formulations can be treated by these methods, including those with stiff ordinary differential equations, fully
implicit differential algebraic equations, linear input and output models, and continuous output independent
of the integration grid. One of the new algorithmic contributions is an efficient implementation of infinite
horizon closed-loop costing. As a guiding example, a full swing-up of an inverted pendulum is considered.
Copyright © 2014 John Wiley & Sons, Ltd.

Received 23 October 2013; Revised 17 October 2014; Accepted 3 November 2014

KEY WORDS: NMPC; embedded optimization; Runge–Kutta methods; code generation; sensitivity
analysis

1. INTRODUCTION

In model predictive control (MPC), at each sampling instant, one solves an optimal control prob-
lem (OCP) using the current system state as initial value. The increasing popularity of nonlinear
MPC (NMPC) for real-time control is due to its ability to directly handle nonlinear dynamics and
constraints. Let us consider the following continuous time OCP formulation:

minimize
x.!/; u.!/

Z t0CT

t0

kF.t; x.t/; u.t//k22 dt C kFN .x.t0 C T //k22 (1a)

subject to x.t0/ D Nx0; (1b)
Px.t/ D f .t; x.t/; u.t//; 8t 2 Œt0; t0 C T !; (1c)
0 > h.x.t/; u.t//; 8t 2 Œt0; t0 C T !; (1d)
0 > r.x.t0 C T //; (1e)

where t0 is the current time instant, x.t/ 2 Rnx denotes the differential states, and u.t/ 2 Rnu are
the control inputs at time t . The NMPC objective is defined by (1a), while (1d) and (1e) denote
respectively the path and terminal constraints. The nonlinear dynamics in (1c) are described by an

*Correspondence to: R. Quirynen, KU Leuven, ESAT-STADIUS, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium.
†E-mail: rien.quirynen@esat.kuleuven.be

Copyright © 2014 John Wiley & Sons, Ltd.

686 R. QUIRYNEN ET AL.

explicit system of ordinary differential equations (ODEs), but this will be further generalized to
implicit systems of differential algebraic equations (DAEs). The optimization problem depends on
the parameter Nx0 2 Rnx through the initial value constraint of (1b) and can also be time depen-
dent. Hence, the control trajectory obtained by solving problem (1) provides a feedback strategy
u".t0; Nx0/, which depends on the current state and time.

The OCP is in practice often solved by a direct approach where one first discretizes the prob-
lem to obtain a structured nonlinear program (NLP), which is generally nonconvex. A Newton-type
algorithm is able to find a locally optimal solution by solving the Karush–Kuhn–Tucker conditions.
Two popular Newton-type techniques are interior point (IP) methods and sequential quadratic pro-
gramming (SQP) [1]. IP methods for nonconvex problems treat the inequality constraints therein
by the use of a smoothening technique [2]. SQP instead consists in sequentially approximating the
NLP by convex quadratic program (QP) subproblems.

Recent algorithmic progress [3, 4] allowed to reduce computational delays between receiving the
new state estimate and applying the next control input to the process [3]. This made it possible to
apply NMPC also to fast dynamic systems with sampling times in the millisecond or even microsec-
ond range. The real-time iteration (RTI) scheme [5] is an SQP-type online algorithm. The resulting
sequence of sparse QPs can either be solved directly using a structure exploiting convex solver such
as FORCES [6] or qpDUNES [7] or by reducing the size of the QP subproblems with a condens-
ing technique [8, 9] and using a dense linear algebra solver such as qpOASES [10]. A discussion
on these algorithmic aspects can be found in [11]. It is important to note that the presented tech-
niques are also applicable to moving horizon estimation, which delivers estimates of process states
or parameters in real time [12].

Embedded integrators with efficient sensitivity propagation are a crucial part of the algorithmic
tools needed to implement NMPC in real time. The online linearization of constraints imposing the
model equations is typically a computationally expensive step in the RTI scheme [13]. Targeting
real-time applications, a deterministic run time for the used integration methods is also important.
The approach throughout this article will be that parameters such as the step size and order of the
method are therefore determined offline and kept fixed. The use of tailored explicit Runge–Kutta
(ERK) methods for real-time optimal control has been presented in [13, 14]. This idea was extended
in the more recent work on online implicit Runge–Kutta (IRK) methods [15]. Tailored techniques for
the efficient computation of the sensitivity information have been discussed in [16]. The application
of these embedded, implicit solvers to systems of DAEs and the motivation for continuous output
were presented in [17]. A three-stage model formulation is proposed in [18], as a way to exploit
common linear subsystems in a dynamic model.

In addition to using tailored algorithms, highly efficient code implementations are necessary to
meet the tight timing constraints on embedded control hardware. In this context, the technique of
automatic code generation has experienced an increasing popularity [19]. One can perform offline
optimizations of the code to be generated, for example, by removing unnecessary computations,
by optimizing memory access and cache usage, and by exploiting the problem’s specific structure.
Convex optimization solvers such as CVXGEN [20] and FORCES [6] are both generating cus-
tomized IP solvers. In order to solve nonlinear OCP problems, the ACADO code generation tool [13]
exports highly efficient C code, implementing a tailored RTI scheme. It is part of the open-source
ACADO Toolkit and interfaced to various convex solvers [7, 11]. ACADO code generation has
already been used for real-time optimal control, showcasing millisecond or even microsecond exe-
cution times both in simulation [21, 22] and in real-world experiments [14, 23–25]. This article will
show how to efficiently implement NMPC in a rather intuitive way, by using ACADO from MAT-
LAB (MathWorks, Natick, MA, USA). The focus will mostly be on the code-generated integrators
and their importance in an efficient treatment of various NMPC formulations. Novel SQP-type algo-
rithms can also be prototyped easily, by using the stand-alone integrator code in combination with a
convex solver.

This paper is organized as follows. Section 2 briefly presents direct multiple shooting and the
Gauss–Newton method in the RTI scheme. Section 3 introduces the guiding example, targeting
the swing-up of an inverted pendulum. Code generation of explicit and implicit integration meth-
ods is respectively discussed and illustrated in Sections 4 and 5. The exploitation and use of a

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

CODE-GENERATED ACADO INTEGRATORS FOR FAST CONTROL 687

three-stage model structure for NMPC are the topic of discussion in Section 6. Continuous out-
put is then presented by Section 7 and used to efficiently approximate infinite horizon closed-loop
costing. Section 8 finally concludes the paper and outlines further developments. All numerical sim-
ulations are performed using the ACADO code generation tool on a computer equipped with Intel
i7-3720QM processor (Intel, Santa Clara, CA, USA), running a 64-bit version of Ubuntu 12.04
(Canonical Ltd, London, UK).

2. NUMERICAL METHODS FOR NONLINEAR MODEL PREDICTIVE CONTROL

An overview of the problem transformations in our numerical treatment of NMPC is shown in
Figure 1. Subsection 2.1 will present direct multiple shooting as a reliable way of reformulating the
time continuous OCP as an approximate but tractable NLP. SQP using the popular Gauss–Newton
Hessian approximation is described briefly in Subsection 2.2. The principle of the RTI scheme is
summarized in Subsection 2.3, although more details can be found in the references therein. The
open-source ACADO code generation tool will be presented in Subsection 2.4.

2.1. Multiple shooting discretization

Only direct optimal control methods are treated in this paper, where one first discretizes the OCP
in (1) and then solves the resulting optimization problem. Within this family of methods, one can
distinguish between sequential and simultaneous approaches. The latter comprises both collocation
and multiple shooting [26], which results in the following NLP:

minimize
X;U

1

2

N#1X
iD0
kFi .xi ; ui /k22 C kFN .xN /k22 (2a)

subject to 0 D x0 ! Nx0; (2b)
0 D xiC1 !ˆi .xi ; ui /; i D 0; : : : ; N ! 1; (2c)
0 > hi .xi ; ui /; i D 0; : : : ; N ! 1; (2d)
0 > r.xN /; (2e)

where i D 0 corresponds to the current time instant and with state trajectory X D Œx>0 ; : : : ; x
>
N !
>

and control trajectory U D Œu>0 ; : : : ; u
>
N#1!

