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a b s t r a c t

Data-driven predictive control (DDPC) has been recently proposed as an effective alternative to
traditional model-predictive control (MPC) for its unique features of being time-efficient and unbiased
with respect to the oracle solution. Nonetheless, it has also been observed that noise may strongly
jeopardize the final closed-loop performance, since it affects both the data-based system representation
and the control update computed from the online measurements. Recent studies have shown that
regularization is potentially a successful tool to counteract the effect of noise. At the same time,
regularization requires the tuning of a set of penalty terms, whose choice might be practically difficult
without closed-loop experiments In this paper, by means of subspace identification tools, we pursue a
three-fold goal: (i) we set up a unified framework for the existing regularized data-driven predictive
control schemes for stochastic systems; (ii) we introduce γ -DDPC, an efficient two-stage scheme that
splits the optimization problem in two parts: fitting the initial conditions and optimizing the future
performance, while guaranteeing constraint satisfaction; (iii) we discuss the role of regularization
for data-driven predictive control, providing new insight on when and how it should be applied. A
benchmark numerical case study finally illustrates the performance of γ -DDPC, showing how controller
design can be simplified in terms of tuning effort and computational complexity when benefiting from
the insights coming from the subspace identification realm.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Data-driven control (DDC) refers to the science of learning
eedback controllers from data, without first undertaking a full
odeling study of the plant to control (Formentin, Van Heus-
en, & Karimi, 2014). Such a direct mapping of data onto the
ontrol action is indeed advisable in real-world problems, as
odeling usually takes about 75% of the time devoted to a
ontrol project (Gevers, 2005), and accurate modeling for control
equires significant time and several (costly) technical exper-
ises, e.g., in the process domain and in the statistical tools for
ystem identification. Additionally, accurate modeling may go
ell beyond what is strictly necessary for control purposes only,
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since often times rather limited knowledge of the system dy-
namics may be required to achieve the desired control objectives
(Hjalmarsson, 2005). Early attempts in the direction of DDC date
back to 1942, with the first studies by Ziegler and Nichols about
PID auto-tuning (Ziegler, Nichols, et al., 1942). More sophisti-
cated, optimization based, approaches have been derived since
then for fixed-order controller tuning, leading to a portfolio
of techniques suitable for different problem formulations, see,
e.g., Breschi and Formentin (2020), Formentin, Campi, Carè, and
Savaresi (2019), Formentin and Karimi (2012) and Karimi and
Kammer (2017). However, it is only recently that such a paradigm
shift in control design could be extended to more complex control
architectures, thanks to the availability of large datasets and
unparalleled computing power.

In this context lays the uprising interest in data-driven pre-
dictive control (DDPC) solutions, that combine the capability of
constraint handling of MPC with the flexibility of a data-driven,
nonparametric predictor of the system under control. By rely-
ing on the so-called ‘‘fundamental lemma’’ (Willems, Rapisarda,
Markovsky, & De Moor, 2005) (or variations of the latter), most of
existing DDPC techniques replace model equations with suitable
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ata-based constraints1 (see e.g., Berberich, Köhler, Müller, &
llgöwer, 2020; Coulson, Lygeros, & Dörfler, 2019). The transition
o this data-based framework may lead to different performance
han traditional model-based MPC, because of its unique fea-
ures. For instance, the sub-optimality gap measuring the control
erformance with respect to the optimal model-based solution
namely, that obtained using the real model of the system) van-
shes with the size of the dataset. Moreover, model-free predic-
ive control may indirectly address the bias/variance trade-off
n a more efficient manner. Indeed, it will not incur in the
symptotic bias induced by inaccurate modeling when complex-
ty constraints are imposed on the model structure, as discussed
n Krishnan and Pasqualetti (2021).

The shift from a model-based to a data-driven framework is
ell established in case of purely deterministic systems, whereas
any of the attempts made to counteract the effect of noise in

he presence of stochastic disturbances lead to approximations
hat may deteriorate the closed-loop performance. For instance,
n Berberich et al. (2020), the authors propose a regularized
DPC scheme, with guarantees of practical exponential stability
n closed loop in the presence of bounded additive output noise.
he key ingredients to achieve this result are two: (i) some
ounded slack variables to account for the noisy data used for
rediction, and (ii) some suitable regularization terms. In Alan-
ar, Stürz, and Johansson (2021), a slightly different scheme is
sed, which computes the data-driven reachable set based on a
atrix zonotope recursion starting from the measured output.
or this scheme, the authors show they can guarantee robust
onstraint satisfaction, again in case of bounded process and mea-
urement noises. The case of stochastic (white) measurement
oise is addressed in Yin, Iannelli, and Smith (2021), where a
aximum likelihood framework is proposed to estimate the data-
ased constraints aimed to replace the model equations in the
PC formulation. the resulting scheme is an iterative two-stage
pproach, where at each iteration first a model encoded by a
ata matrix constraint must be identified and then the online
redictive control is computed. An approach to handle stochastic
oise in the direct framework proposed in Berberich et al. (2020)
nd Coulson et al. (2019) is given in the recent paper (Dörfler,
oulson, & Markovsky, 2022). In this contribution, the authors ex-
loit regularization as the key tool to handle the presence of noise
n the output measurements, and empirically discuss the perfor-
ance of different regularization schemes. Approaches for DDPC
ith regularization are also shown to be distributionally robust

n Coulson, Lygeros, and Dörfler (2019). One of the regularized
chemes proposed in Dörfler et al. (2022) is then connected with
ubspace Predictive Control (SPC) (Favoreel, Moor, & Gevers, 1999)
by Fiedler and Lucia (2021), where the introduction of additional
slacks is further proposed to cope with noisy online data. Kalman
filter approaches have finally been suggested in Alpago, Dörfler,
and Lygeros (2020) to filter out the effect of noise in the context
of DeePC approaches.

In this paper, we consider a stochastic setting where both
measurement and process noise are considered. Within this
framework, our contribution is three-fold.

C1. By revising foundational results in subspace identifica-
tion, we show that the seminal regularized DDPC schemes
in Berberich et al. (2020), Dörfler et al. (2022) and Fiedler
and Lucia (2021) can all be recast into a unified framework,
stemming from the constrained counterpart of the SPC
scheme originally proposed in Favoreel et al. (1999).

1 Such constraints are an implicit, nonparametric, mapping of the in-
ut/output relationships. According to this interpretation, some researchers
egitimately prefer to denote the strategies described herein as ‘‘indirect’’. For
his reason, we will simply talk about data-driven predictive control from now
n.
2

C2. Based on this unified framework, we discuss how the
choice of key hyperparameters in Berberich et al. (2020),
Dörfler et al. (2022) and Fiedler and Lucia (2021) can
be guided by known results in subspace identification.
These insights potentially allow the final user to select
the regularization parameters in those schemes with less
closed-loop tests, while possibly allow one to avoid such
experiments if the available dataset is large.

C3. We show that the parameterization of the predictor and
the control input exploited to solve the DDPC problem
can be decomposed in three terms with specific roles.
This decomposition allows us to split the DDPC problem
into two sub-problems of smaller dimensions, respectively
devoted to: (i) fit the initial conditions embedded in the
input/output data streams collected online; (ii) optimize
performance in prediction, while avoiding constraint vio-
lations. The introduction of this two-stage scheme, which
we call γ -DDPC from now on, allows for a reduction in the
computational complexity of the overall DDPC formulation,
while providing the final user with a more transparent
overview of the main players of the control scheme.

y means of a benchmark numerical example, we show the
erformance of γ -DDPC and we validate the insights gained from
ubspace identification about the role of regularization, showing
ow the latter can be actively exploited to avoid (or at least

reduce the number of) the closed loop experiments needed to
tune the regularization weights through cross-validation.

