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A B S T R A C T

The classical Phase Field (PF) model for fracture mechanics of brittle materials based on the finite element
method involves three parameters in addition to the Poisson ratio 𝜈: the Young’s modulus 𝐸, the fracture
toughness 𝐺𝑐 , and the internal length scale 𝑙𝑐 . The latter is mathematically conceived as a numerical
regularization parameter that should tend to zero to recover linear elastic fracture mechanics (LEFM)
predictions. To address this issue, a robust algorithm is implemented in MATLAB, which combines Particle
Swarm Optimization (PSO) and the Phase Field (PF) approach to fracture based on the finite element method.
The algorithm has been applied to a series of uni-axial tensile tests (with 𝐸 and 𝑙𝑐 to be identified) and to
three-point bending tests (with 𝐸, 𝑙𝑐 and also 𝐺𝑐 to be identified) on specimens made of ABS material. Results
show that the optimal values of 𝐸 and 𝐺𝑐 are consistent in both tests, while 𝑙𝑐 presents a significant dependency
upon the test type. Therefore, different values of the internal length scale should be identified and used to
match the experimental responses under uni-axial tension or bending.
1. Introduction

The phase field approach to fracture is an emerging computational
technique for the simulation of complex crack paths in solids and
structures.

The development of numerical methods within the Finite Element
Analysis (FEA) to predict fracture onset, propagation, and branching in
materials and structures has been the subject of intensive research since
the 1970s. Those methods are requested to tackle technical problems
that analytical methods cannot address. In this regard, the Cornell
Fracture Group [1] developed FEA software based on linear elastic
fracture mechanics (LEFM). These methods were based on inserting
singular finite elements at the crack tip to approximate the singular
stress field and compute the stress-intensity factors according to the
displacement correlation technique or the J-integral method. Although
efficient for 2D problems, the extension of the methodology to 3D
geometries, also with multiple materials, is quite complex since the
theoretical definition of the generalized stress-intensity factors and
the implementation of the related computational procedures require a
significant effort [2].

Alternatively, Continuum Damage Mechanics (CDM) models ac-
counting for a smeared crack representation [3] can address both
crack nucleation and propagation stages. To avoid mesh dependency
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of local damage formulations, integral-based nonlocal and gradient-
enhanced procedures have been proposed [4–8]. Moreover, extended
FE strategies with nodal kinematic enrichment (extended-FEM, X-FEM)
that rely on Partition of Unity Methods (PUM) [9–11] and element
enrichment formulations (enhanced-FEM, E-FEM) [12–15] have also
seen a considerable development. These methods present limitations
for the simulation of complex failure modes that require predicting
crack initiation, propagation, branching, and coalescence from multiple
points.

In this regard, the phase field (PF) approach to fracture proposed
in [16] based on 𝛤−convergence [17] presents several advantages. The
above approach incorporates a non-local formulation that can retrieve
the classical energy-based Griffith criterion [18] as a limit case when
the internal length scale of the model tends to zero. Significant progress
has been made regarding the numerical implementation of the phase
field approach to fracture in FEA codes, see e.g. [19–21]. Some recent
work on the phase field for fracture and its application can be found in
[22–24]. This methodology appears to be very promising in reproduc-
ing not only the limit case of LEFM but also diffuse damage scenarios
depending on the choice of the model parameters. It has been tested
in relation to real experiments on brittle PMMA samples with notches
and holes in [25]. Results have shown that the phase field approach
to fracture can closely reproduce the experimental results not only in
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Nomenclature

Acronyms

2D Two dimensional space
3D Three dimensional space
ABS Acrylonitrile butadiene styrene
FEA Finite element analysis
FEM Finite element method
PF Phase field approach to fracture
PMMA Poly(methyl methacrylate)
PSO Particle swarm optimization
STD Standard deviation

Variable notation

𝐮 Displacement field
𝜈 Poisson ratio
𝜙 Phase field variable
𝛶 PSO target cost function
𝐸 Young’s modulus
𝐺𝑐 Fracture energy
𝑙𝑐 Internal length scale parameter

terms of the crack pattern but also in terms of force–displacement and
local stress measures. In [25], parameters’ identification for each type
of simulated test was conducted manually. Still, preliminary results
showed significant concerns, especially for the popular AT2 phase
field model [19,26] referred to as the standard Ambrosio-Tortorelli
model in the applied mathematics community [27]. Specifically, the
internal length scale of the phase field approach was a rather complex
parameter to be identified.

The value of the peak traction in a simulated uni-axial tensile test
is affected by the choice of the internal length scale of the phase field
model. A possible correlation between material strength (𝜎𝑐) and the
nternal length scale (𝑙𝑐) can be formally established, see [28], which
as led to the wide belief that 𝑙𝑐 estimated from uni-axial tensile tests
an be consistently valid also for any other geometry and loading
onditions. This belief has been questioned in [25], where manual
dentification of the internal length scale for all the conducted tests
n PMMA samples with different geometry and loading conditions has
hown that, especially for the AT2 model, it is not possible to use the
alue of the uni-axial tensile tests to reproduce all the experimental
rends accurately. This motivates the need to develop a robust identi-
ication procedure to extract the optimal value of the internal length
cale directly from experimental results. In the literature, [29] applied
he Bayesian approach to estimate the phase field model’s bulk and
hear moduli, tensile strength, and fracture toughness to match the
hree-point bending test experimental result data. In the above work, to
alculate the internal length scale parameter, an expression for the uni-
xial case mentioned in [28] is used, and no information is provided on
ow to choose the internal length scale parameter for the phase field
odel if there is a change in geometry and loading conditions. Thus,

n automatic identification procedure is required and can be applied to
valuate the internal length scale parameter of the phase field model
irectly from the experimental data for conditions different from the
ni-axial tensile tests.

Therefore, in this work, we propose a robust material parameters’
dentification procedure for the phase field approach to fracture based
n Particle Swarm Optimization (PSO). This heuristic approach has
een demonstrated to be extremely robust in the case of mechanical
roblems involving multiple nonlinearities, as shown in [30], such as
lasticity and cohesive fracture. Therefore it is considered an excellent
2

candidate also for phase field diffuse damage. The article is structured
as follows: in Section 2, the AT2 phase field approach is briefly out-
lined, highlighting the issue of parameters’ identification. Section 3
focuses on the proposed model parameters’ identification procedure
in relation to a benchmark test related to PF fracture propagation.
Section 4 discusses the application of the proposed methods to exper-
imental data related to ABS specimens, showing how the algorithm
can automatically identify the mean and the standard deviation of the
phase field fracture parameters for uni-axial and three-point bending
tests. ABS material has been selected for its importance in additive
manufacturing and injection molding applications.