>. The function ˆi .xi ; ui / defines the simulation of
the nonlinear dynamics over one interval, starting from the state xi and using the control values
ui . The stage cost Fi ."/ represents the evaluation of the function F in (1a), and this is either at the
corresponding shooting node or on a finer grid, for example, based on continuous output as discussed
in Section 7. Direct multiple shooting addresses the problem in (2) in the full variable space .X;U /.

On the other hand, a sequential approach performs the simulation separately from solving the
optimization problem. One can namely obtain a reduced OCP formulation by eliminating the vari-
ables xi using the results Xsim. Nx0; U / of a forward simulation over the full horizon. This technique
is better known as single shooting as presented in [27]. One can interpret multiple shooting as a
lifted variant of the latter method, and the cost per Newton iteration can be made close to equal as

Figure 1. Overview of a sequential quadratic programming-based numerical treatment of nonlinear model
predictive control (NMPC). OCP, optimal control problem; NLP, nonlinear program; QP, quadratic program.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

688 R. QUIRYNEN ET AL.

discussed in [28]. In addition, the use of multiple shooting has many advantages over single shoot-
ing. Direct multiple shooting often has better convergence properties, and it can be initialized in a
more flexible way. It is also better suited for unstable systems, and the resulting algorithm can be
parallelized much more easily [28].

2.2. Generalized Gauss–Newton method

This article restricts to the use of SQP-type algorithms to solve the NLP in (2). An important
advantage over IP methods is the possibility of warm-starting them, which is particularly relevant
for real-time optimal control [3]. The SQP idea is based on the quadratic model interpretation of
the linearized Karush–Kuhn–Tucker system. The generalized Gauss–Newton method, for example,
iterates by solving the following QP:

minimize
X;U

1

2

N#1X
iD0

!!!!!F
Œk!
i C J

Œk!
i

"
xi ! xŒk!i
ui ! uŒk!i

#!!!!!
2

2

C
!!!F Œk!N C J

Œk!
N

"
xN ! xŒk!N

#!!!2
2

(3a)

subject to 0 D x0 ! Nx0; (3b)

0 D xiC1!"i
"
x
Œk!
i ; u

Œk!
i

#
!
h
A
Œk!
i ; B

Œk!
i

i"
xi!xŒk!i
ui!uŒk!i

#
; i D 0; : : : ; N ! 1; (3c)

0 > hi

"
x
Œk!
i ; u

Œk!
i

#
C
h
C
Œk!
i ;D

Œk!
i

i"
xi!xŒk!i
ui!uŒk!i

#
; i D 0; : : : ; N ! 1; (3d)

0 > r
"
x
Œk!
N

#
C C Œk!N

"
xN ! xŒk!N

#
; (3e)

where AŒk!i D
@"i
@xi

Œk!
; B

Œk!
i D

@"i
@ui

Œk!
and C Œk!i D

@hi
@xi

Œk!
;D

Œk!
i D

@hi
@ui

Œk!
denote the Jacobian matrices

of the constraint functions and J Œk!i D
@Fi

@.xi ;ui /

Œk!
, J Œk!N D

@FN
@xN

Œk!
the ones for the objective residual

functions. In our special case of a least-squares cost, it is very common to approximate the objec-
tive as shown in (3a). It results in a Gauss–Newton Hessian approximation as presented in [29].

The matrix products J Œk!i

>
J
Œk!
i for i D 0; : : : ; N ! 1 and J Œk!N

>
J
Œk!
N define the quadratic term in the

objective, and all together, they approximate the full exact Hessian of the Lagrangian function in a
Newton-type method [1]. This approach is computationally cheap, while it always provides a pos-
itive semidefinite Hessian approximation. The resulting convergence rate can only be shown to be
linear, although the performance is often very good in practice, for example, in case of tracking
NMPC. A good approximation of the exact Hessian of the Lagrangian function is obtained as long
as the evaluated objective residual functions F Œk!i D Fi .x

Œk!
i ; u

Œk!
i / remain small.

Solving the resulting sequence of QPs and updating the current state and control trajectories given
a good initial guess, the algorithm then converges to a locally optimal solution of the original NLP.
Note that these principles can be extended to the framework of sequential convex programming
where one preserves as much of the convexity as possible in the subproblem [30]. Each problem can
directly be solved by a tailored sparsity-exploiting solver such as FORCES [6] or qpDUNES [7].
As an alternative, a condensing technique can first efficiently eliminate the state variables by use
of the dynamic equality constraints [8]. The resulting small-scale QP is then solved by a dense
linear algebra solver such as qpOASES [10], while the NLP iterations are still performed in the
full variable space. A more elaborate discussion on when to apply condensing and when to directly
solve the sparse subproblem can be found in [11]. Note that both the simulated values "Œk!i and their
sensitivities AŒk!i and B Œk!i for i D 0; : : : ; N ! 1 are assumed to be provided by an integrator in the
course of this article.

2.3. Real-time iterations

In the context of real-time NMPC, the computational cost of solving a nonlinear OCP makes it
hard to meet the tight timing requirements. Among other online algorithms, the RTI scheme has

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

CODE-GENERATED ACADO INTEGRATORS FOR FAST CONTROL 689

been proposed as a highly competitive approach [5]. A survey of online optimization algorithms for
NMPC can be found in [3]. The RTI scheme, as presented in Algorithm 1, pursues to minimize the
feedback time to the process. It performs only one SQP-type iteration of the generalized Gauss–
Newton method per sampling time, to avoid iterating until convergence for an outdated problem.
Initial value embedding, that is, the use of a constraint such as in (2b) to impose the initial state
values, also plays a crucial role. The state estimate Nx0 enters linearly, and the optimal control solu-
tion depends differentiably on this parameter, except during active set changes. Combined with the
Gauss–Newton Hessian approximation, this yields a multiplier-free, generalized tangential predic-
tor, that is, one that can work across active set changes [3]. A final, important ingredient of the RTI
scheme is its division of the computations at each sampling instant into a preparation and a feed-
back phase. The typically more computationally demanding preparation phase includes the problem
linearization and potential condensing of the large structured QP. This preparation task can be per-
formed before the next state estimate is available and includes most of the necessary computations.
Once the new value becomes available, the feedback phase can quickly solve the prepared convex
subproblem. This can drastically reduce the computational delay between receiving the new state
estimate and applying the next control input to the process.

Algorithm 1 Real-Time SQP using Gauss-Newton

Input: initial guess X Œ0! D
"
x
Œ0!
0 ; : : : ; x

Œ0!
N

#
; U Œ0! D

"
u
Œ0!
0 ; : : : ; u

Œ0!
N#1

#
, k D 0

while true do

1. Use an integrator to obtain the simulation results "Œk!i and its first order derivatives AŒk!i
and B Œk!i for all shooting intervals i D 0; : : : ; N ! 1.

2. Prepare the QP in (3) and optionally apply the condensing algorithm from [8] to reduce
this sparse QP to its smaller, but dense format.

3. Wait until the current state measurement Nx0 arrives.
4. Solve the QP, apply the full step X ŒkC1! D X Œk! C#X , U ŒkC1! D U Œk! C#U and send

the new control input uŒkC1!0 to the process.
5. Increment k and shift the trajectories X and U forward in time.

end while

2.4. ACADO code generation

The open-source ACADO Toolkit is written in C++ and based on the scheme in Algorithm 1; its
code generation tool exports highly efficient C code for real-time optimal control [31]. An impor-
tant component consists of the autogenerated integrators with efficient sensitivity propagation [15],
which will be our main topic of interest throughout this article. A user-friendly MATLAB interface
is available, which allows one to export, compile, and use autogenerated code for NMPC in an intu-
itive way and without direct interaction with C/C++ programming [17]. ACADO provides the user
with easy access to the exported code to perform various NMPC simulations from MATLAB. Note
that the same optimized C code could later be employed in real time on embedded control hardware.
The ACADO software can be downloaded from www.acadotoolkit.org for reproducing all
numerical results that are presented in this article.

