
Multi-agent structured optimization over message-passing architectures
with bounded communication delays

Puya Latafat, Panagiotis Patrinos

Abstract— We consider the problem of solving structured
convex optimization problems over a network of agents with
communication delays. It is assumed that each agent performs
its local updates using possibly outdated information from its
neighbors under the assumption that the delay with respect
to each neighbor is bounded but otherwise arbitrary. The pri-
vate objective of each agent is represented by the sum of two
possibly nonsmooth functions one of which is composed with a
linear mapping. The global optimization problem consists of the
aggregate of the local cost functions and a common Lipschitz-
differentiable function. In the case when the coupling between
agents is represented only through the common function, we
employ the primal-dual algorithm proposed by Vũ and Condat.
In the case when the linear maps introduce additional coupling
between agents a new algorithm is developed. In both cases
convergence is obtained under a strong convexity assumption.
To the best of our knowledge, this is the first time that this
form of delay is analyzed for a primal-dual algorithm in a
message-passing local-memory model.

I. INTRODUCTION

In this paper we consider a class of structured optimization
problems that can be represented as follows:

minimize
x∈IRn

f(x) +

m∑
i=1

(
gi(xi) + hi(Nix)

)
, (1)

where x = (x1, . . . , xm), Ni is a linear mapping, hi, gi are
proper closed convex (possibly) nonsmooth functions, and
f is convex, continuously differentiable with Lipschitz con-
tinuous gradient. The goal is to solve (1) over a network of
agents through local communications. Each agent is assumed
to maintain its own private cost functions gi and hi◦Ni, while
f and (possibly) the linear mappings Ni represent the cou-
pling between the agents. An important challenge in such a
network is the assumption that the agents have access to the
latest information required for their computations.

Most iterative algorithms for convex optimization can be
written as

xk+1 = xk − Txk, (2)

where the mapping Id − T (Id is the identity operator) has
some contractive property resulting in the convergence of
the sequence to a zero of T . In distributed optimization the

Puya Latafat1,2; Email: puya.latafat@{kuleuven.be,imtlucca.it}
Panagiotis Patrinos1; Email: panos.patrinos@esat.kuleuven.be
This work was supported by: FWO PhD fellowship 1196818N; FWO

projects: G086318N; G086518N; Fonds de la Recherche Scientifique –
FNRS and the Fonds Wetenschappelijk Onderzoek – Vlaanderen under EOS
Project no 30468160 (SeLMA)

1KU Leuven, Department of Electrical Engineering (ESAT-STADIUS),
Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium.

2IMT School for Advanced Studies Lucca, Piazza San Francesco 19,
55100 Lucca, Italy.

goal is to devise algorithms where a group of agents/pro-
cessors distributively update certain coordinates of x while
guaranteeing convergence to a zero of T .

There are two main computational models in distributed
optimization (depicted in Fig. 1) with a range of hybrid mod-
els in between [1, Chap. 1]. These models are conceptually
different and require different analysis. The model consid-
ered in this work is the local/private-memory model. Let us
first describe the two models.

Shared-memory model: This model is characterized by
the access of all agents/processors to a shared memory. A
large body of literature exists for parallel coordinate descent
algorithms for this problem. Typically, coordinate descent al-
gorithms would require a memory lock to ensure consistent
reading. Interesting recent works allow inconsistent reads [2],
[3]. In this model, for the fixed point iteration (2), each pro-
cessor reads the global memory and proceeds to choose a
random coordinate i ∈ {1, . . . ,m} and to perform

xk+1
i = xki − Tix̂k,

where x̂k denotes the data loaded from the global mem-
ory to the local storage at the clock tick k, and Ti repre-
sents the operator that updates the ith coordinate. This form
of updates are asynchronous in the sense that the proces-
sors update the global memory simultaneously resulting in
possibly inconsistent local copy x̂k due to other processors
modifying the global memory during a read. The analysis
of such algorithms would in general rely on either using
the properties of the operator that updates the ith coordinate
when possible (coordinate-wise Lipschitz continuity in the
case of the gradient [2]), or the properties of the global op-
erator (see [3] for nonexpansive operators). A crucial point
in the convergence analysis of such methods is the fact that
for a given processor, the index of the coordinate to be up-
dated is selected at random, but no matter which coordinate
is selected the same local data x̂k is used for the update.
Let T̂ix := (0, . . . , 0, Tix, 0 . . . , 0). Then in a randomized
scheme the operators T̂i can be summed over i:

m∑
i=1

T̂ix̂
k = T x̂k,

allowing one to use the properties known for the global op-
erator (see the proof of [3, Lem. 2]). As we discuss below,
the difficulty in the local-memory model is precisely due to
the fact that this summation no longer holds.