The remainder of the paper is organized as follows. In Sec-
tion 2, we formally define the control problem of interest and
its data-driven counterpart. Section 3 reviews in detail subspace
identification concepts to give a deeper insight into the employed
system description, ultimately leading to the constrained SPC
formulation at the core of the unified framework for regularized
DDPC techniques presented in Section 4. In light of the preceding
analysis, Section 5 introduces γ -DDPC and discusses the role of
regularization in the data-driven control framework. The bench-
mark numerical example of Section 6 illustrates the effectiveness
of the γ -DDPC perspective in designing a satisfactory control
action. The paper is ended by some concluding remarks.

Notation. Matrices will be denoted with capitals (e.g. A), column
vectors will be denoted with lowercase letters (e.g. a). The trans-
pose of A will be denoted with A⊤; the notation A† will denote the
Moore–Penrose pseudo-inverse of A. Given deterministic (vector)
sequences a(t), b(t) the notation a(t) = O(b(t)) means that there
xist M and c < ∞ such that, for all t > M ,

∥a(t)∥ ≤ c∥b(t)∥. (1)

Similarly we say that a(t) = o(b(t)) if

lim
t→∞

∥a(t)∥
∥b(t)∥

= 0,

or, equivalently, that for all ϵ > 0, there exists M < ∞ such that,
for all t > M ,

∥a(t)∥ ≤ ϵ∥b(t)∥. (2)

Probabilistic versions of O(·) and o(·) (i.e., with conditions (1) and
(2) holding in probability) will be denoted by OP (·) and oP (·), see
e.g., van der Vaart (1998). Given a and b, we use the symbols ·

=

and ≜ to denote equality up to oP (1/
√
N) and up to OP (1/

√
N),

respectively. Namely

a ·
=b ⇐⇒ a = b + oP (1/

√
N), (3a)

a ≜ b ⇐⇒ a = b + OP (1/
√
N). (3b)
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ΠA[B] denotes the orthogonal projection of the (rows of the)
matrix B on the row span of the matrix A, i.e.,

ΠA[B] = BA⊤(AA⊤)†A.

Similarly ΠA,C [B] indicates the projection of B onto the row span
of A and C . Finally, given a signal w(k) ∈ Rs, we define the
associated Hankel matrix W[t0,t1],N ∈ Rs(t1−t0+1)×N as:

W[t0,t1],N :=
1

√
N

⎡⎢⎢⎣
w(t0) w(t0 + 1) · · · w(t0 + N − 1)

w(t0 + 1) w(t0 + 2) · · · w(t0 + N)
...

...
. . .

...

w(t1) w(t1 + 1) . . . w(t1 + N − 1)

⎤⎥⎥⎦ ,

(4)

while the shorthand Wt0 := W[t0,t0],N is used to denote the Hankel
containing a single row, namely:

Wt0 :=
1

√
N

[
w(t0) w(t0 + 1) · · · w(t0 + N − 1)

]
. (5)

2. Setting and goal

Consider an unknown discrete-time, linear time-invariant (LTI)
stochastic plant, whose behavior can always be described by the
so-called innovation-form equations{
x(t + 1) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t),

t ∈ Z (6)

where x(t) ∈ Rn, u(t) ∈ Rm and e(t) ∈ Rp are the state,
input and innovation process respectively, while y(t) ∈ Rp is the
corresponding output signal. Without loss of generality we shall
assume that (6) is minimal (i.e., reachable and observable).

Given a constant reference signal yr , a constant reference
input ur , and a control horizon T , the receding horizon predictive
control problem can be framed as follows:

minimize
u(k),k∈[t,t+T )

1
2

[
t+T−1∑
k=t

E
[
∥y(k) − yr∥2

Q

]
+ ∥u(k) − ur∥

2
R

]
(7a)

.t. x(k + 1) = Ax(k) + Bu(k) + Ke(k), k ∈ [t, t + T ), (7b)

y(k) = Cx(k) + Du(k) + e(k), k ∈ [t, t + T ), (7c)

x(t) = xinit , (7d)

u(k) ∈ U, E[y(k)] ∈ Y, k ∈ [t, t + T ), (7e)

where k ∈ Z, xinit is the state at time t , e(k) is a zero mean
noise with variance Var{e(k)}, the sets U , Y denote inputs and
output constraints, and the expectation E[·] is taken w.r.t. the
future noise sequence e(k), k ∈ [t, t + T ), and conditionally
on the initial state xinit and the future input trajectory uf :=

{u(k), k ∈ [t, t + T )}. The tunable symmetric weights Q ∈ Rp×p

and R ∈ Rm×m, with Q ⪰ 0 and R ≻ 0, have to be selected to
trade-off between tracking performance and the required control
effort. Our goal is to solve problem (7) when the systems matrices
A, B, C,D, K are not known and only a sequence of input output
data DNdata = {u(j), y(j)}Ndata

j=1 collected in open loop2 from system
(6) is available.

2.1. Features of the predictive control problem

We now elaborate on the optimization problem (7) and make
two important observations:

2 Extension to data collected in closed-loop is possible. Yet, for the sake of
xposition, its treatment is deferred to future publications.
3

1. Problem (7) can be equivalently formulated only in terms
of the so called ‘‘deterministic’’ part of the stochastic sys-
tem (6), i.e., the one depending only on the control input
and the initial state, but not on the noise e(k).

2. The initial state xinit at time t does not have to be available.
Indeed, it can be accounted for with arbitrary accuracy
based on a sufficiently long window of past input–output
observations.

To show that the first point holds, it is useful to rewrite the
control problem (7) exploiting the decomposition of second order
moments as the sum of squared means plus variance, i.e.,

E
[
∥y(k) − yr∥2

Q

]
= ∥E [y(k)] − yr∥2

Q

+ E
[
∥y(k) − E [y(k)] ∥2

Q

]  
independent of u(k)

Since the variance term E[∥y(k)−E[y(k)]∥2
Q ] is independent of the

input signal u(k), k ∈ [t, t+T ), only the conditional (given xini and
uf ) mean value of the output, namely yd(k) := E[y(k)] affects the
optimization problem. Denoting with xd(k) the conditional mean
of x(k), i.e. xd(k) := E[x(k)], it is straightforward to see that the
optimal control problem (7) can be equivalently recast as

minimize
u(k),k∈[t,t+T )

1
2

[
t+T−1∑
k=t

∥yd(k) − yr∥2
Q + ∥u(k) − ur∥

2
R

]
(8a)

.t. xd(k + 1) = Axd(k) + Bu(k), k ∈ [t, t + T ), (8b)

yd(k) = Cxd(k) + Du(k), k ∈ [t, t + T ), (8c)

xd(t) = xinit , (8d)

u(k) ∈ U, yd(k) ∈ Y, k ∈ [t, t + T ). (8e)

ven though only the ‘‘deterministic’’ part of the system in-
luences the optimal control problem, it is important to stress
hat measured data are indeed affected by noise. This should be
ccounted for when exploiting measured data DNdata to solve (8).
As it concerns the second observation, to prove its validity

e exploit the fact that (6) can be written in innovation (or
‘whitening’’ Chiuso & Picci, 2005) form. Accordingly, it holds that{
x(k + 1) = (A − KC)x(k) + Bu(k) + Ky(k)
e(k) = y(k) − Cx(k) + Du(k),

(9)

nd, for any ρ > 0, ρ ∈ Z,

(t) = (A − KC)ρx(t − ρ) +

ρ∑
p=1

[
Φpu(t − p) + Ψpy(t − p)