It is important to stress that these code generation techniques are not merely restricted to problems
with a short control horizon and a small dynamic system. As discussed in [11], a smart choice of the
approach to solve the QP subproblem can allow one to efficiently treat short to long horizon control
problems. A statement on the system dimensions that can possibly be handled by a code generation-
based framework would strongly depend on the targeted application. Successful implementations
of real-time feasible NMPC using ACADO can be found in [21–23, 25] or, for example, in the
paper [32] on airborne wind energy, which presents total computation times below 125 ms for a
control horizon of 20 intervals and the use of a nonlinear DAE model of 56 differential, 3 algebraic
states, and 14 control inputs.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

690 R. QUIRYNEN ET AL.

3. A GUIDING EXAMPLE: NONLINEAR MODEL PREDICTIVE CONTROL OF AN
INVERTED PENDULUM

The guiding example that will be used throughout this article is the classical system of a pendulum
mounted on top of a cart as illustrated in Figure 2. It forms an ideal tutorial example for NMPC
because it is simple and intuitive but it can also exhibit rather fast dynamics and nonlinear behavior.
Subsection 3.1 first describes the modeling task for this system with an alternative DAE model in
Subsection 3.2. The OCP formulation can then be introduced in Subsection 3.3.

3.1. Modeling the system

The position of the cart will be denoted by w0, and the pendulum configuration described by the
angle $, using the convention that $ D 0 rad, corresponds to the pendulum hanging down in the
negative y direction. The pendulum consists of a mass m attached to the cart through a massless
link of length l . The position of the mass attached to the free end of the pendulum is given by

p D
$
w1
y1

%
D
$
l sin.$/C w0
!l cos.$/

%
: (4)

The kinetic energy of the system is given by T D 1
2m Pp> Pp C 1

2M
Pw20 ; where M denotes the cart

mass. The potential energy subsequently corresponds to U D mgy1; where g denotes the gravita-
tional acceleration. Using the Lagrangian formalism from [33], one can define L D T ! U so that
the equations of motion read

d
dt
@L
@ Pq !

@L
@q
D Fq; (5)

with the generalized coordinates q D Œw0; $!
>, the generalized forces Fq D Œu; 0!>, and u defined

as a control input. This formulation directly yields the following implicit ODE system:

.M Cm/ Rw0 Cml. R$ cos.$/ ! sin.$/ P$2/ ! u D 0;
l R$ C Rw0 cos.$/C g sin.$/ D 0:

(6)

By solving for the differential state derivatives Rw0 and R$, one can obtain the following explicit ODE
formulation, which is mathematically equivalent:

Rw0 D
ml sin.$/ P$2 Cmg cos.$/ sin.$/C u

M Cm !m.cos.$//2
;

R$ D !ml cos.$/ sin.$/ P$2 C u cos.$/C .M Cm/g sin.$/
l.M Cm !m.cos.$//2/

:

(7)

Note that the latter equations are well defined in case that both M ¤ 0 and l ¤ 0.

Figure 2. Schematic illustrating the inverted pendulum on top of a cart.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

CODE-GENERATED ACADO INTEGRATORS FOR FAST CONTROL 691

3.2. An alternative differential algebraic equation model

The same set-up can also be modeled as a DAE system. Instead of using the generalized coordinates
as before, one can use q D Œw0; w1; y1! and introduce the following constraint:

C.q/ D 1

2

&
.w1 ! w0/2 C y21 ! l2

'
D 0:

The Lagrangian is now given by L D T !U !%C , where % is the Lagrange multiplier with respect
to this constraint. The obtained DAE is of index 3, but it can be reduced to one of index 1, and the
resulting equations of motion read

2
64

M 0 0 w0 ! w1
0 m 0 w1 ! w0
0 0 m y1

w0 ! w1 w1 ! w0 y1 0

3
75
2
64
Rw0
Rw1
Ry1
%

3
75 D

2
664

0
!mg
u

! Py2 ! . Pw0 ! Pw1/2

3
775 ;

C.0/ D 0
PC.0/ D 0 ; (8)

where w0, w1, and y1 as well as their time derivatives are differential states and % is an algebraic
state. Note that if a consistent initial state is provided, the conditions C.0/ D 0 and PC.0/ D 0
automatically hold and the NMPC scheme will not need to impose them.

3.3. Optimal control problem formulation

The targeted control task is to make the pendulum perform a full swing-up starting from the stable
steady-state position described by w0 D 0 m and $ D 0 rad, while the reference point is unstable
and corresponds to, respectively, 0m and & rad. Let us assume that the control input and the position
of the cart are both bounded, respectively, by !20 6 u 6 20 and !2 6 w0 6 2. Using a least-
squares objective and, for example, one of the ODE models presented earlier, the OCP formulation
in continuous time is the following:

minimize
x.!/;u.!/

Z t0CT

t0

&
kx.t/ ! xrefk2Q C ku.t/ ! urefk2R

'
dt C kx.t0 C T / ! xrefk2P (9a)

subject to x.t0/ D Nx0; (9b)
Px.t/ D f .x.t/; u.t//; 8t 2 Œt0; t0 C T !; (9c)
! 2 6 w0.t/ 6 2; 8t 2 Œt0; t0 C T !; (9d)
! 20 6 u.t/ 6 20; 8t 2 Œt0; t0 C T !; (9e)

where the states are defined as x D Œw0; $; Pw0; P$!>, the horizon length T D 1 s, and the weighting
matrices Q and R are defined as

Q D diag
&(
10 10 0:1 0:1

)'
and R D Œ0:01!:

Note that the units are chosen consistently with the unit of measure of the states, so as to yield a
dimensionless cost. To obtain a tractable problem, a multiple shooting discretization is performed
using 20 intervals over the control horizon. The used NMPC sampling time is equal to Ts D 0:05 s
to be able to deal with the fast nonlinear dynamics in the system.

3.4. Nonlinear model predictive control using ACADO code generation

To obtain a real-time feasible implementation of NMPC, one can export a tailored RTI scheme using
the open-source ACADO code generation tool. Figure 3 presents the MATLAB code structure that
can be used for this. Note that the OCP formulation in (2) is fully supported by ACADO where

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

692 R. QUIRYNEN ET AL.

Figure 3. MATLAB code example to implement nonlinear model predictive control (NMPC) using ACADO
code generation.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

CODE-GENERATED ACADO INTEGRATORS FOR FAST CONTROL 693

the stage cost is defined as Fi .xi ; ui / D W
1=2
i . QF .xi ; ui / ! yref

i /, such that users can easily spec-
ify weighting matrices Wi and a reference trajectory yref

i . The following four crucial steps can be
identified:

1. Define the model equations: This part of the code will be changed the most throughout the
following sections, since our focus will be on the way this nonlinear system is dealt with in
fast NMPC applications.

2. Simulation routine: An integrator is generated to accurately simulate the behavior of the pro-
cess after applying the next control inputs. Although only ACADO is being used here, this
component can be replaced by any available simulation environment.

3. NMPC export: The OCP needs to be formulated in ACADO syntax, including the dynam-
ics, the objective functions, and constraints, so that a corresponding solver can be exported.
Various options can be used to customize the code-generated algorithm.

4. Simulation: The exported solver can be used to run various closed-loop NMPC simulations
while keeping the efficiency of the optimized C code for the relevant computations.

