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Abstract
Measuring players’ importance in team sports to help coaches and staff with the aim of win-
ning the game is gaining relevance, mainly because of the advent of new data and advanced
technologies. In this paper we evaluate each player’s importance - for the first time in basket-
ball - as his/her average marginal contribution to the utility of an ordered subset of players,
through a generalized version of the Shapley value, where the value assumed by the gen-
eralized characteristic function of the generalized coalitional game is expressed in terms of
the probability a certain lineup has to win the game. In turn, such probability is estimated
by applying a logistic regression model in which the response is represented by the game
outcome and the Dean’s factors are used as explanatory features. Then, we estimate the
generalized Shapley values of the players, with associated bootstrap confidence intervals. A
novelty, allowed by explicitly considering single lineups, is represented by the possibility of
forming best lineups based on players’ estimated generalized Shapley values conditional on
specific constraints, such as an injury or an “a-priori” coach’s decision. A comparison of our
proposed approach with industry-standard counterparts shows a strong linear relation. We
show the application of our proposedmethod to seventeen full NBA seasons (from 2004/2005
to 2020/21). We eventually estimate generalized Shapley values for Utah Jazz players and
we show how our method is allowed to be used to form best lineups.
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1 Introduction

Data analytics in basketball is nowadays a common practice to help coaches, staff and betting
industry about the strategy to adopt (see, e.g, Nikolaidis (2015), Sarlis and Tjortjis (2020))
and it is increasingly used thanks to the large amount of different types of data, that can be
classified into two distinct categories: (i) tracking data, generally collected using optical- or
device-tracking and processing systems, that capture the movements and trajectories of play-
ers or of the ball in the court (Gudmundsson and Horton (2017) providing a quite exhaustive
state of the art on this issue)1; (ii) play-by-play data, which report (summarized in the box-
scores) a sequence of relevant events occurring during a game, such as passes and shots as
well as technical events, for example fouls and time-outs. The aforementioned data are in use
to study the determinants of team performance. For example, by adopting variants of Data
Envelopment Analysis (DEA), Yang et al. (2014), Moreno and Lozano (2014) decompose
the overall team performance into income and on-court efficiency, while using a Stochastic
Frontier approach, Hofler and Payne (2006) investigate how closely NBA teams play up to
their potential. Tracking data have been used in Metulini et al. (2018) to measure the role of
payers’ spacing in team performance.

The recent literature also addressed the topic of the performance of the single player. Play-
ers are now being evaluated by using advanced statistical and machine learning techniques
that depart from just using basic statistics such as number of points, steals, turnovers. For
instance, a large range of works on player performance exists, using the entire box-score (see,
e.g., Cooper et al. (2009), Fearnhead and Taylor (2011), Page et al. (2013)), shooting related
variables (e.g., Piette et al. (2013), Metulini and Le Carre (2020), Sandri et al. (2020)) or
ad-hoc proposed synthetic metrics (Terner and Franks 2021). However, both in offense and
in defense, team performance in basketball may be viewed as a network issue, wherein each
play represents a pathway through which the ball and players cooperatively move from the
beginning of the play to the goal (score the basket). It follows that players and team should
not be evaluated separately (e.g., by studying players’ performance by means of points made
or team performance by means of percentage of winnings), but according to comprehensive
advanced measures that take into account the team and the players together. In basketball,
five players in both home and away teams rotate on the court. The five players of each single
team on the court in that moment represent the lineup (or quintet), while the ten players in
the court represents the encounters. Ordering players and lineups has been addressed, for
example, in Barrientos et al. (2019), via a Bayesian approach, for the analysis of encounters.
Kalman and Bosch (2020) examined lineups to group players in order to detect more efficient
quintets.

Borrowing the idea of the Shapley value (Shapley 1953) and of the generalized Shapley
value (Nowak and Radzik 1994) from Cooperative Game Theory (in the spirit of, e.g., of
Hernández-Lamoneda and Sánchez-Sánchez (2010), Hiller (2018)), this paper aims at esti-
mating the importance of single players in basketball in terms of their contributions to the
team performance, more precisely by computing their average marginal contribution to the
utility of ordered subsets of players of the team (i.e, considering each player playing with
ordered subsets of other players in the lineup). For short, this can be also called the average
marginal utility (or productivity) of the players. The Shapley value has successfully been
used in many political and economic games. The utilization of this value has not massively

1 The cooperative game theoretical approach for the analysis of the origin of movement addressed in
Kolykhalova et al. (2020); Matthiopoulou et al. (2020) is worth mentioning here, because it may have appli-
cations in the analysis of movement for the case of basketball players.
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been percolated to team sports analysis (an exception being the works on Soccer by Auer
and Hiller (2015), Hiller (2015)). To the best of our knowledge, the Shapley value has never
been used to evaluate players’ performance in basketball, except for the conference article by
Yan et al. (2020). The Shapley value is the average of the marginal utilities (that can assume
both negative and positive values) of a player, one for each combination of players playing
together with him. Each marginal utility is computed based on the difference between the
values assumed by a function (called characteristic function) that measures cohesion of each
combination of players (also called coalition), calculated respectively with and without him
in the court. However, it is worth noting that a generalization of the Shapley value to the case
of ordered coalitions, which was proposed in the context of generalized coalitional games by
Nowak and Radzik (1994), is more suitable than the Shapley value itself for our application
to basketball analysis. In the paper, we actually adopt such a generalization of the Shapley
value. This is done in order to take into account the fact that only five players for team can
play simultaneously, then it is reasonable to assume that every player that virtually enters a
coalition after the fifth player who enters has a zero marginal utility (instead of a negative
marginal utility). However, as it will be explained later in Sect. 2.1, this leads to multiple
values for the coalition made of all players in the team (which is called grand coalition).
This case is not covered by the classical definition of the Shapley value, but it is addressed
by the generalized Shapley value proposed by Nowak and Radzik, which relies on a gener-
alized characteristic function, whose argument is an ordered subset of players (instead of an
unordered one).

To correctly determine the generalized characteristic function is a fundamental aspect, as
it measures the performance of any specific ordered subset of players when playing together.
Yan et al. (2020) themselves, by tackling the problem of estimating the average marginal
contributions of the players from a different perspective (i.e., in terms of Shapley values),
highlighted the importance of learning from data the characteristic function of the game.
Such a remark can be extended to the case of the generalized characteristic function. In the
present work, we model the generalized characteristic function in terms of the estimated
probability that each lineup has to win the game. In this regard, the paper (according to
how our proposed measure is determined) is more closely related to the line of research on
estimating players’ contribution on winning the game (Deshpande and Jensen 2016), and it
deviates from industry-standard measures that have been proposed to evaluate single player’s
contribution to the team which are based on the difference between the points scored by a
player’s team and those scored by his/her opponent team during the time that specific player
is on the court, such as simple Plus-Minus (PM), regression-based versions of the PMmetric
to measure player’s contribution by accounting for the other players on the court (Adjusted
PM,APM; see Rosenbaum 2004), extensions of theAPM that include other players’ statistics
among the explanatories and that control for the team strength (box-score PM, BPM, e.g.,
Kubatko et al. (2007), Ilardi (2007), Grassetti et al. (2021)) or that try to account for the
presence of multicollinearity in APM, e.g., Sill (2010) and Engelmann (2017) based on ridge
regression regularization (Regularized APM), or Real Plus Minus (RPM), which normalizes
themeasure by the number of offensive and defensive possessions. Overall, despite recent PM
versions move in the direction of i) not just accounting for scoring factors, and ii) solving for
multicollinearity, those issues still deserve more attention (Terner and Franks 2021). Beside
PM and its extensions, Win-Shares (WS), calculated using player, team and league statistics,
attempts to measure the contribution for team success of its individuals. WS48 (WS per 48
minutes) expresses the WS values in a per-minute basis. Wins Above Replacement (WAR),
also referred to WAR Player (WARP), firstly developed for baseball in order to find player’s
contribution in terms of howmany additional wins he/she brings to the team, seeks to evaluate
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a player by comparing the performance of a teammade up of him/her and four average players
with the performance of a team made up of four average players and one replacement-level
player. However, despite WS presents the advantage of accounting for the marginal utility of
a single player to the win by comparing him/her to an average replacement level, as remarked
in Sarlis and Tjortjis (2020), a player WS score is positively influenced by being part of a
good team and by the amount of time he/she is on the court. WARP and WS48 outperform
WS as they are expressed on a per-minute basis. Value Over Replacement Player (VORP),
defined as an estimate of the points per 100 team possessions that a player contributed above
a replacement level player, aims at collecting together the advantages of BPM and those of
WARP. However, likewise WARP, VORP suffers from issues of multicollinearity (Sarlis and
Tjortjis 2020).

