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Abstract

Firewalls are a fundamental tool for managing and protecting computer networks. They behave according to a configuration
that specifies the desired policy, i.e., which packets are allowed to enter a network, possibly with modified addresses. Several tools
allow the user to specify policies in various high level languages, and to compile them into different target configuration languages,
as well as to automatically migrate a configuration from a system to another. Often, these tools implicitly assume that the target
system can enforce any desired policy. Unexpectedly, we find that this is not always the case. In particular, we show that the most
common UNIX firewall systems, i.e., iptables, ipfw, pf, are not equally expressive, in that some policies can be implemented in
one system but not in another. Here, we formally investigate the expressive power of these firewall systems using techniques from
programming language semantics, and set up a formal model to precisely characterize their relationships. Based on this formal
model we then present F2F, a prototypical tool that predicts when a policy cannot be expressed in a given system. Our prototype
gives detailed information about the unexpressible parts of a policy and provides administrators with hints for fixing the detected
problems.

Keywords: Formal Security Models, Language-based Security, Configuration Languages, Semantics of Firewalls, Automatic
Analysis of Firewalls

1. Introduction However, this is not true as shown by the following exam-
ple. Consider the simple firewall policy 7 in Table 1, expressed
in a tabular form in the spirit of FirewallBuilder. This policy ac-
cepts all the packets, redirecting those received on port 53 (DNS
protocol) to a remote host at 9.9.9.9. A possible compilation of
7 into iptables would roughly give the configuration in Fig-
ure 1. Instead, 7 is neither expressible in pf nor in ipfw, be-
cause no packets leaving the firewall itself can undergo a trans-
formation on the destination address. This example is minimal
and captures in isolation the problem of expressivity. However,
similar situations can happen in configurations with thousands
of rules, where this problem is concealed and hard to detect,
paving the way to a possibly dangerous misconfiguration. This
may occur, e.g., when updating legacy configurations or when
migrating manually a configuration from a system to another
because the tool support is lacking or insufficient [3, 4].
Different solutions exist for this kind of problems. A largely
used mechanism is marking specific packets with an internal
identifier, called fag, that can later be used in identifying cer-
tain packet flows and in refining filter and translation rules [5].
Email addresses: 1orenzo.ceragioli@phd.unipi.it (Lorenzo Alternatively, administrators resort to special rules, e.g., NFQUEVE
f:;igelgllll};irliiilaz 'iiiiioc@;niltp(lﬁeltfeg%Eizlt?a]))egan())’ in iptables [6], that transfer packet management to external
tools to complement the behavior of the firewall [7]. However,
such “patches” receive little attention by policy-based manage-

Firewalls are one of the most used tools for protecting com-
puter networks and enforcing access control policies. They
grant control on which packets can enter a network and how
they are transformed by the so-called network address transla-
tion (NAT). The firewall behavior is specified by a configuration
that implements the wanted policy. Roughly, a configuration
is a list of rules that transforms and filters the incoming pack-
ets. Each firewall system comes with its own configuration lan-
guage, with a specific syntax and a different way of evaluating
and applying the rules.

Nowadays, network administrators exploit policy-based man-
agement systems, e.g., the open source tools FirewallBuilder [1]
and Google Capirca [2], that provide high-level and user-friendly
policy languages that are then compiled to configurations of a
target system (e.g., iptables on Linux). Typically, these tools
support different target systems and implicitly assume that any
policy can be compiled in each of them.

| dstIP | dstPort | srcIP | srcPort [ DNAT | SNAT | ment systems (e.g., by [1]) or even no attention (e.g., by [2]),
any 53 any any 9.999:id | id:id while a reliable system should at least warn administrators of
any | not53 | any any id:id id: id such problems. Otherwise, some implemented access policies

) o ) ) might differ from those the administrator has in mind, e.g., the
Table 1: A policy expressible in iptables but not in pf nor in ipfw.
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not applied transformations illustrated above. It is therefore
crucial to know the actual expressive power of firewall config-
uration languages, and to have mechanisms to check when a
given policy cannot be expressed in a given system.

In this paper, we investigate the expressive power of fire-
wall configuration languages using techniques from program-
ming language semantics. In particular, we focus our investi-
gation on iptables, ipfw and pf that are the most common
UNIX firewall systems and that are used as building blocks of
many network appliances on the market, e.g., pfSense [8]. In-
deed, often these appliances run customized Unix distributions
that use these firewall systems for filtering/translating packets,
and that resort to other tools such as Suricata [9] and Snort [10]
to provide advanced features, e.g., deep packet inspection.

Our goal is to precisely characterize the relationships be-
tween these firewall configuration languages, and for that we
set up a formal model. It is based on IFCL, an intermediate lan-
guage for firewall configurations [11, 12], which subsumes the
most common firewall languages.

Our first contribution is a denotational semantics for IFCL,
which represents a firewall configuration as a function from
packets to transformations on them.

Based on this denotational semantics, we then introduce
two different notions of expressivity that associate each lan-
guage with the set of policies it can express. The first notion
is called individual expressivity, as it considers each packet in
isolation. Roughly, it captures policies that can be implemented
in a given system, possibly relying on tags. We prove that IFCL
and iptables are universal according to the notion of indi-
vidual expressivity, and that ipfw is as powerful as pf (Theo-
rem 4); this result is detailed in Table 2. The second type of
expressivity is called function expressivity, and discriminates
more, because it takes care of all the packets at the same time
and the way transformations change them. Firewalls evaluate
packets in steps, where each step applies a given transforma-
tion. It may happen that a given step makes two different pack-
ets indistinguishable, because of the transformations applied in
the previous steps. A clash exists if the policy dictates that the
two packets must instead be treated differently (see Example 7).
Looking at clashes, we establish a finer hierarchy where IFCL
strictly dominates all the others, iptables and ipfw are in-
comparable, and only ipfw strictly dominates pf (Theorem 6).
Actually, this notion characterizes policies that can be imple-
mented without resorting to ad hoc mechanisms.

Our model supports the definition of two algorithms that
compute and check both kinds of expressivity. To check in-
dividual expressivity, the first algorithm concisely enumerates
the pairs (p, t), where p is a packet and ¢ is the transformation
it can undergo. In this way one determines which pairs are ex-
pressible and which are not. The second algorithm discovers
if the policy requires the firewall to transform a packet in two
incompatible ways. We show how tags can solve this clash.

Last but not least, we describe the tool F2F, available on-
line at [13]. It supports the administrators in a number of ways
First, it verifies if a certain policy is expressible in a given lan-
guage, so facilitating the choice of the more appropriate system
and of its supporting tools. When the policy is not expressible,

*nat

:PREROUTING ACCEPT [0:0]
: INPUT ACCEPT [0:0]
:0UTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]

-A PREROUTING -p udp --dport 53 -j DNAT --to 9.9.9.9
-A OUTPUT -p udp --dport 53 -j DNAT --to 9.9.9.9
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10| COMMIT
11
12| xfilter

13| : INPUT ACCEPT [0:0]

14| : FORWARD ACCEPT [0:0]
15| : OUTPUT ACCEPT [0:0]
16
17| COMMIT

Figure 1: An iptables configuration expressible neither in pf nor in ipfw.

F2F gives detailed information about the reasons why, and pro-
vides administrators with hints for fixing the detected problems.
For example, it signals which packets require to be handled by
special mechanisms provided by the target system. In this way,
our tool supports administrators to check that their policy-based
management system, e.g., FirewallBuilder [1], creates correct
configurations when compiling to different targets. Also, F2F
predicts if a configuration is portable from a system to another
using an automatic tool like FWS [11, 14, 12]. Although still
prototypical, and far from being optimized, our tool has an ac-
ceptable performance when analyzing real configurations avail-
able on-line. Remarkably, the correctness of the given results is
guaranteed by our formal model and our algorithms.

Briefly, our tool answers the questions “what can I do with-
out mechanisms external to my firewall system? And what
without tags?” Answering them is important because most of
the tools for the management and the analysis of firewall config-
urations do not support such extensions [15, 16, 17, 18]. Thus,
F2F integrates and refines the functionalities and the results of
these tools, helping administrators to reduce misconfigurations
that may impact security.

Plan of the Paper

The next section briefly surveys iptables, ipfw, pf. The
basics of IFCL and its new denotational semantics are in Sec-
tion 3, together with the encoding of the considered firewall
languages into IFCL. Section 4 presents illustrative examples of
a policy expressible in iptables, but not in ipfw and pf, and one
that is non expressible in iptables. Section 5 defines the two
notions of expressivity and the theorems that compare the ex-
pressive power of the considered languages. In Section 6 we
present our tool for checking expressivity. In particular we de-
scribe the compact representation of the firewall semantics, the
main algorithms of the tool and its work-flow. In Section 7
we evaluate its effectiveness on a case of study and the perfor-
mance of F2F on real-world cases. The last section compares
our proposal with the literature, and draws some conclusions.
Table 5 summarizes the notation and the symbols used in the
paper. Further material, the proofs, and auxiliary lemmata are
in the Appendices.



2. Background: Linux and Unix Firewall Systems

Typically, firewalls are implemented either as proprietary
devices, or as software tools running on general purpose oper-
ating systems. Independently of their actual implementations,
they are usually characterized by a set of rules that determine
which packets have permission to reach the different hosts of a
network, and how they are translated.

This section briefly introduces the main firewall systems
used in Linux and Unix environments, the expressivity of which
we study in this paper and check through our tool.

In particular, we describe the constructs that administrators
need to use to write configurations for these firewall systems.
We also give an intuition on how these system process pack-
ets, sketching out their decision algorithms that we formalize in
terms of control diagrams in Section 3. Moreover, since here-
after we only consider new connections, we omit any detail
about constructs related to the state of connections. We refer
the reader to the relevant manuals for additional details.

iptables. It is the default tool for packet filtering in Linux
and it operates on top of Netfilter, the framework for packets
processing of the Linux kernel [19].

An iptables configuration is built on tables and rulesets,
called chains. Intuitively, each table has a specific purpose and
is made of a collection of chains. The most commonly used ta-
bles are: Filter for packet filtering; Nat for network address
translation; Mangle for packet alteration. Chains are ordered
lists of rules that are inspected to find the first one matching
the packet under evaluation. There are five predefined chains,
provided by the system, and users can define theirs. Chains are
inspected by the Linux kernel at specific moments of the packet
life cycle [6] to decide the destiny of a packet p: PreRouting,
when p reaches the firewall host; Forward, when p is routed
through the host; PostRouting, when p is about to leave the
firewall host; Input, when p is routed to the host; Output,
when p is generated by the host. The inspection order depends
on different conditions that a packet satisfies and we represent it
through the control diagram of Figure 2a. For example, a packet
entering the firewall that needs to be forwarded to another host
is processed in turn by the chains PreRouting, Forward and
PostRouting; instead a packet for the host running the fire-
wall is processed by the chains PreRouting and Input. Tables
do not necessarily contain all the predefined chains, but only
a specific subset (see [19] for a full account details). For ex-
ample, the table Filter contains the chains Forward, Input,
and Output. Chains are inspected top-down to find a rule ap-
plicable to the packet under elaboration. Each rule specifies a
condition and an action: if the packet matches the condition
then it is processed according to the specified target. The most
commonly used targets are: accept, to accept the packet; prop,
to discard the packet; DNAT, to perform destination NAT, i.e.,
a translation of the destination address and port; SNAT, to per-
form source NAT, i.e., a translation of the source address and
port. There are also targets that allow implementing mecha-
nisms similar to jumps and procedure calls. One can also mark
packets with a tag and use the tag value later on to better drive

rule application. Built-in chains have a user-configurable de-
fault policy (accepr or prop) to be applied when the evaluation
reaches the end of a built-in chain.

ipfw It is the standard firewall for FreeBSD [20]. A configu-
ration consists of a single ruleset that is inspected twice, when
the packet enters the firewall and when it exits. The way ipfw
processes packets is described by Figure 2b that we comment
in the next section. By using the keywords in and out, it is
possible to specify when a certain rule has only to be applied in
either case. Similar to iptables, rules are inspected sequen-
tially from top to bottom until the first match occurs and the
corresponding action is taken. The most common actions in
ipfw are the following: allow/deny to accept/reject packets;
nat to change the destination/source address of incoming/out-
going packets via NAT.

The packet is dropped if there is no matching rule. The
sequential order of inspection is altered by special targets that
jump to a rule that follows the current one. Packet marking is
supported also by ipfw: if a rule containing the tag keyword
is applied, the packet is marked with the specified identifier and
then processed according to the rule action.

pf. This is the standard firewall of OpenBSD [21] and macOS
since version 10.7. A pf configuration has a single ruleset, in-
spected when the packet enters and exits the host. Figure 2c
formalizes the algorithm used by pf to process a packet, and
we better describe it in the next section. Similar to the other
systems, each rule consists of a condition and a target that spec-
ifies how to process the packets matching the condition. The
most common targets are: pass and block to accept and reject
packets, respectively; rdr and nat to perform destination and
source NAT, respectively. The ruleset is sequentially inspected
as in the other systems, but the rule to apply is the last matched
rule (unless otherwise specified by quick rules). Moreover,
when a packet enters the host, DNAT rules are examined first
and filtering is performed after address translation. Similarly,
when a packet leaves the host, its source address is translated by
the relevant SNAT rules, and then the resulting packet is filtered.

