Latency-sensitive and data-intensive applications, such as IoT or mobile services, are leveraged by Edge computing, which extends the cloud ecosystem with distributed computational resources in proximity to data providers and consumers. This brings significant benefits in terms of lower latency and higher bandwidth. However, by definition, edge computing has limited resources with respect to cloud counterparts; thus, there exists a trade-off between proximity to users and resource utilization. Moreover, service availability is a significant concern at the edge of the network, where extensive support systems as in cloud data centers are not usually present. To overcome these limitations, we propose a score-based edge service scheduling algorithm that evaluates network, compute, and reliability capabilities of edge nodes. The algorithm outputs the maximum scoring mapping between resources and services with regard to four critical aspects of service quality. Our simulation-based experiments on live video streaming services demonstrate significant improvements in both network delay and service time. Moreover, we compare edge computing with cloud computing and content delivery networks within the context of latency-sensitive and data-intensive applications. The results suggest that our edge-based scheduling algorithm is a viable solution for high service quality and responsiveness in deploying such applications.

Addressing Application Latency Requirements through Edge Scheduling

Uriarte R. B.;De Nicola R.;Scoca V.
2019-01-01

Abstract

Latency-sensitive and data-intensive applications, such as IoT or mobile services, are leveraged by Edge computing, which extends the cloud ecosystem with distributed computational resources in proximity to data providers and consumers. This brings significant benefits in terms of lower latency and higher bandwidth. However, by definition, edge computing has limited resources with respect to cloud counterparts; thus, there exists a trade-off between proximity to users and resource utilization. Moreover, service availability is a significant concern at the edge of the network, where extensive support systems as in cloud data centers are not usually present. To overcome these limitations, we propose a score-based edge service scheduling algorithm that evaluates network, compute, and reliability capabilities of edge nodes. The algorithm outputs the maximum scoring mapping between resources and services with regard to four critical aspects of service quality. Our simulation-based experiments on live video streaming services demonstrate significant improvements in both network delay and service time. Moreover, we compare edge computing with cloud computing and content delivery networks within the context of latency-sensitive and data-intensive applications. The results suggest that our edge-based scheduling algorithm is a viable solution for high service quality and responsiveness in deploying such applications.
2019
Edge computing; Live streaming; Scheduling
File in questo prodotto:
File Dimensione Formato  
Aral2019_Article_AddressingApplicationLatencyRe.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/14887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
social impact