The methodological strategy of this paper is composed of three steps, having in mind the
aim of choosing a suitable definition for the generalized characteristic function. According
to our method, in the first step logistic regression model coefficients based on all NBA data
at hand (seventeen seasons) are estimated, where the dependent variable is the dichotomous
information about the result of the considered team (called Outcome, win=1, defeat=0) and
the features used as explanatory variables are represented by appropriate synthetic measures
computed based on play-by-play statistics of both the teams in the game (the so called four
Dean’s factors; see Kubatko et al. (2007), Oliver (2004)). In the second step, the logistic
regression equation with estimated coefficients (from the first step) is used to derive the
probability to win associated with each lineup (i.e., replacing the at-game level explanatory
features with those computed at-lineup level). With the probability of winning (used to
express the generalized characteristic function) computed for all the lineups, in the third
step we compute two different versions (unweighted and weighted, where the second one
accounts for the amount of time players are on the court) of the generalized Shapley value for
each player. Lastly, in order to help coaches and staff with lineup management, we propose
a greedy approach to find an appropriate lineup. According to this approach, we first choose,
among n players in the team, the one with the largest generalized Shapley value (which may
be termed the “most important player”). Then, we recompute the generalized Shapley values
for all the other players according to the subset of lineups in which the most important player
was in (effectively considering a modified game in which the most important player is always
present, hence the set of players is successively restricted to the other n − 1 players), and
we choose the player with the largest generalized Shapley value (“second most important
player”), and so on. We repeat the process until the “first five most important players” have
been chosen. Variants of this approach can be applied by replacing the “most important
player” with a specific player chosen by the coach, or by not considering at all the lineups in
which a player was in (under the assumption he/she is unavailable).

Overall, in this work we propose a new method to measure players’ contributions to the
team that can be adopted to help coaches and staff in retrieving insights on which players
and lineup to choose and that gathers most of the advantages (and avoids disadvantages) of
industry-standard measures. In fact, similarly to BPM, our measure presents the advantage
of accounting for both scoring and non scoring, offensive and defensive factors. Moreover, as
we will show in Sect. 4, in estimating the winning probabilities we adopt a set of box-score
synthetic measures (the 4 Dean’s factors) which presents an extremely high goodness of fit.
It is also worth noting in this regard that the adopted parameters – associated to box-score
synthetic measures – are estimated on a very large dataset spanning seventeen seasons and
may be seen as the weights to assign to a synthetic measure for modeling a mechanism for
obtaining a win. Moreover, similarly to what WARP and VORP do with replacement level
player, with our approach we consider marginal utilities of players’ considering lineups.
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But we do that by explicitly considering all the lineups in which he/she has played with (so,
adopting amore “holistic” approach), without the need to consider a level for the replacement
player and avoiding multicollinearity issues2, see Mishra (2016). It is also worth noting that
our metrics, which are proportional to suitable averages of winning probabilities of lineups
to which each player belong3, are expressed in terms of a solution concept from cooperative
game theory (i.e., in terms of the generalized Shapley value), whereas other industry-standard
measures lack such a game-theoretical interpretation.Moreover, explicitly taking into account
single lineups, permits us to evaluate players’ average marginal contributions conditional on
the presence of specific players on the court. In such away, a lineupmanagement is permitted.
To make an example, let us suppose the Utah Jazz coach is sure to include Rudy Gobert in
the lineup, and he wants to compose the lineup conditional on the presence of him. With our
method we can compute the generalized Shapley values of the other players according to
the lineups in which Gobert was on the court. Another advantage of our method is that the
generalized Shapley value, on which it is based, has an axiomatic characterization expressed
in terms of simple properties (Michalak et al. 2014) that can be easily transferred to team
sports and to basketball in particular. Moreover, in case one wants to add more features to
increase the goodness of fit of the model to predict the winning probabilities, he/she just has
to change only the specific definition of the generalized characteristic function considered in
ourmethod4, letting everything else unaltered.Moving to disadvantages, ourmethod presents
a limitation: the generalized Shapley value of a player, to be estimated, needs a large number
of different lineups containing that player, due to the fact that the variance of its estimate is
inversely proportional to the number of such lineups (a similar result holds for the Shapley
value; see Castro et al. (2009), of which it constitutes a generalization). This fact does not
currently allow us to compute players’ average marginal contributions with the estimated
generalized Shapley values at the single game level (however, they may be estimated, e.g.,
by considering the lineups occurring in half a season, instead of the whole season). This
aspect deserves to be addressed in future developments.

The paper is structured as follows: in Sect. 2 we define the adopted methods, Sect. 3
introduces the data, and Sect. 4 presents the application to NBA data. Section 5 concludes
the work with a discussion.

2 Methods

2.1 The game-theoretical approach

In cooperative game theory, a generalized coalitional game (see, e.g., Nowak and Radzik
(1994)) is defined as a pair (N , υ); where N={1, 2, . . . , n} is the player set (whose cardinality
is denoted either by |N | or n), and υ is the generalized characteristic (or utility) function,

2 For instance, in the context of regression-based PM measures, in the case of multicollinearity the estimated
coefficients of the regression that are associated with the individual players (hence, the values themselves
assumed by such regression PM measures) can be quite sensitive to changes in the data. In our logistic
regression model, instead, the coefficients of the regression are not directly associated with the individual
players, so the sensitivity of the estimate of the vector of coefficients of the regression to changes in the data is
less important (i.e., one can limit to focus the attention only on the prediction capability of the model, which
turns out to be quite high).
3 Lineups to which he/she does not belong are not considered in the computation, but are implicitly taken into
account when one evaluates the generalized Shapley value of another player.
4 See Sect. 2.1 for details about its precise definition.
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which assigns to every ordered list (or ordered coalition) T extracted from the set N a certain
worth υ(T ) reflecting the abilities of such an ordered coalition; i.e., denoting by T the set of
such ordered coalitions, one has υ : T → R such that υ(∅) = 0. This definition differs from
the related and more commonly known definition of a coalitional game, whose characteristic
function is defined on the set of (unordered) coalitions (Chapter 17 inMaschler et al. 2013). To
clarify the concepts above, the set {1, 2, 3} is an unordered coalition, whereas the sequences
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) are all the 6 corresponding ordered
coalitions.

In contrast to a classic game, a sport game is characterized by first attributing nonzero
worth to coalitions with a given cardinality m < n, then extending the definition of the
(generalized) utility function to the other coalitions, following a suitable rule (see some
examples in the remaining of this section). Such coalitions are either ordered or unordered,
depending on the model adopted. In the case of basketball, we have m = 5, whereas n is
the total number of players rotating in the court in a game. Suitable specifications of the
generalized utility function in the context of basketball data analysis are reported later in this
section: see Eqs. (2, 3, 4, 5, 6) in the following.

