
Information Sciences 626 (2023) 275–292
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins
Active learning for regression by inverse distance weighting
https://doi.org/10.1016/j.ins.2023.01.028
0020-0255/� 2023 Elsevier Inc. All rights reserved.

E-mail address: alberto.bemporad@imtlucca.it
Alberto Bemporad
IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, 55100 Lucca, Italy

a r t i c l e i n f o
Article history:
Received 27 October 2022
Received in revised form 13 December 2022
Accepted 2 January 2023
Available online 6 January 2023

Keywords:
Active learning (AL)
Inverse distance weighting
Pool-based sampling
Query synthesis
Supervised learning
Regression
Neural networks
a b s t r a c t

This paper proposes an active learning (AL) algorithm to solve regression problems based
on inverse-distance weighting functions for selecting the feature vectors to query. The
algorithm has the following features: (i) supports both pool-based and population-based
sampling; (ii) is not tailored to a particular class of predictors; (iii) can handle known
and unknown constraints on the queryable feature vectors; and (iv) can run either sequen-
tially, or in batch mode, depending on how often the predictor is retrained. The potentials
of the method are shown in numerical tests on illustrative synthetic problems and real-
world datasets. An implementation of the algorithm, that we call IDEAL (Inverse-
Distance based Exploration for Active Learning), is available at http://cse.lab.

imtlucca.it/bemporad/ideal.
� 2023 Elsevier Inc. All rights reserved.
1. Introduction

Active learning (AL) strategies are used in supervised learning to let the training algorithm ‘‘ask questions” [34], i.e.,
choose the feature vectors to query for the corresponding target value during the training phase, usually based on the model
learned so far. The main aim of AL is to possibly reduce the number of training samples required to train the model, or in
other words, to get a model of the same prediction quality with a smaller dataset. This is particularly useful when knowing
the target value associated with a given combination of features is an expensive operation, for example, it may involve asking
a human to ‘‘label” samples manually, running a costly and time-consuming laboratory experiment, or performing a complex
computer simulation.

AL methods are usually categorized in query synthesis (or population-based) methods, in which the feature vector to query
can be chosen arbitrarily, pool-based sampling methods, in which the vector can only be chosen within a given finite set (or
‘‘pool”) of unlabeled values, and selective-sampling methods, in which vectors are proposed in a streaming flow and the AL
algorithm can only decide online whether to ask for the corresponding target or not [34].

Several approaches to AL are available in the literature, see, e.g., the survey papers [34,39,16,1,22]. Most of the literature
focuses on classification problems [1,33], although AL has been investigated also for regression
[27,11,38,13,12,10,9,41,42,25]. We will describe in detail some of the most popular AL algorithms for regression in Sec-
tion 3.4. For a detailed and updated taxonomy of AL methods for classification, regression, and clustering we refer the reader
to the recent survey paper [22].

As pointed out in [41], AL methods should collect data that are informative, representative, and diverse, i.e., respectively,
contain rich information for reducing modeling errors, cover portions of the feature vector space where the predictor is eval-
uated most frequently and in particular reject outliers, and explore such a space trying to avoid sampling the same regions

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.01.028&domain=pdf
http://cse.lab.imtlucca.it/bemporad/ideal
http://cse.lab.imtlucca.it/bemporad/ideal
https://doi.org/10.1016/j.ins.2023.01.028
mailto:alberto.bemporad@imtlucca.it
https://doi.org/10.1016/j.ins.2023.01.028
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

A. Bemporad Information Sciences 626 (2023) 275–292
too often. AL methods are often linked to a specific class of predictors, such as neural networks [27] or mixtures of Gaussians
and locally weighted regression [11], or to a particular learning algorithm [38,13,12,9]. Moreover, AL methods can be com-
putationally involved in the case optimal sampling is sought, or in query-by-committee (QBC) methods [35,31,8] in which
multiple predictors need to be retrained repeatedly to measure their disagreement.

In general, in AL the acquisition function that is used to drive the selection of the next sample has two components. The
first is related to the position of the feature vector within the feature-vector space and is used for pure exploration of that
space. The second aims at the exploitation of the target values acquired so far, learning a model on the available feature vec-
tors/target pairs and using it for predicting target values. Such a model-based approach usually tries to estimate a form or
another of target uncertainty, such as to locate feature vectors whose target is supposed to be farthest from the target values
already acquired [42], sample where a committee of predictors mostly disagree [35,31,8], or select the feature vector that is
expected to make the most change in the prediction function [9].

AL is related to the problem of optimally designing experiments, whose origins date back at least to the 30s [15], and has
attracted an extensive literature for decades [7]. Another problem related to AL is black-box derivative-free optimization [32]
in which a surrogate of the objective function is learned incrementally from a finite number of samples of it, such as in Baye-
sian optimization methods [36]. Compared to solving a supervised learning problem, where the objective is to find a model
that reproduces well the underlying process over the entire set of feature-vectors of interest, in black-box optimization the
problem is somehow simpler, as the interest is limited to approximating the objective function well around one of its global
minimizers.

1.1. Contribution

In this paper, we provide an AL framework for regression that is applicable to any prediction model, can address both
pool-based and population-based settings, and is not computationally involved. By leveraging on ideas we previously inves-
tigated for global optimization based on surrogate functions [3,5], we propose an AL method in which the uncertainty asso-
ciated with the currently available predictor and the exploration function used to sample the feature-vector space are
characterized by inverse-distance weighting (IDW) functions [23,37].

The proposed algorithm that we call IDEAL (Inverse-Distance based Exploration for Active Learning) blends different
requirements: informativeness, by sampling regions of the feature-vector space where model uncertainty is estimated to
be large; representativeness, in the case of pool-based sampling, by possibly taking into account a density function similar
to the one used in density-based spatial clustering approaches [14]; and diversity, using an IDW exploration term that is
higher far away from samples that have already been queried. The algorithm can also handle constraints on the feature vec-
tors that can be queried, that can either be known a priori or even unknown. The latter case covers the situation in which one
discovers only after querying certain combinations of features that the corresponding target cannot be retrieved; for exam-
ple, because a specific physical experiment cannot be performed or a computer simulation does not converge. Finally, the
proposed algorithm can be run either sequentially, by retraining the predictor after each successful query, or in batch mode,
by retraining only after querying a certain prescribed finite number of samples.

IDEAL belongs to the class of model-based AL methods for regression, in that the prediction model learned on the cur-
rently available samples is used in combination with IDW terms to quantify model uncertainty and look for samples that
are expected to provide maximum informativeness. Moreover, the latter only requires the currently learned predictor, con-
trarily to QBC methods that require instead training multiple predictors, and does not involve complex computations
required by optimal sampling methods, which makes them only applicable to relatively simple prediction models.

Similarly to the greedy sampling method proposed in [42], which combines diversity in the feature vector and (predicted)
target spaces, IDEAL combines the informativeness measure mentioned above with the diversity quantification in the
feature-vector space provided by IDW terms only. As we will show in several numerical examples, such a combination of
model-based uncertainty characterization and feature-vector diversity is beneficial with respect to uncertainty characteri-
zation only, as in QBCmethods [31,8], and input diversity only, as in the greedy method ([43], Algorithm 1) and the improved
representativeness-diversity maximization method [25].

The paper is organized as follows. After formulating the AL problem in Section 2, we describe the proposed algorithm in
Section 3. Numerical tests on synthetic and real-world regression problems are reported in Section 4 and some conclusions
are drawn in Section 5.

A Python implementation of IDEAL, and of other passive and active learning methods we have compared with, is available
at http://cse.lab.imtlucca.it/bemporad/ideal.