Local/private-memory model: In this model each agen-
t/processor has its own private local memory. The agents can
send and receive information to other agents as needed, and
agent i can only update xi. This model is also referred to as

mailto:puya.latafat@kuleuven.be
mailto:panos.patrinos@esat.kuleuven.be


 

Lo
ca

l/
p

ri
v
a
te

-m
e
m

o
ry

 m
o
d

e
l

Global memory

S
h
a
re

d
-m

e
m

o
ry

 m
o
d

e
l

Local storages

Fig. 1. The main two memory models; (left) agents cooperating to perform a task, (right) processors updating a global memory

message-passing model [1].
In the absence of delay between agents, randomized block-

coordinate updates may be used to develop distributed asyn-
chronous algorithms. Such schemes would typically involve
random independent activation of agents to perform their lo-
cal updates, and are in this sense also referred to as asyn-
chronous [4]–[7]. In this work we are only concerned with
the use of outdated information by the agents and do not
pursue this form of asynchrony.

In accordance with the notation of the seminal work [1,
Chap. 7] we define the following local (outdated) version of
the generic vector xk = (xk1 , . . . , x

k
m) used by agent i:

xk[i] :=
(
x
τ i
1(k)

1 , . . . , x
τ i
m(k)
m

)
, (3)

where τ ij(k) is the latest time at which the value of xj is
transmitted to agent i by agent j. In our setting the delay is
assumed to be bounded:

Assumption 1. There exists an integer B such that for all
k ≥ 0 the following holds

(∀i, j) 0 ≤ k − τ ij(k) ≤ B, and τ ii (k) = k.

The fact that each agent knows its own local variable with-
out delay is projected in the assumption τ ii (k) = k. This is
a natural assumption and is satisfied in practice. Notice that
for ease of notation we defined the complete outdated vector
while in practice each agent would only keep a local copy
of the coordinates that are required for its computation, see
Fig. 1. The direction of the arrows in Fig. 1 signify the na-
ture of the coupling between two agents. For example, the
arrow from A4 to A3 indicates that agent A3 requires x4 for
its computation. Such a relation between agents is depen-
dent on the formulation and the nature of coupling between
agents. For instance, in the minimization (1), the coupling is
represented through f and possibly Ni. As we shall see in
§II the coupling through f may be one sided since agent i
may require xj for computing ∇if (the partial derivative of
f with respect to xi) without agent j requiring xi.

In summary, each agent controls only one block of coor-

dinates and updates according to

xk+1
i = xki − Tixk[i],

the result of which will be sent (possibly with delay) to the
agents that require it in their computations. The difficulty in
this model comes from the impossibility of summing Tixk[i]
over all i given that xk[i] is different for each i.

In addition to the above described delay, the partially asyn-
chronous model considered in [1, Chap. 7] involves a second
assumption: each agent must perform an update at least once
during any time interval of a given length. Instead, we are
not concerned with asynchrony but rather with the use of
outdated information by the agents. We emphasize that de-
veloping partially asynchronous schemes for primal-dual al-
gorithms or randomized schemes that comply with the delay
model described in (3) remains a challenge.

In [1, Chap. 7.5] a partially asynchronous variant of the
gradient method is studied. This analysis is further extended
to the projected-gradient method in the convex case. In [8]
a periodic linear convergence rate is established for the
projected-gradient method. The recent work [9] extends this
analysis to the proximal-gradient method. Notice that the
aforementioned primal methods are not well equipped for
problems with more complex structures as in (1).

In this work we study two primal-dual algorithms for solv-
ing (1) in the presence of bounded communication delays.
Primal-dual proximal algorithms are a class of first-order
methods that are easy to implement, are parallelizable, and
yield the primal and dual solutions simultaneously. They are
able to exploit the structure in (1) efficiently, resulting in
fully split algorithms applicable to a wide range of applica-
tions. It is worth noting that while this paper focuses on two
particular primal-dual algorithms, a similar analysis should
be applicable to other primal-dual methods such as the ones
developed in [6], [10]–[13].