]
, (10)

here Φp = (A − KC)p−1B and Ψp = (A − KC)p−1K . By denoting
ith λmax the eigenvalues of A − KC of largest absolute value,
nder the (mild) assumption that the matrix A − KC is strictly
table, i.e., |λmax| < 1, we have that:

(t) = C
[
u−

t
y−

t

]
+ O(|λmax|

ρ)  
→0 for ρ→∞

(11)

where the O(·) term goes to zero exponentially; C stacks the
(reversed) controllability matrices Cu and Cy, i.e.,

=
[
Cu Cy

]
=

[
Φρ · · · Φ2 Φ1 Ψρ · · · Ψ2 Ψ1

]
,

nd

−

t :=

⎡⎢⎢⎣
u(t − ρ)

...

u(t − 2)

⎤⎥⎥⎦ , y−

t :=

⎡⎢⎢⎣
y(t − ρ)

...

y(t − 2)

⎤⎥⎥⎦ (12)
u(t − 1) y(t − 1)
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re noisy collections of past inputs and outputs. The relation in
11) thus guarantees that, up to O(|λmax|

ρ) terms, the initial state
an be uniquely reconstructed with a finite window of past data.

emark 1 (State/Data Relation). In the so-called ‘‘deterministic
ase’’, i.e., when there is no process/measurement noise in (6), the
tate at time t is a (deterministic) function of a finite past window
f input–output data, As such, ∃Cdet such that

(t) = Cdet

[
u−

t
y−

t

]
,

rovided ρ ≥ n. This is a trivial consequence of (10) and of the
bservability of the system.

emark 2 (Choice of ρ - Part I). In (subspace) system identifi-
ation, see e.g., Bauer (2005) and Chiuso (2007a, 2007b, 2010)
he quantity ρ, known also as the ‘‘past horizon’’, has to be
etermined from measured data trading off bias and variance.
ndeed, ρ should be large, so that the quantity O(|λmax|

ρ) can
e neglected, but a large ρ ultimately requires estimating larger
ample covariance matrices. A simple and effective way of de-
ermining ρ in a data-driven fashion is by using Akaike’s criterion
e.g., FPE) (Akaike, 1969), with the latter choice also guaranteeing
hat ∥(A − KC)ρ∥ = O(|λmax|

ρ) = oP (1/
√
Ndata). This is in contrast

ith common practice in the literature of DDPC where the length
of the past horizon is not linked to the eigenvalues of (A−KC),
ut rather it is generally chosen based on (e.g., an upper bound
f) the ‘‘order’’ n of the deterministic model. Finally, note that
A−KC) encodes information both on the deterministic dynamics
nd the noise properties. Hence, the choice of ρ is intimately
elated to the stochastic nature of the disturbances, a feature
ommonly neglected in DDPC schemes.

. DDPC formulation via subspace methods

In this Section, we exploit ideas from subspace identifica-
ion to recast Problem (8) in terms of observed input output
ata DNdata . The results in this section are standard in subspace
dentification and can be found in several references, see for in-
tance (Bauer, 2005; Bauer & Jansson, 2000; Chiuso, 2006, 2007a,
007b; Dahlén & Scherrer, 2004).
Let us first define the joint input/output process

(k) :=

[
u(k)
y(k)

]
,

nd introduce the shorthands for the ‘‘past’’ Hankel matrices,
amely,

P := U[0,ρ−1],N , YP := Y[0,ρ−1],N , ZP := Z[0,ρ−1],N (13)

nd the ‘‘future’’ ones, i.e.,

F :=U[ρ,ρ+T−1],N , YF := Y[ρ,ρ+T−1],N ,

EF := E[ρ,ρ+T−1],N (14)

ote that, once the lengths of both the ‘‘past’’ ρ and ‘‘future’’ T
re fixed, the number of columns N of the Hankel data matrices
s chosen in such a way that all the available data are exploited,
amely N := Ndata − T −ρ. Let us further introduce the extended
bservability matrix Γ ∈ RpT×n associated with the system in (6),
amely

=

⎡⎢⎢⎢⎢⎣
C
CA
CA2

...
T−1

⎤⎥⎥⎥⎥⎦ , (15)
CA
4

and the Toeplitz matrices Hd ∈ RpT×mT and Hs ∈ RpT×pT formed
with its Markov parameters, i.e.,

Hd =

⎡⎢⎢⎢⎢⎣
D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0
...

...
...

. . .
...

CAT−2B CAT−3B CAT−4B . . . D

⎤⎥⎥⎥⎥⎦ , (16a)

s =

⎡⎢⎢⎢⎢⎣
I 0 0 . . . 0
CK I 0 . . . 0
CAK CK I . . . 0

...
...

...
. . .

...

CAT−2K CAT−3K CAT−4K . . . I

⎤⎥⎥⎥⎥⎦ . (16b)

ased on (11) and provided ρ is chosen in a data-driven fashion
s discussed in Remark 2, Xρ can be written as

ρ = CuUP + CyYP  
:=CZP

+ (A − KC)ρ  
O(|λmax|ρ )

X0
·
= CZP , (17)

where ZP =
[
U⊤

P Y⊤

P

]⊤. The Hankel matrix of future outputs YF
thus satisfies the following:

YF = Γ Xρ + HdUF + HsEF
·
= CZP + HdUF + HsEF ,

(18)

which is the equation often considered as a starting point in sub-
space identification and control (Chiuso & Picci, 2005; Favoreel
et al., 1999; Van Overschee & De Moor, 1994). We can now
characterize the future noise EF according to the following.

Lemma 1 (Projection of Noise). For any fixed ρ in (12), it holds that

ΠZP ,UF (EF ) = Υ

[
ZP
UF

]
, (19)

where ∥Υ ∥ = OP

(
1

√
N

)
and ZP , UF are defined as in (13) and (14).

Proof. By definition,

ΠZP ,UF (EF ) = EF
[
Z⊤

P U⊤

F

] [[
ZP
UF

] [
Z⊤

P U⊤

F

]]−1

  
Υ

[
ZP
UF

]
,

so that

Υ = EF
[
Z⊤

P U⊤

F

]  
[Σ̂eF zP Σ̂eF uF ]

[[
ZP
UF

] [
Z⊤

P U⊤

F

]]−1

.

It is sufficient to observe that the term on the left-hand side
Σ̂eF zP and Σ̂eF uP are sample cross-covariances between future
innovations and past data (zP ) or future inputs uF , and thus con-
verge to zero in probability with rate 1

√
N
, whereas the rightmost

term converges to the input–output covariance matrix, which is
bounded away from zero thanks to the persistency of excitation
assumptions, see, e.g., Lemma 3 later.

This Lemma further allows us to characterize the future out-
puts YF as follows.

Lemma 2 (Projection of the Output). The projection ŶF := ΠZP ,UF (YF )
atisfies

ˆF = Γ X̂ρ + HdUF + HsΠZP ,UF (EF )

≜ Γ CZP + HdUF , (20)

where X̂ := Π (X ) ·
= CZ .
ρ ZP ,UF ρ P
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roof. The proof straightforwardly follows from the observation
hat the projection is a linear operator, by exploiting Lemma 1 on
he projection of the noise term and Eq. (17) on the approxima-
ion of the state using a finite set of past data.

Given the projected initial condition X̂ρ and the input UF ,
emma 2 establishes that the projected output ŶF equals the evo-
lution of the deterministic part of the system (6), up to OP (1/

√
N)

terms. This result is formalized in the following Theorem.