2. Active learning problem

We consider a process y : X! Y generating data yk ¼ yðxkÞ, where X#Rn is the set of feature vectors, xk 2 X, and Y#Rm

the set of corresponding targets yk; yk 2 Y. As the process y is unknown, we wish to find a predictor ŷ : X! Y solving the
supervised learning problem
minŷ

Z
�X\X

‘ðyðxÞ; ŷðxÞ; xÞdx ð1Þ
276

http://cse.lab.imtlucca.it/bemporad/ideal

A. Bemporad Information Sciences 626 (2023) 275–292
where ‘ : Y�Y�X! R is a loss function, for instance ‘ðyðxÞ; ŷðxÞ; xÞ ¼ kyðxÞ � ŷðxÞk22, and �X#Rn is a bounded set of feature
vectors x of interest, i.e., for which we want to obtain a good approximation ŷðxÞ of yðxÞ. While the set �X is known, for exam-
ple, it may be defined by the set of inequality constraints
1 Alth
rather t
�X ¼ fx : Rn : giðxÞ 6 0; i ¼ 1; . . . ; ncg

gi : R

n ! R, the set X for which yðxÞ is defined could be unknown, as we might not be able to know a priori whether for a
given x 2 �X its corresponding target yðxÞ can be obtained. For example, all features xi of interest may take any value between
�10 and 10, i.e., �X ¼ fx : Rn : jxij 6 10; i ¼ 1; . . . ;ng and yðxÞ ¼ logðxÞ, which is only defined for x > 0. In this case, yðxÞ can-
not be queried when x 6 0, i.e., X ¼ fx : xi > 0; i ¼ 1; . . . ;ng and we are in the presence of the unknown constraint x 2 X.

In practical real-world applications, unknown constraints may arise when evaluating yðxÞmay require running a complex
experiment or computer simulation, and this could not be completed for various reasons for the particular parameter set-
tings defined by x. In such cases, characterizing the shape of X, if of interest, would be a binary classification problem itself
that is amenable for active learning. Note that in the case of multiple targets (m > 1), we could generalize the setting by
assuming that each process component ½y�i : Xi ! Yi; i ¼ 1; . . . ;m. However, for simplicity of notation, we assume here that
X ¼ \m

i¼1Xi, i.e., that either the entire output vector yðxÞ is defined or it is entirely undefined at a given x.
Special cases of (1) are (multivariate) regression problems (Y ¼ Rm) and classification problems (Y ¼ f0;1gm). We

assume that possible discrete features have been one-hot encoded, and that hence in general X# f0;1gnb � Rnn , where nb

and nn are the number of binary and numeric features, respectively, n ¼ nb þ nn, and that the loss ‘ contains impulsive terms
(Dirac delta terms) so that (1) can be rewritten as
minŷ

X
xb2Xb\ �Xb

Z
Xc\ �Xc

‘ðyðxÞ; ŷðxÞ; xc; xbÞdxc ð2Þ
where xb denotes the subvector of binary components of the feature vector x, Xb (�Xb) the corresponding set of their admis-
sible combinations (of interest), and Xc (�Xc) the set of admissible subvectors xc of numeric features (of interest).

In order to address problem (1), we will solve its empirical approximation
min
ŷ

1
N

XN
k¼1

‘ðyk; ŷðxkÞ; xkÞ ð3Þ
where DN , fðxk; ykÞgNk¼1 is a training dataset, with yk ¼ yðxkÞ for some unknown function y1

In (supervised) passive learning the training dataset DN is given, where clearly xk 2 X for all k ¼ 1; . . . ;N, as the corre-
sponding targets yk have been acquired. Instead, in active learning we are free to select the training vectors xk to query,
i.e., for which we want to get the corresponding target value yk, if it is defined, or a declaration that xk R X. We have a
pool-based AL problem when xk can only be selected from a pool
XP ¼ f�xjgMj¼1 ð4Þ
of samples, M P N, with XP # �X, or a population-based AL problem when xk can be chosen freely within the given bounded
set XP ¼ �X.

3. Active learning algorithm

Let ½xmin; xmax� � Rn be the smallest hyper-box containing the feature vectors we are allowed to sample, i.e.,
½xmin�i , min
x2XP
½x�i; ½xmax�i , max

x2XP
½x�i ð5aÞ
which in case of pool-based AL (4) is equivalent to setting
½xmin�i , min
j¼1;...;M

½�x�j; ½xmax�i , max
j¼1;...;M

½�x�j ð5bÞ
In order to be immune to different scaling of the individual features, when querying samples we consider the scaling
function r : Rn ! Rn defined as
riðxÞ , 2
½xmax�i � ½xmin�i

xi � ½xmax�i þ ½xmin�i
2

� �
; i ¼ 1; . . . ;n ð5cÞ
where clearly rðxÞ 2 ½�1;1�n for all x 2 ½xmin; xmax�.
ough function y is rather arbitrary, the formulation could be extended to explicitly include a noise term gk 2 Rng , so that yk ¼ yðxk;gkÞ is available
han yðxkÞ. This would allow modeling non-reproducible queries, i.e., yk – yj for xk ¼ xj; k– j.

277

A. Bemporad Information Sciences 626 (2023) 275–292
Let Nmax be the total budget of queries we have available to perform the AL task. During AL, we collect in the set2

Q# f1; . . . ;Nmaxg the indices of the samples xk that have been selected and for which the corresponding target could be acquired,
i.e., k 2 Q if and only if xk 2 X. Moreover, in the case of pool-based sampling, we keep track of the indices of samples already
extracted and queried from the pool XP in the set E# f1; . . . ;Mg, to avoid possibly querying them again.

3.1. Initialization

Before fitting any prediction model, as commonly done in most AL approaches we must first select Ni samples
x1; . . . ; xNi

2 �X \X. As also mentioned in [25, Section 4.3]), unsupervised AL (i.e., AL that only selects samples based on their
position within the feature-vector space, without querying targets) can be superior to model-based AL when the number of
samples is small, due to the possibly high inaccuracy of ŷ (and of the estimate of its uncertainty) when trained on a small set
of samples. In fact, without first selecting x1; . . . ; xNi

in an unsupervised way, the first trained predictors ŷ could drive the
search quite inefficiently, especially when the exploration term is not dominant, leading to collecting weakly informative
samples. As a consequence, model-based criteria would remain quite inexact, leading to further collect not-so-relevant sam-
ples, with consequent performances possibly even worse than just randomly sampling �X.

In the case of population-based AL, we use Latin Hypercube Sampling (LHS) [28] on the hyper-box ½xmin; xmax�; in the case
of pool-based AL, we run instead the K-means algorithm [26] on the pool Xr

P , rðXPÞ of scaled samples with K ¼ Ni and
pickup the Ni different vectors rð�x1Þ; . . . ; �rð�xNi

Þ 2 Xr
P that are closest to the centroids obtained by K-means in terms of Eucli-

dean distance (cf. [41]). As some vectors may be infeasible (�xk R �X) or cannot be queried (�xk R X), similarly to the LHS algo-
rithm with constraints described in [3, Algorithm 2]) the vectors �xk R �X \X are discarded, and the above procedure is
repeated until a set of Ni pairs ð�xk; �ykÞ is collected.

We denote by Ninit;Ninit P Ni, the total number of samples queried during the initialization phase and by
fðxi; yiÞg; i ¼ 1; . . . ;Ni the resulting set of collected samples. Note that in the case X � �X;Ninit > Ni queries might be required
to get Ni pairs ðxk; ykÞ, as samples x 2 �X nX might be encountered for which yðxÞ is not defined. In this case, Ninit 2 Q, as the
initialization phase terminates as long as Ni pairs have been successfully collected. Note also that in case Ni valid samples
cannot be retrieved at initialization within the total budget Nmax of queries we have available, the AL task cannot proceed
further. In the case of absence or irrelevance of unknown constraints (�X#X), we always have Ninit ¼ Ni.