2. The phase field approach to fracture

Let us consider a linear elastic continuum domain 𝛺 ⊂ R𝐵 in the
eference configuration with dimension 𝐵 ∈ [1, 3]. A crack may nucle-
te and propagate from already-existing notches or stress-concentrated
reas. This phenomenon causes a displacement field 𝐮 in the body that
ay show a discontinuity in correspondence with the locally spreading

racture. In the phase field approach to fracture, the sharp displacement
iscontinuity will be smeared out by introducing a suitable nonlocal
egularization which introduces an unknown scalar damage variable 𝜙

in the domain. The problem reduces in finding the displacement 𝐮 and
the phase field damage variable 𝜙, subject to the equilibrium conditions
of the solid body, the evolution equation for damage coupled with the
mechanical field and the boundary conditions related to the specific
model geometry.

The total potential energy functional of the continuum 𝛺 proposed
y Francfort–Marigo [16] with a prospective evolving crack surface 𝛤

is given by

𝛱(𝐮, 𝜙) = ∫𝛺
𝛹𝐸 (𝜺(𝒖), 𝜙)d𝛺

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
internal elastic energy

+ ∫𝛺
𝛹𝑆 (𝜙)d𝛺

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
energy due to crack propagation

− ∫𝛺
𝐛𝐮 d𝛺 − ∫𝜕𝛺𝑡

�̄�𝐮 d𝜕𝛺

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
external loads

(1)

n which 𝐛 and �̄� are body forces and boundary tractions, respectively.
𝐸 (𝜺, 𝜙) is the internal energy density function [20] defined as

𝐸 (𝜺, 𝜙) = 𝑔(𝜙)𝛹+
0 (𝜺) + 𝛹−

0 (𝜺) (2)

here 𝑔(𝜙) = (1 −𝜙)2 + 𝜅𝑝 is the stress degradation function dependent
pon the phase field damage variable 𝜙, 𝜅𝑝 a small number to avoid ill-
onditioning of the stiffness matrix for 𝜙 → 1. 𝛹+

0 and 𝛹−
0 are the tensile

nd compressive energies, respectively. Damaging the elastic energy of
he material takes place only in case of tensile stress states [31].

In the framework of the phase field regularization [32], the frac-
ure energy contribution 𝛹𝑆 (𝜙) is smeared over the domain. The sur-
ace integral (in 3D) or the line integral (in 2D) over 𝛤 is therefore
pproximated with an integral over the domain 𝛺:

𝛺
𝛹𝑆 (𝜙) ∶= ∫𝛤

𝐺𝑐 d𝛤 ≈ ∫𝛺
𝐺𝑐𝛾 d𝛺 ≈

𝐺𝑐
2 ∫𝛺

[

𝑙𝑐∇𝜙 ⋅ ∇𝜙 +
𝜙2

𝑙𝑐

]

d𝛺 (3)

here 𝐺𝑐 is the fracture energy and 𝑙𝑐 is the internal length scale
arameter of the phase field.

The total energy functional therefore reads:

=∫𝛺
(𝑔(𝜙)𝛹+

0 (𝜺) + 𝛹−
0 (𝜺)) d𝛺 + ∫𝛺

𝐺c
2

[

𝑙𝑐∇𝜙 ⋅ ∇𝜙 + 1
𝑙𝑐
𝜙2

]

d𝛺

− ∫𝛺
𝐛𝐮 d𝛺 − ∫𝜕𝛺𝑡

�̄�𝐮 d𝜕𝛺𝑡

(4)

The weak form of the problem is determined through the minimiza-
tion of the above functional, which is done by computing its virtual
variation with respect to the primary independent field variables:

𝛿𝛱 = 𝜕𝛱 𝛿𝐮 + 𝜕𝛱 𝛿𝜙 (5)

𝜕𝐮 𝜕𝜙
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which yields:

𝛿𝛱 =∫𝛺
𝜎𝛿𝜺d𝛺 − ∫𝛺

2(1 − 𝜙)𝛿𝜙𝛹+
0 (𝜺) d𝛺

+ ∫𝛺
𝐺𝑐

(

𝑙𝑐∇𝜙∇𝛿𝜙 + 1
𝑙𝑐
𝜙𝛿𝜙

)

d𝛺 − ∫𝛺
𝑏𝛿𝑢 d𝛺 − ∫𝜕𝛺𝑡

𝑡𝛿𝑢 d𝜕𝛺𝑡

(6)

In addition to the above, an irreversibility condition upon 𝜙 has to
e introduced to avoid healing of the material during damage evolu-
ion. Again, we follow here the approach in [20], which introduces the
ollowing history variable  in Eq. (6).

=
{

𝛹+
0 (𝜺) if 𝛹+

0 (𝜺) > 𝑛
𝑛 otherwise (7)

here 𝑛 is the value of 𝛹+
0 at the previous pseudo-time step of a

uasi-static simulation with pseudo-time increasing applied displace-
ents/loads. Note that the function  satisfies the Karush-Kuhn–
ucker conditions:
+
0 − ≤ 0, ̇ ≥ 0, ̇

(

𝛹+
0 −

)

= 0 (8)

The strong form associated with the weak form in Eq. (6) is:

⋅ 𝜎 + 𝐛 = 0 in 𝛺, 𝜎 ⋅ 𝑛 = 𝑡 on 𝜕𝛺𝑡, 𝑢 = �̄� on 𝜕𝛺𝑢 (9)

−𝐺c𝑙𝑐∇2𝜙 +
[

𝐺c
𝑙𝑐

+ 2𝛹 (𝜺)
]

𝜙 = 2𝛹 (𝜺) in 𝛺, ∇𝜙 ⋅ 𝑛 = 0 on 𝜕𝛺 (10)

To solve the above weak form, the finite element discretization is
introduced by projecting 𝛿𝛱 onto a suitable functional space. Usually,
a functional space composed of linear or quadratic polynomials is a nat-
ural choice. However, other spaces like those defined by NURBS could
be exploited [33], and it is a current research direction. Moreover, in
the case of polynomials, ℎ−, 𝑝−, and ℎ𝑝−refining schemes are currently
investigated to improve the efficiency of the computational method.

Therefore, the finite element implementation of the PF approach
using the staggered solution scheme method [20] is implemented to
find the displacement field and the phase field variable.