Given the framework above, a solution to a coalitional game can be interpreted as a
way to distribute the utility of the coalition made of all the n players (which is also called
“grand coalition” in the game-theoretical literature) among its members. This is achieved by
following, e.g., suitably formalized fairness and efficiency principles (Chapter 17 inMaschler
et al. 2013). In the case of a generalized coalitional game (Nowak andRadzik 1994), the utility
of the grand coalition is replacedby the averageof the utilities of all possible ordered coalitions
of n players (in total, using the factorial notation, there are n! such ordered coalitions). It
is well-known that a solution to a (generalized) coalition game can be interpreted as a way
to rank all the players of a team, by attributing a numerical value to each of them, which
represents ameasure of his/her importance in the team.For instance, in the case of a coalitional
game, the Shapley value of a player is a suitable average of the marginal utility provided by
that player when he/she joins a properly-generated random coalition of players (Chapter 17
in Maschler et al. 2013). In the case of a generalized coalition game, a similar interpretation
holds for the generalized Shapley value (introduced in the next paragraph). By providing
suitable ways of ranking players in a team, these interpretations justify the application of
these concepts to basketball data analysis5. As argued later in this article, however, in the
context of such analysis, the generalized Shapley value is a better metric than the Shapley
value. This motivates the use of the former concept in the present work.

The generalized Shapley value (Nowak-Radzik value, see Nowak and Radzik (1994)) of
player i = 1, . . . , n in a generalized coalition game is the average of themarginal contribution
of that player when he enters an ordered subcoalition of a random ordered coalition T with
cardinality |T | = n. The average is taken over all such ordered coalitions T of the players,
giving the same weight to each T , according to the following formula:

φN R
i (N , υ) = 1

n!
∑

T ∈T with |T |=n

(υ((T (i), i)) − υ(T (i))) , (1)

where T (i) denotes the ordered (sub)coalition made by the predecessors of i in the permu-
tation T , and (T (i), i) denotes the ordered (sub)coalition made by T (i) followed by i (more

5 An additional motivation is that the Shapley value can be proved to be the unique solution to a coalitional
game – intended as an allocation of the total worth of the team – that satisfies four quite natural axioms
(properties) called symmetry, null player, efficiency, and additivity (Chapter 17 in Maschler et al. 2013). An
analogous axiomatic characterization holds for the generalized Shapley value for the case of a generalized
coalitional game, see Michalak et al. (2014).
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details about the notation and some examples to better understand some terms in Eq. (1) are
reported in footnote 6)6. Because of Eq. (1), the generalized Shapley value of player i can
be also called the average marginal utility of that player7.

In our application to basketball analysis, we consider two possible choices for the gen-
eralized characteristic function υ(.) in Eq. (1), which are denoted respectively by υ1(.) and
υ2(.). In the first case, we model the generalized characteristic function υ1(.) in terms of the
probability P(Win) of winning the game for any specific quintet of players. In the second
case, we model the generalized characteristic function υ2(.) in terms of both the probabil-
ity P(Win) of winning the game for any specific quintet and the probability of occurrence
P(Occ) of that quintet on the court. In this way, the resulting generalized Shapley values
φN R

i (N , υ1) and φN R
i (N , υ2) provide different measures of the importance of each player

in a basketball team, because the first one takes into account only the probability of win-
ning of each lineup he is part of, whereas the second one depends also on the probability of
playing for each such lineup. For this reason, in Sect. 4, the two generalized Shapley values
φN R

i (N , υ1) and φN R
i (N , υ2) are denoted, respectively, as “unweighted generalized Shapley

value” and “weighted generalized Shapley value”.
To construct the generalized characteristic functions υ1(.) and υ2(.), we follow the next

steps. First, we consider the case in which the arguments of the generalized characteristic
functions υ1(.) and υ2(.) have cardinality m = 5. Then, when |(T (i), i) = 5|, we let

υ1 ((T (i), i)) = P(Win)(T (i),i) (2)

be the probability of winning the game for the ordered (sub)coalition of players (T (i), i),
and similarly, when |T (i)| = 5, we let

υ1(T ) = P(Win)T (i) (3)

be the probability of winning the game for the ordered (sub)coalition of players T (i), which
does not contain player i . Then, after suitably extending the definition of υ1(.) to ordered
coalitions having a number of players different from 5 (see the next Eq. (6)), we compute
φN R

i (N , υ1) according to Eq. (1).
Similarly, to define the other generalized characteristic function υ2(.), we replace Equa-

tions (2) and (3) respectively with

υ2((T (i), i)) = P(Occ)(T (i),i) P(Win)(T (i),i) (4)

6 Here, we follow a similar notation as the one used in Michalak et al. (2014). First, the elements of each
ordered coalition T ∈ T are denoted by T1, . . . , T|T |, where the index refers to the order according to which
a player enters that ordered coalition, in a “virtual” process of its construction. The ordered coalition made
by the single element i is denoted by i itself. For any two disjoint ordered coalitions T (1), T (2) ∈ T , one
denotes by (T (1), T (2)) the ordered coalition obtained by concatenating T (1) and T (2), i.e., the ordered
coalition in which the elements of T (1) (which occur in the order associated with T (1)) precede those of
T (2) (which occur in the order associated with T (2)). For instance, if T (1) = (4, 1) and T (2) = (3, 6, 5),
then (T (1), T (2)) = (4, 1, 3, 6, 5). For any ordered coalition T and any player i , T (i) denotes the ordered
(sub)coalition formed by the players that precede i in T (this coincides with T if i is not present in T ). As an
example, if T = (2, 1, 3, 5, 4), then one has T (5) = (2, 1, 3), and (T (5), 5) = (2, 1, 3, 5).
7 The generalized Shapley value (1) is formally quite similar to the classical Shapley value (Maschler et
al. 2013, Chapter 17), the main difference being that the generalized characteristic function υ(.) takes into
account the order according to which the players form an ordered subcoalition of T , whereas the analogous
characteristic function used in the definition of the Shapley value is defined on the set of unordered subcoalitions
of the grand coalition made by all the players (i.e., the order in which the players occur when forming the
grand coalition is not taken into account to define the characteristic function, but only the marginal utility of
each player).
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and
υ2(T ) = P(Occ)T (i) P(Win)T (i) , (5)

where P(Occ)(T (i),i) and P(Occ)T (i) are the probabilities of occurrence on the court of the
ordered (sub)coalitions of players (T (i), i) and T (i), respectively.

Details about how to model the probabilities introduced above are reported later at the
end of this section and in Sect. 2.2. In particular, we assume that they do not depend on the
order in which the players of the two specific ordered (sub)coalitions appear, respectively, in
Eqs. (2), (3), (4), and (5)8.

As discussed in the next paragraph, the following way of extending the definitions of the
generalized characteristic functions υk(.) (for k = 1, 2) also to the other ordered coalitions
with cardinality different from 5 justifies why the generalized Shapley value is used instead
of the Shapley value for our application to basketball analysis:

υk(T ) =
{
0 if |T | < m =5

υk ({T1, T2, T3, T4, T5}) if |T | ≥ m =5 .
(6)

It follows by construction that themarginal contribution of any player that (virtually) enters
in sixth position is always 09. Since υk({T1, T2, T3, T4, T5}) (the worth of a specific quintet
of players) depends on T1,T2,T3,T4, and T5, this means that the grand coalition has different
worth, depending on the order of appearance of its players in it (only the first 5 players - the
ones on the court - being actually considered, without taking into account their internal order).
This prevents the application of the Shapley value to the specific case, since such application
requires a unique worth for the grand coalition, which does not depend on the order in which
the players enter it. In contrast, it justifies the application of the generalized Shapley value,
which has not such a constraint. This issue is further discussed in the Appendix.

From a computational point of view, for each player i , the evaluation of the generalized
Shapley value (1) with each of the two specifications υk(.) for the generalized characteristic
function requires considering the worth of C(n − 1, 4) = (n−1)!

4!(n−1−4)! different (unordered)
quartets of players in the court together with player i . Since, by varying player i , not all the
resulting C(n, 5) = n!