3. The intermediate language IFCL

We present here the Intermediate Firewall Configuration Lan-
guage IFCL [12] that is used to put the systems surveyed above
in a common formal setting. The language has the most com-
mon targets, including those for altering the control flow, like
ACCEPT, DROP, NAT, JUMP, CALL and RETURN. Here, we omit those
affecting the control flow because an unfolding procedure can
remove them producing an equivalent firewall. The interested
reader can find a detailed presentation of the encoding and of
the unfolding procedure, together with the proof of their cor-
rectness, in [12]. The semantics of IFCL defined below is more
abstract than the one of [12] because a ruleset is associated with
a function from packets to transformations, rather than with a
list of rules. Intuitively, a transformation says if a packet is
either dropped, or it is accepted with the applied translations.
This representation simplifies the usage of IFCL as a framework



for the formal development of Section 5 and the algorithms im-
plemented in our tool.

3.1. Firewalls in IFCL

A firewall in IFCL consists of a control diagram and an as-
signment of functions to its nodes. A control diagram is a graph
that deterministically describes the order in which functions
(that abstractly represent firewall rules) are applied by the net-
work stack of the operating system. The control diagram C is
specific to the given firewall configuration language £ and cap-
tures its decision algorithm, i.e., the algorithm that decides if a
packet is accepted or not: every node ¢ thus stands for a pro-
cessing step and it is associated with a function that represents
the operations to perform when the control reaches g (roughly,
the application of the configuration rules to packets). Arcs are
labeled with predicates that encode routing decisions taken by
the firewall, e.g., for checking if a packet comes from the ex-
ternal world. Intuitively, a packet p is accepted if there exists a
pathin C (i.e., a sequence of nodes 7 = ¢;-q-...-qy with - as the
juxtaposition operator) from the initial node g; to the final node
qy such that p passes the checks, and is possibly transformed
by the functions associated with the nodes of .

Some notation is in order. A packet p is a tuple of packet
fields p,, € D,,, where the index w € W identifies the element of
the tuple. The set IP includes all 1P packets and is formally the
Cartesian product of domains D,,, one for each field. Here, we
do not fix the (finite) set W, and we only assume it to contain the
fields dIP, dPort, sIP and sPort that are the destination (source)
P and port, respectively. Also, we let the functions d(p) and
s(p) return the pairs of addresses paip : Papors a0d Psip * Psports
respectively.

A firewall either leaves a packet unchanged, or it modifies
some of its fields. We formalize this activity by the transforma-
tion functions associated with the nodes of the control diagram.
A transformation t of a field w is either the identity function id
(the value of w is left unchanged) or the constant function A,
returning the value @’ € D,, (the value of w is now a’). A packet
transformation t = (tgp : tapors tsip © tspors) € Tp 1S @ quadruple
of transformations, two for the destination IP and port fields,
and two for the source fields. Packet transformations are ap-
plied and composed component-wise.

For convenience, we extend P with the distinguished ele-
ment L to represent the dropped packets. Thus, transformations
are blankly extended, assuming #(L) = L. Also, we denote with
A, the transformation that always drops packets.

Example 1. Let the packet p have d(p) = 8.8.8.8:53 and
s(p) = 192.168.0.8 : 50000, and let t = (id: id, 151.15.1.5 : id)
be the transformation that changes the source IP (performing
a SNAT); then p’ = t(p) has d(p’) = 8.8.8.8 : 53 and s(p’) =
151.15.1.5 : 50000.

The following definition introduces the representation in
IFCL of the decision logic of a firewall configuration language.
It borrows some details from the one in [12].

Definition 1 (Control diagram). Let P be a set of predicates
over packets, assuming that for all y € P and for all p € P,
W(P) = /\wEW (!/w(pW)'

Given a firewall configuration language L, its IFCL control
diagram is a graph Cy = (Q, A, g;, qy) where

o ( is the set of nodes;

o A C QXPxQ is the set of arcs, such that whenever
(q.¥.9).(q.¥'.q") € Aand g’ # q" then =(y NY');

® gq,.qy € Q are special nodes denoting the start of elabora-
tion of an incoming packet p and the end, if p is accepted.

We also let § be the transition function of Cz, such that 6(q, p) =
q" if (q.4.q") € ANY(p).

Now we represent in IFCL a firewall written in the language
L, by associating the decisions to be taken with a node ¢ of its
control diagram when a packet reaches g. Formally:

Definition 2 (Firewall). Given a firewall configuration language
L with control diagram Cyp = (Q,A, qi,qyr), an IFCL firewall
configuration isamap f: Q - P — Tp.

In the following we will write (Cy, f) to concisely denote an
IFCL firewall configuration of L.

3.2. Modeling iptables, ipfwand pfin IFCL

In the following we intuitively present the IFCL encoding of
the languages introduced in Section 2. The interested reader
can find in [12] a formal encoding of these languages into a
ruleset-based version of IFCL, and in [22] the translation of IFCL
rulesets into functions from packets to transformations.

Hereafter let S be the set of the addresses of the firewall
interfaces; and let d(p) € S (s(p) € S, resp.) specify that p
is for (comes from, respectively) the firewall. In the control
diagrams of Figure 2 we label arcs with predicates expressing
constraints on the header of packets according to S; arcs with
no label carry implicitly “frue.”

The targets for accepting (accerr), dropping (prop), changing
the destination address (DNAT) and changing the source address
(snAT) are encoded in transformations in the following way:
accert as (id : id,id : id), orop as A,, DNAT to IP address ip
and port address port as (d;, : Apop, id : id), finally sNAT to IP
address ip and port address port as (id : id, Aip : Aporr).

iptables. Figure 2a shows the control diagram Ciptapies Of
iptables. The encoding associates a functional representation
of the predefined chains with the nodes of the control diagram.
For example, the table Nat contains the PostRouting chain
that is associated with ¢;;. It is important that in iptables
a DNAT is only performed in nodes g, gg, whereas SNAT only in
nodes gs, g1;. Similarly, orop can only be applied when the con-
trol is in nodes g3, gs,q9. These capabilities are denoted by
the labels in the boxes. To represent a chain as a function it is
sufficient to translate every rule in a separate case of the func-
tion definition. The encoding of a single iptables condition
into a predicate is trivial. Rules are composed to carefully rep-
resent the top-down evaluation order. This is done by joining
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Figure 2: Control diagrams of iptables, ipfw and pf.

the condition of a rule with the negation of the conditions of
all the preceding rules. This also guarantees that every predi-
cate is disjointed from the other. Common targets are translated
as defined above, whereas jumps to user defined chains can be
macro expanded in a preprocessing phase [12]. More precisely,
a jump to a user defined chain R is treated as the rules inside
R after adding the condition of the jump rule to the each rule
inside R.

ipfw. The control diagram of ipfw is in Figure 2b. The en-
coding of [12] splits the single ipfw ruleset in two rulesets
containing each the rules annotated with the keyword in and
out, respectively (if not annotated, the rule goes in both). Both
rulesets can filter packets and transform them, but only gy (g;
resp.) can apply DNAT (sNAT resp). The node g is associated with
the ruleset applied when an IP packet reaches the host from the
net, whereas, ¢; is for when the packet leaves the host. The
encoding of the conditions is the same of iptables, since in
ipfw the evaluation is top-down. Common targets are trans-
lated as usual, whereas skipto can be macro expanded in a
preprocessing phase [12]. More precisely, a rule r; with condi-
tion p and target skipto r; is treated as a list of rules 7; . . . 7enq,
after adding p to each condition, followed by ;1 ... r.,q Where
not p is added to each condition.

pf. Figure 2c displays the control diagram of pf, where the
nodes go and g are associated with the rules applied to packets
that reach the firewall, while ¢, and g3 are for when they leave
the firewall. Also in this case, the single ruleset of pf is split in
different rulesets. A source NAT can only be applied to packets
leaving the firewall, and destination NAT only to those reaching
it. Importantly, NAT rules (in nodes gy and g,) are evaluated
before filtering (in nodes ¢; and g3). The encoding of single
conditions is trivial. For the composition we have to keep in
mind that evaluation is top-down, but that the last matching rule
is taken, with the exception of quick rules, that are applied im-
mediately. Hence quick rules conditions are in conjunction with
the negation of the ones of all preceding quick rules, whereas

common rules conditions are in conjunction with the negation
of all the conditions of quick rules and of the following com-
mon rules.

3.3. Our running example

Consider a typical network of a small company depicted
in Figure 3a that will be used as a scenario for the examples
of the paper. Asssume that the firewall at the adresses S =
{192.168.0.1, 151.15.1.5} is the only connection point between
the Internet and the Local Area Network (LAN). The LAN pri-
vate addresses range over 192.168.0.0/24; the internal hosts at
192.168.0.6 and 192.168.0.7 run an SSH and an HTTPS server.
On the Internet, two DNS servers are hosted at 8.8.8.8 and 9.9.9.9.

Figure 3b shows a pf configuration for this scenario. Rule
at line 2 implements sNaT and translates packets from local ma-
chines directed to the Internet, replacing the source /P with that
of the external interface of the firewall. Rule at line 3 realizes
DNAT redirecting SSH (port 22) connections on the external inter-
face of the firewall to the internal SSH server. Traffic is allowed
only among internal machines (line 11), from internal machines
to the Internet for web-browsing (line 14) and from the Internet
to the LAN for accessing the SSH server (line 16).

The IFCL configuration f of Figure 3c encodes the pf con-
figuration in Figure 3b. For example, in node g3 we accept as
they are packets belonging to communications among internal
machines (pgp € 192.168.0.0/24 A pgp € 192.168.0.0/24) or
directed to SSH server (d(p)=192.168.0.6 : 22). Other packets
are dropped. Note that NAT is managed by the nodes go and ¢,
according to how pf deals with translations.

3.4. The denotational semantics of IFCL

We now define the denotational semantics of the firewalls
expressed according to Definition 2. This new semantics is a
function from packets to transformations, called fw-function,
that precisely implements the policy that the firewall has to en-
force. The idea is to compose the transformations applied to
a packet p in each node of the path it follows in the control
diagram.
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###
nat
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NAT rules ###
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### Filtering rules ###

# Default drop policy

block all

# Allow outgoing connections by
pass out from 151.15.1.5 to any
# Allow arbitrary traffic among
pass from 192.168.0.0/24 to 192

192.168.0.0/24 -> 151.15.1.5
proto tcp to 151.15.1.5 port 22 -> 192.168.0.6

the firewall

intranets
.168.0.0/24
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= i
;: 13

8.8.8.8 14

(a) The network of our examples.

Fgi)(p) = (qp)(p) = (id : id, id : id)

# Allow HTTP/HTTPS outgoing traffic
pass out proto tcp to port {80,
15| # Allow SSH/HTTPS incoming traffic to the corresponding hosts
16| pass proto tcp to 192.168.0.6 port 22

443}

(b) A simple pf configuration file.

(id:id,id:id) if (psp€192.168.0.0/24 A pap €192.168.0.0/24)

Slq)(p) = vV d(p)=192.168.0.6 : 22
(A192.168.0.6:id, id: id) if d(p)=151.15.1.5: 22 Av otherwise
fao)p) = {(id cid,id : id) otherwise
(id:id, id:id) if pgp=151.15.1.5V
(id-id, D5y 1515:id) if pagp € 192.168.0.0/24 A (psip €192.168.0.0/24 A parp € 192.168.0.0/24)
fg3)(p) = V paport €{80, 443}

f(@2)(p) = paip €192.168.0.0/24

(id : id,id : id) otherwise

Vd(p)=192.168.0.6 : 22
A otherwise

(c) The corresponding IFCL configuration.

Figure 3: The network of our examples, and an example of firewall.

Definition 3. Let P — Tp be the set of fw-functions, and let
F = (C, f) be a firewall. The semantics of F is

(]TD = Q[Z_]qi P->7p
where, for any I C Q
(@) ot
o (@)(p) =41t
Ao

ifg#qrAt+ A . Ng €1
fg=qrVvi=2a,
ifq el

witht = f(q)(p), p’ = t(p) and q' = 6(q, p’).

Note that in the definition above, while traversing the nodes of
the control diagram, we not only apply the transformations to
packets, but we also accumulate and compose them. Indeed,
our goal is to characterize the overall transformation a packet
undergoes, rather than simply determine whether it is accepted
or not. Recall that in each step the packet p can change and
that 1, immediately drops it. The special transformation A, is
applied as soon as a loop is detected, and for that the index /
accumulates the nodes already visited. According to our exper-
iments with the real firewall systems described in Section 2, cy-
cling packets are usually dropped, i.e. A, = A, but no official
documentations state this in clear. Thus, best practice suggests
to avoid considering configurations where packets cycle. For

this reason in the following we only consider firewalls ¥ where
no packets cycle: (F|)(p) # A, for any packet p.