Theorem 1 (Output/Data Relation). Given any α ∈ RN , the vector
ŷdf := ŶFα satisfies the relation

ŷdf = Γ x̂d(t) + Hduf + OP

(
1

√
N

)
≜ Γ x̂d(t) + Hduf ,

(21)

here

ˆ
d(t) := X̂ρα

·
= CZPα = Czinit , (22a)

f :=

⎡⎢⎢⎣
u(t)

u(t + 1)
...

u(t + T − 1)

⎤⎥⎥⎦ = UFα, (22b)

and zinit := ZPα.

Proof. The proof is an immediate consequence of Lemma 2. In
fact, defining ŷdf := ŶFα and using Eq. (20), we have that

ŷdf := ŶFα ≜ Γ C ZPα
:=xinit

+Hd UFα
:=uf

.

The result in Theorem 1 should be read as follows. If the
sequence of past input–output u(k) and y(k) for k ∈ [t − ρ, t − 1]
equals zinit and the future inputs u(k) in the time window k ∈

[t, t + T − 1] (see (22b)) are given by uf , the corresponding
‘‘deterministic’’ output, i.e.,

ydf :=

⎡⎢⎢⎢⎣
yd(t)

yd(t + 1)
...

yd(t + T − 1)

⎤⎥⎥⎥⎦ ,

is a linear transformation through α of the projected future out-
puts ŶF , up to OP (1/

√
N) terms.

owards DDPC

For every pair of initial conditions and future inputs that can
e written as linear combinations of ZP and UF (see (13) and (14)),

Theorem 1 shows that one can compute the deterministic output
of (6) (up to OP (1/

√
N) terms) from a finite set input–output data

nly, without knowing the true system (6). Under the additional
ssumption that the training input u(t) has a full rank spectral

density matrix and the innovation process has positive definite
variance Var{e(t)} > 0,3 we can guarantee that the matrices ZP
and UF have full rank, so that any possible initial condition and
sequence of control inputs can be generated by linear combina-
tion of their columns. The following lemma formalizes this result.

3 Since the our purpose is not to discuss the weakest conditions under
hich the results of Theorem 1 can be generalized, here we make a sufficient
ssumption that is general enough for being widely applicable in practice.
5

Lemma 3 (Persistency of Excitation). If the input process has full
rank spectral density that is bounded away from zero and
Var{e(t)} > 0, then for any choice of ρ and T and provided N >

m + p)(ρ + T ), the block Hankel matrix

Zdata :=

[ZP
UF
YF

]
∈ R(m+p)(ρ+T )×N (23)

has full rank almost surely.

Proof. The proof is a direct consequence of the fact that, under
the stated assumptions, the joint spectral density matrix of the
input–output process z(t) := [u⊤(t) y⊤(t)]⊤ does not vanish on
the unit circle and, therefore, the intersection between the (joint)
past and input spaces contains only the zero random variable (see
e.g. Hannan and Poskitt (1988)). Thus, the Hankel matrix formed
with input output trajectories has full rank almost surely.

Under the latter, the result in Theorem 1 can be generalized
to all initial conditions and future inputs, as stated in the main
result of this Section.

Theorem 2 (Output/Data Relation - Generalized). Under the as-
sumptions in Lemma 3, given any (past) joint input and output
trajectory

zinit :=

⎡⎢⎢⎣
z(t − ρ)

...

z(t − 2)
z(t − 1)

⎤⎥⎥⎦ , (24)

nd any choice of the future control input

f :=

⎡⎢⎢⎣
u(t)

u(t + 1)
...

u(t + T − 1)

⎤⎥⎥⎦ , (25)

he corresponding ‘‘deterministic’’ output

d
f :=

⎡⎢⎢⎢⎣
yd(t)

yd(t + 1)
...

yd(t + T − 1)

⎤⎥⎥⎥⎦
atisfies:
d
f = ŶFα

⋆
+ OP (1/

√
N) ≜ ŶFα

⋆ (26)

where α⋆ is the minimum-norm solution of the system of linear
equations:[
zinit
uf

]
=

[
ZP
UF

]
α (27)

here ŶF := ΠZP ,UF (YF ).

roof. Under the assumption of Lemma 3, the matrix Zdata has
full rank and, therefore, ∀ zinit and uf , there exists α such that[
zinit
uf

]
=

[
ZP
UF

]
α. (28)

hus, exploiting Theorem 1, the corresponding deterministic out-
ut satisfies
d
f = ŶFα + OP (1/

√
N) ≜ ŶFα.

This is true for all possible solutions of (28), and in particular it
holds for its minimum-norm solution α∗.
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emark 3 (The Case of Deterministic Systems). The reader may
bserve that, when e(t) = 0 (that is the system is actually

deterministic), Lemma 3 does not hold. Indeed, for ρ > n, it
s well known (see, e.g., Moonen, De Moor, Vandeberghe, and
andewalle (1989)) that the Hankel matrix Zdata in (23) and ZP ∈

R(m+p)ρ×N in (27) have rank equal to

rank(Zdata) = n + m(ρ + T ) < (m + p)(ρ + T ),
rank(ZP ) = n + mρ < (m + p)ρ.

These relations are indeed the basis for the so-called ‘‘intersection
algorithms’’ in subspace identification, and also can be seen as
algebraic formulations of the well known ‘‘Willems’ fundamental
lemma’’ (Willems et al., 2005). Nonetheless, in this case, any finite
(deterministic) trajectory zinit of the system (6) belongs to the
column span of ZP . As such, provided that zinit is an ‘‘admissible’’
sequence of input/output pairs of the given deterministic system,
then (27) has a solution.

Based on the previous results, we are now ready to recast the
control problem (8) in a data driven fashion as follows:

minimize
uf

J
([

ydf
uf

])
(29a)

s.t. α⋆
=

[
ZP
UF

]† [
zinit
uf

]
, (29b)

ydf = ŶFα
⋆, (29c)

u(k) ∈ U, yd(k) ∈ Y, k ∈ [t, t + T ), (29d)

where

J
([

ydf
uf

])
=

1
2

[
t+T−1∑
k=t

∥yd(k) − yr∥2
Q + ∥u(k) − ur∥

2
R

]
, (29e)

and ŶF := ΠZP ,UF (YF ), while zinit and uf are defined as in (24)
and (25). Except for the use of a slightly different notation and
the introduction of constraints, the problem in (29) corresponds
to the Subspace Predictive Control (SPC) problem firstly formalized
in Favoreel et al. (1999).

4. A unified outlook on DDPC problems

Recent papers have discussed problems that are very similar to
(29), generally starting from a deterministic viewpoint, i.e., assum-
ing that e(t) = 0, ∀t in (6), and then coping with measurement
noise by introducing slack variables and regularization terms.
However, by reformulating these problems with our notation, we
will show that all of them can be cast into a unified framework.
In particular, we will show the connections among the problem
in (29), the one with slacks on the initial conditions proposed
in Fiedler and Lucia (2021, Section IV.B), the formulation tailored
to cope with bounded noise introduced in Berberich et al. (2020)
and that with elastic net regularization given in Dörfler et al.
(2022, Section IV.D).