5!(n−5)! quintets are observed, we adopt the following kind of approxi-

mation for the generalized Shapley value (1)10, which follows from its interpretation as the
average marginal contribution of player i when he enters a random subcoalition: the quintets
observed are interpreted as i.i.d. realizations of quintets {T1, T2, T3, T4, T5} obtained from
a random permutation T (all permutations being equally likely), and player i is assumed to
have the same probability of forming a subcoalition with the other players of the specific
quintet when he enters first, second, third, fourth, or fifth. In this way, the average marginal
contribution in (1) is replaced by an empirical average marginal contribution, based on the
observed quintets, and taking into account that each player has probability 5

n of entering in

8 In this article, When the value of υ(T ) = υ((T1, T2, . . . , T|T |)) depends only on the elements
T1, T2, . . . , T|T |, but not on their order, it is denoted by υ({T1, T2, . . . , T|T |}).
9 It is worth noting that, beside the generalization of the Shapley value developed in Nowak and Radzik
(1994) and adopted in this work, another similar generalization exists in the literature, and is due to Sanchez
and Bergantiños, see Sanchez and Bergantiños (1997) (refer also Michalak et al. (2014) for a comparison of
the two generalizations). However, such a generalization cannot be applied (at least not in a straightforward
manner) to the present setting because it can be interpreted as the Shapley value of an “average” coalitional
game obtained by averaging the worths of all permutations of each ordered coalition, making it difficult to get
a 0 marginal contribution for every player that (virtually) enters in sixth position.
10 A similar method is often used also for an approximate evaluation of the Shapley value itself (Castro et al.
2009).
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one of the first 5 positions. Moreover, the values assumed by the two generalized character-
istic value functions υk(.) in correspondence of the observed quintets are estimated based
on suitable features (see the next section). In the following, such estimates are denoted as
υ̂k(.). In summary, denoting byLi the set of observed (unordered) lineups (quintets) in which
player i appears, one gets the following estimate of his generalized Shapley value:

φ̂N R
i (N , υk) = 5

n

1

5|Li |
∑

L∈Li

(
υ̂k(L) − 0

) = 1

n|Li |
∑

L∈Li

υ̂k(L) . (7)

Equation (7) expresses the average value of a quintet in which player i occurs, multiplied by
the factor 1

5 . The presence of such a factor ismotivated by the fact that, for any specific quintet,
each player has the same probability of being the last player to join all the other members of
that quintet (in the “virtual” process of construction of the lineups, starting from the ordered
coalitions of size n). As already mentioned, the other factor 5

n expresses the probability
that player i enters in one of the first 5 positions (otherwise, his marginal contribution is
0). Equation (7) also clarifies that, when the generalized characteristic function υ1(.) is
considered, the generalized Shapley value of player i is proportional to the average winning
probability of a quintet in which he occurs. Instead, when the generalized characteristic
function υ2(.) is considered, the value of each quintet depends also on its probability of being
on the court. In a sense, υ1(.) represents the “instantaneous” utility (winning probability) of
each quintet, whereas υ2(.) could represent its “integrated” or “weighted” utility, taking into
account its probability of occurrence on the court.

As a simple illustrative example of application of Eq. (7), let i = 3, n = 13 and L3 =
{{1, 2, 3, 4, 5}, {1, 2, 3, 6, 8}, {3, 5, 7, 9, 12}}. Moreover, suppose υ̂1({1, 2, 3, 4, 5}) = 0.6,
υ̂1 ({1, 2, 3, 6, 8}) = 0.7, and υ̂1 ({3, 5, 7, 9, 12}) = 0.8. In this case, from Eq. (7), one gets

φ̂N R
3 (N , υ1) = 1

13 · 3 (0.6 + 0.7 + 0.8) � 0.054 . (8)

The example reported above is only illustrative because, to obtain a reliable estimate
φ̂N R
3 (N , υ1) of the generalized Shapley value φN R

3 (N , υ1), a quite large number |L3| of
lineups containing player 3 is needed. Indeed, assuming as an example that all the lineups
containing player i are equally likely and that they are sampled independently, neglecting the
issue of possible repetitions in lineup sampling, and supposing for simplicity υ̂k(.) = υk(.),
Equation (7) can be interpreted as a Monte Carlo estimate of the generalized Shapley value
φN R

i (N , υk). It easily follows from the theory of Monte Carlo sampling that such estimate
is unbiased, and its variance is proportional to 1/|Li |. The proof of a similar result is well-
known for the case in which the generalized Shapley value is replaced by the Shapley value,
and the latter is approximated by a standard Monte Carlo estimate: see, e.g., (Proposition 3.1
in Castro et al. 2009) and its proof reported therein11.

In Sect.2.2, estimates of the winning probabilities P(Win) of the various quintets (which
enter the definitions of both υ1(.) and υ2(.)) are provided. Moreover, the occurrence proba-
bility P(Occ) of the each quintet (which enters the definition of υ2(.) only) is estimated as
the ratio between the number of minutes played by that quintet in the considered period and
the number of minutes played by all the quintets in the same period (the latter, regardless of
the presence or absence of any specific player i in the quintet).

11 The results of the analysis change only slightly in the case of sampling with possible lineup repetitions
(under which samples become dependent). Indeed, in this variation, the estimate is still unbiased, and its
variance is even slightly smaller than the one obtained in the case of sampling without replacement, see Rice
(2005).
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2.2 Estimates of lineups’winning probabilities using the logistic regressionmodel

There is a plethora of studies on estimating the probability to win a basketball game using
different sources of data and various statistics and machine learning techniques.

Loeffelholz et al. (Loeffelholz et al. 2009), by applying different variants of Artificial
Neural Networks (ANNs, Zhang (2000)) on box-scores of 620 NBA games, predicted match
outcome with a correct winner prediction percentage of 74.33%. Miljkovic et al. (Miljković
et al. 2010) used Naive Bayes Classifier (Langley et al. 1992) to predict both the outcome
and the spread for 778 2009–2010 NBA games using 141 box-score features as covariates,
and obtained an accuracy of 67%. Beckler et al. (Beckler et al. 2013), using box-score data
for seasons from 1991–1992 to 1996–1997, were able to achieve up to 73% accuracy for
the NBA outcome prediction, using four standard binary classification algorithms: (i) Linear
Regression (with binary outcome), (ii) Support Vector Machines (Cortes and Vapnik 1995),
(iii) Logistic Regression (Hosmer and Lemeshow 2013) and (iv) ANNs. Cheng et al. (Cheng
et al. 2016) used a Maximum Entropy approach (Jaynes 1957) to predict outcomes, with an
accuracy of 74.4%, in NBA playoff, using box-score data from seasons from 2007–08 to
2014–15. Thabtah et al. (2019) obtained an accuracy in prediction of outcomes up to more
than 80% applying Naive Bayes, ANNs and Logistic Model Trees (Landwehr et al. 2005),
based on box scores from NBA finals from 1980 to 2017.

We adopt a logistic regression model strategy to estimate the probability of winning the
match.

Traditionally, some features from the play-by-play of the game are used as a set of
explanatories for winning prediction. Play-by-play information are usually extracted from
the box-scores which are, generally, freely available online. Among them, we can cite:

– Shooting features, such as 2 points and 3 points field goals made (and missed) by the two
teams, free throws made (and missed),

– Offensive features, such as offensive rebounds grabbed and assists served by the two
teams,

– Defensive features, such as defensive rebounds, fouls made, steals and blocks made by
the two teams.

Recently, syntheses of these features have been preferred to the use of simpler features.
For example, the measurement of the number of points made (drawn) per 100 offensive
(defensive) possessions by the team has been exploited. In particular, the relevance of the
four Dean’s factors (see Kubatko et al. (2007), Oliver (2004)) to predict the probability to
win the game is well-known and agreed in the literature. The four factors are the following:

– Shooting: effective field goal percentage (eFG%): (FG+0.5∗3P)
FG A ,

– Turnovers: turnover percentage (TOV%): T OV
(FG A+0.44∗FT A+T OV )

,

– Offensive rebound percentage (ORB%): O RB
(O RB+OppDRB)

,

– Free throws percentage (FT%): FT
FG A ,

where FG is the number of field goals made by the considered team, 3P is the number
of 3 points field goals made, TOV is the number of turnovers, FGA is the total number of
attempted shots,FTA is the number of free throws attempted,ORB andDRB are, respectively,
the number of offensive and defensive rebounds, Opp stays for opponent team (so, OppDRB
is the number of defensive rebounds grabbed by the opponent team), and FT is the number
of made free throws.