Example 2. Consider a packet p such that s(p) = 1.1.1.1 :
4444 and d(p) = 151.15.1.5 : 22 entering the firewall described
in Subsection 3.3. Its processing starts in node q; and follows
the path qo-q1-qy. The initial and final nodes accept the packets
as it is. Since s(p) ¢ S, i.e., it is not a firewall interface, p goes
to qo where it matches the first condition of f(qo) and the trans-
formation (id :id, A192.168.0.6 : id) is applied, replacing the desti-
nation IP with 192.168.0.6 so obtaining p’ (leaving unchanged
the other fields of the packet). The packet p’ reaches q,, where it
is accepted as it is (with transformation (id : id, id : id)) by the
first case of f(q1), because d(p’) = 192.168.0.6 : 22. Finally,
since d(p’) € S, the packet reaches qy where it is accepted.
Thus, the overall transformation associated to the packet by the
Sfirewall is (id : id,id : id) o (id : id, id : id) o (id:id, 1192.168.0.6 :
ld) ] (ld . id, id : id) = (id: id, /1192.168.0.6 : ld)

4. Examples of Inexpressible Policies

There are some policies that are not expressible in all con-
figration languages, unless one resorts to external tools or tags.
Here, we present some examples of policies that are not ex-
pressible in some Unix firewall languages. We describe why



*nat

:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:QUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]

-A PREROUTING -p udp --dport 53 -j DNAT --to 9.9.9.9
-A OUTPUT -p udp --dport 53 -j DNAT --to 9.9.9.9

-A POSTROUTING ! -d 192.168.0.0/24 -j SNAT --to 151.15.1.5
10| -A INPUT ! -d 192.168.0.1 -j SNAT --to 151.15.1.5
11
12| COMMIT

14 *filter

15| : INPUT DROP [0:0]
16| : FORWARD DROP [0:0]
17| : OUTPUT DROP [0:0]

19| -A OUTPUT -p udp -d 9.9.9.9 --dport 53 -j ACCEPT

20 ~A OUTPUT -p tcp -s 192.168.0.1 ! -d

21 192.168.0.0/24 --dport 80 -j ACCEPT
22| -A INPUT -p udp -d 9.9.9.9 --dport 53 -j ACCEPT
23| ~A INPUT -p tcp -s 192.168.0.0/24 ! -d

24 192.168.0.1 --dport 80 -j ACCEPT

25| ~A FORWARD -p udp -d 9.9.9.9 --dport 53 -j ACCEPT
26| ~A FORWARD -p tcp -s 192.168.0.0/24 ! -d

27 192.168.0.0/24 --dport 80 -j ACCEPT
28

29| COMMIT

Figure 4: An iptables configuration not expressible in pf and in ipfw.

(id:id, A151.15.1.5:id)  if PsIP € 192.168.0.0/24
A parp € Internet
(A192.168.0.6 : id, id 1 id) if pgp € Internet

N pdip = 151.15.1.5

= A Paport =22
n if pgip € Internet
A parp €192.168.0.0/24
(id : id,id : id) otherwise

Figure 5: fw-function not expressible in pf and iptables (Internet stands for
any public address not in the protected network).

these expressivity limitations arise and how they impact on con-
figurations.

As a first example, take the iptables configuration of Fig-
ure 4. The firewall applies a sNaT to each packet leaving the
LAN to change its source address to 151.15.1.5, and permits
connections to only start from inside the LAN. Also, the new
connections using the DNS protocol (port 53) are redirected to
the server with IP 9.9.9.9. Finally, every other connection from
the LAN to the Internet is prevented, except for HTTP (port 80).

Now, consider a packet p with d(p) = 8.8.8.8 : 53 and
s(p) = 192.168.0.1 : 50000. The configuration above trans-

forms p into p’ withd(p’) = 9.9.9.9 : 53 and s(p’) = 151.15.1.5 :

50000. However, no configuration in pf behaves the same, be-
cause it cannot apply a DNAT to p. Roughly, in the control dia-
gram of pf, p only follows the path ¢; - > - g3 - ¢ and cannot
apply a DNaT, as highlighted by the labels in Figure 2c For sim-
ilar reasons, neither ipfw can express such a behavior.

As a second example assume the administrator wants to im-
plement a policy enforcing the following behavior. The con-
nection requests (i) from the local network to the Internet are
allowed and subject to SNAT, (ii) from the Internet to the firewall

on port 22 are redirected via DNAT to the internal host 192.168.0.6,
(iii) from the Internet to internal hosts are denied, while (iv) all
the other connection requests are allowed (between internals,
among firewall and internals and so on).

The fw-function 7 representing this behavior is in Figure 5,
where Internet is the set of all the public IP addresses. This
function is expressible neither in pf, nor in iptables, unless
one resorts to the additional mechanism of tags. By the encod-
ing of iptables and pf in Subsection 3.2 and by their control
diagrams, we know that they both apply DNAT to packets com-
ing from the Internet before checking other rules. Thus, they
cannot discriminate between two packets p; and p, that come
from the Internet but that are directed both on port 22 to the
firewall and to the internal host 192.168.0.6, respectively. Nei-
ther pf nor iptables treat these two packets differently, hence
they cannot express 7, since 7(p1) = (d192.168.0.6 : id, id : id) and
T(p2) = A1

It is worth noting that combining the two examples above
one can write a policy expressible by neither iptables, nor
ipfw, nor pf. Yet IFCL can express it. More precisely, no policy
expressible by the first three firewall languages comply with the
following behavior. The connection requests (i) from the local
network to the Internet are allowed and subject to SNAT, (ii) from
the Internet to the firewall on port 22 are redirected via DNAT to
the internal host 192.168.0.6, (iii) from the Internet to internal
hosts are denied, (iv) on port 53 are redirected via DNAT to the
server 9.9.9.9; while (v) all the other connection requests are
allowed.

5. Expressivity of Firewall Configuration Languages

Here, we introduce two formal notions of expressivity that
characterize the set of policies expressible by each language.
We provide a logical definition of these notions that will be
turned in an operational style and then checked by our tool F2F
in the next section. The first notion is individual expressivity
in which we assume that the firewall manages single packets in
isolation. The second is function expressivity that characterizes
what is expressible taking care also of how a transformation
on a packet may affect that of another packet. Actually, these
notions only consider the legal configurations of a language,
i.e., those meeting the constrains of the language in hand. We
provide also a formal characterization of those constraints. We
only use below the basic targets accepr, prop and waT and avoid
ad hoc constructs, e.g., tagging packets. This choice is driven
by the empirical evidence that most of the configurations freely
available use these targets only [23]. Note that control flow in-
structions are implicitly considered in the following, because
they are macro-expanded in IFCL. Also, we formally relate the
expressivity of the languages considered so far, according to
these two notions.

5.1. Legal Configurations

Assume that a firewall language £ has C, as control di-
agram that represents its decision algorithm for accepting or
dropping a packet. We require that each node g of C also car-
ries information on which operations can be applied to packets



when in node g. For example, in the encoding of pf, the rules
rdr are only assigned to the node gy (see Section 3). Hence,
a configuration associating 4, with some packets in g is not
valid for pf, yet it is for IFCL.

We represent this additional information in a handy man-
ner by decorating each node g with cap-labels representing the
transformations allowed in g. Formally, we are making explicit
that languages put constraints by restricting the image of the
function that the configuration f associates with the nodes of
the control diagram. Figure 2 shows the cap-labels for the lan-
guages we are considering, within rectangles (we assume ID,
representing the transformation id, be always present, therefore
omitted). Hereafter, let IP and Port denote the set of IP ad-
dresses and ports, respectively.

Definition 4 (Cap-labels and allowed transformations). Given
a control diagram C with nodes Q, and the set of cap-labels
IL = {1p, DNAT, SNAT, DROP}, a cap-label assignment is a function
V:Q— 2k

Furthermore, we define the mapping & that associates a cap-
label | € 1L with the set of allowed transformations as follows:

e(rm) = {(id : id , id : id)}
e(ovat) = A x {id : id}

&(bropP) = {A,}

e(svat) = {id : id} x A

where A = {A, : Ay | a € IP,a’ € Port}.
We extend & to homomorphically operate on sets L C 1L of
labels, i.e. returning the union of (1), forl € L.

We call legal those configurations that respect the cap-label as-
signment. Formally,

Definition 5 (Legal configuration). A configuration f: Q —
P — 93, for a control diagram C with nodes Q is legal for
a cap-label assignment V if and only if for each node q € Q,
e(V(q)) includes the image of f(q).

Given a language £, let hereafter V be the cap-label as-
signment for L. Note that V induces a direct connection be-
tween £ and its legal configurations. Consequently, the expres-
sivity of a firewall language can be established by just examin-
ing its legal configurations, and thus our two notions of expres-
sivity only consider legal configurations.

5.2. Individual Expressivity

The individual expressivity of a firewall language describes
which transformations a legal configurations can apply to pack-
ets. Below we first define it intensionally. We then characterize
it constructively in terms of traces, i.e., labeled paths along the
control diagram of the language, so providing the bases of the
algorithms of Section 6.

5.2.1. Expressible Pairs
We start with an intensional characterization of the legal
transformations that can be applied to each single packet.

Definition 6. The set of expressible pairs of a language L is

Ep={(p,0)|3f. f is legal for Vo A ((C, ) ])(p) = 1}

We now give a constructive characterization of this expres-
sivity through the notion of trace, i.e., a pair composed by a
“complete” acyclic path that a packet may traverse in a con-
trol diagram and by the sequence of cap-label of the traversed
nodes. A complete path starts from the initial node and either
ends in the final node or in one dropping the packet; in addition,
for each node ¢ the cap-label is among the permitted ones V(g).
Formally,

Definition 7. A trace of a language L is a pair h = (x,v) where
T=qo - qi-.--"qn v=1-1l...-1,, with qy = q;, are such that
Vi,ji# j= q # qj and Vj.(q;,¥,qj+1) € A for some ¢,
l;€Ve(g)), Vj#n.(q; # qr Nlj # DROP) and either g, = qy or
I, = prop. Finally, let Hy be the set of the traces of L.

By abuse of notation, given a trace (i, v) we call a configu-
ration f legal for v when Vp € P, q; € m. f(q;)(p) € &(l}).

Example 3. The following are traces of pf:
(gi-q2-93-qs. ID- ID- ID- ID), (q;i-qo - g1, ID- DNAT - DROP)
Instead the following two are not traces of pf:
(qi-q>-q3-qf, ID- DNAT- ID- ID), (q; - q> - g3, ID- SNAT- ID)

The first is not because of the second cap-label, DNAT & V,¢(q3),
the second because it is not complete: neither the path ends
with q ¢ nor the sequence of its labels ends with DROP.

We now define the capability of a trace h = (m,v) that describes
how a packet may be transformed by the nodes of n. Intuitively,
we consider all the possible compositions of the transforma-
tions allowed by the cap-labels. Recall that the arcs of control
diagrams are guarded by predicates that must be satisfied when
a packet flows through them. These predicates determine which
packets and transformations must be considered. Given a trace
h = (m,v), let ; be the predicates labelling the arcs outgoing g;
in the pathg; - q;...-¢q, € 7.

Definition 8. The capability of a trace h = (71, v) is the set E,C
P X Tp, containing the pairs (p, t) such that

d#,...t,.t,0---01 =l/\Vj.tj€S(lj) /\j<}’l—>lﬂj(pj)

where ¥ j. p; = (tjo---ot])(p).
Finally, the capability of the traces of a language L is

- B
heHy

Example 4. Consider the trace of pf
h=mv)=(qi-q2q3-qy, ID- SNAT- ID- ID)

and, assuming that a packet is fully specified by its destination
and source addresses, let

p1 = (8.8.8.8:22, 192.168.0.1 : 50000)
t1 = (d : id, Ai51.15.15 : A50000)



Then the pair (p1,t,) is in Eh, because the transformations
id - (id : id, A151.15.1.5 : Aso000) - id - id

verify the conditions of Definition 8.
Instead, the pair (p;,t;) where

p2=109.9.9.9 :22, 192.168.0.1 : 50000)
fy = (8838 : A2, id : id)

is not in E;, because no DNAT occurs in v = ID- SNAT- ID- ID.
Finally, the pair (p3,t3) where

p3 =(192.168.0.1 : 80, 23.23.23.23 : 50000)

13 = (A192.168.0.8 : Ago, id : id)

is not in Ey, because s(p3) ¢ S.

The following theorem assures that a pair (packet, transfor-
mation) is expressible by L if and only if it is expressible by
one of its traces /; in other words, the capability of the traces of
a language coincides with the set of its expressible pairs. More
precisely, Definition 6 and 8 are equivalent.

Theorem 1. E, = EL.