4.1. SPC with slacks

Based on our notation, the SPC problem tackled in Fiedler
and Lucia (2021) to handle non-deterministic scenarios (with
measurement noise only) can be recast as follows:

minimize
uf ,σ⪰0

J
([

ydf
uf

])
+ λ∥σ∥

2
2 (30a)

s.t. α =

[
ZP
UF

]† ([
zinit
uf

]
+

[
σ

0

])
, (30b)

yd = Ŷ α, (30c)
f F b

6

u(k) ∈ U, yd(k) ∈ Y, k ∈ [t, t + T ), (30d)

here σ ∈ Rρ(m+p) is a slack variable to be optimized in order to
cope with noise on the data used to build zinit , while λ > 0 is a
tunable parameter.4 The role of the additional slack σ introduced
n (30) is linked to the results presented in Section 2.1 by the
ollowing proposition.

emma 4 (Asymptotic Regularization with Slacks). Assume that the
ost J(·) in (30a) is equal to (29e). Then the solution to problem (29)
oincides with the one of (30) when λ → ∞. Moreover, λ → ∞

s the optimal choice even for finite, but large, Ndata and ρ chosen
ccording to the Akaike’s criterion.

roof. The proof of the first statement is a direct consequence of
he formulations of the problems. The second claim straightfor-
ardly follows from (11) and Remark 2, showing that the error
ue to finite past is oP (1/

√
Ndata) (and thus can be neglected),

whereas the error due to finite Ndata in the projection (26) is
instead OP (1/

√
Ndata).

This additional insight on problem (30) provides a direct con-
nection between ρ and Ndata and the value of the slack variables
needed to counteract the effect of noise on the initial condi-
tions. Indeed, when ρ is selected according to Akaike’s criterion,
Remark 2 directly links the accuracy of the reconstructed state
with the dimension of the dataset. As such, for large Ndata, then
λ → +∞ is the optimal choice. This will be confirmed by the
simulation results reported in Section 6 (see Fig. 8(a)).

4.2. DDPC with bounded measurement noise

Let us now focus on a stochastic settings in which K = 0 in
(9), the measurement noise e(t) is bounded, namely ∥e(t)∥∞ ≤ ε̄,
and ε̄ is assumed to be known. In our framework, the regularized
problem proposed in Berberich et al. (2020) to tackle this scenario
can be rewritten as follows:

minimize
uf ,ydf ,α,σ

J
([

ydf
uf

])
+ λα ε̄∥α∥

2
2 + λσ ∥σ∥

2
2 (31a)

s.t.

⎡⎣zinit + 1yσinit
uf

ydf + σy

⎤⎦ =

[ZP
UF
YF

]
α, (31b)

[
u(k)
yd(k)

]
=

[
ur
yr

]
, k ∈ [t + T − ρ, t + T ), (31c)

u(k) ∈ U, yd(k) ∈ Y, k ∈ [t, t + T ), (31d)

∥σ∥∞ ≤ ε̄(1 + ∥α∥1), k ∈ [t, t + T ), (31e)

here

=

[
σinit
σy

]
∈ Rp(T+ρ), (31f)

s a vector of slacks accounting for the noise acting on the output
easurements used to build ZP and YF , while 1y is a selector

unction, introduced to add the slack only on the initial outputs
omprised in zinit . Note that, the constraint in (31c) is a terminal
ngredient introduced to guarantee practical stability and recur-
ive feasibility of the DDPC scheme, and the inequality in (31e) is
non-convex5 constraint that connects the slack variables to the
nown features of the measurement noise.

4 By considering a diagonal matrix Λ rather than a scalar λ, different weights
an be chosen for the slack acting on past inputs and outputs, like in the
ramework proposed in Fiedler and Lucia (2021).
5 The constraint in (31e) cannot be enforced without resorting to a non-

onvex optimization routine. Thus, the entity of the slack is practically contained
y a proper tuning of λ .
σ
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By recasting the robust DDPC formulation in Berberich et al.
(2020) within our framework, we now establish its relationship
with the constrained SPC scheme in (29) through the following
result, which shows that the formulation in Berberich et al. (2020)
complemented with an additional constraint on the slack vari-
able σy is equivalent to constrained SPC, for a suitable choice of
regularization parameters.

Theorem 3 (Regularization with Bounded Noise). Let the cost J(·) in
(31) be defined as in (29e) and the non-convex constraint in (31e) be
neglected. Assume that the SPC problem in (8) is augmented with the
terminal ingredient in (31c). Then, under the additional constraint
on the slack variable σy = YF (I − Π )α, where Π is the orthogonal
projector onto the column span of

[
Z⊤

P U⊤

F

]
, i.e.,

Π :=
[
Z⊤

P U⊤

F

] [
ZP
UF

]†

, (32)

the solutions of (29) with terminal constraints and (31) coincide for
λα ε̄ = 0 and λσ → ∞.

Proof. For λσ → ∞ and λα ε̄ = 0, (31) reduces to

minimize
uf ,ydf ,α,σ

J
([

ydf
uf

])
(33a)

s.t.

⎡⎣zinit + 1yσinit
uf

ydf + σy

⎤⎦ =

[ZP
UF
YF

]
α, (33b)

[
u(k)
yd(k)

]
=

[
ur
yr

]
, k ∈ [t + T − ρ, t + T ), (33c)

u(k) ∈ U, yd(k) ∈ Y, k ∈ [t, t + T ), (33d)

σ = 0, (33e)

where the constraint in (31e) can be replaced with (33e), inde-
pendently from ε̄. Let us now decompose the prediction model
in (31b) as follows:[
zinit
uf

]
+

[
1yσinit

0

]
=

[
ZP
UF

]
α, (34)

ydf + σy = YFα, (35)

and YF as YF := ŶF + ȲF , with ŶF = ΠZP ,UF (YF ) and ȲF =

YF −ΠZP ,UF (YF ). Leveraging on (33e), and the additional constraint

σy = YF (I − Π )α = 0,

the relations in (34) and (35) can be rewritten as:

α =

[
ZP
UF

]† [
zinit
uf

]
, (36)

ydf = YFα = YFΠα + YF (I − Π )α = YFΠα. (37)

Note that (36) corresponds to (29b) in the constrained SPC prob-
lem, whereas (37) implies that the predictor ydf = ŶFα, thus
concluding the proof.

The relationship established in Theorem 3 is consistent with
the empirical evidences on the role of λα ε̄ and λσ discussed
in Berberich et al. (2020, Section V). Although providing a guide-
line for the choice of these two hyperparameters, with the choice
of λα inherently connected with the noise bound ε̄, it is worth
stressing that this choice will be optimal asymptotically, i.e.,
when ρ is selected according to the Akaike’s criterion and Ndata →
∞.

7

4.3. DeePC with elastic net regularization

We now consider the problem with elastic net regularization
in Dörfler et al. (2022, Section IV.D), that we rewrite for the
control problem considered in this work by using our notation
as follows:

minimize
uf ,ydf ,α

J
([

ydf
uf

])
+ λ1∥α∥1 + λ2∥(I − Π )α∥p (38a)

s.t.

⎡⎣zinit
uf
ydf

⎤⎦ =

[ZP
UF
YF

]
α, (38b)

u(k) ∈ U, yd(k) ∈ Y, k ∈ [t, t + T ), (38c)

where Π has been defined in (32). The following proposition
provides the connection between the problem in (38) and the one
in (29).

Theorem 4 (SPC-based Regularization). Assuming the cost J(·) in
(38a) is equal to (29e), then the solution to problem (29) coincides
with the one of (38) for λ1 = 0 and λ2 → ∞.

Proof. For λ1 = 0 and λ2 → +∞, problem (38) reduces to

minimize
uf ,ydf ,α

J
([

ydf
uf

])
(39a)

s.t.

⎡⎣zinit
uf
ydf

⎤⎦ =

[ZP
UF
YF

]
α, ∥(I − Π )α∥ = 0 (39b)

u(k) ∈ U, yd(k) ∈ Y, k ∈ [t, t + T ). (39c)

In addition, by decomposing YF := ŶF+ỸF , where ŶF = ΠZP ,UF (YF ),
and ỸF = YF − ΠZP ,UF (YF ), we have that

ŶF = YFΠ ỸF = YF (I − Π ).