3.2. Query-point selection

Assume that we have collected N samples xk and, 8k 2 Q, the corresponding target values yk, and that we have fit a pre-
dictor ŷðxÞ on them by solving the supervised learning problem as in (3)
2 In c
and onl
ŷ ¼ argmin
ŷ

X
k2Q

‘ðyk; ŷðxkÞ; xkÞ ð6Þ
Then, we need to define a criterion to select the remaining Nmax � Ninit samples xk to query. In this paper, we will select the
next sample xNþ1 to query by maximizing an acquisition function a : Rn ! ½0;þ1Þ that we will introduce in the sequel
xNþ1 ¼ argmax
x2XP

aðxÞ ð7Þ
retrain ŷ, update the acquisition function a, increase N, and so on, until N ¼ Nmax, i.e., the total available budget for queries is
exhausted. In case yðxNþ1Þ is not defined because xNþ1 R X, we clearly do not need to retrain ŷ. The approach can be extended
easily to batch-mode active learning by retraining ŷ only after T new queries have been performed, T > 1.

To define the acquisition function a, we want to use an empirical estimation of the uncertainty siðxÞ; si : Rn ! ½0;þ1Þ,
associated with each component i of the prediction ŷðxÞ, i ¼ 1; . . . ;m, that we define here as we proposed in [3] to promote
exploration in global optimization using surrogate functions.

Given a set fxkgNk¼1 of vectors of Rn, we consider the squared (scaled) Euclidean distance function d2
: Rn � Rn ! R
d2ðx; xkÞ ¼ krðxkÞ � rðxÞÞk22; i ¼ 1; . . . ;N ð8Þ

In standard IDW functions [37], the weight functions wk : R

n n fxkg ! R are defined by the squared inverse distances
wkðxÞ ¼ 1

d2ðx; xkÞ
ð9aÞ
In order to make the weight decay more quickly as x gets more distant from xk, as suggested in [18,3], here we adopt the
alternative weighting function
ase of multiple targets m > 1 and different feasible sets Xi , i.e., ½y�i : Xi ! Yi , one could define a separate set Qi for each target i ¼ 1; . . . ;m, with k 2 Qi if
y if xk 2 Xi .

278

A. Bemporad Information Sciences 626 (2023) 275–292
wkðxÞ ¼ e�d
2ðx;xkÞ

d2ðx; xkÞ
ð9bÞ
Then, we define the following functions vk : R
n ! R for k ¼ 1; . . . ;N as
vkðxÞ ¼

1 if x ¼ xk
0 if x ¼ xj; j – k

wkðxÞXN
j¼1

wkðxÞ

otherwise

8>>>>><
>>>>>:

ð10Þ
As suggested in [18,3], we then define s2 : Rn ! Rm as the IDW variance function
s2i ðxÞ ¼
X
k2Q
vkðxÞð½yk�i � ½ŷðxÞ�iÞ2; i ¼ 1; . . . ;m ð11Þ
associated with the current training dataset fðxk; ykÞgNk¼1 and predictor ŷ. Note that for x ¼ xk and k 2 Q we have

s2i ðxkÞ ¼ ð½yk�i � ½ŷðxkÞ�iÞ2, which in the case of perfect interpolation ½ŷðxkÞ�i ¼ ½yk�i gives s2i ðxkÞ ¼ 0 (this corresponds to having
no prediction uncertainty about yiðxÞ at x ¼ xk). Note also that the sum in (11) only considers the indices k 2 Q, as for k R Q

vector xk R X and therefore yk ¼ yðxkÞ is undefined. This is equivalent to assume that yk ¼ ŷðxkÞ for all xk R X and sum in
(11) for k ¼ 1; . . . ;N.

Regarding promoting diversity in exploring the feature-vector space, as suggested in [3] we also consider the IDW explo-
ration function z : Rn ! R defined as
zðxÞ ¼

0 if x 2 fx1; . . . ; xNg

2
p tan�1 1XN

k¼1
wkðxÞ

0
BBBB@

1
CCCCA otherwise

8>>>>>><
>>>>>>:

ð12Þ
Similarly to the passive sampling approach in [43], function z returns a pure exploration term that is only based on the
geometric position of the (scaled) feature vectors fxkg, and hence, contrarily to the IDW variance function s2, is not influ-
enced by the predictor ŷ learned up to step N. Note that s2 also promotes exploration, but only indirectly.

Example 1. Let the data yk be generated by the following scalar function y : R! R
yðxÞ ¼ x4 sin2 1
3
x2

� �
ð13Þ
that we want to approximate over the interval �X ¼ ½�3;3� by a simple feedforward neural network (NN) ŷwith two layers of
five neurons each, logistic activation function 1

1þe�x, and linear output function. As depicted in Fig. 1, we assume that we have
collected N ¼ 7 samples ðxk; ykÞ (blue dots), yk ¼ yðxkÞ, and fit a NN via the MLPRegressor function in scikit-learn [30]
with ‘2-regularization term a ¼ 10�2, by using the L-BFGS nonlinear optimization algorithm [24]. Fig. 1 also shows the orig-

inal function yðxÞ (blue line), the NN predictor ŷðxÞ (red line), and the band ŷðxÞ � 3
ffiffiffiffiffiffiffiffiffiffiffi
s2i ðxÞ

q
(light blue area). The figure also

shows scaled and shifted versions of the IDW functions s2ðxÞ (green line) and zðxÞ defined in (12) (dashed gray line).
Let us now define the acquisition function
aðxÞ ¼
Xm
i¼1

s2i ðxÞ
 !

þ dzðxÞ ð14Þ
where d P 0 is a hyperparameter balancing the role of IDW variance s2ðxÞ and IDW distance zðxÞ. Note that d trades off
between model-based learning (small d) and learning based on the pure exploration of the feature-vector space to promote
diversity (large d).

In the case of population-based AL, the maximization problem (7) can be solved by global optimization; in this paper, we
will use the derivative-free Particle Swarm Optimization (PSO) algorithm [21], as aðxÞ is a cheap function to evaluate when-
ever ŷðxÞ is easy to compute. In pool-based sampling, when the numberM of samples in the pool is not too high, problem (7)
can be solved by enumeration by setting
xNþ1 ¼ �xk� ; k� ¼ arg min
k2f1;...;MgnE

fað�xkÞg ð15aÞ
We assume that possible duplicates �xk ¼ �xj; k– j, are removed upfront from the pool XP .
279

Fig. 1. Function y of Example 1 (blue line), samples ðxk; ykÞ (blue dots), NN predictor ŷ (red line), band ŷðxÞ � 3
ffiffiffiffiffiffiffiffiffiffiffi
s2i ðxÞ

q
(light blue area), scaled and shifted

IDW functions s2 (green line) and z (dashed gray line).

A. Bemporad Information Sciences 626 (2023) 275–292
When (15a) is impractical due to a large number M of samples in the pool, one can first use PSO to optimize over the
entire set �X to get �x� ¼ argmaxx2 �XaðxÞ as in population-based AL and then set (cf. [40])
xNþ1 ¼ �xk� ; k� ¼ arg min
k2f1;...;MgnE

d2ð�xk; x�Þ ð15bÞ
Algorithm 1 reports the pseudocode of the proposed AL algorithm that we call Inverse-Distance based Exploration for
Active Learning (IDEAL). The complexity of the algorithm will be discussed in Section 3.5. Note that output data scaling
can be updated before retraining ŷ at Step 6.1, such as by applying standard scaling based on the currently available values
fykg; k 2 Q.