3. The proposed parameters’ identification procedure and bench-
mark tests

The issue of model parameters’ identification for the phase field
approach to fracture is relevant for technical applications, as out-
lined in the introduction. In this direction, evolution-based Genetic
algorithms (GA) [34]; swarm intelligent-based particle swarm opti-
mization (PSO) algorithm [35]; teaching and learning based algorithm
(TLBO) [36], and JAYA algorithm [37] are some of the well-known
popular algorithms in the literature which proved to be efficient for
non-linear constrained and unconstrained problems. The above algo-
rithms have their advantages and disadvantages depending on the
application. Moreover, a hybrid algorithm considering a combination of
the above algorithms could be more efficient than each one separately.
The aim of the present work is not to compare all the possible algo-
rithms but rather to propose and assess the performance of a heuristic
optimization technique (PSO in particular) for the present inverse
problem. PSO has been proven to be a very effective tool in model
parameters’ identification for nonlinear fracture mechanics problems
involving plasticity and cohesive fracture [30]. Fine-tuning of the PSO
algorithm parameters will overcome the performance of most of the
algorithms, see e.g. [34,36,37].

PSO [35] allows the scattering of certain populations of particles in
a pre-defined parametric design space. PSO particles are then optimized
by achieving a minimum target cost function (Υ) to match the user
desired mechanical response. In the present problem, the Young’s mod-
ulus (𝐸), fracture toughness (𝐺𝑐), and the phase field internal length
scale parameter (𝑙𝑐) are the parameters defining each swarm particle
3

position. Considering a force–displacement mechanical response (from
experiments or desired), the target cost function (Υ) for every swarm
particle is defined as

𝛶 (𝜒) =

√

√

√

√

√

𝑁
∑

𝑑=1

[

𝛥𝐹𝑑 (𝜒)
𝐹𝑑 (𝜒)

]2
(11)

where 𝛥𝐹𝑑 (𝜒) = 𝐹𝑑−𝐹𝑑 (𝜒), in which 𝐹𝑑 denotes the history of simulated
orces for the range of imposed pseudo-time steps 𝑑 (𝑑 = 1,… , 𝑁). The
imulated test is conducted under displacement control till ‘𝑁 ’ number
f imposed displacements for a given set of trial model parameters.
nalogously, 𝐹𝑑 (𝜒) represents the target values of forces for the same
𝑁 ’ imposed displacements. The PSO algorithm is detailed in Algorithm

in relation to the methodology outlined in Appendix.

Algorithm 1 Particle swarm optimization
1: Input data : number of swarm particles Np, maximum number of

iterations Itmax, PSO algorithm parameters 𝐖𝐢,𝐂𝐜,𝐒𝐜,wdamp
2: Output data : optimized particle solutions 𝐏𝐠 for minimum cost

function 𝛶
3: 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧
4: for all 𝑖 = 1 ∶ Np do
5: Generate a population of swarm particles with random particle

position 𝜒𝟎
𝐢 in three dimensional (℘ = 3) parametric space (𝐸, 𝐺𝑐 ,

𝑙𝑐) variables under constrained solution search space for example
as defined in Eq. (12)

6: Evaluate cost function 𝛶 (𝜒𝟎
𝐢 )

7: Assign local best swarm particle position vector 𝐏𝟎
𝐢 ← 𝜒𝟎

𝐢
8: Assign zero swarm particle velocity vector ⋁𝟎

𝑖
9: end for
0: Assign 𝐏𝟎

𝐠 ← argmin
𝜒𝟎
𝑖

𝛶 (𝜒𝟎
𝐢 )

11: Assign particle velocity range Vr = [vmin, vmax]
12: 𝐌𝐚𝐢𝐧 𝐥𝐨𝐨𝐩 𝐨𝐟 𝐏𝐒𝐎 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦
13: for 𝑘 = 1 ∶ Itmax do
14: for all 𝑖 = 1 ∶ Np do
15: Update particle velocity vector ⋁𝐤

𝑖 from Eq. (A.1)
6: check ⋁𝐤

𝑖 in limits of Vr , if not reassign ⋁𝐤
𝑖 in range Vr

7: Update particle position vector 𝜒𝐤
𝐢 from Eq. (A.2)

8: if 𝜒𝐤
𝐢 ∉ ℘ then

9: reassign randomly 𝜒𝐤
𝐢 𝑖𝑛 ℘

0: end if
1: if 𝛶 (𝜒𝐤

𝐢 ) < 𝛶 (𝐏𝐤−𝟏
𝐢 ) then

2: Update local best particle position 𝐏𝐤
𝐢 from Eq. (A.3)

3: if 𝛶 (𝐏𝐤
𝐢 ) < 𝛶 (𝐏𝐤−𝟏

𝐠 ) then
4: Update global best particle position 𝐏𝐤

𝐠 from Eq. (A.4)
5: end if
6: end if
7: end for
8: 𝐖𝐢 ← 𝐖𝐢 × wdamp
9: end for

As a benchmark test, to show the applicability of PSO to parameters
identification of phase-field fracture models, we consider here a Mode I
single edge notch test (see Fig. 1). The following properties are set as an
input for the simulation (𝐸 = 210 GPa, 𝐺𝑐 = 2.7 kN/mm, 𝑙𝑐 = 0.1 mm).
The finite element discretization consists of 1949 four-noded bilinear
quadrilateral finite elements with a minimum mesh size of 0.05 mm
along the potential crack path.

The force–displacement curve predicted by phase field simulation is
taken as the target function 𝐹𝑑 . This should be subsequently matched
by the PSO algorithm applied to identify the material parameters that
are considered to be unknown.

In this regard, we attempt to identify all three material parameters
simultaneously. In the 3D parameter space, we consider 𝑁 = 30
𝑝
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Table 1
Set of input data to generate target responses and range of parameters for the robustness test. The last column reports the error of the identified
parameters concerning the values used in the input.
Case 𝐺𝑐 (kN/mm) 𝑙𝑐 (mm) Range 𝐸 (GPa) Range 𝐺𝑐 (kN/mm) Range 𝑙𝑐 (mm) Absolute error % {𝐸, 𝐺𝑐 , 𝑙𝑐}

1 2.7 0.3 180–230 1.2–3.8 0.02–0.45 {0.078, 0.10, 0.037}
2 2.7 0.5 180–230 1.2–3.8 0.02–0.70 {0.116, 0.07, 0.018}
3 2.7 0.7 180–230 1.2–3.8 0.02–0.90 {0.312, 0.11, 0.048}
4 4.0 0.1 180–230 1.2–5.5 0.02–0.20 {0.297, 0.38, 0.032}
5 6.5 0.1 180–230 1.2–8.0 0.02–0.20 {0.078, 0.28, 0.015}
6 8.0 0.1 180–230 1.2–10.0 0.02–0.20 {0.252, 0.28, 0.014}
7 4.0 0.1 180–230 1.2–5.5 0.02–0.20 {1.075, 1.49, 0.107}
8 4.0 0.1 180–230 1.2–5.5 0.02–0.20 {0.120, 0.14, 0.009}
Fig. 1. Benchmark problem: geometry, loading and boundary conditions.