ACADO keywords can be used to define the various differential states and controls. They are
used to build all symbolic expressions that appear in the differential equations. After defining the
model in Figure 3, the code exports the four-stage ERK method of order 4 (ERK4) as a stand-
alone integrator to simulate the system. It is specified to perform five integration steps to simulate
the model over 0.05 s, resulting in a relatively high accuracy. The SIMexport module generates
the optimized C code into the folder called ‘SIM_export’. Notice that there are options to customize
the integrator and to include an efficient propagation of sensitivities. This turns it into a powerful
tool to prototype new algorithms as illustrated in [17] and also further in Section 7.2. The third step
involves the use of the OCP and OCPexport module, which generates the RTI-based solver for
NMPC. It allows the user to specify the embedded components such as the integrator and the convex
solver. In the code from Figure 3, the same ERK method is used and combined with a condensing
technique and qpOASES as the underlying solver. As mentioned earlier, it is possible to alternatively
employ a structure-exploiting solver such as FORCES or qpDUNES. The self-contained C code
is exported into the specified ‘MPC_export’ folder. Finally, the presented code also automatically
generates MEX functions, which can be used to perform

an evaluation of the model’s right-hand side and its derivatives,
a call to the integrator and its optional sensitivity propagation, and
the RTI scheme to solve the user-provided OCP instance.

Using this functionality, one can rather intuitively perform various NMPC simulations by consecu-
tively calling the OCP solver and the integrator in a loop.

4. EXPLICIT INTEGRATION METHODS

Let us first present the case of having an OCP formulation where the dynamics are described by an
explicit ODE system. In that case, an explicit integration method can be used to solve the following
initial value problem:

Px.t/ D f .t; x.t/; u.t//;
x.0/ D x0:

(10)

This section briefly covers ERK methods, which are first introduced in Subsection 4.1. An overview
on techniques for first-order sensitivity analysis is subsequently provided in Subsection 4.2. Finally,
an illustration of the resulting NMPC implementation and its performance will be presented in
Subsection 4.3.

4.1. Explicit Runge–Kutta methods

Runge–Kutta (RK) methods form an important class of one-step methods, which are attractive for
multiple shooting because they do not require any start-up procedure. Detailed information on the

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

694 R. QUIRYNEN ET AL.

derivation and properties of these methods can be found in [34]. One can use the following s-stage
RK method to integrate the ODE system in (10) from time tn to tn C h:

ki D f .tn C cih; xn C h
sX

jD1
aijkj ; un/; for i D 1; : : : ; s;

xnC1 D xn C h
sX
iD1

biki ;

(11)

where the values bi denote the weights, ci are the coefficients defining the s stages, and aij are
called the internal coefficients. For an ERK method, the coefficient matrixA D Œaij !must be strictly
lower triangular so that the variables ki are defined explicitly in (11). The simplest method is the
well-known forward Euler method. It is usually more efficient to use a higher-order method such as
the methods of Runge and Heun or the popular four-stage ERK method of order 4 (ERK4) [34]. It
is important to note that explicit methods should typically not be used in case of a stiff problem, as
detailed in [35].

4.2. Sensitivity analysis

A straightforward way of computing first-order sensitivity information is to simulate the ODE
system, extended with the following forward variational differential equations (VDEs):

PSx.t/ D
@f .t; x.t/; u.t//

@x
Sx.t/;

PSu.t/ D
@f .t; x.t/; u.t//

@x
Su.t/C

@f .t; x.t/; u.t//

@u
;

Œ Sx.0/ jSu.0/ ! D Œ 1 j 0 !;

(12)

where the sensitivity matrices are defined as Sx.t/ D @x.t/
@x0

and Su.t/ D @x.t/
@u and u is assumed

to consist of all control values on which the simulated state depends. The initial value 1 denotes
an identity matrix and 0 contains only zeros. Targeting real-time applications, a fixed step size and
order is assumed for the code-generated integrator [13]. In case of an explicit method, the simu-
lation of these VDEs is then equivalent to the use of internal numerical differentiation where one
would differentiate the method itself [29]. Both approaches therefore automatically lead to an effi-
cient scheme in combination with algorithmic differentiation (AD) to evaluate the derivatives [36].
Note that each forward approach allows an alternative where one performs a backward propagation
instead, for example, using the reverse mode of AD [37]. This can be more efficient in case of many
parameters with respect to which the sensitivities are needed. Because the presented methods are
later extended with extra outputs, a forward scheme will be preferred throughout the remainder of
this article.

4.3. Application: nonlinear model predictive control on an inverted pendulum

As mentioned earlier, efficient C code for NMPC can be automatically generated using ACADO
from MATLAB. Similar to before, let us employ the four-stage ERK4 with a step size of 0.05 s. The
expressions for the explicit ODE system from (7) can again be formulated as in the lines 1–15 of
the code in Figure 3. The closed-loop NMPC behavior for the full swing-up within 4 s is shown in
Figure 4. The average computation time for different implementations of this scheme can be found
in Table I. The integration time includes the simulation of the model over all 20 shooting intervals
together with its sensitivity propagation. It can be observed from this table that the integrator and
QP solver often form the computationally most expensive ingredients for the RTI scheme. The sum
of the integration and QP solution times for, for example, ACADO using FORCES is 189 's, which
is close to the total computation time of 199 's per step. Note that FORCES does not appear to
be the ideal choice here as the embedded QP solver. The use of qpDUNES results in faster code

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

CODE-GENERATED ACADO INTEGRATORS FOR FAST CONTROL 695

0 1 2 3 4
−2

0

2

w
0

0 1 2 3 4
−5

0

5

th
et

a

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

0

20

u

time (s)

0 1 2 3 4
−5

0

5

dw
0

0 1 2 3 4
−10

0

10

dt
he

ta

Figure 4. Illustration of the closed-loop nonlinear model predictive control behavior for the original optimal
control problem formulation.

Table I. Average computation time per RTI step, interfacing an ACADO integrator and QP solver.

quadprog–ode45 ('s) FORCES ('s) qpDUNES ('s) qpOASES ('s)

N = 20
Integration (ERK4) 60680 34 34 34
QP solver 61504 155 52 28
Condensing – – – 12
ACADO total RTI – 199 97 80

N = 60
ACADO total RTI 745 312 407

ERK4, explicit Runge–Kutta method of order 4; QP, quadratic program; RTI, real-time iteration.

in this case, but condensing combined with qpOASES provides the most efficient implementation
with only 80 's per time step. On longer horizons, a sparsity-exploiting solver such as FORCES
or qpDUNES can be shown to eventually become faster than the condensing-based approach as
discussed in [11]. The timing results from a simulation using N D 60 control intervals over a
horizon, which is also three times longer, are included in Table I for illustrative purposes. In this
specific case, the qpDUNES-based implementation becomes the most efficient one. The table also
presents the average computation time when using quadprog and ode45, respectively, to solve
the QP and to perform integration and sensitivity computations. The difference between an ACADO-
exported integrator and ode45 is quite noticeable, mostly because of using code generation and
fixing the step size. The propagation of sensitivities with ode45 is performed using the system
extended with the VDEs from (12).

5. IMPLICIT INTEGRATION METHODS

A quite pragmatical definition of stiffness is when the dynamic equations are ‘such that certain
implicit methods perform better, usually tremendously better, than explicit ones’ [35]. Many real-
world problems are observed to be stiff [38]; that is, it is rather important to include implicit schemes
in this discussion. Moreover, the initial value problem formulation from (10) can be generalized to

0 D f .t; Px.t/; x.t/; ´.t/; u.t//;
x.0/ D x0;

(13)

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

696 R. QUIRYNEN ET AL.

with x.t/ a vector of nx differential states, Px.t/ the corresponding time derivatives, ´.t/ a vector of
n´ algebraic states, and u.t/ a vector of nu control inputs. This covers both the implicit ODE model
from (6) and the index-1 DAE model from (8). The only assumption is that the Jacobian matrix
@f

@.´; Px/ is invertible. Subsection 5.1 briefly describes the implementation of implicit RK (IRK) meth-
ods, while their tailored sensitivity analysis is treated in Subsection 5.2. The effect of the model
formulation on the NMPC scheme for our guiding example is briefly investigated in Subsection 5.3.