Algorithm1: Inverse-Distance based Exploration for Active Learning (IDEAL).

Input: Set XP ¼ f�xkgMk¼1 (pool-based) or XP ¼ �X (population-based) of queryable feature vectors; budget Nmax of
available queries; number Ni of initial samples to acquire; pure exploration hyperparameter d P 0.

1. Remove possible duplicates �xk from XP (pool-based only);
2. Compute scaling functions ri as in (5);
3. Extract Ni samples ðxk; ykÞ as described in Section 3.1 by K-means (pool-based) or LHS (population-based); if it is
not possible to extract them within Nmax queries go to Step 7, otherwise set Ninit = number of queries done;
4. Q fk 2 f1; . . . ;Ninitg : xk 2 Xg;
5. E fi 2 f1; . . . ;Mg : �xi ¼ xk for some k 2 f1; . . . ;Ninitgg (pool-based only);
6. For N ¼ Ninit; . . . ;Nmax do:
6.1. If N R Q then update predictor ŷ by solving (3);
6.2. Compute new sample xNþ1 as in (7) (population-based) or (15) (pool-based);
6.3. If xNþ1 2 X acquire yNþ1 and set Q Q [fN þ 1g;
6.4. E E [fk�g (pool-based only);

7. End.

Output: Predictor ŷ, or declaration of failure in collecting Ni feasible initial samples.
3.3. Extensions of the acquisition function

The basic acquisition function (14) can be extended in two directions. First, for pool-based AL we can consider the density
function q : XP ! ð0;þ1Þ that measures how much ‘‘isolated” is a sample �xk 2 XP with respect to the remaining samples.
Similar to density-based spatial clustering approaches [14], one can use the average (scaled) distance of �xk from its n nearest
neighbors,
dk ¼ 1
n

X
j2Nk

krð�xkÞ � rð�xjÞk2
280

A. Bemporad Information Sciences 626 (2023) 275–292
where Nk is the set of indices corresponding the n nearest neighbors of �xk in XP n f�xkg, to estimate the density as propor-
tional to the normalized inverse volume of the sphere of radius dk, i.e.,
qð�xkÞ ¼
1
dnk

max
j¼1;...;M

1
dnj

� � ¼ min
j¼1;...;M

dn
k

� �
dn
k

ð16Þ
Note that (16) is always defined, as n duplicates cannot exist such that they have a zero average distance due to the fact
that we have assumed that all possible duplicates �xk ¼ �xj; k – j, have been removed. Note that q does not depend on the pre-
dictor ŷ learned and can be therefore computed upfront. Regarding population-based AL, one can simply set qðxÞ ¼ 1;8x 2 �X.

Next, we can introduce weight functions ci : Rn ! ½0;þ1Þ to actively learn the predictor in a non-uniform way with
respect to the target index i and x (or uniformly, if ciðxÞ � 1 for all i ¼ 1; . . . ;m). Accordingly, we extend (14) to
aðxÞ ¼ ð1þxqðxÞÞ
Xm
i¼1

ciðxÞ s2i ðxÞ þ
d
m

zðxÞ
� �

ð17Þ
wherex P 0 is a scalar weight on density. Note thatx is redundant in the case of population-based AL, having assumed that
qðxÞ � 1.

Let us show that the active learning mechanism (7) under (14), possibly extended as in (17), follows criteria of informa-
tiveness, representativeness, and diversity, which are listed in [41] as essential for AL. Regarding the first, maximizing aðxÞ
implies looking for large values of the uncertainty sðxÞ associated with the current predictor ŷðxÞ, i.e., to select the next sam-
ple xNþ1 where ŷ is considered most uncertain according to (11), so that querying xNþ1 is expected to bring significant new
information. The second, which is only applicable in the case of pool-based sampling under the extension (17), is taken care
of by qðxÞ when x > 0, as in the maximization (7) those samples �xk that have a low density qð�xkÞ, for instance, because they
are outliers, will be discouraged. Third, diversity is promoted because sðxÞ and zðxÞ are small close to samples that have been
already visited, which ultimately makes the AL algorithm visit unexplored areas of the feature-vector space. The tradeoff
between representativeness and diversity is taken care of by the coefficient x.

In all the numerical tests reported in Section 4 we will always employ the baseline acquisition function (14), as no sig-
nificant improvements were found by using x > 0 in our benchmarks, and in addition we aim at a uniform weighting
ciðxÞ � 1. Nonetheless, the extra versatility allowed by (17) might be useful in certain AL applications.

3.4. Other active learning algorithms

Algorithm 1 (ideal) will be compared to some of the most common active learning methods proposed in the literature that
can support rather arbitrary prediction models ŷ. The considered methods have some substantial differences, that we will
see have consequences on AL performance. We review such methods here below.

3.4.1. Random sampling (random)
The method draws samples xNþ1 from the uniform distribution defined over �X in the case of population-based sampling,

or by selecting a random index in f1; . . . ;Nmaxg n E in the case of pool-based sampling. This is the simplest method we con-
sider to have a baseline to compare with: any AL method should be more efficient that random, at least statistically.

3.4.2. Greedy method (GSx)
The sampling technique GSx proposed in [43, Algorithm 1]) selects xNþ1 by maximizing the minimum distance from exist-

ing samples, i.e.,
xNþ1 ¼ argmax
x2XP

dxðxÞ ð18aÞ

dxðxÞ ¼ min
k¼1;...;N

krðxÞ � rðxkÞk22 ð18bÞ
The method is not model-based, in that the predictor ŷ is not used to select the samples to query. Although conceived for
pool-based AL, the method can be extended also to population-based AL bymaximizing dðxÞwith respect to x 2 �X in (18). For
fair comparison, in the case of population-based AL, rather than maximizing the minimum distance in our numerical tests we
will also adopt LHS to acquire the first Ni samples instead of using the approach suggested in [42] for pool-based AL.

3.4.3. Greedy method (iGS)
The iGS method proposed in [42, Algorithm 3]) is an extension of greedy sampling that, in addition, considers the min-

imum predicted distance in the y-space
dyðxÞ ¼ min
k¼1;...;N

kŷðxÞ � ykk22 ð19Þ
where ŷ is the latest predictor trained on currently available samples, and selects
281

A. Bemporad Information Sciences 626 (2023) 275–292
xNþ1 ¼ argmax
x2XP

dxðxÞdyðxÞ ð20Þ
(in case of multiple targets, we assume that the values in (19) refer to scaled target values). The method can be extended also
to population-based AL. In such a case, similarly to GSx, we will use LHS for initialization.

Thanks to the additional term dy defined in (19), iGS also aims at getting samples where the output y is expected to be
different from the current values yk observed so far. A possible drawback of (20), however, is that dx and dy are multiplied
by each other, i.e., diversity is sought in both the x- and y-space, so that pure exploration of the x-space might be inhibited by
predicted proximity in the y-space, i.e., by small (or zero) estimated values dy. Instead, ideal looks for diversity in the x- or y-
space, as zðxÞ and s2ðxÞ are summed in (14) instead of being multiplied by each other as in (20).

3.4.4. Query-by-Committee (QBC)
After a first initialization phase in which Ni feasible samples are generated randomly, the QBC method for regression

[31,8] considered here creates KQBC bootstrap samples obtained by randomly sampling the existing N samples with replace-
ment, trains a predictor ŷj on each set, j ¼ 1; . . . ;KQBC , and then selects xNþ1 to maximize the output-prediction variance
xNþ1 ¼ argmax
x2XP

XKQBC

j¼1
ŷjðxÞ � 1

KQBC

XKQBC

j¼1
ŷjðxÞ

					
					
2

2

ð21Þ
(in case of multiple targets, the terms in (21) must be considered again as scaled target values). It can be used for both pool-
based and population-based AL. In QBC, we set KQBC ¼ 5 in all our tests and train the individual predictors ŷj on bootstrapped
samples as in [42], rather than leaving out a different subset of b N

KQBC
c samples as suggested in [8]. In fact, the former approach

better performed in our examples, in which the number of allowed samples is small compared to the number of model
parameters to learn and hence removing b N

KQBC
c samples can dramatically change the resulting individual predictions ŷjðxÞ.