particles as population size, with a maximum of 150 iterations and the
following PSO parameters: inertia weight 𝐖𝐢 = 0.9, damping weight
wdamp = 0.99, cognitive coefficient 𝐂𝐜 = 0.2 and social coefficient
𝐒𝐜 = 0.1. The design-constrained particle space is defined as follows:

𝒵 = {180 < 𝐸 < 230 GPa; 1.2 < 𝐺𝑐 < 3.8 kN∕mm; 0.02 < 𝑙𝑐 < 0.2 mm}

(12)

which includes the values of the three parameters to be identified.
The evolution of swarm particles’ position within the design space

concerning PSO iterations are shown in Fig. 2. The identified values
of the model parameters were 𝐸 = 209.967 GPa, 𝐺𝑐 = 2.699 kN/mm,
𝑙𝑐 = 0.099 mm, which are very close to the parameters used to generate
the target response numerically.

The cost function vs. a number of iterations is shown in Fig. 3, with
an error in the force–displacement curve at the 54th iteration lower
than 1 × 10−4.

For completeness, the force–displacement curve corresponding to
the identified model parameters accurately matches the target one, see
Fig. 4.

The robustness of the PSO algorithm is also assessed by considering
six different cases with parameters spanning over the 𝐺𝑐 and 𝑙𝑐 space
for a fixed value of 𝐸 = 210 GPa, see Table 1. The exact geometry and
loading condition are considered as in Fig. 1.
4

Initial and final particles’ positions are shown in Fig. 5 for cases 1,
2, and 3 related to the different values of 𝑙𝑐 and in Fig. 6 for cases 4, 5,
and 6 related to the different values of 𝐺𝑐 . Further, to assess the conver-
gence of the PSO algorithm, the velocity of the constriction factor-based
approach [38] is adopted for case 8 (see Eq. (13)). The positive weights
are applied to certain force–displacement points to set a priority while
determining the cost function (Υ). If no positive weights are applied,
all points in the force–displacement curve are treated equally. In the
above-mentioned approach to guarantee stability [39], 𝜑 was set as 4.1
and 𝐂𝐜 = 𝐒𝐜 = 2.05. The velocity of the swarm particles is computed
according to the following equation:
⋁𝐤

𝑖
= 𝜅 × (

⋁𝐤−𝟏
𝑖

+ 𝐂𝐜 × 𝐫𝟏 × (𝐏𝐤
𝐢 − 𝜒𝐤

𝐢 ) + 𝐒𝐜 × 𝐫𝟐 × (𝐏𝐤
𝐠 − 𝜒𝐤

𝐢 ))

𝜅 = 2
|

|

|

2 − 𝜑 −
√

𝜑2 − 4𝜑||
|

,where 𝜑 = 𝐂𝐜 + 𝐒𝐜, 𝜑 > 4 (13)

where 𝜅 is a constriction factor and 𝐫𝟏, 𝐫𝟐 are random numbers between
0 and 1. The explanation of the remaining parameters is mentioned in
Appendix.

The robustness of the PSO algorithm is further examined by com-
paring case 4 without weights, case 7 with weights, and case 8 with
weights and including the constriction factor for velocity. Fig. 7 clearly
shows better convergence of case 8 compared to cases 4 and 7. There-
fore, in the sequel, the PSO algorithm with the parameters used for case
8 is applied to identify fracture mechanics parameters concerning the
experimental results of ABS material discussed in Section 4.

Finally, the PSO algorithm is compared with the TLBO algorithm to
assess its robustness. For investigation, the benchmark problem shown
in Fig. 1 is chosen, and the initial particle positions are the same and
fixed for both PSO and TLBO algorithms (see Fig. 8(a)). For the PSO
algorithm, case 8 is implemented. For the TLBO algorithm, the reader
is referred to [36]. The algorithm design variables and their range is
chosen as in case 8 (see Table 1) for both PSO and TLBO methods.
The PSO algorithm identifies the optimal particles solution with (𝐸
= 210.024 GPa, 𝐺𝑐 = 4.0058 kN/mm, and 𝑙𝑐 = 0.1004 mm), which
almost coincides with the output solution (see Fig. 8(b)). The TLBO
algorithm identifies 𝐸 = 198.086 GPa, 𝐺𝑐 = 3.6392 kN/mm, and 𝑙𝑐
= 0.0778 mm, which is not converging to the output solution (see
Fig. 8(c)). Therefore, it can be inferred that the PSO algorithm per-
formed better than the TLBO algorithm for the parameter identification
of the present non-linear problem. Moreover, the computation time of
TLBO is roughly twice that of PSO, since FEA for PF simulation of each
particle is computed two times in the main TLBO algorithm loop.

4. Identification of material properties from experimental data of
ABS co-polymers

The robustness of the PSO algorithm applied to the identification
of fracture mechanics parameters is herein assessed in relation to
experimental results of ABS co-polymer material subjected to tensile
and three-point bending loading conditions.



Theoretical and Applied Fracture Mechanics 127 (2023) 104005R.K. Tota and M. Paggi
Fig. 2. Scatter representation of particles in the iterations of the PSO algorithm for the benchmark test problem.
A series of uni-axial and three-point bending experimental tests
were carried out using the universal testing machine Zwick/Roell
Z010TH available in the experimental laboratory of the Multi-scale
Analysis of Materials Research Unit at IMT Lucca. The scatter in the
experimental curves shown in Figs. 10(a) and 12(a) is due to the typical
effect induced by a slight variation in the amount of additives used to
reduce swelling of ABS materials for injection moulding [40].

The PF formulation based on the AT2 model has been applied to
simulate the corresponding tests, and coupled with the PSO algorithm,
parameter identification has been performed. All the routines are coded
in MATLAB, release 2020b.