5.1. Implicit Runge–Kutta methods

Because of their high order of accuracy and good stability properties, one is often interested in A-
stable IRK methods such as the Gauss or Radau IIA methods [35]. The RK scheme can be directly
applied to the fully implicit DAE system from (13) as follows:

0 D f

0
@tn C cih; ki ; xn C h

sX
jD1

aijkj ; Zi ; un

1
A , i D 1; : : : ; s;

xnC1 D xn C h
sX
iD1

biki ;

(14)

where the coefficients bi , ci , and ai;j define the method as before, Zi denotes the stage values
of the algebraic states, and ki denotes the stage values of the differential state derivatives. The
result is a nonlinear system of s.nx C n´/ equations that must be solved using a Newton-type
method. Targeting real-time applications, not only the step size and order of the method but also
the number of Newton iterations L is assumed to be kept fixed. Given the results from a previous
integration step, one can construct a reasonable initialization for the next stage values. The number
of iterations L should be chosen in a conservative way, considering the applications for which the
resulting scheme will be employed [15]. Let us write the nonlinear system as G.rn; K/ D 0 where
rn D .xn; un/; that is, the Newton iterations are

KŒi! D KŒi#1! !M#1G
"
rn; K

Œi#1!
#
; i D 1; : : : ; L; (15)

where M is an approximation of the Jacobian @G
@K and K D .k1; : : : ; ks; Z1; : : : ; Zs/. The eval-

uation of derivatives is done efficiently using AD, and for example, a custom linear solver can
be used, based on the lower upper (LU) decomposition of the matrix M . Note that the iterations
itself are computationally cheaper than this matrix factorization, motivating the reuse of a Jacobian
approximation [15].

5.2. Sensitivity propagation

For similar reasons as before, forward techniques for sensitivity propagation will be targeted. Fol-
lowing a differentiate-then-integrate approach, it would again be possible to extend the dynamics
with a system of sensitivity equations. This description is insufficient in case of implicit methods
because the resulting efficiency will strongly depend on how the augmented system is treated. A
detailed discussion on techniques of forward sensitivity propagation can be found in [16], includ-
ing internal numerical differentiation for implicit methods. The conclusion there is that an efficient
approach is to directly apply the implicit function theorem to the system G.rn; K/ D 0, resulting in

dK

drn
D !@G

@K

#1 @G
@rn

; (16)

where the Jacobian @G
@K needs to be evaluated and factorized. But this factorization can be reused

in the Newton iterations of the next integration time step, as proposed and motivated by [15, 16].
Algorithm 2 compactly describes the resulting implementation of an IRK method with tailored
sensitivity propagation. Only one LU factorization is needed per integration step.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

CODE-GENERATED ACADO INTEGRATORS FOR FAST CONTROL 697

Algorithm 2 The implementation of one IRK integration step

Input: rn, initial KŒ0!, LU factorization of M
Output: M , .xnC1;

@xnC1
@rn

/ and
"
´n;

@´n
@rn

#

1: for i D 1! L do
2: KŒi! KŒi#1! !M#1G

&
rn; K

Œi#1!'
3: end for
4: xnC1 xn C h

Ps
iD1 biki

5: ´n
Ps
iD1 li .0/Zi with li .t/ D

Q
j¤i

t#cj
ci#cj

6: M @G
@K

&
rn; K

ŒL!
'

7: compute dK
drn

using M in Eq. (16)

8:
@xnC1
@rn

 @xn
@rn
C hPs

iD1 bi
dki
drn

9: @´n
@rn
 Ps

iD1 li .0/
dZi
drn

5.3. Application: nonlinear model predictive control using a differential algebraic equation model

Regarding our guiding example, one can also use the implicit ODE in (6) or the DAE model in (8)
for NMPC. The ACADO formulation of the implicit DAE system looks as follows:

This code can be used as before to generate an IRK method with tailored sensitivity propaga-
tion or to export a full RTI scheme. The average computation time for one RTI step is presented in
Table II, using each of the three possible model formulations. The ACADO-generated scheme uses
condensing combined with qpOASES, and the results also show the time spent in integration and
sensitivity propagation. The same IRK method is used for all three model formulations, namely a
Gauss method of order 2 (IRK method of order 2) with a step size of 0.05 s. The different NMPC
implementations seem to result in a rather similar execution time; that is, there is little to no over-
head corresponding to treating an implicit ODE or even DAE system instead of the simple explicit
model. An implicit ODE or a DAE formulation can sometimes even lead to faster computation times
because of simpler expressions in the model, which is observed for the implicit ODE in this case.
Note that the DAE system consists of seven instead of four states (six differential and one algebraic
state), while its corresponding execution time is comparable to the others.

6. MODELS WITH LINEAR SUBSYSTEMS

Many dynamic systems are described by a set of nonlinear differential equations with possibly a
few algebraic states. One would often identify coupled subsystems that can be simulated in separate
stages. In the special case that such a subsystem is linear, this can be additionally exploited. Subsec-
tion 6.1 presents a three-stage model formulation, which has been observed to appear rather often

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

698 R. QUIRYNEN ET AL.

Table II. Average computation time for NMPC using different model formulations in ACADO.

Explicit ODE (7) ('s) Implicit ODE (6) ('s) Implicit DAE (8) ('s)

Integration (IRK2) 24 22 32
Total RTI (qpOASES) 60 58 85

DAE, differential algebraic equation; IRK2, implicit Runge–Kutta method of order 2; NMPC,
nonlinear model predictive control; ODE, ordinary differential equation; RTI, real-time iteration.

Figure 5. Schematic illustrating the workflow in structure-exploiting Runge–Kutta integrators.

in practice. The impact on the implementation of autogenerated RK methods is discussed in Sub-
section 6.2. The specific structure is eventually illustrated to serve as a tool to implement popular
NMPC formulations in Subsection 6.3.

6.1. The three stage structure

Let us consider the following three-stage model structure from [18]:

C1 PxŒ1! D A1xŒ1! C B1u; (17a)

0 D f2
"
xŒ1!; xŒ2!; PxŒ1!; PxŒ2!; ´; u

#
; (17b)

C3 PxŒ3! D A3xŒ3! C f3
"
xŒ1!; xŒ2!; PxŒ1!; PxŒ2!; ´; u

#
; (17c)

with matrices A1, B1, and A3, invertible matrices C1 and C3, and nonlinear functions f2 and f3.
The main assumption is that the Jacobian matrix @f2

@.´; PxŒ2!/ is invertible; that is, the second subsystem
represents an implicit DAE of index 1. Linear input (17a) and output (17c) systems can, for example,
originate from partially linear dynamics or from filtering actions, respectively, before and after the
nonlinear dynamics. In case that A3 D 0 and C3 is an identity matrix, (17c) reduces to

PxŒ3! D f3
"
xŒ1!; xŒ2!; PxŒ1!; PxŒ2!; ´; u

#
(18)

which are better known as quadrature states [39]. They are typically used to formulate objective and
constraint functions, similar to how the more general linear input and output states can be used.

6.2. Structure exploiting Runge–Kutta methods

It is possible to exploit the specific structure when applying an RK method to the system in (17),
resulting in a workflow such as depicted in Figure 5. The different subsystems are treated separately,
and the results are collectively used to generate the desired outputs and their sensitivities. Note that
the Jacobian matrix dK

drn
now has a clear sparsity structure

dK

drn
D

0
BB@

dK1
dxŒ1!

0 0 dK1
du

dK2
dxŒ1!

dK2
dxŒ2!