An additional disadvantage of QBC when actively learning NN models is that large disagreements may be caused by lack
of global convergence of the optimization method used to train the different predictors, due to the non-convex nature of
the NN training problem.

The QBCmethod we tested only relies on information related to the y-space, i.e., is totally based on the predictor ŷ and its
variants ŷj to drive the acquisition, but not explicitly on measures defined purely on feature-vectors for promoting diversity
in the x-space. This ultimately has a potential negative impact on the robustness of QBC. Extensions of QBC to improve per-
formance by taking into account diversity and density was introduced in [20] in the context of classification.

3.4.5. Improved representativeness-diversity maximization (iRDM)
The iRDM pool-based unsupervised active learning method [25] for regression generates Nmax samples in one shot (rather

than incrementally) after performing K-means [26] on Xr
P to create Nmax clusters. Then, the samples closest to the resulting

centroids are refined sequentially (up to cmax times) to optimize the tradeoff between the representativeness of the selected
point xk within its cluster Ck (i.e., the average distance of xk from the points in Ck) and the diversity of xk from the other
selected samples x1; . . . ; xk�1; xkþ1; . . . ; xNmax in the remaining clusters (i.e., the minimum distance
krðxkÞ � rðxjÞk2; j ¼ 1; . . . ;Nmax; j– k). We set cmax ¼ 5 in all our tests as suggested in [25]. As for GSx, the method does
not exploit the predictor ŷ, which in fact is only trained after acquiring all the Nmax samples.

3.5. Numerical complexity

The initial phase of ideal (Algorithm 1) requires either extracting Ninit samples by Latin Hypercube Sampling (LHS) [28]
(population-based AL) or K-means [26] (pool-based AL). In addition, ideal requires retraining the predictor ŷ at Step 6.1
and solving the optimization problem at Step 6.2 to get a new sample. Depending on the class of predictors ŷ used, retraining
can be the most expensive computation effort. As for other AL methods, warm-starting the training algorithm or incremen-
tally learning ŷ could be exploited, if supported by the particular class of prediction models and training algorithms chosen.
Regarding Step 6.2, the computation complexity mainly depends on the number of operations required to evaluate the pre-
dictor ŷðxÞ in (11), and therefore on the complexity of the selected model class.

Algorithms ideal, iGS, and QBC require retraining the predictor ŷ, respectively, Nmax � Ninit þ 1;Nmax � Ninit þ 1, and
ðKQBC þ 1ÞðNmax � Ninit þ 1Þ times, while random, GSx, and iRDM only once at the end of the acquisition, as they are only based
on the relative positions of the acquired samples xk in the feature space.

In the case of pool-based sampling, ideal, iGS, and QBC require, after the initialization phase, evaluating the predictor ŷ,
respectively, ðNmax � Ninit þ 1ÞM; ðNmax � Ninit þ 1ÞM, and ðKQBC þ 1ÞðNmax � Ninit þ 1ÞM times. In addition, ideal requires eval-
uating the acquisition function að�xkÞ ðNmax � Ninit þ 1ÞM times, GSx and iGS evaluating the squared distances in (18b)
ðNmax � Ninit þ 1ÞM times, and in addition iGS evaluating the squared distances (19) ðNmax � Ninit þ 1ÞM times, while QBC

requires evaluating the output prediction variance terms in (21) ðNmax � Ninit þ 1ÞM times. Then, ideal, GSx, iGS, and QBC

require computing Nmax � Ninit þ 1 times the minima defined by (15a), (18a), (20), and (21), respectively.
282

A. Bemporad Information Sciences 626 (2023) 275–292
Regarding iRDM, it requires solving K-means to partition M points into Nmax clusters, computing the representativeness
measure M times, and then repeat cmax times the construction of the diversity measure on all candidate samples within the
updated cluster with respect to the samples already fixed in each one of the other clusters. Note that iRDM, contrarily to the
other methods, is not an incremental AL method, and therefore a change of Nmax (such as due to allowing more queries)
would require redefining all the Nmax samples to acquire.

Finally, we remark that the computation time required by the AL algorithm is often negligible with respect to the time
required to acquire a new target value, which is often the most dominating effort in the practical situations AL algorithms
are employed.

4. Numerical tests

In this section, we test the proposed AL approach on synthetic illustrative examples and real-world datasets, comparing it
to the different AL methods reviewed in Section 3.4.

Regarding the initial Ni samples, for the GSx and iGS methods we recursively use (18b) starting from the centroid x1 of XP

as proposed in [42], and random sampling for the random and QBCmethods. Different approaches have been proposed in the
literature for cold-starting AL, see for instance the representative sampling method proposed recently in [17] in the context
of image classification, or the approach used by iRDM.

To analyze the performance of iRDM as a function of the number of acquired samples, as iRDM is not an incremental
method we execute it from scratch each time we want to collect a different number of samples.

All computations were carried out in Python 3.9.15 using the scikit-learn package [30] to train feedforward NNs for regres-
sion (MLPRegressor function) and support vector regression (SVR) (SVR function). Regarding the considered AL methods,
for pool-based active learning we used the Python implementation developed by the author and available at http://

cse.lab.imtlucca.it/bemporad/ideal.

4.1. Scalar example

We first test the proposed AL approach on the simple regression problem defined in Example 1, i.e., with yðxÞ as in (13).
Since n ¼ 1, we generate a grid XP of M ¼ 1000 equally-spaced points on the line segment �X ¼ ½�3;3� and use pool-based
sampling on the entire pool XP , so that problem (7) can be solved by enumeration (15a). While training the NN, the param-
eter vector is not warm-started when executing Step 6.1, to avoid possible low-quality local minima inherited by the early
steps of Algorithm 1 when only a few data are available.

The median over 50 runs of the root-mean-square error (RMSE)
RMSE ¼
ffi
1
M

XM
k¼1
ðyk � ŷðxkÞÞ2

vuut

and its range (min and max values) obtained with d ¼ 5;Ni ¼ 10;Nmax ¼ 30, as a function of the number N of acquired sam-
ples, is depicted in Fig. 2 and compared with the RMSE obtained with random, GSx, iGS, QBC, and iRDM sampling. It is appar-
ent that ideal is superior to random and QBC, behaves better than GSx and iRDM (which are not model-based methods) and
similarly to iGS after about half of the allowed samples have been acquired. The high variance of QBC is possibly due to the
small number of samples queried and, consequently, the even smaller number of training samples used to train the predic-
tors forming the committee that may lead to large disagreements among them.

Table 1 shows the mean and standard deviation of the RMSE obtained by ideal when N ¼ Nmax for different values of the
hyperparameter d and, for comparison, by random sampling.

We will take d ¼ 5 in all our remaining tests. For such a value of d, to test the robustness of AL against measurement noise
we repeat the same test by perturbing the measurements yk ¼ yðxkÞ þ gk, where gk 	Nð0;r2

gÞ for different values of the
standard deviation rg. The mean and standard deviation of the resulting RMSE over 50 runs after Nmax ¼ 30 iterations is
shown in Table 2. The table shows that for increasing values of rg the RMSE deteriorates without an excessive increase
of variance and in a gradual way for ideal (proving its robustness with respect to noisy target measurements), iGS, and iRDM,
while such a trend is less marked for GSx, random, and QBC.