Then, when (I − Π )α = 0, we have

YFα = YFΠα + YF (I − Π )α = YFΠα = ŶFα.

This result not only shows the connection between the control
problem considered in this work and the regularized one pro-
posed in Dörfler et al. (2022), but it also puts the results shown
in Dörfler et al. (2022), where the role of λ1 and λ2 is evaluated
experimentally, into a rigorous frame. Note that, since the per-
formance of SPC is influenced by the choice of ρ in (11) and the
dimension of the Hankel matrix (specifically the number of its
columns N , see (21)), the choice of the regularization weights via
Theorem 4 is likely to be optimal when ρ is chosen according to
the Akaike’s criterion and Ndata → ∞ (i.e., N → ∞).

5. The γ-DDPC scheme

In this Section, we reformulate problem (29) by exploiting the
LQ decomposition of the Hankel data matrices. On the one hand,
this procedure leads to an even closer connection with subspace
identification. On the other, it allows us to parametrize the so-
lution to (29) in terms of a lower dimensional parameter vector.
We thus consider the LQ decomposition of the joint input–output
block Hankel matrix Zdata in (23), namely:[ZP
UF
YF

]
=

[L11 0 0
L21 L22 0
L31 L32 L33

][Q1
Q2
Q3

]
, (40)

where the matrices {Lii}3i=1 are all non-singular (under the as-
sumptions of Lemma 3) and Qi have orthonormal rows, i.e. i.e.,

⊤ ⊤
QiQi = I , for i = 1, . . . , 3, QiQj = 0, i ̸= j.
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First of all, let us observe that ŶF := ΠZP ,UF (YF ) in Lemma 2
can be expressed in terms of the LQ decomposition (40) as:

ŶF =
[
L31 L32

] [
Q1
Q2

]
. (41)

By exploiting (40) and (41), we can thus express the constraint in
(27) as follows:

zinit = ZPα = L11Q1α (42a)

uf = UFα =
[
L21 L22

] [
Q1
Q2

]
α, (42b)

where (42a) accounts for the initial condition of the predictive
control problem, whereas (42b) links the optimal α with the
control input. The predicted output in (26) can then be rewritten
as

ŷdf = ŶFα =
[
L31 L32

] [
Q1
Q2

]
α⋆, (43)

where α⋆ is the minimum-norm solution to (42).
We can now leverage on triangular structure of (42) to charac-

terize the minimum-norm solution α⋆. In particular, (42a) always
admits a solution (see Lemma 3 and Remark 3), that satisfies the
following property.

Lemma 5 (Definition of γ1). Let α⋆
init ∈ RN be the minimum-norm α

solving (42a). Then, by defining γ ⋆
1 ∈ R(m+p)ρ as the unique solution

of

zinit = L11γ1, (44)

α⋆
init can be written as α⋆

init = Q⊤

1 γ ⋆
1 , so that

α⋆
init ∈ colspan

(
Q⊤

1

)
.

Proof. Since ZP has full column rank, so does L11 and any solution
α to (42a) must satisfy

Q1α = L−1
11 zinit = γ ∗

1 .

The minimum-norm solution α∗

init can be found by as

α∗

init = Q †
1 γ ∗

1 = Q⊤

1 γ ∗

1 ,

thus concluding the proof.

Exploiting the definition of γ ⋆
1 in Lemma 5, the control se-

quence uf in (42b) can be equivalently written as

uf = L21γ ⋆
1 + L22γ2

γ2 = Q2α
(45)

Based on this representation, we can provide additional insights
on α⋆, through the following result.

Lemma 6 (Definition of γ2). Let α⋆
f ∈ RN indicate the minimum-

norm α solving (45). Accordingly, define γ ∗

2 ∈ RmT as the unique
solution of the least squares problem

L22γ2 = uf − L21γ ⋆
1 (46)

where γ ⋆
1 is defined in Lemma 5. Then α⋆

f can be written as:

α⋆
f = Q⊤

2 γ ⋆
2 , (47)

so that

α⋆
f ∈ colspan

(
Q⊤

2

)
.

Proof. Since the matrix [Z⊤

P U⊤

F ]
⊤ has full rank, also L22 has full

rank and is thus invertible. Any solution α to

u = L Q γ ∗
+ L Q α
f 21 1 1 22 2

8

must therefore satisfy

Q2α = L−1
22

[
uf − L21γ ∗

1

]  
:=γ ∗

2

.

and the minimum-norm solution is given by

α∗

f = Q †
2 L

−1
22

[
uf − L21γ ∗

1

]
= Q⊤

2 L−1
22

[
uf − L21γ ∗

1

]
= Q⊤

2 γ ∗

2 .

From Lemmas 5 and 6, we can then characterize the
minimum-norm parameter α of the whole behavioral model in
29b)–(29c) as follows.

heorem 5 (Decomposition of α⋆). Let α⋆
init ∈ RN and α⋆

f ∈ RN be
efined as in Lemmas 5 and 6, respectively. Then, they satisfy the
ollowing properties:

1. α⋆
init = Q⊤

1 γ ⋆
1 ;

2. α⋆
f = Q⊤

2 γ ⋆
2 ;

3. α⋆
init is orthogonal to α⋆

f ;
4. Q1α

⋆
f = 0 and Q2α

⋆
init = 0

5. Q3α
⋆
f = Q3α

⋆
init = 0.

herefore, α⋆
= α⋆

init + α⋆
f is the minimum-norm vector satisfying

he conditions:[
zinit
uf

]
=

[
ZP
UF

]
α⋆

=

[
L11 0
L21 L22

][
Q1
Q2

]
α⋆

=

[
L11 0
L21 L22

][
γ ⋆
1

γ ⋆
2

]
, (48a)

ˆ
d
f =

3∑
i=1

L3iQiα
∗

=

2∑
i=1

L3iQiα
∗

=

2∑
i=1

L3iγ ∗

i . (48b)

roof. Conditions 1 and 2 have been proved in Lemmas 5 and
respectively. Condition 3 and 4 are direct consequences of the

act that Q⊤

1 Q2 = 0. Finally, Condition 5 derives from the fact
hat Q⊤

3 Qi = 0, for i = 1, 2. It is also straightforward to verify
hat, indeed, α⋆

= α⋆
init + α⋆

f is a solution to (48). The fact that
t is the minimum-norm solution derives from the fact that α⋆

elongs to the column space of [Q⊤

1 Q⊤

2 ].

The properties highlighted above allow us to reformulate the
DPC problem as follows:

inimze
γ1,γ2

J
([

ydf
uf

])
(49a)

s.t.

⎡⎣zinit
uf
ydf

⎤⎦ =

[L11 0
L21 L22
L31 L32

][
γ1
γ2

]
, (49b)

u(k) ∈ U, yd(k) ∈ Y, k ∈ [t, t + T ), (49c)

here the cost is defined in (29e) and we reshape the predictor
ased on the properties of the minimum-norm α highlighted in
heorem 5.
By looking at (49), it can be easily noticed that the cost and

he value constraints in (49c) are independent of γ1. In turn, γ1 is
olely determined by the initial conditions zinit . As such, γ1 is not
proper optimization variable, but acts as a constraint that can
e explicitly solved by setting:
⋆
1 = L−1

11 zinit . (50)

By leveraging LQ-decomposition, the problem of matching
nitial conditions can thus be decoupled from that of designing
he optimal input. It is worth stressing once more that, according
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Fig. 1. Closed-loop validation tests: performance indexes vs. average signal-to-noise ratio (SNR) over 30 Monte Carlo predictors.
Algorithm 1 γ -DDPC at time t

Input: Matrices {Li,j}3i=1, j = 1, 2; penalties Q ⪰ 0, R ≻ 0; target
r ; constraint sets U and Y; initial conditions zinit .