5.2.2. Algorithmically Characterizing Individual Expressivity
The operational characterization of individual expressivity
is based on Algorithm 1 and on Theorems 2 and 3 below.
Algorithm 1 checks whether a packet p can follow a given
trace h = (m, v) by following the path 7 and verifying if p sat-
isfies all the predicates y; labelling the arc outgoing g;. It uses
the auxiliary functions length, head and tail on sequences with
the usual meaning, and the following Ext predicate (recall from
Definition 1 that y,, is the predicate i restricted on the field w)

Ext(y,L) = /\ ¥, where

weUger y(1)
{dIP,dPort} if | = DNAT
{sIP, sPort} if | = SNAT
y() = .
w if [ = proOP
0 ifl=1D

A few comments are in order. The cap-labels encountered
along the trace 4 play an important role, and are accumulated in
the auxiliary set CL (line 6). Actually, the function Ext weak-
ens the predicate ¢; by removing the conditions affected by the
elements of CL; the resulting predicate is then applied to p to
verify if the arc outgoing g; can be taken (line 8). As soon
as the algorithm traverses a node g with cap-label DNAT (SNAT
respectively), all the predicates on the destination (source, re-
spectively) addresses are not checked against p any longer. This
is because, after leaving g, the original values of the destination
(source, respectively) fields of p have been changed, thus the
relevant predicates will be evaluated on the updated fields. The
arc predicates are also accumulated into J (line 7) and checked

Algorithm 1 Checks if a packet p may follow the trace & =
(7, v)

1: function cHECK _FLOW(p, (71, V))
2: CL<0

3 Y« true

4: while length(m) > 1 do
5: (g),1;) « (head(r), head(v))
6: CL « CLU {l}}
7: J — Ext(w, )Ny
8: if —(Sat(y) A Ext(y;, CL)(p)) then return false
9: (7, v) & (tail(r), tail(v))
10: return frue

for consistency through a call to a SAT procedure (line 8). In-
tuitively, in a node labeled by snaT the packet source can al-
ways be associated with a value satisfying the constraints of the
next arcs in the trace, unless some predicates are contradictory.
Since Algorithm 1 considers each node and label of the trace
only once, its complexity is linear in the length of the trace,
because in the worst case, it visits the nodes in / only once.
The individual expressivity of a language can be character-
ized by the following theorem, where the function CHECK_FLOW
is computed by Algorithm 1, and the function REV(%) reverses
the trace h. Note that the packet p traversing the trace £ must
become #(p) and keep satisfying the predicates on the arcs also
after some of its fields have been transformed. If different from
those in #(p), the new values of a field can thus be arbitrary cho-
sen, provided that the predicates are satisfied, because the val-
ues of the destination (source, respectively) fields between two
DNAT (sNAT) are immaterial. Therefore, it suffices checking the
destination fields (source, respectively) from the last DNAT (SNAT)
label onward. This is actually obtained by reversing the trace &
and applying again Algorithm 1. Below, we use the function &
that extends & to the second component of traces v as follows:

&(l-v)y=&W)oe()
Note that £(v) = A, if the last element of v is DROP.

Theorem 2. Given a trace h = (r,v), the pair (p,t) is in Ej, iff
t € &(v) A CHECK_FLOW(h, p) A CHECK_FLOW(REV(h), t(p))

Example 5. Consider the pair (py,t1) and the trace h of Exam-
ple 4. To make sure that (py,t1) € Eq(h), we first check that
t, € &) = &(sNAT); then, CHECK_FLOW(h, p|) returns true be-
cause s(p1) € S and d(py) ¢ S, finally, CHECK_-FLOW(REV(h),
p1) is also true because the fields changed by t| do not appear
on the arcs of the path of p;.

The pair (ps, t3) instead is not in Eq((h), because s(p3) ¢ S.

5.2.3. Comparing the Individual Expressivity of Languages

To compare the individual expressivity of different languages,
we finitely enumerate their expressible pairs. For that, we use
the intuition behind Algorithm 1 and Theorem 2 to partition the



set of pairs (p, f) in equivalence classes w so that if (p1,#) € w
is expressible (not expressible, respectively), then all the pairs
in w are expressible (not expressible, respectively) as well. Two
pairs (p,t) and (p’,t’) belong to the same equivalence class
when they follow “similar” paths, in a sense made precise be-
low. As we will see, a language can have different such equiv-
alence classes, which can be efficiently determined. Since their
number is small, one can easily enumerate the expressible pairs
of different languages and compare them. Formally:

Definition 9. Letr T = {e(1D), &(DNAT), £(SNAT), £(DROP), A X A}
be a partition of the set of transformations Tp; let ¥ be the set
of the predicates labeling the arcs of the control diagram of a
given language L; and let g: P — 2% be defined as

g(p) =ty € Y| p satisfies |/}

Then, for any X| and X, subsets of ¥ and for any Y € T, let Q
contain the following sets of pairs (p,t)

wx,vx, ={(p, D) | g(p) = XiA(t(p) # L = g(t(p)) = Xo)At € Y}

Two pairs (p, t) and (p’, t’) belong to an equivalence class wy, yx,
whenever they fulfill the three conditions roughly described be-
low. First, if p satisfies the set X;, so must p’, therefore both
packets will each follow a path in the same set. Analogously,
when p and p’ are not dropped, the transformation #(p) satisfies
X, if and only if #'(p") does, so guaranteeing that these transfor-
mations share the possible next steps. Finally, the same set of
cap-labels Y is associated with both transformations ¢ and ¢’.

Example 6. The two pairs (p1,t,) and (pa, t2) where

p1 = (8.8.8.8 : 80, 192.168.0.1 : 50000)
t1 = (A77.7.7 : Ago, id : id)

P2 =(9.9.9.9 : 80, 192.168.0.1 : 50000)
tr = (Ais51.15.1.5 : Ago, id : id)

are not in the same equivalence class.

Indeed, even though g(p1) = g(p2) = {s(p) € S,d(p) ¢ S}, and
t1,tp € &(DNAT), we have that t1(p;) verifies d(p) € S whereas
1(p2) does not, hence g(t1(p1)) # g(t2(p2)).

We have the following theorem:

Theorem 3. Q is a partition of P X Tp such that the elements
of wx, yx, are either all expressible or all not expressible.

Using the equivalence classes we succinctly enumerate and
compare the expressible pairs of firewall languages, summa-
rized in Table 2. The first three columns show the equivalence
class under consideration; the last columns describe whether
the pair representative for each class is expressible or not by
a language. The details for selecting a representative pair of a
given class are in Appendix A.

Note that the predicates on the arcs of the control diagrams

of iptables, ipfwand pf only check the /P addresses (see 3.2).

A packet can traverse an arc depending on whether the source
or destination of the packet belongs to S. Therefore, we simply
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use the set ¥ = {d(p) € S,d(p) ¢ S,s(p) € S,s(p) ¢ S}, the
satisfiable subsets of which follow:

{d(p) € S, 5(p) € S} {d(p) € S,s(p) ¢ S}
{d(p) ¢ S, s(p) € S} {d(p) ¢ S.s(p) ¢ S}

The theorem below states that only IFCL and iptables ex-
press all the pairs, while pf and ipfw have the same expressive
power. Its proof directly follows by inspecting Table 2.

Theorem 4. Epf = Eipfw - Ez’ptables =Eipcr =PXTp

=

5.3. Function Expressivity

Individual expressivity only considers packets in isolation.
However, a firewall handles many different packets at the same
time, each subject to different transformations. The interaction
of the transformations applied to different packets must thus
be considered, because packets can become related depending
on the transformations their undergo. This affects the policies
that the various languages can express, as shown by Example 7
below. We first say that a fw-function 7 is expressible by a
language if the semantics of one of its firewalls is 7.

Definition 10. Given a language L with control diagram C g
and a cap-label assignment Vr, a fw-function 7: P — Tp is
L-expressible iff Af legal for V; such that ((Cy, f)) = 7.
Call T the set of the fw-functions expressible by L.

Note that this notion differs from individual expressivity be-
cause it considers all the pairs (p, 7(p)) at the same time. The
following theorem gives a necessary condition for function ex-
pressibility.

Theorem 5. Given a language L and a fw-function T
teTronlyif VpeP.(p,7(p)) € E.

The following example shows that the condition above is not a
sufficient one.

Example 7. The fw-function t defined below is not p f-expressible,

although all the pairs (p, T(p)) are expressible in pf.

(A8.88.8:id, d1s1.15.15:id) if psp=192.168.0.8 A

paip=6.6.6.6
T(p)=4 (1g.8.85:id,id:id) if psip=192.168.0.8 A
pap=1.1.7.7
A otherwise

All the pairs (p,7(p)) are expressible in pf (in Section 6 we
present an algorithm to check that this is actually the case). To
show that function T is not expressible by pf, we assume by
contradiction that it is. Take two packets p and p’, both with
source IP 192.168.0.8, that only differ on their destination IP
which are 6.6.6.6 for p and 7.7.7.7 for p’. They must traverse
the nodes q;, qo, q1, 92,93 and qy, and both are transformed by
DNAT in qq into p” with destination IP 8.8.8.8. When p and p’
arrive in node q, they have been already transformed in p”,
and when applying SNAT the two cannot be taken apart. But T
says that one has to be subject to SNAT and the other has not.



X Y Xo (p,1) Eg
d(p) | s(p) d(t(p)) | s@(p)) (d(p), s(p)), 1) pf/ipfw | iptables

1|1 eS| eS8 &(1p) eS eS ((a:r,a:r),id) v v

21 eS| ¢S &(1p) eS ¢S ((a:rb:r),id) v v

31 ¢S | €S &(1p) ¢S €S ((b:ra:r),id) v v

41 ¢8| ¢S &(1p) ¢S ¢S ((b:rb:r),id) v v

5 - eS &(1p) - ¢S O

6| €S - &(1p) ¢S - O

7|1 €S | €8S | e(onat) eS eS ((a:ra:r),A,: A, id : id)) v v

8| €S | €S || e(onar) ¢S eS ((a:ra:r),(Ap: A,id : id)) X v

9|1 €S | ¢S | e(onar) eS ¢S (a:rb:r),(A,: A, id : id)) v v
10| €S | ¢S || e(nat) ¢S ¢S ((a:rb:r,A: A, id : id)) v v
11| ¢S | €S || e(ponar) €S €S (b:ra:r),A,: A, id : id)) X v
12| ¢S | €S || (onat) ¢S €S (b:ra:n,Ap: A, id : id)) X v
13 ] ¢S | ¢S || (onaT) eS ¢S (B:rb:r),(A,;: A,id : id)) v v
14| ¢S | ¢S || e(onar) ¢S ¢S (B:rb:r),(Ap: A,id : id)) v v
15 - €S || &(pNAT) - ¢S O
16 - ¢S || £(DNAT) - eS O
17 ] €S | €S || &(snaT) eS €S ((a:ra:r),(d:id A, : A,)) v v
18| €S | €S || &(snaT) eS ¢S ((@a:ra:r),(d:id, A : A)) v v
19 | €S | ¢S || e(snar) €S €S ((a:rb:r,(d:id, A, : 4,)) X v
20| €S | ¢S || &(snaT) €S ¢S ((a:rb:r),(d:id, A, : 1,)) X v
21 | ¢S | €8S || e(snar) ¢S eS (b:ra:r),3dd:id A, : 4,)) v v
22| ¢S | €8 || e(snar) ¢S ¢S (b:ra:r),dd:id, A : A,)) v v
23 | ¢S | ¢S || e(snar) ¢S €S (b:rb:n,d:id, A, : 4,)) v v
24 | ¢S | ¢S || &(snaT) ¢S ¢S (B:rb:r),Gd:id, A : 1)) v v
25| €8 - £(SNAT) ¢S - O
26 | ¢S - £(SNAT) €S - O
271 €S | €S || AXA eS eS (@:ra:r),(A;:A,4,:4,) v v
281 €S | €S || AXA eS ¢S @a:ra:r,(A,: 4,4, : 4,) v v
2091 €S | €S || AXA ¢S eS @a:ra:nr,(Ay:A,4,:4,) X v
30| eS| eS| AXA ¢S ¢S (@:ra:r,Ay: A, :1,) X v
31| eS| ¢S || AXA eS €S (a:nrb:r),Aq: 4,2, :4) X v
321 eS| ¢S || AXA eS ¢S @:rb:r),(A;: A, : 4,) X v
331 €S| ¢S || AXA ¢S €S (@:rb:r,Ap:A,2,:1,)) v v
3|1 eS| ¢S || AXA ¢S ¢S (a:rb:r),Ay: 4,2, : 1) v v
35| ¢S | eS| AXA €S eS (b ra:r),Ag: 4,,:4,) X v
36 | ¢S | €S || AXA eS ¢S (b:ra:r),Aq: A, :4,) X v
371 ¢S | €S || AXA ¢S eS (b :ra:r),Ay:A,4,:4,) X v
38| ¢S | €S || AXA ¢S ¢S b ra:r,Ay: 4,2 : 1)) X v
391 ¢S | ¢S || AXA eS €S B:rb:r),Ag:4,2,: 1)) X v
40| ¢S | ¢S | AXA eS ¢S (B:rb:r),Ag: 4,4 :4,) X v
41 1 ¢S | ¢S || AXA ¢S €S (D:rb:r),Ap: 4,2, :4) v v
421 ¢8| ¢S || AXA ¢S ¢S (B:rb:r),(Ay: 4,2, 1) v v
43 | €S | €S | «(prop) - - ((@:ra:r),L) v v
44 | €S | ¢S | (prop) - - ((@a:r,b:r),L) v v
45 | ¢S | €S | &(prop) - - (b:ra:r),lLl) v v
46 | ¢S | ¢S || e(prop) - - (b:rb:r),L) v v

Table 2: The expressible pairs of iptables, pf and ipfw. The first two columns contain the predicates in the subset X (the — stands for both € and ¢ S); the third
column contains the set of transformations Y; the fourth and fifth columns contain the predicates in the subset X»; the sixth column contains the representative pair
(p, 1) for the given class or O if the class is empty; the other columns have v if the class containing the pair (p, 7) is expressible or X if not.
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Algorithm 2 Check function expressivity of £

1: function cHECK _FUNCTION(T, C, V)

2 forallge Qdo g(g) < 0

3 for all (P, ) € T do

4: h « compUTE_TRACE(C, V, ([P], 1))

5 if 7 = Null then print (P, t) not expressible
6 else g « cHECK_PAIR(A, (P, 1), g)

7: function compuTE_TRACE(C, V, (p, 1))

8: for all 1 € H, do

9: if t € £(v) A CHECK_FLOW(h, p)A
CHECK_FLOW(REV(h), t(p)) then return h
10: return Null

: function cHECK PAIR(), (P, 1), g)

12: (Pa,t,t) « (P1,(id : id, id : id))
13: for all (¢,]) € h do

14: (te,t.) « spLT(t., 1)

15: for all (Po,7.,70),(P,D) € g(q) s.t. fo # te@ do

16: Pé — Pae N P@

17: if Py, # 0 then

1 P* — PN (PG)

19: P~ PNENPY)

20: print (P*,1),(P*,7) clashin g : (P}, e, i)
21: 8(q) < (@) U{((Pa, 1 ta), (P, 1))}

22: t, < t@ Ol

23: P@ «— [@(P@)

24: return g

Function expressivity enables us to further compare iptables,

ipfw and pf that originate a partial order, the top of which is
IFCL that can express all the fw-functions.