A. Main Contributions

• To the best of our knowledge this is the first work that con-
siders the general delay described in (3) for a primal-dual



algorithm. Unlike primal methods (gradient or proximal-
gradient), this scheme can be applied to solve problems
with complex structures as in (1) without the need to in-
vert matrices or to solve inner loops.

• The analysis of [1], [8], [9] rely on the use of the cost
as the Lyapunov function. In contrast, we show that un-
der the bounded delay assumption and some strong con-
vexity assumption, the generated sequence is quasi-Fejér
monotone provided that the stepsizes are sufficiently small.
Moreover, linear convergence is established with an ex-
plicit convergence factor.

• Two primal-dual algorithms are presented: (i) when the
coupling between agents is enforced only through f , the
algorithm of [14], [15] is considered, (ii) when the cou-
pling is enforced through f and the linear mapping a mod-
ified algorithm is developed which appears to be new. In
the second case due to the presence of additional coupling
smaller stepsizes must be used to ensure convergence.

B. Motivating Example

Consider the problem of formation control [16], where
each agent (vehicle) has its own private dynamics and cost
function and the goal is to achieve a specific formation while
communicating only with a selected number of agents. Let
wi = (ξi, vi) where ξi and vi denote the local state and input
sequences. The location of agent i is given by yi = Cξi
and the set of its neighbors is denoted by Ai. The linear
dynamics of each agent over a control horizon is represented
by the constraints Eiwi = bi. In order to enforce a formation
between agents i and j the quadratic cost function ‖C(ξi −
ξj) − dij‖2 is used where dij is the target relative distance
between them (refer to [16] for details). Hence, the formation
control problem is formulated as the following constrained
minimization:

minimize 1
2

m∑
i=1

∑
j∈Ai

‖C(ξi−ξj)−dij‖2 + 1
2

m∑
i=1

w>i Qiwi

subject to Eiwi = bi, i= 1,...,m

This problem can be easily cast in the form of (1) by set-
ting f equal to the first term, gi equal to the quadratic local
cost, hi the indicator of the point bi and the linear mapping
Ni = Ei. Therefore, the objective is to enforce a formation
between agents by solving this optimization problem in pres-
ence of communication delays by allowing the agents to use
outdated information. Notice that in this case the coupling
between agents is enforced only through f . This special case
of (1) is studied in §III.

C. Notation and Preliminaries

Throughout, IRn is the n-dimensional Euclidean space
with inner product 〈·,·〉 and induced norm ‖·‖. For a posi-
tive definite matrix P we define the scalar product 〈x,y〉P =
〈x,Py〉 and the induced norm ‖x‖P =

√
〈x,x〉P .

For a set C, we denote its relative interior by riC. Let q :
IRn→ IR := IR∪{+∞} be a proper closed convex function.
Its domain is denoted by domq. Its subdifferential is the

set-valued operator ∂q : IRn ⇒ IRn

∂q(x) = {y ∈ IRn | ∀z ∈ IRn,〈z−x,y〉+f(x)≤ f(z)}.
For a positive scalar ρ the proximal map associated with q
is the single-valued mapping defined by

proxρq(x) := argmin
z∈IRn

{q(z)+ 1
2ρ‖x−z‖

2}.

The Fenchel conjugate of q, denoted by q∗, is defined as
q∗(v) := supx∈IRn{〈v,x〉−q(x)}. The function q is said to
be µ-convex with µ≥ 0 if q(x)− µ

2 ‖x‖
2 is convex.

A sequence (wk)k∈IN is said to be quasi-Fejér monotone
relative to the set U if for all v ∈ U and all k ∈ IN

‖wk+1−v‖2 ≤ ‖wk−v‖2 +εk,

where (εk)k∈IN is a summable nonnegative sequence [17].
The positive part of x ∈ IR is denoted by [x]+ := max{x,0}.

II. PROBLEM SETUP

Throughout this paper the primal and dual vectors, denoted
x and u, are assumed to be composed of m blocks as follows

x= (x1,...,xm) ∈ IRn, u= (u1,...,um) ∈ IRr,

where xi ∈ IRni and ui ∈ IRri . Consider a linear mapping
L : IRn→ IRr that is partitioned as follows:

L=

L11 ··· L1m

...
. . .