0 dK2
du

dK3
dxŒ1!

dK3
dxŒ2!

dK3
dxŒ3!

dK3
du

1
CCA ; (19)

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

CODE-GENERATED ACADO INTEGRATORS FOR FAST CONTROL 699

where K1, K2, and K3 denote the stage values corresponding to the three subsystems. Because of
linearity, the values dK1

dxŒ1!
, dK1du , and dK3

dxŒ3!
are constant and can be precomputed in a code genera-

tion framework. In case of IRK methods, the speedup to be made is typically much larger. Linear
subsystems namely allow the inverse of the constant Jacobian to be precomputed offline, which
reduces the cost of computing stage values to merely one matrix-vector multiplication [18].

6.3. Application: frequency-weighted nonlinear model predictive control

For our simple guiding example, the model dynamics in (6) are coupled, and there is no linear
subsystem to be identified. In more realistic cases, these subsystems appear quite naturally as is
shown by the control examples in [18]. Let us illustrate possible uses of both the linear input and
output systems to efficiently implement popular NMPC formulations in practice.

Linear input system Instead of controlling the input u for the inverted pendulum directly, one
would often use the control rate uR and include the dynamic equation Pu D uR. Extra constraints on
the rate of change of the input u can then be included in the OCP formulation. The resulting effect
is that the NMPC controller will typically behave less aggressively and therefore less nervously in
the presence of noise [14].

Linear output system Everything that can be achieved using quadrature states can be done similarly
with a linear output system. But it can, for example, also be used to implement first-order high-pass
filtering on a state to extra penalize its high frequency content as illustrated in [18]. Let us carry this
out for the angle $ from our guiding example, which results in

P$HP D P$! !C $HP; (20)

where !C D 2&fC and fC is the cutoff frequency. The implicit ODE model for the inverted
pendulum on a cart can now easily be extended with both the linear input and output systems:

The updated OCP formulation includes a constraint !100 6 uR 6 100 and additional weights
on both uR and $HP in the objective. The average computation time per RTI step using ACADO is
presented in Table III. Unlike the results in Table II, a Gauss method of order 4 (IRK method of order
4) instead of order 2 has been used for illustrative purposes. The table includes the computation time
for the original and extended NMPC scheme, comparing its implementation both with and without
structure exploitation. Note that the use of linear subsystems allowed us to implement this more
practical scheme at the cost of merely 132 's instead of the original 116 's per step. A comparison
between the NMPC behavior using either the original or the frequency-weighted formulation is
shown in Figure 6. It can be observed that the controller is less aggressive and the trajectories appear
slightly smoother.

7. CONTINUOUS OUTPUT

To efficiently define certain objective or constraint functions in an OCP formulation, additionally
simulated outputs are often needed. The idea of continuous output is to be able to evaluate such
expressions on an arbitrarily fine grid, which is independent of the integration grid. Note that this
implies that the integrator has to deliver their sensitivity information. A possible use case has been

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

700 R. QUIRYNEN ET AL.

Table III. Average computation time for frequency-weighted NMPC in ACADO.

Original NMPC Frequency-weighted
using ODE in (6) ('s) Unstructured ('s) Linear subsystems ('s)

Integration (IRK4) 60 105 65
Total RTI (qpOASES) 116 175 132

IRK4, implicit Runge–Kutta method of order 4; NMPC, nonlinear model predictive control; ODE,
ordinary differential equation; RTI, real-time iteration.

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

w
0

0 0.5 1 1.5 2 2.5 3
−2

0

2

4

th
et

a

0 0.5 1 1.5 2 2.5 3
−20

−10

0

10

20

u

time (s)

0 0.5 1 1.5 2 2.5 3
−5

0

5

dw
0

original NMPC

frequency−weighted

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

dt
he

ta

0 0.5 1 1.5 2 2.5 3
−100

−50

0

50

100

u R

time (s)

Figure 6. Simulation results for nonlinear model predictive control using either the original or the frequency-
weighted formulation.

presented in [17], where multirate measurements for moving horizon estimation were efficiently
incorporated in a real-time feasible scheme. Other control-related ideas could be to approximate a
least-squares integral or to define certain constraints on a rather fine grid. Subsection 7.1 briefly
presents the support of continuous output for a specific family of IRK methods. An interesting
NMPC application is introduced in Subsection 7.2, where an infinite horizon closed-loop costing
scheme will be implemented in an efficient way.

7.1. Collocation methods

Collocation methods are a specific family of IRK methods for which their continuous extension
arises quite naturally. Using the collocation variables K D .k1; : : : ; ks; Z1; : : : ; Zs/, a continuous
time polynomial is defined for the states x.t/, Px.t/, and ´.t/ over the interval t 2 Œtn; tnC1!

x.tn C ch/ $ xn C h
sX
iD1

ki

Z c

0

li .(/ d(;

Px.tn C ch/ $
sX
iD1

li .c/ki ;

´.tn C ch/ $
sX
iD1

li .c/Zi ;

(21)

where 0 6 c 6 1 and li .t/ D
Q
j¤i

t#cj
ci#cj are the Lagrange interpolating polynomials. In case of an

IRK method of order p, the order of this approximation is p" D min.p; sC 1/ for x.t/ and p" ! 1
for Px.t/ and ´.t/ [17]. It is generally possible to construct interpolants for all RK methods [40].

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

CODE-GENERATED ACADO INTEGRATORS FOR FAST CONTROL 701

7.2. Application: nonlinear model predictive control using infinite horizon closed-loop costing

Until now, the issue of nominal closed-loop stability of the implemented NMPC scheme has not
been addressed although it forms a crucial property. Instead of determining a suitable terminal
region or sufficiently prolonging the control horizon [41], let us briefly look into the technique of
infinite horizon closed-loop costing [42, 43]. The scheme is based on a local control law and uses
an infinite prediction horizon in which the state and input constraints are still imposed. A tractable
approximation of the infinite horizon cost associated with the local controller is used as a penalty
on the terminal state. Stability of the closed-loop system can then be proven in a rigorous way [43].
To formulate a practical scheme, the prediction horizon can be truncated without losing this stabil-
ity guarantee as is the topic of discussion in [42]. Furthermore, the path constraints will only be
imposed at specific time points. The main advantage of introducing the prediction horizon Tp is
that it allows us to enlarge the region of attraction around the reference point without increasing the
control horizon Tc , that is, with the same number of decision variables [44].

Let us adapt the OCP formulation from (9) accordingly:

minimize
x.!/;u.!/

Z t0CT

t0

&
kx.t/ ! xrefk2Q C ku.t/ ! urefk2R

'
dt (22a)

subject to x.t0/ D Nx0; (22b)
Px.t/ D f .x.t/; u.t//; 8t 2 Œt0; t0 C T !; (22c)
u.t/ D uLQR.x.t//; 8t 2 Œt0 C Tc ; t0 C T !; (22d)

! Nh 6 h.t/ 6 Nh; 8t 2 Œt0; t0 C T !; (22e)

where T D Tc C Tp , the function h is defined as h.t/ D Œw0.t/; u.t/!
>, and the bounding values

are Nh D Œ2; 20!>. The unstable steady state is denoted by .xss; uss/, such that the Linear Quadratic
Regulator (LQR) which locally stabilizes this reference point can be defined as uLQR D uss!Kp.x!
xss/ where Kp 2 Rnu$nx . The corresponding discrete time OCP formulation reads

minimize
X;U

1

2

Nc#1X
iD0
kxi ! xrefk2Q C kui ! urefk2R C kg.xNc / ! grefk2W (23a)

subject to 0 D x0 ! Nx0; (23b)
0 D xiC1 !ˆi .xi ; ui /; i D 0; : : : ; Nc ! 1; (23c)

! Nh 6 h.xi / 6 Nh; i D 0; : : : ; Nc ! 1; (23d)

! Nh 6 hj .xNc / 6 Nh; j D 0; : : : ; Np; (23e)

where the functions hj .xNc / and g.xNc / are defined by a forward simulation over the prediction
horizon using the linear control law, gref D ŒxrefIurefI : : :! 2 RNp.nxCnu/ denotes the corresponding
reference values, and W D diag.Q;R; : : :/ 2 RNp.nxCnu/$Np.nxCnu/ is a block-diagonal weight-
ing matrix. Let us consider a control horizon of Nc D 10 and a prediction horizon of Np D 20,
that is, respectively, Tc D 0:5s and Tp D 1:0 s, using a discretization with the same sampling
time Ts D 0:05 s in both. One can generate an ACADO integrator, dedicated to perform the sim-
ulation over the prediction horizon. The goal is to take rather large integration steps but to use the
continuous output feature to efficiently define the extra constraints and the terminal cost.