Theorem 6.
® Tpr C Tiprw © TircL

C TirceL

=

»f ,¢_ Tiptablesy Tiptables g_ Tpf

. Tipfw % Tiptables: Tiptables SZ Tipfw

b Tiptables

6. Mechanically Checking Expressivity with F2F

In this section we describe how F2F checks if a policy can
be expressed by a given firewall language. In particular, we first
present the data structure used to represent the semantics of a
firewall and then the algorithm which our tool relies on. Finally,
we describe the workflow of our tool.

6.1. Effective Representation of Firewall Semantics

In set theoretical terms, the semantics of a configuration,
i.e., a fw-function 7, is a set of pairs (p, ). To concisely rep-
resent these pairs, we first group in a set P all the packets sub-
ject to the same transformation ¢, and we present the function
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T as a set of T-pairs (P,t). We then efficiently represent fw-
functions using multi-cubes [24]. A multi-cube generalizes the
notion of cube, and can be considered as the cartesian product
of the union of intervals. A multi-cube compactly represents a
set of packets, and each union specifies the interval to which
the values of the corresponding field of a packet belong. We
then represent transformations as functions from multi-cubes
to multi-cubes that change the intervals of their argument.

Example 8. Consider the following multi-cube:

([192.198.0.2,192.198.0.10] : [8080, 80801,
[192.198.0.1,192.198.0.1] : [0, 22] U [25, 100] )

It represents the set of packets with destination address in
[192.198.0.2,192.198.0.10] and port 8080, and source address
192.198.0.1 with source port in the intervals [0,22] or [25, 100].

Since a set P in a T-pair not always forms a multi-cube, we
need an intermediate step. In such a case, P is partitioned in a
set of P; each yielding a multi-cube. In addition, we make sure
that every 7-pair (P}, f) is such that all (p, f) with p € P; belong
to the same equivalence class of Q. This further partition of
T-pairs is based on the fact that each subset wy, yx, € Q can
be represented as {(Py, +x,, Hlt € Y} lifting Definition 9 to sets
of packets and taking a single transformation . We can then
componentwise split each (P;, t) into its intersections with the
pairs (Px, 1+ x,, 1)

After the steps above, given a t-pair (P, f) we can pick up
a single packet p € P, denoted by [P], with the guarantee that
any other packet in P is transformed in the same manner and
follows the same trace.

Example 9. Consider the following fw-function T, where Inter-
net stands for any public address not in the protected LAN.

(A192.168.0.6:id, id :id) if psp € Internet A
Paip= 151.15.1.5 A pdpo,t:22
AL if psip € Internet A
T(p)=
(parp€192.168.0.0/24 v
PdPort ¢22)
(id : id, id : id) otherwise

The set of packets to be dropped is not a multi-cube, and is rep-
resented as the union of P,1 = 192.168.0.0/24 : _X Internet : _
and P,, = _: _X Internet : [0 — 21] U [23 — 65536], where _
stands for “any value.” Note also that (P, 1,) is not included
in any equivalence class, and thus it is split into ([192.168.0.2,
192.168.0.255] : _x Internet : _, A,) and ({192.168.0.1} : _ X
Internet : _, A,)(we omit here the invalid address 192.168.0.0).

6.2. An Algorithm for Checking Expressivity

We now describe Algorithm 2, which is the core of F2F.
Roughly, Algorithm 2 iterates on all the 7-pairs (P, ) represent-
ing a fw-function 7. For each pair, it creates an extended con-
figuration g that associates each node g with the required trans-
formation #, (occurring in the cap-labels of ¢). In doing so, the



algorithm checks that no clash occurs. Intuitively, a configura-
tion has clashes when in a given node of the control diagram it
prescribes to apply “incompatible” transformations to a packet,
e.g., drop and transform it at the same time, or change its desti-
nation field to two different addresses. Formally,

Definition 11 (Clashes). Given a language L, two pairs (p,t)
and (p, ) collide in a node q € Cy with clash (pe,te,te) iff,
for all configurations f legal for Vy, @ # te and

(C. NP =t = fl@pe) =te
((C. NP =1 = f@pe) =T

Also, we say that two T-pairs (P,t) and (P, 1) collide in g € C
with clash (Pe,te,fe) iff, for all configurations f legal for Vs

(VpeP ((Cr, H)p)=1t) = VYpe € Pa. f(@)(pe) = te
(VpeP. ((Ce, H)(P)=7) = VYpe € Pa. f(@)(pe) = lo

andfe # te.

The CHECK_FUNCTION in Algorithm 2 takes as input an fw-
function 7 and a firewall language £, represented by its con-
trol diagram C and the cap-label assignment V. First, the func-
tion initializes the extended configuration g we want to build as
“empty” and then iterates the following steps over all T-pairs
(P, t) of 7. For each 7-pair (P, ) we look for a trace & of C that
can express it. If there is none, the transformation ¢ cannot be
associated with the packets represented by P (line 5). Other-
wise, two cases may arise. The first is when two packets pro-
cessed in a node g of C clash, as detailed below (line 17); the
second example of Section 4 illustrates a clash. The other pos-
sible case is when the configuration g can be correctly updated
with the new 7-pair (P, 1).

The auxiliary function COMPUTE_TRACE returns a trace that
expresses (p, ), if any, when p = [P] is one of the packets of P
(cf. Theorem 2).

The auxiliary function CHECK_PAIR is called with a trace h
returned by COMPUTE_TRACE; a 7-pair; and an (incomplete) ex-
tended configuration g. An extended configuration maps each
node to a pair and intuitively extends a configuration with the
transformations annotated by the 7-pair in which they occur.
Roughly, CHECK PAIR visits sequentially each node g of /; com-
putes the transformations that are applied in it; and updates the
configuration g accordingly. More precisely, CHECK_PAIR com-
putes the transformations ¢, and 7@, and a new multi-cube Pg
for each node g. The transformation ¢, describes how the pack-
ets have been rewritten along the sub-path of & from g¢; to g.
Whereas t is the transformation to be applied in g to packets
in the multi-cube P, obtained from the initial one P applying
t.. For each node, t@ is extracted from the transformation ¢, that
records the part of ¢ still to be considered. We get t@ through the
SPLIT function, a sort of inverse of function composition, that
given a t, and a cap-label [ returns the transformation satisfying
! and removes it from f,. Summing up, each node g is associ-
ated with pairs of the form ((Pe,t,t@), (P,1)). Suppose now
that a node is associated with two such pairs, one with 7@ to be
applied to Pe and the other with a different transformation 7@
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to be applied to Pe. A clash occurs if the two multi-cubes have
non-empty intersection (line 16). Indeed, the packets in the in-
tersection will be transformed in two conflicting ways by 7@
and 7@, and the clash is reported to user (line 17). The lines 18
and 19 recover the packets of P and P clashing in ¢, by comput-
ing the pre-image of P§, under the transformation applied from
g; to q. The last three lines update g, 7. and Pe, respectively.

Example 10. Consider the following two t-pairs, where Inter-
net stands for any public address not in the protected LAN, and
_ stands for “any port”

(P1,1) =

({151.15.1.5} : {22} x Internet : _, (A192.168.06 : id, id : id))
(P2, 1) =

([192.168.0.2,192.168.0.255] : _ X Internet : _, A,)

Choose [P1] = (151.15.1.5 : 22 X 6.6.6.6 : 55) as the represen-
tative for Py. It follows the trace ([q;, 90, q1, g1, [ ID, DNAT, ID, ID]).
After evaluating q, the call to CHECK_PAIR results in the extended

configuration g wherei_d> stands for (id : id,id : id)

g(%) = (Pl’i_d)’E}L (Phtl)
g(CIO) = (Pl’i_d)’tl)7(Pl,t1)
2(q1) = (({192.168.0.6} : {22} X Internet : _),11,id), (P1, 1)

In the same way, choose [P;] = (192.168.0.3 : 11 x 7.7.7.7 :
44) that follows the trace (1qi, o, q1], [ ID, 1D, DROP]). When qq is
reached, the call to CHECK_PAIR results in updating g as follows

- -
8(q) = g(q)) U (P2, id, id), (P2, 1)
- -
8(qo) = (P2,id, id), (P2, 1)

When (g1, DROP) is c0~nsidered, PG = (Pe N Pe) = Po # 0,
where Pe@ = P, and Pe = ({192.168.0.6} : {22} X Internet : _),
making (P1,t) and (({192.168.0.6} : {22} X Internet : _), ;) to
clash in q.

To compute the cost of Algorithm 2 we consider the specific
policy 7 on which it runs. More prcisely, in the formula below
we take care of the cardinality: of H, the traces of L£; of O,
the nodes in the control diagram of £; of the 7-pairs of 7; and of
the intervals in the field w € W of P. For each 7-pair (P, 1), the
algorithm inspects the traces of L to select &, the one that ex-
presses (P, t). For that, Algorithm 1 is invoked that requires Q
iterations at most. Then, for each node of / (containing all the
nodes of Q, in the worst case) the intersections in lines 16, 18,
and 19 are computed between the actual pair and those that visit
the same node (all the other 7-pairs in the worst case). Finally,
the intersection between two multicubes P and P requires inter-
secting the intervals P,, and P,, for each field w € W. Summing
up, we obtain the following formula:

7l - 102l - (HLl + Il - IW] - max{IPy| | (P, 1) € 7).

Algorithm 2 is correct, as stated below. However, its cor-
rectness relies on two assumptions that are satisfied by all the



languages that we have studied so far, including iptables, pf
and ipfw. The first is that each pair (p, f) can be expressed by
no more than one trace & € H,. The only exception is when
t = A, . We choose to only keep the traces (g; ... ¢,), (l; ... DROP)
such that Vj < n.prop ¢ V(gq;) and [; = 1D (recall that 1D is
associated with every node of C). Roughly, these traces are
the shortest that drop a packet without transforming any of its
fields. Taking the shortest traces does not affect the expressiv-
ity of a language, and there is no point in changing discarded
packets. The other assumption is that the trace / contains no re-
peated DNAT or SNAT labels, and makes the extraction of t@ from
t, well-defined, in particular when = A .

Theorem 7. For each firewall language L and fw-function T,
the Algorithm 2 is correct because it prints all and only

1. the t-pairs (P, t) not expressible by L;
2. the T-pairs (P, t) and (P, 7) that clash on some node gq.

This theorem has some important practical consequences,
as granted by the following corollary.

Corollary 1. A fw-function 7 is expressible by L if and only if
Algorithm 2 prints nothing.

Thus, if the administrators solve all the inexpressible pairs
and the reported clashes, then they obtain a configuration for
the desired system. The inexpressible pairs can be simply re-
moved if irrelevant, otherwise the administrator can patch the
configuration through calls to external code, e.g., NFquEUE target
in iptables [6]. There are two different ways to solve clashes,
depending on whether the intended behavior of the system is
implemented. One is selecting the more appropriate transfor-
mation @ and fe for every clashing T-pairs. Actually, acting on
the transformations may change the semantics of the firewall.
The other solution is semantics-preserving: one may use other
features of the language to distinguish between the two clash-
ing sets of packets, e.g., using tags or external code. In subsec-
tion 7.1 we show on an example that F2F alerts an administra-
tors when this is the case, and proposes a tag-based solution.

6.3. Workflow of the Tool

We implement a tool, called F2F [13] that applies Algo-
rithm 2. To support the user in analyzing and migrating real-
world configurations, the tool gets as input a policy expressed
in one of the configuration languages of Section 2 or as a fw-
function in a tabular form. Also, the user chooses the wanted
target language. When the user provides a configuration, the
tool computes its semantics as a preprocessing step, thus obtain-
ing a fw-function. Then, it checks if the policy is expressible by
the target language, and notifies the user with exact information
if this is not the case.

Figure 6 sketches the workflow of F2F (from left to right)
when converting a configuration from ipfw to pf. In the upper,
left part there is the source configuration that is then encoded
in IFCL, from which the tool extracts the semantics as a fw-
function. The bottom part depicts the control diagram and the
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label assignment for pf, and the step computing its expressiv-
ity. The tool than checks whether the semantics of the source
configuration is expressible in pf, and if this is not the case, it
produces a report with the inexpressible and clashing pairs.

For the computation of the semantics we rely on a tailored
version of FWS [12], a tool based on IFCL that computes an
abstract representation of the semantics of the given firewall
configuration.