Oliver (2004) argued that shooting counts for 40%, turnovers for 25%, rebounding for 20%,
and free throws for 15%. Moreover, the effectiveness of these measures was demonstrated as
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the coefficient of determination obtained by fitting a linear regression model to real data is
about 0.9. Because basketball is played by two teams, we have to take the same four factors
for the opponent team, in order to account for both teams’ features. This means that the
four Dean’s factors become actually eight in our analysis (herein after, we make use of the
notation off for the Dean’s factors associated with the considered team, and of the notation
def for the Dean’s factors associated with the opponent team).

The logistic regression model reads as in the next equation:

log
P(Yi = 1 | X)

P(Yi = 0 | X)
= X iβ, (9)

where the left part of the equation represents the log-odd of Yi conditional on X . Y
is the response binary variable representing the outcome of the games, Yi ∈ {0, 1} ,
i = 1, . . . , g, where g is the number of games. X i is the i−th row of the design matrix
X with g rows and p columns (p = 8, the eight Dean’s factors used as explanatory vari-
ables, eFG%_of f , eFG%_de f , T OV%_of f , T OV%_de f , O RB%_of f , O RB%_de f ,
FT%_of f , FT%_de f , computed at the game level).β is a vector containing the p regression
parameters associated with the explanatory variables. These parameters have to be estimated
from the data.

A logistic regression model cannot be applied in a straightforward manner to estimate
the probability to win for each lineup, because a single lineup does not play the full match,
thus making it impossible to determine the Outcome variable (win = 1, defeat = 0) for that
quintet. To deal with this issue, we adopt the following strategy: we use, as training set, the
matrix of features X including Dean’s factors computed at the single game level (i.e., each
row of the dataset corresponds to a single game), in order to estimate, through a vector β̂,
the coefficients of the logistic regression model (i.e., the ones contained in the vector β).
Then, using the dataset X̃ where the Dean’s factors are computed at the single lineup level
(i.e., each row of the dataset corresponds now to a lineup), we predict the probability to win
the game P(Win)L j on each lineup L j by using the vector β̂ estimated from the training
set and the Dean’s factors associated with that lineup and its adversary lineups (an average
of the Dean’s factors is taken, considering that the adversary lineups are not fixed). More in
detail, let X̃ j the j-th row of the matrix X̃ with l rows (where l is the number of lineups
considered) and p = 8 columns (expressing the eight Dean’s factors computed at the lineup
level), and let β̂ be the vector of estimated coefficients from the previous training step. The
above-described strategy makes it possible to express the probability to win the game for the
lineup L j as in the next equation:

P(Win)L j = exp(X̃ j β̂)

1 + exp(X̃ j β̂)
, j = 1, . . . , l . (10)

In the third step of our methodological approach, we apply the estimates of the winning
probabilities provided by Eq. (10) to approximate the generalized characteristic function
υ1(.) used as input for the computation of the generalized Shapley value φN R

i (N , υ1), as
in Eqs. (2) and (3). Similarly, we combine such estimates with the ones of the occurrence
probabilities (see the end of Sect. 2.1) to approximate the generalized characteristic function
υ2(.) used as input for the computation of the generalized Shapley value φN R

i (N , υ2), as in
Eqs. (4) and (5). Finally, the generalized Shapley values are approximated by using Eq. (7).
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3 Data

The data used in the application have been extracted from the play-by-play of all NBA games
(both regular seasons and play-offs) for the seasons from 2004–2005 to 2020–2021, for a total
of 17 seasons. For each game and for both home and away teams, we have the information
about the event type (such as start/end of the period, made/missed 2 points shot, made/missed
3 points shot, made/missed free throw, offensive/defensive rebound, assists, steal, block, foul)
associated with the exact moment in which that event happens and also associated with the
lineups of both the two teams.When the event is a shot (madeormissed)we also have available
the position on the court in terms of x−axis and y−axis coordinates, respectively related to
court length and court width. Features related to the dependent variable (Outcome) and to
Dean’s factors for both X and X̃ have been generated from those of the play-by-play dataset,
which has been made available thanks to a friendly agreement with BigDataBall Company
(UK) (www.bigdataball.com),which collected the play-by-play of all theNBA regular season
and play-off games starting from 2004. We have retrieved computed WS, WS48, BPM and
VORP values from Basketball Reference website (www.basketball-reference.com/).

4 Application

We apply the proposed strategy to the above-described NBA dataset. Firstly, we estimate a
logistic regression model as in Eq. (9), based on the training set represented by the full set
of games, which refers to the seasons from 2004–2005 to 2020–2021 (both regular seasons
and play-offs) in order to increase as much as possible the sample dimension. Such training
set counts for g = 21, 735 games. Starting from the dataset described in Sect. 3, we retrieve,
at the single game level, the values of the dichotomous variable (Outcome), which assumes
value 1 if the considered team won the game, 0 otherwise12. We also retrieve the values of
the Dean’s factors, where, as already mentioned, with the term off we refer to the factors
computed for the considered team, and, with the term def, to the factors computed for the
opponent team. In order to let the effect on the Outcome of Dean’s factors comparable, we
have normalized all the features using a z-score transformation. We also compute, at the
single game level, other box-score statistics, such as assists (AST ), blocks (BL K ), and fouls
(F L S), for both teams. Those variables have also been normalized to z-scores (Table 1).

Despite Kubatko et al. (2007), for a similar analysis, estimated a linear regression model
along with the Ordinary Least Squares (OLS)method, we can assert that logistic regression is
preferable to OLS linear regression when the dependent variable presents a binary outcome.
In fact, using OLS, the predicted values for the probability of success may be smaller than
zero or greater than one (Wooldridge 2010). Logistic regression results, together with the
McFadden pseudo R2 (McFadden 1979), are reported in Table 1.

The high value for theMcFadden pseudo R2 (0.581) for themodel with just Dean’s factors
as features (first column of Table 1) indicates a very good model fit. In fact, McFadden R2

values tend to be considerably lower than those of the traditional R2 index and values between
0.2 to 0.4 represent an excellent fit (McFadden 1979). The addition to the model of assists,
blocks and fouls as explanatory variables increases theMcFadden R2 at a very limited extent,
despite the coefficients associated with both assists’ (AST) and fouls’ (FLS) features turn
out to be statistically significant.

12 It has not been possible to distinguish between home and away team. For this reason, the considered team
is selected randomly between the two teams of the game.
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Table 1 Logistic regression with
Maximum Likelihood (ML) -
Results on the training set.
g=21,735 games

Dependent variable:
outcome

(1) (2)

eFG%_Off 10.255∗∗∗ 9.530∗∗∗
(0.147) (0.157)

eFG%_Def −10.225∗∗∗ −9.546∗∗∗
(0.146) (0.156)

TOV%_Off −1.850∗∗∗ −1.668∗∗∗
(0.038) (0.040)

TOV%_Def 1.749∗∗∗ 1.600∗∗∗
(0.037) (0.038)

ORB%_Off 0.998∗∗∗ 0.964∗∗∗
(0.026) (0.028)

ORB%_Def −0.998∗∗∗ −0.970∗∗∗
(0.026) (0.028)

FT%_Off 0.780∗∗∗ 0.620∗∗∗
(0.029) (0.041)

FT%_Def −0.810∗∗∗ −0.610∗∗∗
(0.029) (0.042)

AST_Off 0.681∗∗∗
(0.032)

AST_Def −0.598∗∗∗
(0.031)

BLK_Off −0.017

(0.032)

BLK_Def 0.058∗
(0.033)

FLS_Off −0.553∗∗∗
(0.035)