Young’s modulus 𝐸, fracture parameters 𝐺𝑐 (fracture energy), and 𝑙𝑐
(internal length scale) were chosen as PSO swarm particle parameters
to be identified. The range of ABS properties to conduct PSO-PF simu-
lations were taken from literature: tensile strength 𝜎 ∈ {22, 49} MPa,
5

max
𝐸 ∈ {1100, 2900} MPa, Poisson’s ratio 𝜈 = 0.37 and fracture toughness
𝐾𝐼,𝑐 ∈ {1.2, 4.2}MPa

√

𝑚. Exploiting the correlations 𝐺𝑐 =
K2
𝐼,𝑐 (1−𝜈

2)

𝐸
and 𝑙𝑐 = 27

256
𝐺𝑐𝐸

(1−𝜈2)𝜎2max
, we derived the following range of variability

for 𝐺𝑐 ∈ {1.25, 13.8} N/mm and 𝑙𝑐 ∈ {0.25, 3.8} mm.

4.1. Uni-axial tensile tests

Experimental tests were conducted and repeated 15 times on spec-
imens of ABS material under uni-axial tensile loading conditions. The
specimen geometry is length × width × thickness = 114×10.2×4.5 mm.
The boundary conditions are depicted in Fig. 9. Stress–strain curves are
shown in Fig. 10(a).

PF numerical simulations have been performed by replicating the
experimental conditions (see Fig. 9). Dirichlet boundary condition 𝜙 =



Theoretical and Applied Fracture Mechanics 127 (2023) 104005R.K. Tota and M. Paggi
Fig. 3. Cost function vs. No. of PSO iterations for the benchmark test.

Fig. 4. Force–displacement curve and target curve.

0 [41,42] imposed on the phase field at both ends of the tensile test
model.

Since uni-axial tensile tests are not suitable for fracture mechanics
characterization, we set an average value of 𝐺𝐶 = 7.5 N/mm from the
literature for all 15 numerical simulations. 𝐸 and 𝑙𝑐 are the parameters
to be identified that influence the initial linear elastic regime of the
stress–strain curves and the material tensile strength (computed from
the peak load value before specimen failure). Therefore, the PF-PSO
simulations are conducted with swarm particles in the parameter space
(𝐸, 𝑙𝑐), with admissible range for 𝐸 ∈ {1100, 2900} MPa and for 𝑙𝑐 ∈
{0.25, 3.8} mm. Fig. 10(b) shows the optimal PSO-PF response of the 15
stress–strain curves that minimize the error from the experimental ones.
Table 2 collects the PSO-identified parameters for the 15 tests. From
this analysis, considering the mean values and the standard deviations,
the identified Young modulus corresponds to 𝐸 ± 𝜎𝐸 = 1157.904.01 ±
34.8223 MPa, and the internal length scale 𝑙 ±𝜎 = 1.3361±0.0408 mm.
6

𝑐 𝑙𝑐
Table 2
PSO identified 𝐸 and 𝑙𝑐 parameters for the 15 tests in Fig. 10, with their mean and
standard deviation values.

Test # 𝐸 (MPa) 𝑙𝑐 (mm)

1 1130.39 1.281
2 1116.48 1.306
3 1215.08 1.415
4 1197.61 1.362
5 1183.24 1.320
6 1169.185 1.359
7 1120.50 1.290
8 1164.82 1.321
9 1123.67 1.273
10 1141.05 1.330
11 1107.73 1.392
12 1193.60 1.376
13 1152.43 1.318
14 1203.60 1.3472
15 1149.186 1.3508

Mean 1157.904 1.336
Std. dev. 34.8223 0.0408

4.2. Three-point bending tests

Three-point bending tests with notched samples are now considered
since they can also be exploited for fracture mechanics characterization.
Therefore, applying the PSO algorithm combined with the PF simula-
tion framework is possible to identify all three model parameters, 𝐸,
𝑙𝑐 , and 𝐺𝑐 . Now these are critically compared with the outcome of the
previous parameters’ identification results concerning uni-axial tensile
tests.

Experimental tests were conducted on a set of ABS specimens with
an initial sharp V-notch under the three-point bending loading, see
Fig. 11(a) and (b), showing the initially undeformed configuration and
the specimen at failure. Fig. 11(b) shows the formation of crazing at
the notch tip, which is highlighted by the change of color of ABS from
yellow to white due to the stretching of the polymeric fibers during
crack growth. The spread of crazing in the direction orthogonal to the
mid-span cross-section is relatively consistent. It certainly represents a
zone of diffuse damage that could be simulated using the phase-field
approach to fracture with a finite -not vanishing- internal length scale
𝑙𝑐 . Compared to PMMA investigated in [25], ABS is much less brittle.

The geometrical data are shown in Fig. 11(c). Fig. 11(d) depicts
the FE mesh with linear quadrilateral finite elements with a fine
discretization near the mid-cross-section and a coarser one far from
the perspective crack path. A preliminary mesh sensitivity analysis has
been performed for the PF simulations, considering 1614, 7076, or
13 984 finite elements using different degrees of refinement of the mesh
far from the mid cross-section. The numerical predictions were almost
unaffected by the resolution if the mid cross-section was properly
discretized. The discretization in 1614 FE has been considered for the
parameter identification issue to speed up computation time.

Force vs. mid-span displacement curves for the 15 tests are shown
in Fig. 12. It compares the experimental curves (left panel) with the
results of the numerical simulations (right panel) corresponding to the
identified best model parameters by the PSO algorithm. Again, the
following range of values has been considered 𝐸 ∈ {1100, 2900} MPa,
𝐺𝑐 ∈ {1.25, 13.8} N/mm, 𝑙𝑐 ∈ {0.25, 3.8} mm.

Table 3 collects all the identified parameters 𝐸, 𝐺𝑐 , and 𝑙𝑐 , with
their respective mean values and standard deviations. Results can now
be compared with the outcome of the identification performed on uni-
axial tensile tests of the same materials, and that was limited to two
model parameters, 𝐸 and 𝑙𝑐 . The identified Young modulus in the case
of three-point bending tests was 1153.07 ± 35.03 MPa, and it is very close
to the identified Young’s modulus from the uni-axial tensile tests, which
was estimated as 1157.90 ± 34.82 MPa. The identified fracture toughness
from three-point bending tests is 8.85 ± 1.94 N/mm, and it compares
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Fig. 5. Scatter representation of particles’ position for cases 4, 5, and 6 whose parameters are collected in Table 1.
well with the average value taken from the literature and is equal to
7.5 N/mm that was set for all the uni-axial tensile tests. On the other
hand, a significant discrepancy is observed as far as the internal length
scale parameter 𝑙𝑐 is concerned. The identified value from the three-
point bending tests is 0.346±0.157 mm, while from the uni-axial tensile
tests it was 1.336 ± 0.041 mm. In addition to being smaller, the scatter
also increased, as one can notice from the higher standard deviation
value. Henceforth, inverse analysis procedure is strongly recommended
to identify length scale parameters for different geometry loading test
problems [43].
7