7. Evaluation

7.1. A Case Study: FirewallBuilder

Consider again the scenario in Figure 3a showing a typi-
cal network of a small company, and assume the administrator
produces a configuration for pf using the policy management
system FirewallBuilder. Below we show how F2F may fit a
policy creation and management workflow; how it may help
the administrator in both understanding the limitations of Fire-
wallBuilder and of pf; and in supporting possible fixes of the
detected problems. We also consider iptables and ipfw and
we show that they have similar weaknesses.

FirewallBuilder. FirewallBuilder is a well-known tool for Unix-
based systems that supports the administrator to write firewall
policies in a tabular form and then compiles them to the most
common firewall languages. Two separate tables are given, the
first one for network address translation and the second one for
packet filtering. Since FirewallBuilder does not come with a
clear definition of its semantics, the user not always knows ex-
actly how these tables are used to determine the destiny of pack-
ets. Also, the tables may contain rules that are superfluous or
conflicting depending on which table is used first, e.g., when a
packet p is transformed with ¢ in the translation table, and p or
t(p) is discarded in the filtering table. This may lead to clashes
when producing the target configuration.

Policy Requirements and Specification. We start by putting for-
ward the requirements that the firewall policy of the scenario of
Figure 3a must meet:

1. LAN hosts freely communicate with each other;

2. LAN hosts access the firewall via SSH (port 22), only;

. The company hosts (a LAN host or the firewall) can freely
send packets to the Internet;

Packets from the Internet are discarded, if not directed to
the public IP of the firewall with port 22 or 443;

Packets from the Internet directed to port 22 or 443 are
redirected to the internal SSH server (at address 192.168.0.6)
or to the HTTPS server (at address 192.168.0.7);

When a company host tries to connect to a DNS service
on the Internet, on port 53, the packet is redirected to
8.8.8.8;
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Figure 6: Schema of F2F.
‘ dstIP ‘ dstPort ‘ srcIP ‘ srcPort H DNAT ‘ SNAT ‘
not (151.14.1.5 or 192.168.0.0/24) 53 192.168.0.0/24 any 8.8.8.8:1id 151.15.1.5: id
not (151.14.1.5 or 192.168.0.0/24) 53 151.15.1.5 any 8.8.8.8:id id:id
not (151.14.1.5 or 192.168.0.0/24) | not 53 151.15.1.5, 192.168.0.0/24 any id : id 151.15.1.5: id
192.168.0.1, 151.15.1.5 22 192.168.0.2 - 192.168.0.255 any id : id id : id
192.168.0.2 - 192.168.0.255 any 192.168.0.2 - 192.168.0.255 any id: id id:id
151.15.1.5 443 not (151.14.1.5 or 192.168.0.0/24) any 192.168.0.7 : id id @ id
151.15.1.5 22 not (151.14.1.5 or 192.168.0.0/24) any 192.168.0.6 : id id:id

Table 3: An example policy for a typical network.

7. The source address of all the packets leaving a company
host towards the Internet is replaced with the public IP of
the firewall.

These requirements give rise to the policy represented in Ta-
ble 3, expressed in a declarative form as the list of the accepted
packets and their transformations.

Implementing the Policy and Detecting Problems. Typically,
defining a policy using FirewallBuilder is straightforward but
there may be some cases where the administrator needs to check
how the translation and filtering tables are used to manage pack-
ets, because the documentation is not always clear. For exam-
ple, consider the last line of Table 3 that conflicts with the im-
plicit indication to discard the packets from the Internet and
with destination 192.168.0.6. If the administrator assumes that
the translation table is checked before the filtering one, the pack-
ets directed to 192.168.0.6 must be accepted, thus obtaining the
pf configuration in Figure 8 (which is actually the output of
the tool, with a little of maquillage for legibility). However, the
configuration fails in encoding the desired policy since Require-
ment (4) is not met. If instead the filtering table is inspected
first, the last line of the policy is simply ignored. Summing up,
in neither cases FirewallBuilder implements correctly the pol-
icy in Table 3, and in addition no warning is notified.

F2F instead signals a clash on the considered configuration.
The output in Figure 7 shows that in node g; the packets from
the Internet directed to the internal server in 192.168.0.6 are in-
distinguishable from the ones originally directed to the firewall
because of the DNAT in node gy. Our tool suggest the admin-
istrator to use tags in the node g( for distinguishing the two
clashing (multi-cubes of) packets. As a matter of fact, there are
two clashes, and the tool suggests tags to fix both.

F2F signals other problems in the analyzed configuration,
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because there are also two sets of inexpressible pairs. The first
set is (P, t), where P contains the packets from the external in-
terface of the firewall towards the Internet on port 53, and ¢ is
a DNAT to the address 8.8.8.8. In other words, the firewall can
access any DNS server on the Internet, not only the one pre-
scribed by the policy. Even though the inexpressible pairs are
considered by FirewallBuilder when producing its output con-
figuration, the resulting rules are simply ignored by pf. Note
that the administrator gets no warning about this problem and
could wrongly think that the configuration enforces them (as it
seems at first sight). Of course, this misconfiguration is pos-
sibly dangerous for security. Moreover, pf cannot apply the
translations ¢ above to the packets in P, thus the administrator
can only fix this problem resorting to external tools. The second
set of inexpressible pairs is quite similar to what just described.

Problems with ipfwand iptables. Similar problems arise if
one compiles the policy in Table 3 to ipfw and to iptables.
In more detail, the generated ipfw configuration suffers from
no clashes but from the same inexpressible pairs. Whereas, the
iptables configuration presents the same clashes, but no in-
expressible pairs.

7.2. Performance on real configurations

We evaluated the F2F effectiveness against real world con-
figurations [13]. The experiments are performed on a desktop
computer with an 17-7700 processor (3.60GHz) and 8Gb RAM,
running Ubuntu 20.04.3 LTS. The results are in Table 4: the
first column reports the name of the configuration; the second
one the number of lines of the configuration; the third one the
time taken by F2F to compute the IFCL-configuration, to extract
its 7-function, and to check both kinds of expressivity; finally
the last one is the time for checking the expressivity only. Per-
formance is acceptable for all the configurations, and the time



$ sudo ./f2f table Example/interfaces Example/table.conf pf

!'1! Inexpressible Pair Found !!!

I sIp | sPort | dIp | dPort | prot || tr_src | tr_dst Il

|l 192.168.0.1 | * | 0.0.0.0 - 151.15.1.4 | 53 | x || 151.15.1.5 : id | 8.8.8.8 : id ||
Il | | 151.15.1.6 - 192.167.255.255 | | il | I
I | | 192.168.1.0 - 255.255.255.255 | | I | I

!'1! Inexpressible Pair Found !!!

I sIp | sPort | dIp | dPort | prot || tr_src | tr_dst Il

Il 1561.15.1.5 | x| 0.0.0.0 - 151.15.1.4 | 83 | * |
I | | 151.15.1.6 - 192.167.255.255 | | |
I | | 192.168.1.0 - 255.255.255.255 | | |

!1! Clashing Pairs Found !!!
(P1, t1):

I sIp | sPort | dIp | dPort | prot || tr ||

I 0.0.0.0 - 151.15.1.4 | % ] 192.168.0.7 | 443 | * ||
|l 151.15.1.6 - 192.167.255.255 | | | | I
|l 192.168.1.0 - 255.255.255.255 | | | | I

(P2, t2):

I sIp | sPort | dIp | dPort | prot || tr_src | tr_dst |l

I 0.0.0.0 - 151.15.1.4 | % | 151.15.1.5 | 443 | *x |
|| 151.15.1.6 - 192.167.255.255 | | | | |
|| 192.168.1.0 - 255.255.255.255 | | | | |

| id : id | 192.168.0.7 : id
| |
| |

in node qi:
with [Pe || ti1e || t2e]:

|1 sIp | sPort | dIp | dPort | prot || trl || tr2_src | tr2_dst |

I 0.0.0.0 - 151.15.1.4 | * | 192.168.0.7 | 443 | * ||
|| 151.15.1.6 - 192.167.255.255 | | | I I
|| 192.168.1.0 - 255.255.255.255 | | I I

DROP || id : id | id : id
I |
I |

Hint: Apply tags to P1 in node g0 and use them to choose the transformation in node ql

!'!! Clashing Pairs Found !!!
(P1, t1):

I sIp | sPort | dIp | dPort | prot || tr ||

I 0.0.0.0 - 151.15.1.4 | % ] 192.168.0.6 | 22 | * ||
|l 151.15.1.6 - 192.167.255.255 | | | | I
|l 192.168.1.0 - 255.255.255.255 | | | | I

(P2, t2):

Il sIp | sPort | dIp | dPort | prot || tr_src | tr_dst |

I 0.0.0.0 - 151.15.1.4 |+ | 151.15.1.5 | 22 | * |
|| 151.15.1.6 - 192.167.255.255 | | | | |
|| 192.168.1.0 - 255.255.255.255 | | | | |

| id : id | 192.168.0.6 : id
| |
| |

in node qi:
with [P@ || t1e@ || t2@]:

|1 sIp | sPort | dIp | dPort | prot || trl || tr2_src | tr2_dst |

Il 0.0.0.0 - 151.15.1.4 | = | 192.168.0.6 | 22 | = ||
Il 151.15.1.6 - 192.167.255.255 | | | I
Il 192.168.1.0 - 255.255.255.255 | | | I

DROP id : id | id : id

Hint: Apply tags to P1 in node qO0 and use them to choose the transformation in node ql

Figure 7: F2F output when checking the example policy for pf.
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from
from
from
from
from
from
from
from
from

rdr
rdr
nat
nat
nat
nat
rdr
nat
rdr

<NotCompany> to 151.15.1.5 port
<NotCompany> to 151.15.1.5 port

1

1 22
{ 151.15.1.5 , 192.168.0.0/24 }

0

0

to
to

-> 192.168.0

{ 151.15.1.5 , 192.168.0.0/24 }
{ 151.15.1.5 , 192.168.0.0/24 } to
{ 151.15.1.5 , 192.168.0.0/24 } to
192.168.0.0/24 to <NotCompany> port 53 -> 8.8.8
192.168.0.0/24 to 8.8.8.8 port 53 -> 151.15.1.5
161.15.1.5 to <NotCompany> port 53 -> 8.8.8.8

{ 6.6.6.6,

from
from
from
from
from

from any

pass
12| pass
pass

quick
quick
quick
pass quick
pass quick
block quick

<NotCompany> to 192.168.0.7 port 443
<NotCompany> to 192.168.0.6 port 22
{ 151.15.1.5 ,

to any

.6

.8

443 -> 192.168.0.7

<NotCompany > port 54 -> 151.15.1.5
8.8.8.8 }
<NotCompany> -> 151.15.1.5

<NotCompany > port 54 -> 151.15.1.5

-> 151.15.1.5

192.168.0.0/24 } to <NotCompany>
192.168.0.2 - 192.168.0.255 to 192.168.0.2 - 192.168.0.255
192.168.0.2 - 192.168.0.255 to { 151.15.1.5 ,

192.168.0.1 } port 22

Figure 8: FirewallBuilder output when compiling the example policy for pf, where <NotCompany> is a table containing all the IP addresses that are not used by the

company.

[ Configuration | Lines [ Total time (s) [ Checking time (s) ]
ticket_openwrt 128 7.00 0.05
sqrl_shorewall 106 190.10 0.48
random_srv 16 7.43 0.05
memphis_testbed 46 6.51 0.05
medium sized company 639 75.54 0.20
kornwall 88 54.73 0.54
home router 130 20.67 0.21
github_myiptables 53 5.35 0.03
eduroam_laptop 57 7.97 0.10
blog_a 51 11.03 0.13

Table 4: Experimental results of F2F against real-world configurations.

for checking expressivity is negligible. When checking pf and
ipfw, we found two inexpressible pairs in the configuration
eduroam_laptop: in both pairs a DNAT is applied to a packet
from an address in S to one not in S (lines 11 and 12 of Ta-
ble 2). For the same systems, we also found two clashes in the
configuration medium sized company, between packets to be
both translated and dropped.

8. Related Work and Concluding Remarks

8.1. Related Work

To the best of our knowledge, this is one of the first pa-
pers that investigate the expressive power of firewall systems
by using programming language-based techniques. Some pre-
liminary work of ours on this topic is in [22, 25]. Section 3
extends and improves the early version of the denotational se-
mantics of [22]. The same paper also has a first version of the
algorithm for only checking individual expressivity that was
used in [25] as a guideline for a preliminary version of F2F.
Here, we introduce a new algorithm that also checks function
expressivity, and we prove its correctness; exploiting it, F2F
additionally verifies if a policy can be expressed without ad hoc
mechanisms, also informing the administrator when tags solve
the expressivity problems. A further novelty with our previous
work is the assessment of the effectiveness of F2F through an
experimental evaluation on real configurations, in particular to
detect some misbehaviors of FirewallBuilder [1] discussed in
sub-section 7.1.
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The literature reports on many proposals for modeling and
analyzing firewall configurations, e.g., see [26, 27, 28, 1]. How-
ever, these papers differ from ours because they do not rely on
a formal semantics and because they are used for different pur-
poses than ours. Typically, they either compile from a high level
language to a low level one or they verify whether a configura-
tion complies with a given specification.