FLS_Def 0.526∗∗∗
(0.035)

Constant 0.063∗∗∗ 0.071∗∗∗
(0.023) (0.024)

Observations 21,735 21,735

Log Likelihood −6,304.493 −5,742.271

Akaike Inf. Crit. 12,626.990 11,514.540

McFadden pseudo R2 0.581 0.619

Note: ∗p< 0.1; ∗∗p<0.05; ∗∗∗p<0.01

It is worth discussing the effect of each feature on the probability of winning the game.
Note that, being all the explanatory features expressed as z-scores, the coefficients can be
compared in terms of the effect that each feature has on the log-odd of the outcome (winning
the game). Offensive effective field goal percentage (eFG%_Off), being the sign of its esti-
mated coefficient positive, plays a positive role on winning the game. More specifically, we
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Fig. 1 Receiving Operation
Characteristic curve computed
from the full sample of 21,735
games: 11,025 positives
(outcome = 1) and 10,710
negatives (outcome = 0)

can say that, a unitary increase on the normalized offensive effective field goal percentage
increases the log-odd of winning the game by about 10 (10.255). Its defensive counterpart
(eFG%_Def) plays a negative role (a unitary increase on opponents’ eFG% decreases the
log-odd by 10.255). Offensive turnover percentage (TOV%_Off) decreases the probability to
win (the log-odd decreases of 1.850 for an unitary increase of TOV%_Off) and TOV%_Def
increases the same probability (the log-odd increases by 1.749). Offensive rebounds per-
centage (ORB%_Off) and defensive rebounds percentage (ORB%_Def) play, respectively,
a positive (log-odd increases by 0.998) and a negative (log-odd decreases by 0.998) role on
the winning probability. Offensive free throws percentage (FT%_Off) positively influences
the probability to win (log-odd increase by 0.780), while defensive free throws percentage
(FT%_Def) negatively influences the same probability (log-odd decreases by 0.810). All the
coefficients are statistically significant for a level of α = 0.01. Moreover, overall, the signs
of the estimated coefficients are all consistent to those expected.

To quantify the robustness of our logistic regression model in terms of classification
performance, its Receiving Operation Characteristic (ROC) curve (Krzanowski 2009) is
depicted in Fig. 1. The Area Under the Curve (AUC) associated with this ROC, using as
validation set the training set itself (which is justified by its large dimension (g = 21,735)
compared with the number (p = 8) of explanatory variables), stands to 0.951, that is a very
high value. A k-fold cross validation with k = 10 (McLachlan et al. 2005) is also performed
as a robustness check. An average AUC of 0.946 is obtained. The Hit-rate accuracy measure
(Bensic et al. 2005), which is computed as the ratio between the number of correctly classified
games13 and the total number of games in the sample, stands to 0.903.

In light of the extremely good logistic regression model fit, we do not think it is required
to include further explanatory features in the model. We use the following values (as in the
column 2 of Table 1) to define the vector β̂ to be used to determine P(Win) for each lineup
L j in the second step of our analysis:

[10.255, −10.255, −1.850, 1.749, 0.998, −0.998, 0.780, −0.810]′ .

13 I.e., the sum of the number of games where a win has been predicted for the considered team when it
actually won, and the number of games where a defeat has been predicted for the considered team when it
actually lost.
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We choose to estimate the winning probabilities for the lineups of the Utah Jazz team14 in
the 2020–21 regular season because they eventually finished the regular season with the best
NBA record (52-20). As testified by online articles15, a heated public debate is underway on
social networks on which Jazz player turns to be the most important one for the team, with
a general preference for Rudy Gobert.

For the analysis, only the 107 different lineups that were on the court more than a cut-off
value of a total of 4minutes in the 2020/21 regular season have been considered. The duration
these lineups were on the court covers about 86% of the total time of play of Utah Jazz during
the full 2020/21 regular season. In those 107 lineups, a total of 11 different players rotating
on the court has been counted. This constitutes a quite representative sample of the total
number (426) of different possible lineups extracted from this set of 11 players.

ApplyingEq. (10) to the considered lineups,we compute the value assumed by thewinning
probability for each lineup, then we determine the (estimates of the) generalized Shapley val-
ues, as in Eq. (7), for the following 11 players: DonovanMitchell (guard), Bojan Bogdanović
(forward), Joe Ingles (forward), Rudy Gobert (center), Mike Conley (guard), Jordan Clarx-
son (guard), Royce O’Neale (forward), Georges Niang (forward), Derrick Favors (center),
Miye Oni (guard), Trent Forrest (guard).

In details, specializing Eq. (7) to the cases k = 1, 2 and n = 11, we compute the two
following versions of the generalized Shapley value:

U W GSi = 1

11|Li |
∑

L∈Li

υ̂1(L), (11)

W GSi = 1

11|Li |
∑

L∈Li

υ̂2(L). (12)

Equation (11) represents the unweighted version of the generalized Shapley value. According
to this version, the winning probability of each lineup contributes with the same weight,
regardless of percentage of time spent by the lineup on the court. Equation (12), instead,
represents the weighted version of the generalized Shapley value. This takes also into account
the percentage of time spent by each lineup on the court (so, the winning probabilities of
different lineups have typically different weights).

Table 2 reports the resulting generalized Shapley values for the Utah Jazz players.
It is interesting to note that the players who were on the court more often, such as Gobert

(74.2%of the total time), O’Neale (77.6%) andBogdanović (74.0%), present a higher UWGS
( 0.0487, 0.0446 and 0.0439, respectively) compared with bench players, such as Niang and
Favors (0.0413 and 0.0360, respectively). An exception is Conley, who just played for the
54.1% of the time (due to an injury) but presents an UWGS of 0.0504 (best in its team).
Another interesting result is that of Clarxson, who won the title of 6th man of the league
(best player coming off the bench): he obtains a small UWGS (0.0360, just 3 team mates in
its team make it worse).

14 The Utah Jazz is an NBA basketball team based in Salt Lake City. The Jazz competes in the Western
Conference, Northwest Division. The team has been playing its home games at Vivint Arena since 1991. This
franchise began playing as an expansion team in 1974 with the name of New Orleans Jazz as a tribute to
New Orleans’ history of jazz music. The Jazz moved to Salt Lake City (state of Utah) in 1979. From the late
1980s to the beginning of 2000s, the Jazz had its successful period thanks to a famous duo formed by John
Stockton and Karl Malone, who helped the team to reach two consecutive NBA finals, in 1997 and 1998.
When both Stockton and Malone moved on in 2003, the team went through an about 10 years dark period.
With the development of Rudy Gobert and Donovan Mitchell into All-Stars, the Jazz launched itself back into
title contention.
15 E.g., https://thejnotes.com/2021/11/06/important-player-utah-jazz/2/.
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Table 2 Generalized Shapley values for the 11 selected players of the Utah Jazz team in the 2020/21 regular
season (with rank in brackets). n lineups is the number of different lineups where that player was in; %time
is the percentage of time that player was on the court, with respect to the time played by all the 107 considered
lineups; the expressions of the two generalized Shapley values are detailed in Eqs. (11) and (12)

Player (i) nlineups %time UWGS (rank) WGS*100 (rank)

Royce O’Neale 78 77.6 0.0446 (4) 0.0380 (5)

Bojan Bogdanović 73 74.0 0.0439 (6) 0.0382 (4)

Rudy Gobert 71 74.2 0.0487 (2) 0.0454 (2)

Donovan Mitchell 67 66.5 0.0445 (5) 0.0389 (3)

Joe Ingles 65 54.3 0.0452 (3) 0.0359 (7)

Jordan Clarxson 61 44.1 0.0360 (8) 0.0242 (8)

Mike Conley 49 54.1 0.0504 (1) 0.0510 (1)

Derrick Favors 36 25.7 0.0324 (9) 0.0200 (9)

George Niang 30 24.7 0.0413 (7) 0.0368 (6)

Miye Oni 4 3.5 0.0005 (10) 0.0004 (10)

Trent Forrest 1 1.0 0.0002 (11) 0.0002 (11)

The second version of the generalized Shapley (WGS) is weighted by the amount of time
each player i was on the court, for each lineup he took part of. This represents a different
measure since it can happen that a certain player obtains a high value of marginal utility when
playing in the lineup where it is mostly employed, but a low value when playing in a lineup
where it is employed only for a limited amount of time. TheWGS associates a higher weight
with the marginal utility value obtained in the first lineup, and a lower weight to the marginal
utility value obtained in the second lineup (i.e., it gives more importance to lineups in which
player i plays more often). It is interesting to note that, despite, in general, players obtain
smaller WGS compared to UWGS, Conley’s weighted value is higher than the unweighted
(0.0510 vs. 0.0504), while Clarxson, who already has a small UWGS, makes it even worse
according to WGS (0.0242). Similar is the case of Favors, whose weighted version is way
worse than the unweighted one (0.0200 vs. 0.0324).