1. Find γ ⋆
1 via (50);

2. Optimize γ2 by solving (51);
3. Construct uf according to (46);
4. Extract the first optimal input from uf .

Output: Optimal input u⋆(t).

to Lemma 5, γ ⋆
1 and γ2 found through (50) coincides with the ones

eading to the minimum-norm α satisfying the initial conditions.
The constrained optimization problem to be solved at each

ime instant thus results into a reduced problem on γ2 only, i.e.,

inimize
γ2

J
([

ydf
uf

])
(51a)

s.t.
[
uf
yf

]
=

[
L21 L22
L31 L32

][
γ ⋆
1

γ2

]
, (51b)

u(k) ∈ U, yd(k) ∈ Y, k ∈ [t, t + T ), (51c)

with γ1(t) fixed at the solution of (50).
According to this decomposition, we propose the γ -DDPC

scheme, summarized in Algorithm 1. Apart from inheriting the
properties of the predictor highlighted using the LQ decomposi-
tion with respect to noise handling, the γ -DDPC scheme is likely
o be computationally advantageous. Indeed, the dimension of the
ptimization variable γ2 ∈ RmT in (51) is likely to be considerably

smaller than the one of α ∈ RN . At the same time, retrieving γ1
equires the inversion of a matrix with dimensions dictated by
he chosen ρ.

Remark 4 (Choice of ρ (Part II)). The length of the ‘‘past’’ window
plays a pivotal role in shaping the performance of the predictive
controller. On the one hand, ρ should be chosen by following an
identification-oriented reasoning (see Remark 2). On the other,
a smaller ρ reduces the number of data needed to solve the
DDPC problem (Ndata := N + T + ρ), and it would result in a
computationally lighter DDPC problem. Its value has thus to be
selected by trading-off between these requirements.

5.1. Explaining regularization in DDPC

By looking at the DDPC problem from a different angle, the
results presented so far allow us to have a clearer vision on the
9

actual effect that additional regularization terms have on the op-
timal control action generated when solving (29). We stress that
the use of regularization is currently, by and large, the strategy
proposed by most of the literature to cope with stochastic noise
in DDPC.

The properties highlighted in Theorem 5 indicate that Q3α

should be set to zero, if one seeks to reduce the effect of noise on
the predictions exploited to determine the optimal control action.
At the same time, one should not excessively shrink the values of
Qiα, for i = 1, 2. While these two conflicting requirements on
α can be easily accommodated when decomposing the predictor
using the LQ decomposition, this operation is not as easy when
the predictor in (29b)–(29c) is used as it is. Indeed, in this last
case, one can only try shrink the whole vector α by introducing
a regularizer in the cost, as already proposed in Berberich et al.
(2020) and Dörfler et al. (2022). Although such procedure has
proven to be effective, the regularization strength has to be well
calibrated to trade-off between reducing the norm of α and
retaining the information needed to produce a meaningful control
action. In turn, achieving this balance requires the fine tuning
of the regularization penalty, representing a well-known draw-
back of regularization-based DDPC approaches. Indeed, existing
procedures generally require closed-loop experiments to calibrate
the regularization parameters, which can endanger the safety of
the plant, ultimately limiting the applicability of existing DDPC
strategies.

6. A benchmark case study

To assess the effectiveness of the proposed γ -DDPC scheme,
while validating the conclusions drawn in Section 5.1, we
consider the same benchmark example proposed in
Bemporad, Morari, Dua, and Pistikopoulos (2002). Therefore, the
unknown plant to be controlled is described by the following
model:⎧⎨⎩x(t + 1) =

[
0.7326 −0.0861
0.1722 0.9909

]
x(t) +

[
0.0609
0.0064

]
u(t) + Ke(t),

y(t) =
[
0 1.4142

]
x(t) + e(t),

(52)

where the innovation is set to be zero-mean and Gaussian dis-
tributed, while K ∈ R1×2 is randomly chosen according to a
normal distribution, with all the eigenvalues of A − KC being
inside the unit circle. By considering a prediction horizon of
length T = 40 and ρ = 23 (selected according to Remark 2),
we design the predictive controllers solving a zero regulation
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Fig. 2. Closed-loop validation tests (SNR = 18 dB): average (red) closed-loop response and inputs with their standard deviations (shaded area) over the 30 predictors
s. oracle noise-free MPC (black dashed lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)
t
w

Fig. 3. Closed-loop validation tests (SNR = 18 dB): performance indexes vs.
predictive strategy over 30 Monte Carlo predictors.

problem by running Algorithm 16 with Q = I , R = 10−3 and
yr = ur = 0, as in Bemporad et al. (2002). To have a quantitative
assessment of performance, for all closed-loop tests we consider
the following indexes:

J =

Tv−1∑
t=0

∥y(t)∥2
Q + ∥u(t)∥2

R, Ju =

Tv−1∑
t=0

u(t)2,

6 All tests have been carried out on an M1 chip, running MATLAB 2021a,
hile the optimization problems are solved with CVX (Grant & Boyd, 2008,
014).
10
Fig. 4. Closed-loop validation tests (SNR = 18 dB): absolute differences between
he performance indexes of γ -DDPC and the average values of those associated
ith the noisy oracle MPC vs. Ndata over 30 Monte Carlo predictors.
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Fig. 5. Closed-loop validation tests (SNR = 18 dB): absolute differences between the performance indexes of γ -DDPC and the average values of those associated
ith the noisy oracle MPC vs. length of the “past horizon” ρ over 30 Monte Carlo predictors.
Fig. 6. Closed-loop validation tests (SNR = 18 dB): absolute differences between the performance indexes of γ -DDPC and the average values of those associated
ith the noisy oracle MPC vs. penalties β on a 2-norm regularization on γ2 over 30 Monte Carlo predictors.
hat allow us to have a compact information on the tracking
erformance and the input effort in testing.
We initially focus on assessing the performance of the γ -DDPC

cheme introduced in Section 5. Firstly, we assess the sensitivity
f γ -DDPC to noise in the available batch of data DNdata . By pro-

gressively increasing the level of noise, we thus perform 30 Monte
Carlo simulations of length Ndata = 1000 with a random input se-
quence, uniformly distributed in the interval [−5, 5], to generate
different datasets. Closed-loop performance is then evaluated for
each predictive model and level of noise by using γ -DDPC to close
he control loop over tests of length Tv = 50, always starting from
the same initial condition. As shown in Fig. 1, both the perfor-
mance and control effort are quite consistent when the average
signal-to-noise ratio (SNR) is high. Instead, a slight degradation in
performance is experienced when the average noise corrupting
the data used to construct the predictor decreases, along with an
increase in the control effort required during closed-loop testing.
These results generally show that the proposed γ -DDPC strategy
allows the closed-loop system to track (on average) the reference,
in spite of the process and measurement noise affecting it. This
consideration is further confirmed by the results reported in
Fig. 2, where the closed-loop inputs and output attained with γ -
DDPC are compared with the ones obtained via an MPC designed
with the true system matrices (denominated from now on oracle
PC) within a noise-free setting.
 i