Since our approach heavily relies on a formal semantics to
precisely compare the firewall behavior, below we only focus
on those papers that do the same.

Diekmann et al. [18] propose a semantics for a subset of
iptables and mechanize it using Isabelle/HOL. Their seman-
tics only focuses on filtering, and does not consider packet mod-
ifications as NAT. Furthermore, they define and prove correct a
simplification procedure that aims to make configurations eas-
ier to be analyzed by automatic tools. Differently, our work is
mainly focused on studying the expressivity of a policy and on
comparing the capabilities of different systems. Moreover, we
provide a denotational semantics for different firewall systems,
not only iptables, and we also deal with NAT.

Adao et al. [15] introduce Mignis, a high level firewall lan-
guage for specifying abstract filtering policies, which is then
compiled into iptables. The paper formalizes the semantics
of Mignis and provides an operational semantics of iptables.
This semantics considers packet filtering and NAT and it is used
to prove that the Mignis compiler is correct. Successively, Adao
et al. [29] propose a denotational semantics for Mignis that
maps a configuration into a packet transformer, representing all
the accepted packets with the corresponding translations. This
semantics is similar to the one we give in Section 3 for IFCL,
where the meaning of a configuration is a function from pack-
ets to transformations. The main outcome of this line of work
is a specific high-level firewall configuration language with a
formal semantics. Instead, we formally model existent systems
and offer a semantic based tool to support administrators in the
definition of their policies. Moreover, we believe that the com-
piler of Mignis could benefit from the algorithms presented in
Section 6 to support more target systems.

Anderson et al. [30] introduce NetKAT, a language for pro-
gramming a collection of network switches. It is equipped with
a denotational and with an axiomatic semantics, both based on



Kleene algebra with tests. Although the primitives provided by
NetKAT are similar to those of IFCL, i.e., for filtering, modify-
ing, and transmitting packets, its focus is different from ours.
Indeed, their goal is modeling an entire network leaving out
the details of the single firewalls, expressed in commercial lan-
guages. Whereas in our formal model we focus on the problem
of expressivity and we consider policies of a single host, to be
implemented in widely adopted configuration languages.

8.2. Conclusion

We have considered iptables, ipfw and pf, the main fire-
wall systems used in Linux, FreeBSD, OpenBSD and MacOS.
We have developed a tool based on a rigorous basis, which can
be used to check if a given policy is expressible in either lan-
guage, and reports on the reasons when it cannot be. Our inves-
tigation is based on IFCL [12], an intermediate general language
for configuring firewalls, which provided us with a formal and
common framework in which all the above mentioned firewall
systems can be encoded.

We only focus on the common targets provided by all the
firewall systems that have a clear semantics and implicitly on
the targets for altering the control flow, which however can be
macro-expanded [12]. This choice is supported by empirical
evidence: most of the configurations available in the wild [23]
use these targets only. In addition, most analysis tools [31, 32,
33, 15, 24] only focus on the same set of targets we consider.
For example, tags are always neglected, mainly because they
are handled in quite incompatible and scarcely documented ways
by the various firewall systems, even by different versions of
the same system. Also, their usage is subject to specific and
sometimes obscure constraints. However, tags are a safe mech-
anism to solve a specific class of expressivity problems, and
our work helps in identifying when they are actually needed to
keep packets apart. Also we disregard specific constructs for
describing the status of connections, because they not always
have a precise, intuitive meaning, and thus we only focus on
new connections.

We gave a new denotational semantics to IFCL and thus to
the languages it encodes. Using it we have defined two no-
tions of expressivity. The first considers the network address
transformations applied to a single, arbitrary packet when it is
accepted. In this setting, we have proved that iptables and
IFCL are universal, in that they can express every possible trans-
formation on packets, while not all of them can be defined us-
ing ipfw and pf that turned out to be equally powerful (The-
orem 4). The second notion considers the transformations that
an entire configuration applies to all the packets. The later no-
tion is stronger than the first one, because it considers further
constraints about the packets that clash in some node, i.e., are
indistinguishable but require different transformations.

Our tool efficiently checks both kinds of expressivity. Run-
ning the tool we found some policies expressible in ipfw but
not in pf. Also there are policies expressible in ipfw but not
in iptables and viceversa, but them all are expressible in IFCL
(Theorem 6).

Our work finds application in building semantics-based tools
to support network administrators. As a test, we have used it
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Notation

Description

dstlP/srclIP
dstPort/srcPort
pelP

Pw € Dy

t = (141 : LdPort> tsIP * sPort)
LelP

L
F=(Cg.f)
(F)=r
7(p)

S

l{ID,DNAT, SNAT, DROP}
Er={(p.n)}

h=(m,v)
Eh
WX,.,Y.X,

L-expressible T
(p, 1), (P, ) collide in ¢

juxtaposition operator

destination/source IP address
destination/source port address

a packet in the set of IP packets

the field of p in the domain D,,
componentwise transformation of p
dropped packet, with #(bot) = L

firewall configuration language

with control diagram C  with nodes g
firewall of £ with configuration f
fw-function, semantics of ¥

behavior of the firewall # on p
addresses of the firewall interfaces
cap-labels associated by e with nodes g
expressible pairs, s.t.

((Cz, H)(p) =t,and f legal (cf. Def. 5)
trace, with 7 list of nodes (v of cap-labels)
capability of trace h

set only containing

expressible / non expressible pairs

if Af legals.t. ((Ce, ) =7

if f applies incompatible transformations

Table 5: Notation and symbols

to assess a quite standard configuration generated by Firewall-
Builder, a commonly used policy management system in Linux
environment; also we used it within the automatic transcompi-
lation pipeline presented in [11, 14, 34, 12] that supports the
analysis, migration and refactoring of real UNIX firewall con-
figurations. In particular, our tool has been used to predict when
a policy cannot be expressed, so pointing out the cases when
ad hoc extensions to the used firewall language or another lan-
guage or another mechanism are in order. Remarkably, when
the administrator resolves the notified clashes, and removes the
non expressible cases, the policy is ready to be implemented
and deployed. Summing up, our work answers the question
“can I do this without language extensions, like tags?” precisely
characterizing in which cases you cannot.

Future work includes considering different firewall systems,
like Cisco-IOS, which is particularly challenging because the
control diagram is also affected by routing choices. Another re-
search direction is extending our work to languages with tags.
Although adapting the denotational semantics is lengthy but
straightforward, enhancing the expressivity analysis requires a
deep understanding of tag systems and a non trivial re-working
of our algorithms.
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Appendix A. Computing the Representative Pairs

We now show how to efficiently build a pair (p, ), repre-
sentative of a whole wy, yx, # 0 without actually computing
this equivalence class. One can thus effectively check whether
wx, vx, 18 expressible by applying Theorem 2 to the pair (p, ).
The algorithm relies on two assumptions that hold in all the fire-
wall languages we have considered. The first requires that each
predicate on the arcs is expressible as a predicate on a single
field of the packet.! The second assumption says that given a
satisfiable predicate one can mechanically build a packet satis-
fying it.

Given X1, Y, X5, the Algorithm 3 computes such a represen-
tative or fails if there are none, i.e., if wx, yx, = 0. In it, we
let w range over the fields of a packet and of a transformation,
including {dIP, dPort, sIP, sPort}. Recall that we denote the
fields of a packet p by p,, and those of a transformation ¢ by t,,,.
In the same way, we split a set of predicates X in the compo-
nents on the fields, typically X = Xyp A Xypore A Xsip A Xspores
where A operates homomorphically. For each X,,, the func-
tion TAKE_ONE(X,,) returns an address whatsoever if X,, = (0, or
an address satisfying all the predicates in X,, (second assump-
tion above). Note that X,, might be unsatisfiable, so making
TAKE_ONE(X,,) and the whole algorithm fail.

The Algorithm 3 scans the fields w of the packet headers and
generates an address satisfying the w component of the predi-
cates in X;. Then it takes a transformation ¢’ in Y, if any, that
changes the field w. In such a case, an address a is taken that
satisfies X, , and the w component of the output transformation
tissetto A,. If no#' € Y changes the field w, the transformation
t on w is id; also, the algorithm fails when the predicates X and
X, differ on w.

The correctness of Algorithm 3 is guaranteed by the follow-
ing theorem (which is proved in [22]).

Theorem 8. Given a triple X,,Y, X5, the Algorithm 3 either
returns a pair (p,t) € wx, yx, # 0 or it fails.

I'Since one can add new nodes without loosing expressive power, this is the
same of asking each predicate on the arcs to be expressible as conjunction of
one predicate for each field, possibly true.



Algorithm 3 Build a pair (p, f) € wy, yx,, if any.

2: for allw € W do
3: pw < TAKE_ONE(X],)

4 if Y #{1,.} A we {dIP,dPort, sIP, sPort} then
5 if 3r" € Y1}, # id then

6: a «— TAKE_ONE(X>,)

7 by < Ag

8 elseif X; # X, then FAIL

9: else ¢, «— id

10: return (p, t)

Appendix B. Proofs

Lemma 1 (IFCL universality). For each function v : P — Tp
there exists an IFCL firewall F such that (F ) = 7.

Proof. Trivial: just take a control diagram with a single node ¢
and a configuration such that f(g) = 1. O

As stated in Section 2, we only consider firewalls where
no packets cycle. Then we define the following function, that
simplifies © by removing cycle detection.

(C.f) &g pHot ifg# qrAt# AL
@ (@)(p) = _
t ifg=grvi=2a,

with t = f(g)(p), p" = 1(p) and ¢’ = &(q, p").
Now we state the following general property.

Lemma 2. Let (C, f) be a firewall, then
VpeP. o) @) = 1o Vo @p) = 8“Pg)p)
Proof. We prove the more general statement

Vi< 0¥peP. &' (9)(p) = 1, VO (@)(p) = &V (g)(p)

The proof proceed by induction on ©. If g = gy ort = A, then
the thesis trivially holds. Assume g # gy and t # Ay, lett’ =
f@p), p’ =¢(p)and ¢’ = 6(q, p’), if ¢’ € I then the premise
is false and the thesis holds. The last case is when ¢’ ¢ I and
q # qy, then by definition ® " (g)(p) = &P (¢')(p’) o ¢’ and

QEC’f ')(q)(p) = Q;S’{; ),](q’)( p’)ot’. By induction hypothesis, YJ C

Q. Yp € .oy (¢)(p) = A v & (q)(p) = @D )(p).
Take J = 1U{g'}, if &0 (¢))(p") = Ao, then O (g)(p) = Ary
and the thesis follows. Otherwise, & (¢')(p") = &\ (¢)(p")
and the thesis follows. O

To prove Theorem 1 we use the following lemma.

Lemma 3. Let C = (Q,A, gi,qy) be a control diagram, let V
be a cap-label assignment, then the two following condition are
equivalent

() 3Aflegal for V. ) (p) =t
@) dA@v)m=qi-...g.Av=1-...1,
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AN (g0, qj+1) EANL € V(g))

ANVYj#n.q;#qy Nl;# DROP

AV ji# j= g #q;

N1 =g N (qn

A, b, . Vi tjeel)) A
thoty_1---0t1 =tA
Vj<nyjpj)

qr V I, = DROP) A

Proof. We prove separately (i) = (ii) and (ii) = (7).
For (i) = (ii) we proceed for induction on the calls of function
®. We assume the premise and consider the following exhaus-
tive cases. If ¢ = g then t € €l for some [ € V(qy) and we take
=gy and v = [: (ii) trivially holds. Otherwise if f(q)(p) = 4.,
since f is legal for V then DroP € V(gq); we take m = g and
v = prop for which (ii) trivially holds. Finally, assume g # g,
f@(p) =1 # A, and 6(q, p’) = ¢’ where p’ = 1'(p), then
& (q)(p) = tis equal to ® /) (g")(p’) ot’. From the induction
hypothesis we have that exists a pair (7’,v") such that all the
conjuncts in (ii) hold for it. Since f is legal for V we know that
a cap-label I € V(g) must be such that f(q)(p) € &(I). We build
m=g¢g-n" and v = [-V'. By the induction hypothesis and by
construction Yj. . (q;, ¥, qj+1) € A, since 6(q, p’) = ¢’; also it
holds that /; € Vz(g;). The condition Vj # n.q; # qsAl; # DROP
holds by hypothesis on g and by the induction hypothesis for the
rest of . For construction g; = g and by the induction hypoth-
esis (¢, = g5 V I, = DROP). ¥(p") holds because of 6(g, p’) = ¢'.
Finally ¢, o #,,_ - - - o #; = t holds because the the induction hy-
pothesis guarantee ¢, 0 t,_;---ot, =t” such that’ ot’ = ¢.
We then show that (ii) = (i) holds. We take f such that
Yj. f'(g;))(p) =tjand Yq & n. f(q)(p) = t for whichever ¢ € &(])
with [ assigned to g. Hence, by construction f is legal for V;
®C/Xg)(p) = t is now proved by induction on the length n of
mand v. If n = 1 then either g; = g¢ or /; = proP. In the first
case then ¢ € el for some I € V(qy) and also ® P (g)(p) = .
Otherwise if /; = brop then f(q)(p) = t; = A,. Finally suppose
that the statement holds for any 7’ = ¢’ - 7”7 and V' of length n,
and take (m,v) = (¢ - n’,1- V") of length n + 1. By the induction
hypothesis and (ii) we have that ® < (¢")(p’) = ¢’ where t' =

f@)p),p =t(p)andt=1"ot. 0
Theorem 1. E, = EL,
Proof. Follows trivially from Lemma 2 and 3. O

Lemma 4. Given a trace h = (n,v) and a packet p, the follow-
ing are equivalent

(i) CHECK_FLOW(h, p)

@) 3Api,.. s pp-p1=pA
Vji<n—1.¢,(p)A
Vji<n3dt;esl)).tj(p) =pjn

Proof. Formula (ii) is equivalent to the following in which packet
fields are made explicit:

APty Pagy s Plays s Prys - Plyys o5 P, -



P, = Pw, A - P, = Pw, A
V] <n-— 1'¢/j"’1(pjw1) VANRRIIVAN l//jwm(pjm”)/\

Vj<n. Hl‘j € S(Zj). tj(pj)wl = pj+|wl ARERIVA tj(pj)w,,, = Djl,,

We can then substitute
drj € el tj(pw, = Pjsr,, Ao AP, = Pjs1,,

with Yw & y(Ij). pj, = pjs1,

We omit the constraints on w € y(/;) because any value can
be arbitrarily chosen by ¢; for the fields in y(/;). Substitution
for constraints on w € y(l;) is legal because, for every label /,
every transformation ¢ € (/) and every field w € y(I)), t,, = id.