Bootstrap (Efron 1992) confidence intervals are provided for both the weighted and
unweighted versions of the generalized Shapley values, by resampling with replacement
the lineups nr = 200 times16. Box plots with the 99% bootstrap confidence intervals are dis-
played in Fig. 2. Moreover, Fig. 3 demonstrates the robustness of our measures to changes in
the sample of lineups considered (i.e., according to different bootstrap samples). Globally, it
looks that Conley ranks first most of the times, Gobert ranks secondmost of the times. Niang,
Bogdanović, Mitchell, O’Neale and Ingles compete for the positions 3rd to 7th , Clarkson
ranks 8th most of the times, Favors ranks 9th most of the times and Oni and Forrest compete
for the last two positions.

To the sake of comparison with existing industry standard measures for players’ contri-
bution, we analyse the Pearson correlation of weighted and unweighted generalized Shapley
values with WS, WS48, BPM and VORP, and the Kendall’s Tau correlations between the

16 Although the variance of the Monte Carlo estimate of each generalized Shapley value has been addressed
at the end of Sect. 2.1, such variance is difficult to compute exactly (only loose upper bounds on it are expected
to be obtained quite easily, proceeding, e.g., in a similar way as in Gnecco et al. (2021), where the case of the
variance of the Monte Carlo estimate of each Shapley value was investigated, for a different application of
coalitional games). So, this justifies the generation of bootstrap confidence intervals in the present context.
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Fig. 2 Box plots with 1st , median and 3rd quartiles (boxes) and the 99% confidence intervals (wiskers) from
nr = 200 bootstrap samples, for the 11 Utah Jazz players during season 2020/21. UWGS (top chart), WGS
(bottom chart)

ranks of players according to the same measures, as shown in Table 3 for the Utah Jazz
players during the season 2020/21.

We can also use the generalized Shapley values to suggest best lineups. According to the
UWGS, the five players with the largest average marginal utility are Conley, Gobert, Ingles,
O’Neale and Mitchell (2 guards, 2 forwards and 1 center), while according to the WGS,
the first five players in the ranking are Conley, Gobert, Mitchell, Bogdanović and O’Neale
(still, 2 guards, 2 forwards and 1 center). Both lineups can be employed during the game. So,
according to the Utah Jazz case study, the adoption of a more sophisticated (either classical or
generalized) Shapley value definition with constraints, which takes into account that certain
coalitions are excluded a-priori (Hiller 2018), seems to be not necessary.

However, it may be that, for each of the two cases above, the lineup made with those
5 players does not turn out to be the best one in terms of winning probability (finding it
would involve a combinatorial optimization problem). Moreover, it is interesting to study the
players’ averagemarginal contributions conditional on the presence of a certain teammate (or
certain teammates) on the court, or conditional on his/their absence. In the present context,
the determination of average marginal conditional contributions is possible as we explicitly
account for single lineups. More precisely, if the average is made conditional on the presence
of l p ≤ 4 teammates, it is enough to modify Eq. (7) by reducing the number n of players of
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Fig. 3 Bump chart reporting the rank of Utah Jazz players according to UWGS (top) and to WGS (bottom)
and the bootstrap samples (first 50, for clarity). Season 2020/21

the team by l p (as l p players are now fixed in the lineup, whereas only n − l p are “rotating”
to produce each average), and restricting the lineups Li to those containing both the specific
player i and the l p fixed players. Similarly, if the average is made conditional on the absence
of la < n − 5 teammates, it is enough to modify Eq. (7) by reducing the number n of players
of the team by la (as la players are now absent, whereas only n − la are “rotating” to produce
each average), and restricting the lineups Li to those containing the specific player i and
excluding each of the la absent players.

These variations may be interesting because a player might perform better, e.g., when a
specific teammate (or subset of teammates) is on the court compared to the case in which that
teammate (or subset of teammates) is not in. Furthermore, in specific circumstances, it might
be necessary to form lineups by considering specific constraints, e.g., the coach may want to
build the lineup around a specific player (so, we propose to pick the 4 teammates that better
perform conditional on the presence of him/her on the court). Similarly, the presence of an
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Table 3 Pearson correlation (top)
and Tau-Kendall rank correlation
among the two generalized
Shapley values and the 4
industry-standard measures
adopted for players’
contributions. Utah Jazz players.
Season 2020/21

WS WS48 BPM VORP UWGS WGS

Pearson

WS 1.00 .786 .851 .929 .822 .850

WS48 1.00 .841 .750 .627 .710

BPM 1.00 .943 .794 .833

VORP 1.00 .751 .784

UWGS 1.00 .968

WGS 1.00

Kendall’s Tau

WS 1.00 .709 .709 .836 .855 .708

WS48 1.00 .709 .655 .709 .636

BPM 1.00 .764 .709 .636

VORP 1.00 .691 .582

UWGS 1.00 .782

WGS 1.00

injured player would modify the number of players effectively available (so, we propose to
form the best lineup conditional on his/her absence).

We present two specific applications. The first one is related to a case in which the coach
wants to make Rudy Gobert part of the lineup. To do so, we propose to apply a greedy
algorithm, that, by re-computing the generalized Shapley values conditional on specific con-
straints, permits, using a multi-step approach, to find approximately the best lineup. The first
step of the algorithm aims at finding the second player for the lineup. We find him to be the
player with the highest average marginal contribution conditional on the presence of Gobert
(i.e., just considering the lineups in which he is on the court). In the second step we find the
third player, i.e., the onewhose averagemarginal contribution, conditional on the presence on
the court of both Gobert and the other chosen player, is the highest. The algorithm continues
until five players have been chosen.

Results of this application based onWGS are reported in Table 4. In the first step, Mitchell
is chosen because he reports the highest WGS conditional on the presence of Gobert. In this
step Conley and O’Neale present similar WGS to that of Mitchell. In the second step, Conley
is chosen because he reports the highest WGS conditional on the presence of Gobert and
Mitchell on the court. This time, Conley’s WGS is way larger than those of the other players.
In the third step, Ingles is chosen because he reports the highest WGS conditional on the
presence of Gobert, Mitchell and Conley on the court. However, O’Neale and Bogdanović
report very similar WGS. In the fourth and last step, O’Neale is chosen because he reports
the highest WGS conditional on the presence of Gobert, Mitchell, Conley and Ingles on the
court.

The second application considers the case in which Mike Conley is injured and it is still
based on WGS. The greedy algorithm starts by finding the player with the highest value
conditional on the absence of Conley and proceeds similarly as in the first application. In the
first step (Table 5), Ingles is chosen because he reports the highest WGS conditional on the
absence of Conley. In the second step, Bogdanović is chosen because he reports the highest
WGS conditional on the absence of Conley and the presence of Mitchell on the court. In the
third step, Niang is chosen because he reports the highest WGS conditional to the absence of
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Table 4 Greedy algorithm results for the case of Rudy Gobert chosen by the coach

Player (1st step) (2nd step) (3rd step) (4th step)

Donovan Mitchell 0.0551 – – –

Mike Conley 0.0535 0.0821 – –

Joe Ingles 0.0383 0.0547 0.0941 –

Royce O’Neale 0.0512 0.0707 0.0924 0.1076

Bojan Bogdanović 0.0485 0.0664 0.0922 n.a.