4.2. Multiparametric quadratic programming

Model predictive control (MPC) is a popular engineering technique for controlling dynamical systems in an optimal way
under operating constraints [6]. Evaluating the MPC law requires solving a quadratic programming (QP) problem of the form
283

http://cse.lab.imtlucca.it/bemporad/ideal
http://cse.lab.imtlucca.it/bemporad/ideal

Fig. 2. AL of function (13): median RMSE as a function of the number of queries. Vertical lines denote min and max RMSE values.

Table 1
AL of function (13): mean RMSE and its standard deviation after Nmax ¼ 30 steps obtained on 50 different runs of Algorithm 1 for different values of d
(R = random sampling).

d 0.0 0.1 1.0 5.0 10.0 R

mean 0.528 0.470 0.439 0.402 0.402 1.495
std 0.307 0.239 0.084 0.042 0.036 0.548

Table 2
AL of function (13) with noise: mean (std) RMSE after Nmax =30 steps for different values of rg .

rg ideal random GSx iGS QBC iRDM

0:0 0.40 (0.04) 1.44 (0.60) 0.76 (0.14) 0.41 (0.04) 1.16 (0.88) 0.63 (0.12)
1:0 0.62 (0.02) 1.45 (0.55) 0.80 (0.11) 0.62 (0.04) 1.15 (0.79) 0.74 (0.16)
2:0 0.86 (0.09) 1.60 (0.48) 0.92 (0.14) 0.86 (0.05) 1.38 (0.78) 0.91 (0.14)

A. Bemporad Information Sciences 626 (2023) 275–292
z�ðxÞ ¼ argmin
z

1
2 z
0Qzþ x0F 0z

s:t: Az 6 bþ Sx
‘ 6 z 6 u

yðxÞ ¼ ½Im 0 . . . 0� z�ðxÞ

ð22Þ
where z 2 Rnz is a vector of future control moves, nz P m, and x 2 Rn is a vector of parameters that change at run time, such
as estimated states and reference signals, and the Hessian matrix Q ¼ Q 0
 0. To alleviate the effort of solving (22) online for
each given vector x, multiparametric QP (mpQP) was proposed in [4], showing that the solution z� : Rn ! Rnz , and therefore
yðxÞ, is continuous and piecewise affine over a polyhedral partition of a convex polyhedron X#Rn. The main drawback of
such an explicit form of MPC is that the number of polyhedral cells tends to grow exponentially with the number of con-
straints in (22).

Suboptimal methods were proposed to approximate yðxÞ, such as via neural networks [29,19]. In order to find an approx-
imation ŷðxÞ of yðxÞ, one must collect a training dataset of pairs ðxk; ykÞ, where evaluating yk ¼ yðxkÞ requires solving a QP
problem as in (22). Randomly sampling a given set �X � Rn of parameters x may result time-consuming, especially when
the dimension n of the parameter vector is large. To minimize the number Nmax of QP problems solved to get a proper
approximation quality, we use Algorithm 1 to actively generate samples xk.

We consider here a mpQP problem with n ¼ 2;nz ¼ 12;m ¼ 1; b 2 R12; S ¼ 0, and all matrices in (22) generated randomly,
with the entries of A; F 	Nð0;1Þ and the entries of b;u;�‘ 	 U½0;1�, where U½0;1� is the uniform distribution over the inter-
val ½0;1�, Q ¼ Q 0
 0, is randomly generated so that its condition number equals 103, and �X ¼ fx : kxik1 6 3g. Algorithm 1 is
applied using population-based sampling with Ni ¼ 10 and Nmax ¼ 30 for training a feedforward neural network with 3 lay-
ers of 10 neurons each and ReLU activation function, without using warm starting while retraining the model. The median
284

A. Bemporad Information Sciences 626 (2023) 275–292
RMSE and its range over 50 runs is shown in Fig. 3, where it is apparent that ideal performs better than random, GSx, and QBC,
and similar to iGS. Note that in this population-based AL example we could not use iRDM, which is a pure pool-based
method. Fig. 4 shows the polyhedral partition associated with the exact mpQP solution (unknown to the active learning algo-
rithms) computed as described in [2] along with the queried samples and initial samples generated by one of the runs of
Algorithm 1. It is evident that the points acquired by ideal are not distributed uniformly.

4.3. Active learning with unknown constraints

In order to test Algorithm 1 in the presence of unknown constraints, we consider data generated by the following bell-
shaped function y : R2 ! ½0;1�
Fig. 3.
of ideal,
yðxÞ ¼ e�
3
2x1ð Þ2þ 3

2x2ð Þ2

 �3

ð23Þ

plotted in Fig. 5. Algorithm 1 is applied with Ni ¼ 10 and Nmax ¼ 120 to fit a nonlinear model via support vector regression
with radial basis function (RBF) kernel, with penalty 1

C ¼ 0:1 for ‘2-regularization and threshold � ¼ 0:1. Pool-based sampling
is used on a set XP of M ¼ 1000 random feature vectors generated uniformly in ½�2;2� � ½�2;2�. The median RMSE and its
range computed on all vectors �xi 2 XP over 50 runs is shown in Fig. 6 (upper plot). A possible reason for the poor performance
mpQP problem: median RMSE as a function of the number of queries. Vertical lines denote min and max values. Only the population-based versions
GSx , iGS, and QBC were used (iRDM is a pure pool-based method).

Fig. 4. Exact mpQP solution, initial samples x1; . . . ; xNi
(red diamonds), and samples xNiþ1; . . . ; xNmax queried by ideal (green circles).

285

Fig. 5. Bell-shaped function (23).

Fig. 6. AL problem (23), median RMSE without (upper plot) and with unknown constraint (24) (lower plot). Vertical lines denote min and max values.

A. Bemporad Information Sciences 626 (2023) 275–292

286

A. Bemporad Information Sciences 626 (2023) 275–292
of QBC in this example is that the prediction uncertainty estimated by QBC is inaccurate, which leads to sampling feature
vectors that are in reality not worth sampling. In addition, as mentioned earlier, improper sampling leads to poor predictors
and hence a poor target-uncertainty estimation, so that weak sampling persists. This leads to a waste of queries.

Next, we add an unknown constraint by only defining yðxÞ for x 2 X, where
Fig. 7.
predict
X , fx : 3x2 6
ffiffiffi
3
p
jx1jg ð24Þ
and repeat the same test, obtaining the RMSE results shown in Fig. 6 (lower plot), where the RMSE is computed only on the
feasible vectors �xi 2 XP \X.

Note that for ideal, random, GSx, iGS, and QBC the RMSE values are not available for k < Ninit. This is due to the fact that, as
described in Section 3.1, the first predictor is trained only after Ni feasible samples have been collected, which may require
Ninit > Ni queries. On the contrary, due to its non-incremental nature, when running iRDM to acquire k ¼ Ni;Niþ1; . . . ;Nmax

samples, the predictor is always constructed on the available feasible samples, no matter how many feasible samples have
been collected (unless all samples are infeasible, a situation that never occurred in our experiments).

In the above tests, when using GSx and iGS random sampling was employed to get the first Ni samples, as in the case of
unknown constraints the initialization method suggested in [42] was sometimes failing to get Ni feasible samples within the
maximum budget Nmax of queries.