This will be compared with the original NMPC scheme with Nc D 20 control intervals and no
prediction horizon (case 1). Note that it becomes difficult to reduce the size of the horizon further and

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

702 R. QUIRYNEN ET AL.

Table IV. Average computation time for approximate infinite horizon NMPC.

Original NMPC (6) Infinite horizon costing
(Nc D 20, Np D 0) (Nc D 10, Np D 20)

Case 1 ('s) Case 2 ('s) Case 3 ('s)

Integration (IRK4) 60 30 30
Prediction – 60 14
QP (FORCES) 155 114 114

Sum 215 204 158

IRK4, implicit Runge–Kutta method of order 4; NMPC, nonlinear model predictive control; QP,
quadratic program.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
2

2.5

3

3.5

4

w0

th
et

a

Figure 7. This figure shows the implicitly defined terminal region by nonlinear model predictive control with
closed-loop costing where feasible points in .w0; $/ space are dotted and infeasible points left blank (other

two states are kept zero).

to still obtain a stable controller in this case. The resulting average computation time per RTI step is
presented in Table IV using a Gauss method of order 4 and step size 0.05 s, which is interfaced to a
FORCES solver. The implementation using continuous output (case 3) is much faster than the one
without (case 2), where a separate integration step needs to be performed for each interval. Note that
the latter scheme delivers a higher integration accuracy over the prediction horizon, although it is not
necessary for our example. Integrators with continuous output provide the user with the flexibility
needed to compute all results in an efficient way and with the desired precision. It is interesting that
this approach can be interpreted as one that implicitly generates a terminal region as illustrated in
Figure 7. It shows how much the inverted pendulum is allowed to be tilted and in which direction
depending on the position of the cart, such that the LQR controller can still stabilize it under the
restrictions of our system.

8. CONCLUSIONS AND FURTHER DEVELOPMENTS

This article has summarized recent algorithmic progress on autogenerated integration methods and
illustrated ways to employ them for NMPC. Code-generated integrators with tailored sensitiv-
ity propagation can form a powerful tool. Selecting a suitable method and exploiting its features
can allow a range of new NMPC formulations and applications to become real-time and feasi-
ble. Based on the ACADO code generation tool from MATLAB, a tutorial-style approach has
been adopted using a simple guiding example that consists of an inverted pendulum on a cart.
In addition, the potential to easily prototype new algorithms was briefly illustrated. The stand-
alone implicit integrators with continuous output allowed us to efficiently implement NMPC with
closed-loop costing.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

CODE-GENERATED ACADO INTEGRATORS FOR FAST CONTROL 703

These ideas can be extended to support tailored, embedded algorithms for distributed as well as
robust formulations of optimal control. Such possible extensions as well as novel techniques for
efficient sensitivity propagation are among the topics of ongoing research.

ACKNOWLEDGEMENTS

The authors would like to thank all reviewers for their valuable comments, which helped to improve this
article. This research was supported by the following institutions: KUL: Optimization in Engineering Cen-
ter OPTEC (PFV/10/002), GOA/10/09 and GOA/10/11; Flemish Government: IOF/KP/SCORES4CHEM;
FWO: PhD/postdoc grants and projects: G.0320.08 and G.0377.09; IWT: PhD grants and projects: SBO
LeCoPro; Belgian Federal Science Policy Office: IUAP P7 (DYSCO, Dynamical systems, control and opti-
mization, 2012–2017); and the European Union’s Seventh Framework Programme: EMBOCON (248940),
SADCO (264735), TEMPO (607957), Eurostars SMART, and ERC HIGHWIND (259166). The first author
holds a PhD fellowship of the Research Foundation – Flanders (FWO).

REFERENCES

1. Nocedal J, Wright SJ. Numerical Optimization (2nd edn), Springer Series in Operations Research and Financial
Engineering. Springer: New York, 2006.

2. Wächter A, Biegler LT. On the implementation of a primal-dual interior point filter line search algorithm for large-
scale nonlinear programming. Mathematical Programming 2006; 106(1):25–57.

3. Diehl M, Ferreau HJ, Haverbeke N. In Nonlinear Model Predictive Control, volume 384 of Lecture Notes in Con-
trol and Information Sciences, Chapter Efficient Numerical Methods for Nonlinear MPC and Moving Horizon
Estimation. Springer: Berlin Heidelberg, 2009; 391–417.

4. Kirches C, Wirsching L, Sager S, Bock HG. Efficient numerics for nonlinear model predictive control. In Recent
Advances in Optimization and Its Applications in Engineering, Diehl M, Glineur FF, Michiels JW (eds). Springer:
Berlin Heidelberg, 2010; 339–357.

5. Diehl M, Bock HG, Schlöder JP. A real-time iteration scheme for nonlinear optimization in optimal feedback control.
SIAM Journal on Control and Optimization 2005; 43(5):1714–1736.

6. Domahidi A, Zgraggen A, Zeilinger MN, Morari M, Jones CN. Efficient interior point methods for multistage prob-
lems arising in receding horizon control. IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 2012;
668–674.

7. Frasch JV, Sager S, Diehl M. A parallel quadratic programming method for dynamic optimization
problems. Mathematical Programming Computations 2013. Optimization online: http://www.optimization-
online.org/DB_HTML/2013/11/4114.html.

8. Andersson J. A general-purpose software framework for dynamic optimization. PhD Thesis, Arenberg Doctoral
School, KU Leuven, Department of Electrical Engineering (ESAT/SCD) and Optimization in Engineering Center,
Kasteelpark Arenberg 10, 3001-Heverlee, Belgium, 2013.

9. Frison G, Jorgensen J. A fast condensing method for solution of linear-quadratic control problems. Proceedings of
the 52nd IEEE Conference on Decision and Control, Florence, Italy, 2013; 7715–7720.

10. Ferreau HJ. An online active set strategy for fast solution of parametric quadratic programs with applications to
predictive engine control. Master’s Thesis, University of Heidelberg, Baden-Württemberg, Germany, 2006.

11. Vukov M, Domahidi A, Ferreau HJ, Morari M, Diehl M. Auto-generated algorithms for nonlinear model predic-
tive control on long and on short horizons. Proceedings of the 52nd Conference on Decision and Control (CDC),
Florence, Italy, 2013; 5113–5118.

12. Ferreau HJ, Kraus T, Vukov M, Saeys W, Diehl M. High-speed moving horizon estimation based on automatic code
generation. Proceedings of the 51th IEEE Conference on Decision and Control (CDC 2012), Maui, Hawaii, 2012;
687–692.

13. Houska B, Ferreau HJ, Diehl M. An auto-generated real-time iteration algorithm for nonlinear MPC in the
microsecond range. Automatica 2011; 47(10):2279–2285.

14. Vukov M, Van Loock W, Houska B, Ferreau HJ, Swevers J, Diehl M. Experimental validation of nonlinear MPC
on an overhead crane using automatic code generation. The 2012 American Control Conference, Montreal, Canada,
2012; 6264–6269.

15. Quirynen R, Vukov M, Diehl M. Auto generation of implicit integrators for embedded NMPC with microsecond
sampling times. In Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference, Noordwijkerhout,
Netherlands, 2012; 175–180.