...
Lm1 ··· Lmm

, (4)

where Lij : IRni → IRrj . Furthermore, the ith (block) row of
L is denoted by Li• : IRn→ IRri and the ith (block) column
by L•i : IRni → IRr, i.e.,

L=

L1•

...
Lm•

=
(
L•1 ··· L•m

)
.

The following holds

〈Lx,u〉=

m∑
i=1

〈Li•x,ui〉=

m∑
i=1

〈xi,L>•iu〉. (5)

Consider the structured optimization problem (1) where
the linear mapping Ni has been replaced by Li• defined
above in order to clarify the structure of the mapping:

minimize
x∈IRn

f(x)+

m∑
i=1

(
gi(xi)+hi(Li•x)

)
. (6)

The cost functions gi and hi ◦Li• are private functions be-
longing to agent i. The coupling between agents is through
the smooth term f and the linear term Li•x. An agent i is
assumed to have access to the information required for its
computation, be it outdated, cf. Algorithms 1 and 2.

Let the following assumptions hold

Assumption 2.
(i) For i= 1,...,m, gi : IRni → IR, hi : IRri → IR are

proper closed convex functions, and Li• : IRn→ IRri

is a linear mapping.

(ii) f : IRn→ IR is convex, continuously differentiable, and
∇f is β-Lipschitz continuous for some nonnegative β:

‖∇f(x)−∇f(x′)‖ ≤ β‖x−x′‖, ∀x,x′ ∈ IRn.



(iii) For every i= 1,...,m there exists a nonnegative con-
stant β̄i such that for all x,x′ ∈ IRn satisfying xi = x′i:

‖∇if(x)−∇if(x′)‖ ≤ β̄i‖x−x′‖. (7)

(iv) The set of solutions to (6) is nonempty.

(v) (Constraint qualification) There exists xi ∈ ridomgi,
for i= 1,...,m such that Lj•x ∈ ridomhj , for j =
1,...,m.

Assumption 2(iii) quantifies the strength of the coupling
(through f ) between agents [1, Sec. 7.5]. In particular, if f is
separable, i.e., f(x) =

∑m
i=1fi(xi), then there is no coupling

and β̄i = 0.
Problem (6) can be compactly represented as

minimize
x∈IRn

f(x)+g(x)+h(Lx),

where g(x) =
∑m
i=1gi(xi), h(u) =

∑m
i=1hi(ui), and L is as

in (4). The dual problem is given by

minimize
u∈IRr

(g+f)∗(−L>u)+h∗(u).

Under the constraint qualification of Assumption 2(v), the
set of solutions to the dual problem is nonempty and the
duality gap is zero [18, Cor. 31.2.1]. Furthermore, x? is a
primal solution and u? is a dual solution if and only if the
pair (x?,u?) satisfies{

0 ∈ ∂g(x?)+∇f(x?)+L>u?,
0 ∈ ∂h∗(u?)−Lx?. (8)

Such a point is called a primal-dual solution and the set of
all primal-dual solutions is denoted by S.

Let us define a few parameters used throughout the paper.
For each agent i ∈ {1,...,m} define the positive stepsizes γi,
σi that are associated with the primal and the dual variables,
respectively. Moreover set

β̄ :=
(
β̄1,...,β̄m

)
,

Γ := blkdiag(γ1In1
,...,γmInm

),

Σ := blkdiag(σ1Ir1 ,...,σmIrm).

Applying the algorithm of Vũ and Condat [14], [15] to (6),
with stepsize matrices Σ and Γ as defined above, results in
the following updates for agent i at iteration k:

xk+1
i = proxγigi

(
xki −γiL>•iuk−γi∇if(xk)

)
(9a)

uk+1
i = proxσih∗

i

(
uki +σiL•i(2x

k+1−xk)
)
. (9b)

Notice that each agent requires the latest variables xk, xk+1

and uk in the above updates, which may not be available due
to communication delays. In the next section we consider
the case when L is block-diagonal. The case of general L is
studied in Section IV where a modified primal-dual algorithm
is proposed in place of (9) to allow for a larger stepsize in
this case.