5. Conclusion

The critical issue of model parameters’ identification for the phase
field approach to fracture has been systematically addressed in this
work. The proposed framework combines the heuristic identification
approach based on Particle Swarm Optimization (PSO) and the FE
implementation of the phase field (PF) approach to fracture, which has
effectively identified model parameters. Both formulations have been
implemented in MATLAB release 2020b in an ad hoc integrated FE
software. Still, the methodology is general and requires a FE solver
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Fig. 6. Scatter representation of particles’ position for cases 1, 2, and 3 whose parameters are collected in Table 1.
equipped with PF finite elements to be called by the PSO algorithm with
a set of model parameters. The outcome of the FE simulation, in terms
of the force–displacement curve, is again passed to the PSO algorithm,
which computes the cost function and updates the particle coordinates,
iterating the procedure till convergence. Therefore, any commercial FE
software could be triggered using the system command called by the
PSO algorithm.

The robustness of the proposed approach has been assessed in
relation to a series of benchmark tests numerically generated in silico,
8

i.e., by running a series of PF fracture simulations with known model
parameters. The PSO algorithm could accurately retrieve the known
input parameters from the identification procedure. In addition, the
comparison of the results of the PSO algorithm with those of the
TLBO algorithm shows that the PSO algorithm outperforms the TLBO
algorithm.

The methodology has been finally applied to the critical problem of
identifying the AT2 PF model parameters concerning real experimental
tests on ABS materials which display a spread of diffuse damage typical
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Fig. 7. Convergence study of the PSO algorithm for cases 4, 7, and 8, see Table 1.

Table 3
PSO identified 𝐸, 𝐺𝑐 and 𝑙𝑐 parameters for the 15 tests in Fig. 12, with their mean
and standard deviation values.

Test # 𝐸 (MPa) 𝐺𝑐 (N/mm) 𝑙𝑐 (mm)

1 1189.39 7.56 0.250
2 1189.67 7.56 0.250
3 1101.17 8.83 0.256
4 1173.92 7.18 0.251
5 1176.29 7.84 0.250
6 1158.87 8.29 0.252
7 1179.82 7.38 0.290
8 1178.73 7.37 0.291
9 1133.36 8.35 0.303
10 1100.58 12.28 0.649
11 1100.40 12.21 0.639
12 1167.95 7.63 0.250
13 1139.86 10.23 0.369
14 1113.41 12.40 0.642
15 1192.62 7.62 0.256

Mean 1153.07 8.85 0.346
Std. dev. (STD) 35.03 1.94 0.157

of a quasi-brittle material. First, the PSO-PF combined approach has
been applied to uni-axial tensile tests, identifying only 𝐸 and 𝑙𝑐 from the
experimental curve up to the decay of the peak load. The uni-axial tests
for this material cannot be used to assess the fracture energy, which
has been set equal to the average value taken from the literature since
the material undergoes strain localization with the crazing formation
and large deformation in the post-peak branch, a situation far from
fracture. The identification procedure has been repeated for sharp V-
notched samples tested under three-point bending. This time, all the
three model parameters (𝐸, 𝐺𝑐 , 𝑙𝑐) are identified since the post-peak
branch can be reasonably well simulated as a result of a propagating
crack.

The comparison between the identified parameters for the two test
geometries shows that estimating 𝑙𝑐 from uni-axial tensile tests and
applying it to other testing geometries can lead to wrong predictions.
To better highlight this result, we propose in Fig. 13 a comparison
between PF simulations for the two types of tests conducted with
different identified values of the internal length scale parameter: (𝑖)
identified values from uni-axial tests: 𝑙𝑐 = 1.37 mm, 𝐸 = 1157.90 MPa
and 𝐺𝑐 = 7.5 N/mm; (𝑖𝑖) identified values from notched three-point
bending tests: 𝑙𝑐 = 0.35 mm, 𝐸 = 1153.07 MPa and 𝐺𝑐 = 8.85 N/mm. The
value of 𝑙𝑐 affects both predictions in a significant manner. Therefore it
is highly recommended to perform model parameters’ identification for
the AT2 PF model in relation to meaningful test geometries for fracture
9

mechanics, not using uni-axial tensile tests to infer the value of phase
field parameters.

To summarize the work, the proposed algorithm quantitively tracks
the crack path phenomenon of the fracture problem. In addition, it also
captures numerically experimental force–displacement curve responses
by identifying phase field model parameters, which is a significant
challenge due to the high dependence on the PF internal length scale
parameter. Therefore PSO-PF numerically coupled algorithm provides a
qualitative insight into the fracture design problems in avoiding under
or overestimating critical structural limits of the load, which saves
computational time and the cost of the material.
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Appendix. Particle swarm optimization algorithm

Particle swarm optimization (PSO) is applied to a continuous spatial
domain where the cost function 𝛶 is minimized to converge swarm
particles in the solution space region to the optimized position. Let
us assume there are 𝑁𝑝 swarm particle size population in a ‘℘’ di-
mensional parametric space domain. 𝜒𝐢 ∶=

[

𝐱𝑖1, 𝐱𝑖2,… , 𝐱𝑖℘
]

, ⋁

𝐢 ∶=
[

𝐯𝑖1, 𝐯𝑖2,… , 𝐯𝑖℘
]

is the individual swarm particle’s position vector, ve-
locity vector respectively where 𝑖 = 1, 2,… , 𝑁𝑝 denotes the swarm
particle number. 𝐏𝐢 ∶=

[

𝐏𝑖1,𝐏𝑖2,… ,𝐏𝑖℘
]

is each swarm particle’s op-
timal position vector. 𝐏𝐠 ∶=

[

𝐏𝑔1,𝐏𝑔2,… ,𝐏𝑔℘
]

is the swarm global
optimum position vector considering all swarm particle’s.