16. Quirynen R. Automatic code generation of implicit Runge-Kutta integrators with continuous output for fast
embedded optimization. Master’s Thesis, University of Leuven, Belgium, KU Leuven, 2012.

17. Quirynen R, Gros S, Diehl M. Fast auto generated ACADO integrators and application to MHE with multi-rate
measurements. Proceedings of the European Control Conference, Zurich, Switzerland, 2013; 3077–3082.

18. Quirynen R, Gros S, Diehl M. Efficient NMPC for nonlinear models with linear subsystems. Proceedings of the 52nd
IEEE Conference on Decision and Control, Florence, Italy, 2013; 5101–5106.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

704 R. QUIRYNEN ET AL.

19. Ohtsuka T, Kodama A. Automatic code generation system for nonlinear receding horizon control. Transactions of
the Society of Instrument and Control Engineers 2002; 38(7):617–623.

20. Mattingley J, Boyd S. Convex Optimization in Signal Processing and Communications, Chapter Automatic Code
Generation for Real-time Convex Optimization. Cambridge University Press, 2009.

21. Frasch JV, Gray AJ, Zanon M, Ferreau HJ, Sager S, Borrelli F, Diehl M. An auto-generated nonlinear MPC algo-
rithm for real-time obstacle avoidance of ground vehicles. Proceedings of the European Control Conference, Zurich,
Switzerland, 2013; 4136–4141.

22. Gros S, Zanon M, Vukov M, Diehl M. Nonlinear MPC and MHE for mechanical multi-body systems with appli-
cation to fast tethered airplanes. Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference,
Noordwijkerhout, The Netherlands, 2012; 86–93.

23. Debrouwere F, Vukov M, Quirynen R, Diehl M, Swevers J. Experimental validation of combined nonlinear optimal
control and estimation of an overhead crane. Proceedings of the 19th World Congress of the International Federation
of Automatic Control, Cape Town, South Africa, 2014; 9617–9622.

24. Geebelen K, Vukov M, Wagner A, Ahmad H, Zanon M, Gros S, Vandepitte D, Swevers J, Diehl M. An experimental
test setup for advanced estimation and control of an airborne wind energy systems. In Airborne Wind Energy, Ahrens
U, Diehl M, Schmehl R (eds). Springer: Berlin Heidelberg, 2013.

25. Kraus T, Ferreau HJ, Kayacan E, Ramon H, De Baerdemaeker J, Diehl M, Saeys W. Moving horizon estimation and
nonlinear model predictive control for autonomous agricultural vehicles. Computers and Electronics in Agriculture
2013; 98:25–33.

26. Bock HG, Plitt KJ. A multiple shooting algorithm for direct solution of optimal control problems. Proceedings 9th
IFAC World Congress Budapest, Budapest, Hungary, 1984; 242–247. Pergamon Press.

27. Sargent RWH, Sullivan GR. The development of an efficient optimal control package. In Proceedings of the 8th IFIP
Conference on Optimization Techniques (1977), Part 2, Stoer J (ed.). Springer: Heidelberg, 1978; 158–168.

28. Albersmeyer J, Diehl M. The lifted Newton method and its application in optimization. SIAM Journal on
Optimization 2010; 20(3):1655–1684.

29. Bock HG. Recent advances in parameter identification techniques for ODE. In Numerical Treatment of Inverse
Problems in Differential and Integral Equations, Deuflhard P, Hairer E (eds). Birkhäuser: Boston, 1983; 95–121.

30. Tran-Dinh Q, Savorgnan C, Diehl M. Adjoint-based predictor-corrector sequential convex programming for
parametric nonlinear optimization. SIAM Journal on Optimization 2012; 22(4):1258–1284.

31. Houska B, Ferreau HJ, Diehl M. ACADO toolkit – an open source framework for automatic control and dynamic
optimization. Optimal Control Applications and Methods 2011; 32(3):298–312.

32. Zanon M, Horn G, Gros S, Diehl M. Control of dual-airfoil airborne wind energy systems based on nonlinear MPC
and MHE. European Control Conference, Strasbourg, France, 2014; 1801–1806.

33. Papastavridis JG. Analytical Mechanics. Oxford University Press, Inc., 2002.
34. Hairer E, Nørsett SP, Wanner G. Solving Ordinary Differential Equations I (2nd edn), Springer Series in

Computational Mathematics. Springer: Berlin, 1993.
35. Hairer E, Wanner G. Solving Ordinary Differential Equations II – Stiff and Differential-algebraic Problems (2nd

edn). Springer: Berlin Heidelberg, 1991.
36. Griewank A, Walther A. Evaluating Derivatives (2nd edn). SIAM: Philadelphia, PA, 2008.
37. Albersmeyer J. Adjoint-based algorithms and numerical methods for sensitivity generation and optimization

of large scale dynamic systems. Ph.D. Thesis, Ruprecht-Karls-Universitität Heidelberg, Baden-Württemberg,
Germany, 2010.

38. Zanon M, Frasch J, Diehl M. Nonlinear moving horizon estimation for combined state and friction coefficient
estimation in autonomous driving. Proceedings of the European Control Conference, Zurich, Switzerland, 2013;
4130–4135.

39. Serban R, Hindmarsh AC. CVODES: the sensitivity-enabled ODE solver in SUNDIALS. Proceedings of IDETC/CIE
2005, Long Beach, California, USA, 2005; 257–269.

40. Enright WH, Jackson KR, Nørsett SP, Thomsen PG. Interpolants for Runge-Kutta formulas. ACM Transactions on
Mathematical Software 1986; 12:193–218.

41. Allgöwer F, Badgwell TA, Qin JS, Rawlings JB, Wright SJ. Nonlinear predictive control and moving horizon estima-
tion – an introductory overview. In Advances in Control, Highlights of ECC’99, Frank PM (ed.). Springer: London,
1999; 391–449.

42. Magni L, De Nicolao G, Magnani L, Scattolini R. A stabilizing model-based predictive control for nonlinear systems.
Automatica 2001; 37(9):1351–1362.

43. Nicolao GD, Magni L, Scattolini R. Stabilizing receding-horizon control of nonlinear time varying systems. IEEE
Transactions on Automatic Control 1998; AC-43(7):1030–1036.

44. Diehl M, Magni L, Nicolao GD. Efficient NMPC of unstable periodic systems using approximate infinite horizon
closed loop costing. Annual Reviews in Control 2004; 28(1):37 –45.

Copyright © 2014 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:685–704
DOI: 10.1002/oca

	Autogenerating microsecond solvers for nonlinear MPC: A tutorial using ACADO integrators
	Summary
	INTRODUCTION
	NUMERICAL METHODS For NONLINEAR MODEL PREDICTIVE CONTROL
	Multiple shooting discretization
	Generalized Gauss–Newton method
	Real-time iterations
	ACADO code generation

	A GUIDING EXAMPLE: NONLINEAR MODEL PREDICTIVE CONTROL OF AN INVERTED PENDULUM
	Modeling the system
	An alternative differential algebraic equation model
	Optimal control problem formulation
	Nonlinear model predictive control using ACADO code generation

	EXPLICIT INTEGRATION METHODS
	Explicit Runge–Kutta methods
	Sensitivity analysis
	Application: nonlinear model predictive control on an inverted pendulum

	IMPLICIT INTEGRATION METHODS
	Implicit Runge–Kutta methods
	Sensitivity propagation
	Application: nonlinear model predictive control using a differential algebraic equation model

	MODELS WITH LINEAR SUBSYSTEMS
	The three stage structure
	Structure exploiting Runge–Kutta methods
	Application: frequency-weighted nonlinear model predictive control

	CONTINUOUS OUTPUT
	Collocation methods
	Application: nonlinear model predictive control using infinite horizon closed-loop costing

	CONCLUSIONS AND FURTHER DEVELOPMENTS
	REFERENCES