III. THE CASE OF BLOCK-DIAGONAL LINEAR MAPPING

Throughout this section we assume that the linear mapping
L has a block-diagonal structure. Therefore, the coupling
between agents is enacted only through the smooth function
f . The example of formation control in Section I-B is of this
structure.

Under this assumption problem (6) becomes

minimize
x∈IRn

f(x)+

m∑
i=1

(
gi(xi)+hi(Liixi)

)
,

where Lii is the ith diagonal block of L, see (4). Given this
diagonal structure, in the updates (9), agent i must receive
those xj’s that are required for the computation of ∇if and
all other operations are local. Let us define the set of agents
that are required to send their variable to i as follows:

N in
i := {j | ∇if depends on xj},

and the set of j’s that agent i must send xi to as N out
i :=

{j | i ∈N in
j }.

Algorithm 1 summarizes the proposed scheme for this
problem. At every iteration each agent i performs the up-
dates described in (9) using the last information it has re-
ceived from agents j ∈N in

i . It then transmits the updated
xk+1
i to the agents that require it (possibly with delay). Note

that xk[i] was defined as the outdated version of the full vec-
tor xk for simplicity of notation, and in practical implemen-
tation it would only involve the coordinates that are required
for the computation of ∇if .

Algorithm 1 Vũ-Condat algorithm with bounded delays
Initialize: x0i ∈ IRni , u0i ∈ IRri for each i ∈ {1,...,m}.

for k = 0,1,... do
for each agent i= 1,...,m do

– perform the local updates using the last received
information, i.e., using the locally stored vector xk[i]
as defined in (3):

xk+1
i = proxγigi

(
xki −γiL>iiuki −γi∇if(xk[i])

)
uk+1
i = proxσih∗

i

(
uki +σiLii(2x

k+1
i −xki )

)
– send xk+1

i to all j ∈N out
i (possibly with different

delays)

As shown in Theorem 1, for small enough stepsizes the
generated sequence converges to a primal-dual solution un-
der the bounded delay assumption, and provided that func-
tions gi are strongly convex. Such needed requirements are
summarized below:

Assumption 3. For i= 1,...,m

(i) (Strong convexity) gi is µig-convex for some µig > 0.
(ii) (Convergence condition) The stepsizes σi,γi > 0 sat-

isfy the following assumption:

γi <
1

σi‖Lii‖2 +β+ B2

2 ‖β̄‖
2
M−1

g

, (10)

where
Mg = blkdiag

(
µ1
gIn1 ,...,µ

m
g Inm

)
. (11)

Notice that according to Assumption 3(ii) we require a one
time global communication of ‖β̄‖M−1

g
and β when initiating

the algorithm.
Before proceeding with the convergence results, let us de-

fine the following

P :=

(
Γ−1 −L>
−L Σ−1

)
. (12)



Noting that Σ,Γ are positive definite, and using Schur com-
plement we have that P is positive definite if and only if
Γ−1−L>ΣL is positive definite, a condition that holds if
(10) is satisfied (since L has a block-diagonal structure).

Our analysis in Theorem 1 relies on showing that the gen-
erated sequence is quasi-Fejér monotone relative to the set
of primal-dual solutions in the space equipped with the in-
ner product 〈·,·〉P . Notice that without communication delays
(B ≡ 0), this analysis leads to the usual Fejér monotonicity
of the sequence. The use of outdated information introduces
additional error terms that are shown to be tolerated by the
algorithm if the stepsizes are small enough and the functions
gi are strongly convex.

The proof of Theorem 1 can be found in [19].

Theorem 1. Consider Algorithm 1 and let Assumptions 1
to 3 hold. Then the sequence (zk)k∈IN is quasi-Fejér mono-
tone relative to S in the space equipped with the inner prod-
uct 〈·,·〉P . Furthermore, (zk)k∈IN converges to some z? ∈ S .

IV. THE CASE OF GENERAL LINEAR MAPPING

In this section we consider the general optimization prob-
lem (6) where additional coupling is present through the lin-
ear maps, i.e., L is not block-diagonal. We consider a modi-
fied primal-dual algorithm that resembles (9) with the differ-
ence that in the dual update the linear map Li• operates on
xk[i] in place of 2xk+1[i]−xk[i]. This modification results
in the possibility of using larger stepsizes since the terms
2xk+1[i]−xk[i] would introduce additional sources of error.