In the main loop of PSO, at each iteration 𝐤, the position of each
particle is updated by first computing an updated velocity vector in the
℘ space region considering previous results in ℘ search space such as
velocity ⋁𝐤−𝟏

𝐢 (inertia influence), best-known position 𝐏𝐤−𝟏
𝐢 (cognitive

influence), swarm best known global position 𝐏𝐤−𝟏
𝐠 (social influence)

and PSO algorithm parameters 𝐖𝐢,𝐂𝐜,𝐒𝐜:
⋁𝐤

𝑖
= 𝐖𝐢 ×

⋁𝐤−𝟏
𝑖

+ 𝐂𝐜 × (𝐏𝐤
𝐢 − 𝜒𝐤

𝐢 ) + 𝐒𝐜 × (𝐏𝐤
𝐠 − 𝜒𝐤

𝐢 ) (A.1)

𝜒𝐤
𝐢 = 𝜒𝐤−𝟏

𝐢 +
⋁𝐤

𝑖
(A.2)

The local and global best particle positions are calculated by the
following equations

𝐏𝐤
𝐢 =

{

𝜒𝐤
𝐢 if 𝛶 (𝜒𝐤

𝐢 ) < 𝛶 (𝐏𝐤−𝟏
𝐢 )

𝐏𝐤−𝟏
𝐢 otherwise

(A.3)

𝐏𝐤
𝐠 =

{

𝐏𝐤
𝐢 if 𝛶 (𝐏𝐤

𝐢 ) < 𝛶 (𝐏𝐤−𝟏
𝐠 )

𝐏𝐤−𝟏
𝐠 otherwise

(A.4)
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Fig. 8. Comparison of performance of PSO and TLBO algorithms for parameters’ identification.

Fig. 9. Photo of the specimen, dimensions and boundary conditions, FE mesh.
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Fig. 10. Experimental and numerical simulation results identified (corresponding to the identified model parameters).

Fig. 11. Experiment specimen and geometrical details (in mm), loading, boundary condition, meshing details of a numerical model for three-point bending loading case.
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Fig. 12. Representation of experimental and numerical simulations of 15 force–displacement curve results.
Fig. 13. Comparison between numerical results with parameters identified: (i) from uni-axial tensile tests (𝑙𝑐 = 1.37 mm, 𝐸 = 1157.90 MPa, 𝐺𝐶 = 7.5 N/mm); (ii) from notched
three-point bending tests (𝑙𝑐 = 0.35 mm, 𝐸 = 1153.07 MPa, 𝐺𝐶 = 8.85 N/mm). The comparison highlights that it is necessary to identify the AT2 PF model parameters independently
for each type of test.
References

[1] P. Wawrzynek, A.R. Ingraffea, Interactive finite element analysis of fracture
processes: an integrated approach, Theor. Appl. Fract. Mech. 8 (1987) 137–150.

[2] M. Paggi, A. Carpinteri, On the stress singularities at multimaterial interfaces
and related analogies with fluid dynamics and diffusion, Appl. Mech. Rev. 61
(2) (2008) 020801, http://dx.doi.org/10.1115/1.2885134.

[3] J. Lemaitre, R. Desmorat, Engineering Damage Mechanics: Ductile, Creep, Fatigue
and Brittle Failures, Springer-Verlag, Berlin, 2005.

[4] Z. Bažant, T. Pijaudier-Cabot, Nonlocal continuum damage, localization
instability and convergence, J. Appl. Mech. 55 (1988) 287–293.

[5] M. Jirásek, Nonlocal models for damage and fracture: Comparison of approaches,
Int. J. Solids Struct. 35 (1998) 4133–4145.

[6] S. Forest, Micromorphic approach for gradient elasticity, viscoplasticity, and
damage, J. Eng. Mech. 135 (2009) 117–131.

[7] B. Dimitrijevic, K. Hackl, A regularization framework for damage-plasticity
models via gradient enhancement of the free energy, Int. J. Numer. Methods
Biomed. Eng. 27 (2011) 1199–1210.

[8] R. Peerlings, M. Geers, R. de Borst, B. W., A critical comparison of non
local and gradient-enhanced softening continua, Int. J. Solids Struct. 38 (2001)
7723—7746.

[9] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth
without remeshing, Internat. J. Numer. Methods Engrg. 46 (1999) 131–150.

[10] J. Dolbow, N. Moës, T. Belytschko, An extended finite element method for
modeling crack growth with contact, Comput. Methods Appl. Mech. Engrg. 190
(2001) 6825–6846.

[11] T. Fries, T. Belytschko, The extended/generalized finite element method: an
overview of the method and its applications, Internat. J. Numer. Methods Engrg.
84 (2010) 253–304.
12
[12] J. Simo, J. Oliver, F. Armero, An analysis of strong discontinuities induced by
strain-softening in rate-independent inelastic solids, Comput. Mech. 12 (1993)
277–296.

[13] C. Linder, F. Armero, Finite elements with embedded strong discontinuities for
the modeling of failure in solids, Internat. J. Numer. Methods Engrg. 72 (2007)
1391–1433.

[14] F. Armero, C. Linder, New finite elements with embedded strong discontinuities
for finite deformations, Comput. Methods Appl. Mech. Engrg. 198 (2008)
3138–3170.

[15] J. Oliver, A. Huespe, S. Blanco, D. Linero, Stability and robustness issues in
numerical modeling of material failure with the strong discontinuity approach,
Comput. Methods Appl. Mech. Engrg. 195 (2006) 7093–7114.

[16] G. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization
problem, J. Mech. Phys. Solids 46 (8) (1998) 1319–1342.

[17] L. Ambrosio, V. Tortorelli, Approximation of functional depending on jumps by
elliptic functional via 𝛤 -convergence, Comm. Pure Appl. Math. 43 (8) (1990)
999–1036.

[18] A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. R. Soc.
Lond. Ser. A 221 (1921) 163–198.

[19] B. Bourdin, G.A. Francfort, J.-J. Marigo, Numerical experiments in revisited
brittle fracture, J. Mech. Phys. Solids 48 (4) (2000) 797–826.

[20] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent
crack propagation: Robust algorithmic implementation based on operator splits,
Comput. Methods Appl. Mech. Engrg. 199 (45–48) (2010) 2765–2778.

[21] M. Ambati, T. Gerasimov, L. De Lorenzis, A review on phase-field models of
brittle fracture and a new fast hybrid formulation, Comput. Mech. 55 (2015)
383–405.