Fig. 7 shows the level sets of the learned classifier ŷ during one of the tests using all the considered methods, the pool XP

of samples (gray circles), the queried samples (green dots), the initial samples (red diamonds), and the level sets of the pre-
diction function (dark blue lines) and of function (23) (dashed gray circles). It is apparent how GSx and iRDM scatter the
points uniformly no matter whether they are feasible or not, which wastes a large percentage of the queries to get mean-
ingful values yi (all the Nmax points acquired by iRDM are marked in red, as they are selected altogether). Similarly, iGS also
samples infeasible areas of the x-space quite consistently, as it aims at sampling the co-domain of ŷ uniformly due to the
term dy in (19). Regarding QBC, it mostly samples the infeasible set, where the KQBC predictors in the committee completely
extrapolate due to lack of information and hence tend to disagree the most. On the other hand, ideal spontaneously tends to
avoid querying infeasible vectors x 2 XP nX and concentrates most queries where the underlying bell-shaped function has
the largest variations.
AL problem (23) with unknown constraint (24): pool XP (gray circles), queried samples (green dots), initial samples (red diamonds), level sets of
ion function (dark blue lines) and of the true function (23) (dashed gray circles).

287

A. Bemporad Information Sciences 626 (2023) 275–292
4.4. Real-world datasets

We test the proposed AL approach on real-world datasets for regression from the University of California, Irvine (UCI)
Machine Learning Repository, Kaggle, and StatLib, summarized in Table 3.

Table 3
Real-world datasets: M = number of available samples in the pool, n = number of features, m = 1 (single target), Nmax = query budget.

dataset M n m ŷðxÞ Nmax

concrete-slump
4 103 7 1 neural network 103

auto-mpg
5 392 6 1 neural network 100

winequality-white
6 4898 7 1 neural network 100

yacht
7 308 6 1 neural network 100

qsar-aquatic-toxicity
8 546 8 1 RBF-SVR 120

bodyfat
9 252 14 1 RBF-SVR 120

beer
10 365 4 1 RBF-SVR 120

pm10
11 500 7 1 RBF-SVR 120

4
https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test.5 https://archive.ics.uci.edu/ml/datasets/auto+mpg.6 https://archive.

ics.uci.edu/ml/datasets/Wine+Quality (the first seven attributes are considered as features, the nineth as the target).7 https://archive.ics.uci.edu/

ml/datasets/Yacht+Hydrodynamics
8

https://archive.ics.uci.edu/ml/datasets/QSAR+aquatic+toxicity.9 https://www.kaggle.com/fedesori-

ano/body-fat-prediction-dataset/version/1.10 https://www.kaggle.com/datasets/dongeorge/beer-consumption-sao-paulo.11 http://lib.s-

tat.cmu.edu/datasets/PM10.dat.

Fig. 8. Regression problems, RMSE results (median and range) on concrete-slump (upper plot), auto-mpg (lower plot) datasets.

288

https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
https://archive.ics.uci.edu/ml/datasets/QSAR+aquatic+toxicity
https://www.kaggle.com/fedesoriano/body-fat-prediction-dataset/version/1
https://www.kaggle.com/fedesoriano/body-fat-prediction-dataset/version/1
https://www.kaggle.com/datasets/dongeorge/beer-consumption-sao-paulo
http://lib.stat.cmu.edu/datasets/PM10.dat
http://lib.stat.cmu.edu/datasets/PM10.dat

A. Bemporad Information Sciences 626 (2023) 275–292
For the tests described in the upper half of Table 3, we train neural networks ŷ with two layers of five neurons each with
logistic activation function and ‘2-regularization term equal to 10�2 on the vector of weight/bias terms of the model, while
for the remaining tests we train predictors ŷ using RBF-SVR with penalty 1

C ¼ 0:02 for ‘2-regularization and threshold
� ¼ 0:05. Pool-based AL is used with parameters Ninit ¼ 20 and the values of Nmax reported in Table 3. Median RMSE results
and their ranges over 50 tests are shown in Figs. 8–11.

As expected, all the considered AL methods perform better than randomwhen the number of queries is large enough, with
QBC being the method that requires the largest number of queries to start becoming an effective AL strategy. In spite of its
unsupervised AL nature, iRDM is overall quite effective, sometimes superior to model-based strategies. In all tests, ideal per-
forms either better or comparably with respect to the other methods, and is the only method that, at least statistically, seems
to perform consistently well with respect to all the considered datasets. The latter feature, consistency, makes it an ‘‘ideal”
candidate to face a new active learning problem in practice.
Fig. 9. Regression problems, median RMSE results (median and range) on winequality-white (upper plot), yacht (lower plot) datasets.

289

Fig. 10. Regression problems, median RMSE results (median and range) on qsar-aquatic-toxicity (upper plot), bodyfat (lower plot) datasets.

A. Bemporad Information Sciences 626 (2023) 275–292
5. Conclusion

In this paper we have introduced a new active learning method to solve a very broad set of active learning problems of
regression. The approach is not linked to any particular class of predictors and supports both pool-based and population-
based sampling. The objective function driving the optimal selection of the next feature vector to query only requires eval-
uating the prediction function that has been currently learned and compare it to the target values acquired so far. This is an
advantage compared to other approaches such as query-by-committee methods in which multiple predictors must be
trained and evaluated.

For low-dimensional problems (say up to three features) amenable for population-based AL, our practical experience is
that it is usually more efficient to create a pool XP containing a large but finite set of randomly-selected feature vectors and
use pool-based AL instead, i.e., to optimize the sample acquisition problem by enumeration rather than by global optimiza-
tion over a continuum of values. Our proposed method also seems to be particularly advantageous to learn functions that
have plateaus (this would be the case if applied to classification problems), because the IDW uncertainty terms tend to
be small in regions of the feature-vector space where the acquired targets have similar values. While this is an advantage,
it may also endanger the method, as it may lead to miss areas of significant change in the underlying function. For this rea-
son, as for global optimization using surrogate functions, we found that a safeguard is to have a large-enough weight d on
pure exploration, which is entirely independent of the target values acquired and the predictor learned.
290

Fig. 11. Regression problems, median RMSE results (median and range) on beer (upper plot), pm10 (lower plot) datasets.

A. Bemporad Information Sciences 626 (2023) 275–292
As mentioned at the beginning of Section 3.1, unsupervised AL (such as GSx, iRDM, K-means, or simply random) is some-
times superior to model-based AL (such as ideal, iGS, QBC), see for example Figs. 10,11. It would be interesting to investigate
the combination of efficient unsupervised AL and model-based AL methods, in particular use iRDM to perform the initializa-
tion phase of ideal.

We also remark that a rather high variance can be observed when applying all the methods considered in our numerical
tests. There are several reasons for this. First, when K-means is applied for initialization, the final cluster centroids found may
depend heavily on their initial values, due to the fact that K-means is a coordinate-descent method that is not guaranteed to
reach a global minimum. Moreover, in the case of active learning of neural network models, additional variance is due to the
non-convexity of the learning problem, which may lead to largely different prediction models depending on the random ini-
tial values of the trained weights/bias terms. Further variance is suffered by QBC due to the random generation of bootstrap
samples.

Future research will be devoted to analyze in depth the use of ideal to solve classification problems, to adapt the weight on
the exploration term d automatically while learning, to extend the method to streaming data to support online learning
problems, and to active learning for identification of dynamical systems.
CRediT authorship contribution statement

Alberto Bemporad: Conceptualization, Methodology, Software, Visualization, Writing – review & editing.
291

A. Bemporad Information Sciences 626 (2023) 275–292
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] C. Aggarwal, X. Kong, Q. Gu, J. Han, P. Yu, Active learning: A survey, in: C. Aggarwal (Ed.), Data Classification: Algorithms and Applications, chapter 22,
Chapman and Hall/CRC Press, 2014, pp. 572–605.

[2] A. Bemporad, A multiparametric quadratic programming algorithm with polyhedral computations based on nonnegative least squares, IEEE Trans. on
Automatic Control 60 (11) (2015) 2892–2903.