Jordan Clarxson 0.0337 0.0231 n.a. n.a.

George Niang 0.0398 n.a. n.a. n.a.

Miye Oni 0.0000 n.a. n.a. n.a.

Trent Forrest n.a. n.a. n.a. n.a.

Derrick Favors n.a. n.a. n.a. n.a.

Conditional WGS of the algorithm steps for each player are reported. In the first step, Mitchell is chosen
because he reports the highest WGS conditional on the presence of Gobert. In the second step, Conley is
chosen because he reports the highest WGS conditional on the presence of Gobert and Mitchell on the court.
In the third step, Ingles is chosen because he reports the highest WGS conditional on the presence of Gobert,
Mitchell and Conley on the court. In the fourth and last step, O’Neale is chosen because he reports the highest
WGS conditional on the presence of Gobert, Mitchell, Conley and Ingles on the court. “n.a.” means that the
related player never played conditional on the presence on the court of chosen (until that step) players

Conley and the presence of Ingles and Bogdanović on the court. In the fourth step O’Neale
and Gobert are chosen because they report the highest WGS conditional to the absence of
Conley and the presence of Ingles, Bogdanović and Niang on the court. It worth noting
that the lineups chosen in the two applications differ. The most surprisingly evidence is the
absence of Mitchell in a lineup where Conley is injured. This evidence makes our proposal
based on the computation of average conditional marginal contributions relevant, as players’
average marginal contributions actually appear different when evaluated conditional on the
presence/absence of specific teammates on the court.

5 Conclusions

Data analytics in basketball, likewise in other professional team sports, is increasingly
adopted, and in recent years has percolated to many academic fields, such as Computer
Science, Applied Mathematics, Statistics, Management Science, and Economics. In the era
of Big Data, where online platforms make available live streams of large amounts of data,
more and more often managers and staff of professional teams face the need for extracting
useful information for the monitoring of the performance of their team, as well as their single
players.

Aware of the fact that a team may be viewed as a network of players who cooperate
with the same purpose, in this manuscript we have been dedicated to the development of a
methodological strategy aimed atmeasuring the averagemarginal contributions of the players
to achieve the goal of their team (i.e., to win the match).

Each player’s average marginal utility has been computed here by means of a generalized
(both unweighted and weighted) version of the Shapley value, where the generalized char-
acteristic function has been expressed in terms of the probability to win the game, in turn
estimated using a logistic regression strategy.
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Table 5 Greedy algorithm results for the case of Mike Conley injured. Conditional WGS of the algorithm
steps for each player are reported

Player (1ststep) (2ndstep) (3rdstep) (4thstep)

Joe Ingles 0.0341 – – –

Bojan Bogdanović 0.0316 0.0487 – –

George Niang 0.0204 0.0206 0.0809 n.a.

Rudy Gobert 0.0337 0.0385 0.0529 0.0925

Royce O’Neale 0.0307 0.0459 0.0579 0.0925

Donovan Mitchell 0.0292 0.0440 0.0596 n.a.

Jordan Clarxson 0.0139 0.0131 0.0258 n.a.

Derrick Favors 0.0225 0.0370 0.0580 n.a.

Miye Oni 0.0004 0.0005 n.a. n.a.

Trent Forrest 0.0002 n.a. n.a. n.a.

In the first step, Ingles is chosen because he reports the highest WGS conditional on the absence of Conley.
In the second step, Bogdanović is chosen because he reports the highest WGS conditional on the absence of
Conley and the presence of Ingles on the court. In the third step, Niang is chosen because he reports the highest
WGS conditional on the absence of Conley and the presence of Ingles and Bogdanović on the court. In the
fourth step O’Neale and Gobert are chosen because they reports the highest WGS conditional on the absence
of Conley and the presence of Ingles, Bogdanović and Niang on the court. “n.a.” means that the related player
never played conditional on the presence on the court of chosen (until that step) players

With this work we place ourselves in the literature aimed at finding a measure for the
player’s contribution by proposing an approach that gathers most of the advantages (and
avoids disadvantages) of the industry-standard ones, and that permits to do lineup man-
agement. Moreover, we do so by using (for the first time, to the best of our knowledge) a
game-theoretical approach based on generalized Shapley values, that has never been applied
to basketball before. In summary, the generalized Shapley value evaluates the importance of
each player by considering him/her as an individual who is a member of a larger team, and
achieves this goal in a way that is more structured than other industry-standard measures.
Indeed, in order to evaluate a player-specific quantity (his/her importance in the team), our
proposed approach uses features at the team level as a starting point, following a multi-step
approach. First, an underlying machine-learning model (logistic regression, in our case) is
trained to predict the winning probability based on several features associated to a lineup. In
this way we are addressing the performance of the whole lineup in this first step, not of the
individual (which is addressed in a successive step). It is worth remarking that these features
turn out to have a high predictive capability. In the final step, by averaging on several lineups,
we obtain an estimate of the importance of each player.

Overall, this work targets to help managers, coaches and the staff for planning their strate-
gies about the team and the players, by providing them a robust measure of player’s marginal
utility along with a strategy for the management of the lineup. The proposed approach of
analysis could be used by coaches, e.g., in the following ways:

– by monitoring the features associated with a lineup, the coach could opt for replacing a
player, in case the current estimate of the winning probability turned out to be too low.
Of course, this would require estimating the coefficients of the logistic regression model
using the data available before the current match (this is not an issue, since also data from
past seasons could be used to that aim);
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– the choice of a specific lineup could be guided by players’ ranks based on generalized
Shapley values, possibly conditional on other constraints (e.g., the presence/absence of
a specific player in the lineup). This would require estimating the generalized Shapley
value using the data available before the current match, but coming from the same season,
because of the possibly different composition of the team in consecutive seasons. In order
to increase the amount of observed lineups available to get this estimate, one could take
into account also data coming from the preseason and (when available) from practice
games, especially for the first part of the season, for which no data coming from other
official matches in the season are available.

We conclude discussing possible future developments. First, it may be interesting to
employ a version of the generalized Shapley value that i) excludes a-priori some coalitions,
in such a way to account for impossible lineups, ii) it is allowed to be used for the analysis of
player’s contribution at single game level. Second, it may be worth assessing the impact of
including additional features (for example, those coming from the position of the ball, which
may be retrieved by the joint use of computer vision and machine learning techniques, see
Giuffrida et al. (2019)) to the model of the generalized characteristic function.
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Appendix: alternative definition of the generalized characteristic func-
tion

As an alternative toEq. (6), anotherway of definingυk(T ) for k = 1, 2 could be the following:

υk(T ) =

⎧
⎪⎨

⎪⎩

0 if |T | < m =5

υk({T1, T2, T3, T4, T5}) if |T | = m =5

0 if |T | > m =5 .

(13)

In this case, the Shapley value and the generalized Shapley value (1) would be the same,
not depending the value assumed by the function υk(.) on T on the order of the elements
belonging to T that are successive to the fifth one. Nevertheless, assuming positive values
for υk({T1, T2, T3, T4, T5}), the marginal utility of each player i 
= T1, T2, T3, T4, T5 when
entering in the sixth positionwould be negative andwould not depend on the particular choice
of the player i 
= T1, T2, T3, T4, T5 (i.e., it would be independent of the ability of that player).
Concluding, by replacing Eq. (6) with Eq. (13), one would achieve a unique worth (i.e., 0)
for the grand coalition (which is necessary for the computation of the Shapley value), at the
cost of making negative the marginal contribution of each player that enters in sixth position
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(regardless of the actual worth of that player). For this reason, we have preferred to use the
Definition (6), which betters agrees with intuition, and motivates the use of the generalized
Shapley value (1) in the present context, instead of simply the Shapley value.
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