[22] K.D. Nguyen, C.-L. Thanh, H. Nguyen-Xuan, M. Abdel-Wahab, A hybrid phase-
field isogeometric analysis to crack propagation in porous functionally graded
structures, Eng. Comput. (2021) 1–21.

http://refhub.elsevier.com/S0167-8442(23)00268-9/sb1
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb1
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb1
http://dx.doi.org/10.1115/1.2885134
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb3
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb3
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb3
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb4
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb4
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb4
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb5
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb5
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb5
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb6
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb6
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb6
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb7
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb7
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb7
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb7
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb7
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb8
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb8
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb8
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb8
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb8
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb9
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb9
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb9
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb10
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb10
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb10
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb10
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb10
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb11
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb11
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb11
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb11
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb11
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb12
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb12
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb12
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb12
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb12
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb13
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb13
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb13
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb13
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb13
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb14
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb14
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb14
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb14
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb14
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb15
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb15
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb15
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb15
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb15
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb16
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb16
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb16
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb17
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb17
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb17
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb17
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb17
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb18
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb18
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb18
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb19
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb19
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb19
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb20
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb20
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb20
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb20
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb20
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb21
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb21
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb21
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb21
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb21
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb22
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb22
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb22
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb22
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb22


Theoretical and Applied Fracture Mechanics 127 (2023) 104005R.K. Tota and M. Paggi
[23] K.D. Nguyen, C.-L. Thanh, F. Vogel, H. Nguyen-Xuan, M. Abdel-Wahab, Crack
propagation in quasi-brittle materials by fourth-order phase-field cohesive zone
model, Theor. Appl. Fract. Mech. 118 (2022) 103236.

[24] K.D. Nguyen, C.E. Augarde, W.M. Coombs, H. Nguyen-Xuan, M. Abdel-Wahab,
Non-conforming multipatches for NURBS-based finite element analysis of higher-
order phase-field models for brittle fracture, Eng. Fract. Mech. 235 (2020)
107133.

[25] R. Cavuoto, P. Lenarda, D. Misseroni, M. Paggi, D. Bigoni, Failure through crack
propagation in components with holes and notches: An experimental assessment
of the phase field model, Int. J. Solids Struct. 257 (2022) 111798.

[26] L. Ambrosio, On the approximation of free discontinuity problems, Boll. Union.
Mat. Ital., B (7) (1992) 105–123.

[27] S. Burke, C. Ortner, E. Süli, An adaptive finite element approximation of a
generalized Ambrosio–Tortorelli functional, Math. Models Methods Appl. Sci. 23
(09) (2013) 1663–1697.

[28] E. Tanné, T. Li, B. Bourdin, J.-J. Marigo, C. Maurini, Crack nucleation in
variational phase-field models of brittle fracture, J. Mech. Phys. Solids 110
(2018) 80–99.

[29] T. Wu, B. Rosić, L. De Lorenzis, H.G. Matthies, Parameter identification for
phase-field modeling of fracture: a Bayesian approach with sampling-free update,
Comput. Mech. 67 (2021) 435–453.

[30] V. Carollo, D. Piga, C. Borri, M. Paggi, Identification of elasto-plastic and
nonlinear fracture mechanics parameters of silver-plated copper busbars for
photovoltaics, Eng. Fract. Mech. 205 (2019) 439–454.

[31] C. Miehe, M. Lambrecht, Algorithms for computation of stresses and elasticity
moduli in terms of Seth–Hill’s family of generalized strain tensors, Commun.
Numer. Methods. Eng. 17 (5) (2001) 337–353.

[32] B. Bourdin, G.A. Francfort, J.-J. Marigo, The variational approach to fracture, J.
Elasticity 91 (2008) 5–148.
13
[33] T.J. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite ele-
ments, NURBS, exact geometry and mesh refinement, Comput. Methods Appl.
Mech. Engrg. 194 (39–41) (2005) 4135–4195.

[34] D. Whitley, A genetic algorithm tutorial, Stat. Comput. 4 (1994) 65–85.
[35] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of

ICNN’95-International Conference on Neural Networks, Vol. 4, IEEE, 1995, pp.
1942–1948.

[36] R.V. Rao, V.J. Savsani, D. Vakharia, Teaching–learning-based optimization: a
novel method for constrained mechanical design optimization problems, Comput.
Aided Des. 43 (3) (2011) 303–315.

[37] R. Rao, Jaya: A simple and new optimization algorithm for solving constrained
and unconstrained optimization problems, Int. J. Ind. Eng. Comput. 7 (1) (2016)
19–34.

[38] M. Clerc, The swarm and the queen: towards a deterministic and adaptive par-
ticle swarm optimization, in: Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), Vol. 3, IEEE, 1999, pp. 1951–1957.

[39] R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in par-
ticle swarm optimization, in: Proceedings of the 2000 Congress on Evolutionary
Computation. CEC00 (Cat. No. 00TH8512), Vol. 1, IEEE, 2000, pp. 84–88.

[40] A.R. Torrado, C.M. Shemelya, J.D. English, Y. Lin, R.B. Wicker, D.A. Roberson,
Characterizing the effect of additives to ABS on the mechanical property
anisotropy of specimens fabricated by material extrusion 3D printing, Addit.
Manuf. 6 (2015) 16–29.

[41] J.-Y. Wu, A unified phase-field theory for the mechanics of damage and
quasi-brittle failure, J. Mech. Phys. Solids 103 (2017) 72–99.

[42] K. Pham, H. Amor, J.-J. Marigo, C. Maurini, Gradient damage models and their
use to approximate brittle fracture, Int. J. Damage Mech. 20 (4) (2011) 618–652.

[43] T.K. Mandal, V.P. Nguyen, J.-Y. Wu, Length scale and mesh bias sensitivity of
phase-field models for brittle and cohesive fracture, Eng. Fract. Mech. 217 (2019)
106532.

http://refhub.elsevier.com/S0167-8442(23)00268-9/sb23
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb23
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb23
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb23
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb23
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb24
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb24
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb24
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb24
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb24
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb24
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb24
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb25
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb25
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb25
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb25
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb25
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb26
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb26
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb26
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb27
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb27
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb27
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb27
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb27
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb28
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb28
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb28
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb28
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb28
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb29
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb29
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb29
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb29
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb29
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb30
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb30
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb30
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb30
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb30
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb31
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb31
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb31
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb31
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb31
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb32
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb32
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb32
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb33
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb33
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb33
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb33
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb33
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb34
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb35
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb35
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb35
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb35
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb35
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb36
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb36
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb36
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb36
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb36
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb37
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb37
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb37
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb37
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb37
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb38
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb38
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb38
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb38
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb38
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb39
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb39
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb39
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb39
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb39
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb40
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb40
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb40
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb40
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb40
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb40
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb40
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb41
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb41
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb41
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb42
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb42
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb42
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb43
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb43
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb43
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb43
http://refhub.elsevier.com/S0167-8442(23)00268-9/sb43

	A robust identification procedure for phase field fracture mechanics parameters
	Introduction
	The phase field approach to fracture
	The proposed parameters' identification procedure and benchmark tests
	Identification of material properties from experimental data of ABS co-polymers
	Uni-axial tensile tests
	Three-point bending tests

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix. Particle swarm optimization algorithm
	References