Let us define the following two sets:

Mp
i := {j | Lji 6= 0}, Md

i := {j | Lij 6= 0},
where 0 denotes a zero matrix of appropriate dimensions. In
Algorithm 2, due to the additional coupling through the linear
maps, the primal vector of agent i must be transmitted to all
j ∈Mp

i ∪N out
i while the dual vector is to be transmitted to

all j ∈Md
i . Notice that the outdated primal and dual vectors

xk[i] and uk[i], need not have the same delay pattern and
are arbitrary as long as Assumption 1 is satisfied, i.e., agent
i may use the primal vector xk1j and the dual vector uk2j
transmitted by j at times k1 and k2.

Algorithm 2 A primal-dual algorithm with bounded delays
Initialize: x0i ∈ IRni , u0i ∈ IRri for each i ∈ {1,...,m}.

for k = 0,1,... do
for each agent i= 1,...,m do

– perform the local updates using the last received
information, i.e., using the locally stored vectors xk[i]
and uk[i] as defined in (3):

xk+1
i = proxγigi

(
xki −γiL>•iuk[i]−γi∇if(xk[i])

)
uk+1
i = proxσih?

i

(
uki +σiLi•x

k[i]
)

– send xk+1
i to all j ∈N out

i ∪Mp
i , and uk+1

i to all
j ∈Md

i (possibly with different delays)

In Theorem 2 convergence is established for Algorithm 2
when the stepsizes are small enough, under the assumption

that the functions gi are strongly convex and hi are continu-
ously differentiable with Lipschitz continuous gradient. We
summarize these requirements below:

Assumption 4. For all i= 1,...,m:
(i) (Strong convexity) gi is µig-convex for some µig > 0.

(ii) (Lipschitz continuity) hi is continuously differentiable,
and ∇hi is 1

µi
h

-Lipschitz continuous for some µih > 0.
Equivalently, h∗i is µih-convex.

(iii) (Convergence condition) The stepsizes σi,γi > 0 sat-
isfy the following inequalities

σi <
1

Cs(B+1)2
, γi <

1

β+ 1
2Rs(B+1)2 +B2‖β̄‖2

M−1
g

,

where

Rs :=

m∑
i=1

1
µi
h

‖Li•‖2, Cs :=

m∑
i=1

1
µi
g
‖L>•i‖2. (13)

Notice that by Assumption 4(iii) we require a one time
global communication of Rs, Cs, β and ‖β̄‖M−1

g
.

Let us define the following positive definite matrix that is
used in the convergence analysis

D :=blkdiag(Γ−1,Σ−1). (14)

We proceed with the convergence results for Algorithm 2.
The proofs of Theorems 2 and 3 can be found in [19].

Theorem 2. Consider Algorithm 2 and let Assumptions 1,
2 and 4 hold. Then the sequence (zk)k∈IN is quasi-Fejér
monotone relative to S in the space equipped with 〈·,·〉D.
Furthermore, (zk)k∈IN converges to some z? ∈ S .

Next theorem provides a sufficient condition for the step-
sizes under which linear convergence is attained.

Theorem 3 (Linear convergence). Consider Algorithm 2 and
let Assumption 1, 2, 4(i) and 4(ii) hold. Let c be a positive
scalar and set γi = c

µi
g
,σi = c

µi
h

for i= 1,...,m. Let µmin
g =

min
{
µ1
g,...,µ

m
g

}
, µmin

h = min
{
µ1
h,...,µ

m
h

}
. Suppose that

the following holds:

c≤ (1+c2)
1

B+1 −1,

where

c2 = min

{
µmin
g

2B‖β̄‖2
M−1

g
+Rs(B+1)+β

,
µmin
h

2Cs(B+1)

}
.

Then the following linear convergence rate holds

‖zk−z?‖2 ≤
(

1
1+c

)k‖z0−z?‖2.
V. CONCLUSION & FUTURE WORKS

In this paper we considered the application of primal-dual
algorithms for solving structured optimization problems in a
message-passing network model. It is shown that the com-
munication delay is tolerated by the considered algorithms
provided that the stepsizes are small enough, and that some
strong convexity assumption holds. Future work consists of
extending the convergence analysis to the partially asyn-
chronous framework. Another research direction is to devise
randomized schemes where in addition to the use of outdated



information, the agents would wake up at random indepen-
dently from one another.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed compu-
tation: numerical methods. Prentice-Hall, 1989, vol. 23.

