Micro-polar and second-order homogenization procedures for periodic elastic masonry have been implemented to include geometric and material length scales in the constitutive equation. From the evaluation of the numerical response of the unit cell representative of the masonry to properly prescribed displacement boundary conditions related to homogeneous macro-strain fields, the elastic moduli of the higher-order continua are obtained on the basis of an extended Hill–Mandel macro-homogeneity condition. Elastic moduli and internal lengths for the running bond masonry are obtained in the case of Cosserat and second-order homogenization. To evaluate these results, a shear layer problem representative of a masonry wall subjected to a uniform horizontal displacement at points on the top is analyzed as a micro-polar and a second-order continuum and the results are compared to those corresponding with the reference heterogeneous model. From this analysis the second-order homogenization appears to provide better results in comparison with the micro-polar homogenization

Non-local computational homogenization of periodic masonry

Bacigalupo A;
2011-01-01

Abstract

Micro-polar and second-order homogenization procedures for periodic elastic masonry have been implemented to include geometric and material length scales in the constitutive equation. From the evaluation of the numerical response of the unit cell representative of the masonry to properly prescribed displacement boundary conditions related to homogeneous macro-strain fields, the elastic moduli of the higher-order continua are obtained on the basis of an extended Hill–Mandel macro-homogeneity condition. Elastic moduli and internal lengths for the running bond masonry are obtained in the case of Cosserat and second-order homogenization. To evaluate these results, a shear layer problem representative of a masonry wall subjected to a uniform horizontal displacement at points on the top is analyzed as a micro-polar and a second-order continuum and the results are compared to those corresponding with the reference heterogeneous model. From this analysis the second-order homogenization appears to provide better results in comparison with the micro-polar homogenization
2011
computational homogenization, micro-polar continuum, second-order continuum; periodic micro-structure, masonry; characteristic length, boundary shear layer
File in questo prodotto:
File Dimensione Formato  
JMC0905(5)-2017.pdf

non disponibili

Licenza: Non specificato
Dimensione 964.66 kB
Formato Adobe PDF
964.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/6619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
social impact