[3] A. Bemporad. Global optimization via inverse distance weighting and radial basis functions. Comput. Optim. Appl. 77: 571–595, 2020. Code available at
URL: http://cse.lab.imtlucca.it/bemporad/glis.

[4] A. Bemporad, M. Morari, V. Dua, E. Pistikopoulos, The explicit linear quadratic regulator for constrained systems, Automatica 38 (1) (2002) 3–20.
[5] A. Bemporad and D. Piga. Active preference learning based on radial basis functions. Mach. Learn. 110 (2): 417–448, 2021. Code available at URL:

http://cse.lab.imtlucca.it/bemporad/glis.
[6] F. Borrelli, A. Bemporad, M. Morari, Predictive control for linear and hybrid systems, Cambridge University Press, 2017.
[7] G. Box, W. Hunter, J. Hunter, An introduction to design, data analysis, and model building, Stat. Exp. (1978) 374–434.
[8] R. Burbidge, J. Rowland, and R. King. Active learning for regression based on query by committee. In Int. Conf. on Intelligent Data Engineering and

Automated Learning, pages 209–218, 2007.
[9] W. Cai, M. Zhang, Y. Zhang, Batch mode active learning for regression with expected model change, IEEE Trans. Neural Networks Learn. Syst. 28 (7)

(2017) 1668–1681.
[10] W. Cai, Y. Zhang, and J. Zhou. Maximizing expected model change for active learning in regression. In Proceedings – IEEE International Conference on

Data Mining, ICDM, pages 51–60, 2013.
[11] D. Cohn, Z. Ghahramani, M. Jordan, Active learning with statistical models, J. Artif. Intell. Res. 4 (1996) 129–145.
[12] B. Demir, L. Bruzzone, A multiple criteria active learning method for support vector regression, Pattern Recogn. 47 (7) (2014) 2558–2567.
[13] F. Douak, F. Melgani, N. Benoudjit, Kernel ridge regression with active learning for wind speed prediction, Appl. Energy 103 (2013) 328–340.
[14] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. KDD-96,

pages 226–231, 1996.
[15] R. Fisher, The Design of Experiments, Oliver & Boyd, Edinburgh, 1935.
[16] Y. Fu, X. Zhu, B. Li, A survey on instance selection for active learning, Knowl. Inf. Syst. 35 (2) (2013) 249–283.
[17] Q. Jin, M. Yuan, S. Li, H. Wang, M. Wang, Z. Song, Cold-start active learning for image classification, Inf. Sci. 616 (2022) 16–36.
[18] V. Joseph, L. Kang, Regression-based inverse distance weighting with applications to computer experiments, Technometrics 53 (3) (2011) 255–265.
[19] B. Karg, S. Lucia, Efficient representation and approximation of model predictive control laws via deep learning, IEEE Trans. Cybern. 50 (9) (2020)

3866–3878.
[20] S. Kee, E. Del Castillo, G. Runger, Query-by-committee improvement with diversity and density in batch active learning, Inf. Sci. 454 (2018) 401–418.
[21] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. International Conference on Neural Networks, volume 4, pages 1942–1948, 1995.
[22] P. Kumar, A. Gupta, Active learning query strategies for classification, regression, and clustering: a survey, J. Comput. Sci. Technol. 35 (4) (2020) 913–

945.
[23] H. Kushner, A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise, J. Basic Eng. 86 (1) (1964) 97–106.
[24] D. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Programm. 45 (1) (1989) 503–528.
[25] Z. Liu, X. Jiang, H. Luo, W. Fang, J. Liu, D. Wu, Pool-based unsupervised active learning for regression using iterative representativeness-diversity

maximization (iRDM), Pattern Recogn. Lett. 142 (2021) 11–19.
[26] S. Lloyd. Least square quantization in PCM. Bell Telephone Laboratories Paper. Also published in IEEE Trans. Inform. Theor. vol. 18, n. 2, pp. 129–137,

1982, 1957.
[27] D. MacKay, Information-based objective functions for active data selection, Neural Comput. 4 (4) (1992) 590–604.
[28] M. McKay, R. Beckman, W. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer

code, Technometrics 21 (2) (1979) 239–245.
[29] T. Parisini, R. Zoppoli, A receding-horizon regulator for nonlinear systems and a neural approximation, Automatica 31 (10) (1995) 1443–1451.
[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[31] T. RayChaudhuri and L. Hamey. Minimisation of data collection by active learning. In Proc. Int. Conf. on Neural Networks, vol. 3, pages 1338–1341,

1995.
[32] L. Rios, N. Sahinidis, Derivative-free optimization: a review of algorithms and comparison of software implementations, J. Global Optim. 56 (3) (2013)

1247–1293.
[33] N. Roy and A. McCallum. Toward optimal active learning through Monte Carlo estimation of error reduction. In Proc. 18th Int. Conf. Machine Learning

(ICML), volume 2, pages 441–448. Williamstown, MA, USA, 2001.
[34] B. Settles, Active learning, Synthesis Lectures on Artificial Intelligence and Machine Learning, number 18, Morgan & Claypool Publishers, 2012.
[35] H. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proc. 5th Annual Workshop on Computational Learning Theory, pages 287–294, 1992.
[36] B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. De Freitas. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the

IEEE, 104 (1): 148–175, 2015.
[37] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proc. ACM National Conference, pages 517–524. New York, 1968.
[38] M. Sugiyama, S. Nakajima, Pool-based active learning in approximate linear regression, Mach. Learn. 75 (3) (2009) 249–274.
[39] L.-L. Sun and X.-Z. Wang. A survey on active learning strategy. In Int. Conf. on Machine Learning and Cybernetics, vol. 1, pages 161–166, 2010.
[40] L. Wang, X. Hu, B. Yuan, J. Lu, Active learning via query synthesis and nearest neighbour search, Neurocomputing 147 (2015) 426–434.
[41] D. Wu, Pool-based sequential active learning for regression, IEEE Trans. Neural Networks Learn. Syst. 30 (5) (2019) 1348–1359.
[42] D. Wu, C.-T. Lin, J. Huang, Active learning for regression using greedy sampling, Inf. Sci. 474 (2019) 90–105.
[43] H. Yu and S. Kim. Passive sampling for regression. In IEEE Int. Conf. on Data Mining, pages 1151–1156, 2010.
292

http://refhub.elsevier.com/S0020-0255(23)00028-2/h0005
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0005
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0005
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0005
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0010
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0010
http://cse.lab.imtlucca.it/bemporad/glis
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0020
http://cse.lab.imtlucca.it/bemporad/glis
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0030
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0030
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0035
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0045
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0045
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0055
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0060
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0065
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0075
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0075
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0080
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0085
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0090
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0095
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0095
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0100
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0110
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0110
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0115
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0120
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0125
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0125
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0135
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0140
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0140
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0145
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0150
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0150
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0160
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0160
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0170
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0170
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0190
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0200
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0205
http://refhub.elsevier.com/S0020-0255(23)00028-2/h0210

	Active learning for regression by inverse distance weighting
	1 Introduction
	1.1 Contribution

	2 Active learning problem
	3 Active learning algorithm
	3.1 Initialization
	3.2 Query-point selection
	3.3 Extensions of the acquisition function
	3.4 Other active learning algorithms
	3.4.1 Random sampling (random)
	3.4.2 Greedy method ([$]{{\sans{GS}}}_{{\sans{x}}}[$])
	3.4.3 Greedy method (iGS)
	3.4.4 Query-by-Committee (QBC)
	3.4.5 Improved representativeness-diversity maximization (iRDM)

	3.5 Numerical complexity

	4 Numerical tests
	4.1 Scalar example
	4.2 Multiparametric quadratic programming
	4.3 Active learning with unknown constraints
	4.4 Real-world datasets

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