[2] J. Liu and S. J. Wright, “Asynchronous stochastic coordinate descent:
Parallelism and convergence properties,” SIAM Journal on Optimiza-
tion, vol. 25, no. 1, pp. 351–376, 2015.

[3] Z. Peng, Y. Xu, M. Yan, and W. Yin, “ARock: An algorithmic frame-
work for asynchronous parallel coordinate updates,” SIAM Journal on
Scientific Computing, vol. 38, no. 5, pp. A2851–A2879, 2016.

[4] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous dis-
tributed optimization using a randomized alternating direction method
of multipliers,” in 52nd IEEE Conference on Decision and Control,
2013, pp. 3671–3676.

[5] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-
dual algorithm and application to distributed asynchronous optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp.
2947–2957, Oct 2016.

[6] P. Latafat, N. M. Freris, and P. Patrinos, “A new randomized block-
coordinate primal-dual proximal algorithm for distributed optimiza-
tion,” arXiv preprint arXiv:1706.02882, 2017.

[7] J.-C. Pesquet and A. Repetti, “A class of randomized primal-dual algo-
rithms for distributed optimization,” Journal of Nonlinear and Convex
Analysis, vol. 16, no. 12, pp. 2453–2490, 2015.

[8] P. Tseng, “On the rate of convergence of a partially asynchronous
gradient projection algorithm,” SIAM Journal on Optimization, vol. 1,
no. 4, pp. 603–619, 1991.

[9] Y. Zhou, Y. Liang, Y. Yu, W. Dai, and E. P. Xing, “Distributed proxi-
mal gradient algorithm for partially asynchronous computer clusters,”
Journal of Machine Learning Research, vol. 19, no. 19, pp. 1–32,
2018.

[10] P. L. Combettes and J.-C. Pesquet, “Primal-dual splitting algorithm
for solving inclusions with mixtures of composite, Lipschitzian, and
parallel-sum type monotone operators,” Set-Valued and Variational
Analysis, vol. 20, no. 2, pp. 307–330, 2012.

[11] L. M. Briceño-Arias and P. L. Combettes, “A monotone + skew split-
ting model for composite monotone inclusions in duality,” SIAM Jour-
nal on Optimization, vol. 21, no. 4, pp. 1230–1250, 2011.

[12] Y. Drori, S. Sabach, and M. Teboulle, “A simple algorithm for a class
of nonsmooth convex-concave saddle-point problems,” Operations Re-
search Letters, vol. 43, no. 2, pp. 209–214, 2015.

[13] P. Latafat and P. Patrinos, “Asymmetric forward–backward–adjoint
splitting for solving monotone inclusions involving three operators,”
Computational Optimization and Applications, pp. 1–37, 2017.

[14] L. Condat, “A primal-dual splitting method for convex optimization in-
volving Lipschitzian, proximable and linear composite terms,” Journal
of Optimization Theory and Applications, vol. 158, no. 2, pp. 460–479,
2013.

[15] B. C. Vũ, “A splitting algorithm for dual monotone inclusions involv-
ing cocoercive operators,” Advances in Computational Mathematics,
vol. 38, no. 3, pp. 667–681, 2013.

[16] R. L. Raffard, C. J. Tomlin, and S. P. Boyd, “Distributed optimization
for cooperative agents: application to formation flight,” in 43rd IEEE
Conference on Decision and Control, vol. 3, 2004, pp. 2453–2459.

[17] P. L. Combettes, “Quasi-Fejérian analysis of some optimization algo-
rithms,” Studies in Computational Mathematics, vol. 8, pp. 115–152,
2001.

[18] R. Rockafellar, Convex analysis. Princeton University Press, 1997.
[19] P. Latafat and P. Patrinos, “Multi-agent structured optimization over

message-passing architectures with bounded communication delays,”
arXiv preprint arXiv:1809.07199, 2018.


	Introduction
	Main Contributions
	 Motivating Example
	Notation and Preliminaries

	Problem Setup
	The Case of Block-Diagonal Linear Mapping
	The Case of General Linear Mapping
	Conclusion & Future Works
	References