11
For a fixed level of noise, we then compare the closed-loop
performance achieved with Algorithm 1 with the ones attained
by designing an MPC with an identified model7 of the plant. To
this end, we keep the input/output structure of the predictor
by identifying both an autoregressive model with exogenous in-
puts (ARX) of order 23, an ‘‘oracle’’ autoregressive moving average
model with exogenous inputs (ARMAX) of order 2 and ARMAX
models with orders selected according to Remark 2.8 As shown in
Fig. 3, the use of all identified models tends to slightly deteriorate
performance, while requiring an additional control effort. The
main deterioration in performance is visible when the ARMAX
models are used to design the MPC. These results are example-
dependent and should not be generalized. However, we could
indeed conclude that in some cases it might be preferable to
use γ -DDPC over a identification+model-based control procedure.
We also evaluate how γ -DDPC performs when increasing Ndata
over noisy closed-loop tests. As shown in Fig. 4, the difference
between the overall cost and the required control effort tends
to decrease with the number of data, in line with established
results in system identification. Lastly, we assess the sensitivity

7 The model is identified via the prediction error method (Ljung, 1997).
8 The average order of the ARMAX models is 7, while its standard deviation

s 5.
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Fig. 7. Closed-loop validation tests (SNR = 18 dB): absolute differences between
he performance indexes of γ -DDPC and the average values of those associated
ith the noisy oracle MPC vs. penalties η on a 2-norm regularization on γ3 over
0 Monte Carlo predictors.

f γ -DDPC to the only free parameter of this scheme, namely ρ.
s shown in Fig. 5, the main changes due to different choices of
he “past horizon” are visible in the index assessing the control
ffort. In particular, excessively small values of ρ results into the
emand for a greater control effort than that required by the
racle MPC. By increasing ρ, the input effort required by γ -DDPC

tends to become aligned with that associated with the oracle
MPC, while slightly increasing again when ρ > 30. Note that Ju
gets the closest to the average input effort index of the oracle
MPC for ρ = 23, thus validating the choice we have automatically
performed through the Akaike’s criterion.

6.1. Effect of additional regularization on γ -DDPC

By keeping the level of noise acting on the batch and online
data, we now study the effect of an additional 2-norm regular-
ization on γ , with β > 0 indicating the associated penalty. As
2

12
shown in Fig. 6, the performance index J tends to be rather
insensitive to the additional regularization term up to a certain
value of β . However, when β increases sufficiently, performance
tends to deteriorate, while the input effort tends to consistently
increase with respect to the oracle MPC one. Since such a be-
havior is certainly undesirable, this result validates in this ex-
perimental case the claims in Section 5.1. Indeed, the additional
regularization leads to a deterioration of performance, likely to
be induced by the change that the regularization enforces on the
actual performance-oriented cost. To prove the effectiveness of
our structural choices, within the same framework we consider
the DDPC problem with the predicted output defined as

yf =

3∑
i=1

L3iγi,

and γ3 not set to zero beforehand, as in the proposed γ -DDPC
approach. In this case, γ3 is steered towards small values via an
addition of a 2-norm regularization term in the cost weighted
by η > 0. As shown in Fig. 7, only by heavily regularizing
γ3 we obtain performance comparable with the ones obtained
ith the oracle predictive controller. Specifically low η result in

an ineffective DDPC scheme, with the system actually operat-
ing in open-loop. These results once again show the expected
detrimental effect of poor choices of the regularization param-
eter, highlighting the advantages of embedding insights given
by subspace identification into the predictor used in the DDPC
scheme.

6.2. Validating results on regularized DDPC schemes

We now analyze the sensitivity of the three regularized DDPC
approaches considered in Section 4 to different choices of their
main tuning knobs, with the aim of experimentally validating
the results stemming from the derived unified framework. The
behavior of the performance indexes shown in Fig. 8 supports our
conclusions. Indeed, the SPC+slack scheme proposed in Fiedler
and Lucia (2021) tends to behave more closely to the oracle MPC
for growing λ. Meanwhile, the input sequence fed to the system
in closed loop tends to become equal to zero when λ is small,
concurrently causing a deterioration of the overall closed-loop
performance. As shown in Fig. 9, the choice of the regularization
parameters is crucial to attain satisfactory performance when
exploiting the approach proposed in Berberich et al. (2020), bal-
ancing the need to have a meaningful control action and the one
of rejecting noise. The attained behavior validates the conclusions
drawn in Section 4 with respect to the penalty λσ in (31). Indeed,
higher values of this weight tends to improve the overall perfor-
mance of the closed-loop. At the same time, since the dataset is
finite and noisy, the results in Fig. 9 highlight the importance of
regularization for this DDPC formulation. Moreover, these results
show that regularizing the whole parameter vector α, along with
introducing a set of slacks, requires a careful selection of both the
associated the regularization penalty. When compared with γ -
DDPC, even with the best possible tuning, the schemes presented
in Berberich et al. (2020) and Fiedler and Lucia (2021) result in
the worst average performance with respect to the oracle MPC
and a higher variability of the closed-loop behavior, see Fig. 10(a).
Note that, when the regularization penalty is properly tuned, the
introduction of the slack variables in (30) leads to an overall
control effort similar to the oracle input sequence. Lastly, Figs. 11
and 12 corroborate the conclusions drawn in Section 4. Indeed, it
is clear that larger values of λ2 and smaller λ1 lead to performance
that are comparable with that of the γ -DDPC. In particular, for
λ1 = 10−8, it is clear that λ2 has an effect similar to the one of η

nd that (as expected) it is advisable to set λ as large as possible.
2
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Fig. 8. Closed-loop validation tests (SNR = 18 dB): absolute differences between the performance indexes attained with Fiedler and Lucia (2021) and the average
alues of those associated with the noisy oracle MPC vs. penalties λ over 30 Monte Carlo predictors.
Fig. 9. Closed-loop validation tests (SNR = 18 dB): absolute differences between
he performance indexes attained with Berberich et al. (2020) and the average
alues of those associated with the noisy oracle MPC vs. penalties λ̄α = λα ε̄ and
σ over 30 Monte Carlo predictors.
13
Fig. 10. Closed-loop validation tests (SNR = 18 dB): absolute differences
between the average performance indexes attained with he noisy oracle MPC
and J and Ju obtained with γ -DDPC, and the SPC+slack scheme in (30) and
the regularized approach with slack in (31) with the best tuning over 30 Monte
Carlo predictors..

7. Conclusions

In this paper, exploiting subspace identification tools, we
have provided a unifying framework for several regularized data-
driven predictive control schemes proposed in the literature,
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Fig. 11. Closed-loop validation tests (SNR = 18 dB): absolute differences between the performance indexes attained with Dörfler et al. (2022) and the average values
of those associated with the noisy oracle MPC vs. penalties λ1 and λ2 over 5 Monte Carlo predictors.

Fig. 12. Average inputs for closed-loop validation tests (SNR = 18 dB): oracle (dashed black line) vs. average input (line) and standard deviation (shaded area) for
different values of λ1 and λ2 in (38) over 5 Monte Carlo predictors.

14
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howing that they can be seen as variations of subspace predictive
ontrol. This result extends the validity of these approaches
eyond scenarios in which only measurement noise affects the
ystem under control. As a by-product, we have discussed the role
f regularization, which is generally advocated in the literature
s a tool to extend deterministic ideas to the noisy setting. By
elying on the predictor decomposition proposed in the paper, we
ave further introduced the γ -DDPC problem, leading to a two-

stage scheme where the effect of initial conditions, performance
objectives and constraints is accounted for by solving two smaller
optimization problems. By means of a numerical example, we
show how the formulation at the core of γ -DDPC eases the
interpretation of the effect of different regularization terms on
the closed-loop behavior of the system, while validating the out-
come of our discussions about the selection of the regularization
penalties.

Future works will be devoted to the analysis of the closed
loop properties of γ -DDPC, and to extend the latter to explicitly
account for the error induced by the availability of a finite dataset.
In addition, we will analyze the impact of regularization when
regularized DDPC schemes are applied to nonlinear systems.
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