We can then replace p for every occurrence of p; and re-
move the existential quantification on its fields, since p = p;.
Finally, for each pair of packet fields such that p; = p; with
i < jwe instantiate p;, to p; , removing the existential quantifi-
cation on p;, . We repeat the last step until we reach a fixpoint
where no further reduction is possible. The formula obtained
is the conjunction of a predicate on the packet p ((if)4) and an
existentially quantified predicate on the fields of some interme-
diate packets ((ii)p).

The lemma holds because, for any iteration, (ii), is true iff
Ext(yj, CL)(p) at line 8 of CHECK_FLOW(Ah, p) is true, and (ii)
is true iff Sar(iy) at line 8 of CHECK_FLOW(A, p) is true. The first
coimplication trivially holds because, for every j, the use of Ext
with CL excludes all and only the conjuncts i ;, of y; that pred-
icate on existentially quantified field values that do not relate to
p. To show that the second coimplication holds, consider (if)g.
Note that for each field w, the instantiation above partitions the
constraints on existentially quantified field-values in disjoint in-
tervals of indexes. Those constraints are the same accumulated
by i, hence the thesis holds since asking for i to be satisfiable is
exactly the same as asking for constraint-satisfying field-values
to exists. O

Theorem 2. Given a trace h = (n,v), the pair (p,t) is in E, iff
t € &(v) A CHECK_FLOW(h, p) A CHECK_-FLOW(REV(h), t(p))

Proof. (p,t) € E;, implies by definition 7 € &(v). We then estab-
lish the following, assuming ¢ € &(v)

(@3p1,....Pns1-P1 =P A
Vj<nip)A
Vji<n 3dt;eel)).tj(p) =pjs1 A
() APy, -2 Pt Pra = P A

Vj<n. Elt} € s(lj).t;-(p}) = p}ﬂ
is equivalent to
(©) 3ApY, .. .- PV =P APy = HP) A

Vji<nyi(pi)A
Vj<n. 3t eely.t](p}) = pj
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(¢) = (a) A (D) holds trivially. Now assume (a) and (b) and
we build pY,...,p/ . p{ = p A p)., =tp)satisfying (c). It is
sufficient to take, for each j, t;’ = t; if t,, # id and id otherwise.
Then, the thesis follows trivially by Lemma 4. O

Before proving Theorem 3 we prove two auxiliary lemmata.

Lemma 5. For any trace h and any pair of packets p, p’ that
satisfy the same set of predicates, i.e. such that g(p) = g(p’),
the following holds

CHECK _FLOW(h, p) < CHECK_FLOW(h, p")

Proof. The statement follows trivially by definition since the p
parameter of CHECK_FLOW in Algorithm 1 is only used when
checking if it verifies the predicates of the trace. O

Lemma 6. For each trace (m,v), €v) isin T.

Proof. We will prove separately that
(i) &l-1m)=&@ap-1)=¢&()
(if) £(SNAT - DNAT) = &(DNAT - SNAT) = A X A
@) Ev)=AXAANI#DROP=E(v-D)=E&(-v)=AXA
(iv)  &(v - proP) = £(DROP - V) = &(DROP)

Item (i) holds trivially since £(1b) = {id}. For (ii) note that
&(SNAT - DNAT) = &(SNAT) o £(DNAT); take ¢ € &(SNAT - DNAT), ¢ =
t ot” with ¢’ € g(sNAT) and with ¢/ € £(pNAT). By contradiction
assume fyp = typoy = id, then £, = t., = id, hence t' ¢
£(sNAT); same for DNAT. (i) holds because id is the identity of
o and because 4, o A, = A,. (iv) holds by definition of € and
Ay O

Theorem 3. Q is a partition of P X Tp such that the elements
of wx, yx, are either all expressible or all not expressible.

Proof. We first prove that Q is a partition, by separately estab-
lishing the two following statements

(l) v(pst) GPXTIP’EIXIs Y7X2(ps t) € wX[,Y,Xz
(i) (X1,Y, X)) # (X[, Y, X)) A wx, vx, # wx vy x;

= wx, vx, Nwx yx, =0

For (i), take a pair (p,1). If t = then the thesis follows
by construction with X; = g(p), = &(proP) and any X,.
Otherwise take X; = g(p) and X, g(t(p)); also if t = id
take Y = &(10); if typ = typorr = id take Y = &(sNAT); if
tap = tgporr = id take Y = &(DNAT); in the other cases take
Y=AXA.

For (ii) assume that X; # X|, and by contradiction that
(p,1) € wx, yx, N wx: y x;. Then by definition of wy, yx, one
has X; = g(p) = X]. Instead, assume Y # Y’ and that (p,?) €
wx, vx, N Wx; v x;, then by definition of wy, yx, we know that
t € Yand r € Y’, but T is trivially a partition of 7p, hence
Y = Y’. Finally, assume X, # XJ: if ¥ = &(brop) we get that
wx, vx, = WX y.X}5 contradicting the hypothesis; otherwise let
(p,1) be € wx, yx, N wx; v x;, then X5 = g(1(p)) = X} holds.
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Y



Now we prove that the elements of wy, yx, are either all
expressible or all not expressible. By Theorems 1 and 2, it suf-
fices proving the following, for each trace & = (r,v), and for
each (p,n), (p",1') € wx, yx,

t € &(v) A CHECK FLOW(h, p) A CHECK_FLOW(REV(h), t(p))
(=4
t' € &(v) A CHECK_FLOW(h, p’) A CHECK_FLOW(REV(h), ¢’ (p"))

We prove the following stronger statements

(a) teév) ot €&l

(b) CHECK_FLOW(h, p) & CHECK_FLOW(h, p)
(¢) CHECKFLOW(REV(h),(p)) © CHECK FLOW(REV(h), ' (p"))

From Lemma 6 we know that &(v) is one of the equivalence
classes in T, hence (a) holds because ¢, € &(v) © Y = &(v),
where Y indexes the considered w class. To prove (b) ((c), resp.)

it suffices to apply Lemma 5 to & (REV(h), resp.). ]
Theorem 4. Epf = E'Lpfw g_ E'Lptables = EjpcL = PxJp
Proof. The thesis trivially follows from Table 2. O

Theorem 5. Given a language L and a fw-function T
teTgsonlyif VpeP.(p,7(p)) € Eg.

Proof. By contradiction assume that A p. (i) 7 € T, and (ii)
(p,7(p)) ¢ E . Ttem (i) implies by definition that A f legal for V
is such that ((Cy, f))) = 7, and hence Vp € P. ((Cz, /) )(p) =
7(p). Finally, item (ii) is equivalent to A f legal for V such that
((Cz, H)(p) = 7(p). Contradiction. O

Corollary2. E, C Ep =T, ¢ Ty
Theorem 6.

o Tpr C Tipsw S TircL

b Tiptables C TirceL

L Tpf SZ T'L‘ptables: Tiptabl,es SZ Tpf

b Tipfw SZ Tiptablesr Tiptables SZ Tipfw
Proof. 1FCL dominates all the other languages by Lemma 1.
Moreover, by Theorem 4 and Corollary 2, the following holds
trivially:

Tiptables Sé Tipfw Tiptables ,@ Tpf

Then we show that (i) Tp: € T_ipfw, we exhibit (ii) a function
71 thatis in T'ip¢, but not in Tp¢ and (iii) a function 75 that is in
Tpf but not in Tiptables-

For proving (i) let f be a configuration legal for Vp¢. Then
we build an equivalent configuration f” legal for V;p¢, such that
((Cpt. /) = ((Cipran £)). by taking £(qo) = f(q1)o f(go) and
f'(q1) = f(g3)o f(q2) (note that in the control diagram of ipfw,
the cap-labels of g; are the union of the cap-labels of ¢, and g3
in the control diagram of pf).

22

To establish (ii), take the following function 7|, where b, b’ €
Sandcé¢ S.

(id 2 id, A4y 1 id) if pgp=c A psgp =b

(p) = AL if (parp = ¢ A pgp = ')V
(p) =
par €SV pap & S
id otherwise

The function 7 is in Tip¢y, indeed ((Cpe, f)) = 71 for f as
follows.

fgo)(p) = A,

(id :id, 4y :id) i pgp =c A psgp =D

A if ( =cApgp=b)V
Fa(p) = 1 PdIp Psip
paip €S
id otherwise

To show that 7| ¢ Tp¢, by contradiction suppose that there is a
configuration f’ legal for V¢ and such that ((Cpe, f')) = 1.
Consider two packets p and p’ with source b and b’ resp., and
the same destination ¢, which both traverse the nodes ¢, and g3
of pf. It must be f'(g2)(p) = (id : id, Ay : id), and f'(q2)(p’) =
id, transforming the two packets in the same packet p” with
source b’ and destination c¢. Also it must be f’(g3)(p”’) = id and
at the same time that f’(¢3)(p”") = 4., because 7| keeps p and
p’ apart: contradiction.

For proving (iii), take the following function 7,, where a, @’,
a’,band b’ are in S.

Ay @ id, Ay : id)
2(p) = Ay @ id,id : id)
2PIEV 0y cid.id - id)

AL

if paip = a A pgp = b
if pup = a A pgp = b’
if pap = a” A pgp = b
otherwise

The function 75 is in Tp¢, indeed ((Cpe, f))) = 72 for f as fol-
low.

(A v id,id :id) if (pap = a A psip = b')

f(qo)(p) = V(paip = a” A psp = b)
id otherwise
id if Parp = a A
flg(p) = (psip =DV pgp =b")
A otherwise
(id : id, Ay : id) if =aApgp=>b
Slg2)(p) =1. b patr - Pste
id otherwise
id if paip = a A pyp =1’
f(g3)(p) = {id if pap=a” ANpgp=>b
A otherwise

To show that 75 ¢ Tiptabies, Dy contradiction suppose that
there is a configuration f” legal for Viptapies and such that
((Ciptabies, f)) = T2. Consider two packets p and p’ with
the same source b and with destination a and a”, resp. They



both traverse the nodes gg and gs. It must be f'(gs)(p) =
f'(ge)(p") = (Ay : id,id : id), transforming the two pack-
ets in the same packet p” with source b and destination a’.
Also it must be f'(gs)(p”’) = id and at the same time that
f'(gs)(p”) = (id : id, Ay : id), because T, keeps p and p’ apart:
contradiction. O

We formalize the assumptions of Section 6.
Assumption 1. For every firewall language L

1. Algorithm 2 does not consider any trace (m,v) with m =
(q1,-.-qn)andv =(ly,...,1,) where l,, = DROPand Ji.i <
n such that either prop € V(q;) or l; # ID;

2. we do not consider configurations f such that, for some
P, ((C, HNPp) = A1 and —xq,(p), where

true ifq =gqy
Xq(P) =q@ROPE V(@) Ap# L =1t=A)A
1t e {ld, /lJ_} A/\/g(q,t(p))l(p) O.W.

with t = f(q)(p);

3. every pair (p,t) is expressed by at most one trace h in

Hy.

4. The control diagram Cy is such that no trace h € Hy
contains repetitions of SNAT or DNAT cap-labels.

Lemma 7. For any language L, legal configuration f, packet
p and transformation t, (i) ((Cz, f))(p) = t iff

(”) 3(q1,~-~aq;1,ll,--.,ln)67'{1:.
dt,...t,.t,0-- 0t =LA

Vi f@dp) =t A j<n=yipj1)
where py = pandVj. pj. = (tjo---ot)(p).

Proof. Trivially follows from the definition of ® and Lemma 2.
As for Lemma 3, we can proceed for induction, on the calls of
function ® for (i) = (ii), and on n for (ii) = (i). O

Theorem 7. For each firewall language L and fw-function T,
the Algorithm 2 is correct because it prints all and only

1. the t-pairs (P, t) not expressible by L;
2. the t-pairs (P, t) and (P, ) that clash on some node q.

Proof. We start with item 1), and we note that Algorithm 2
takes ([P], r) out of each of the T-pairs (P, ¢) C w € Q, which by
Theorem 3 faithfully represents them all. By Theorem 2, check-
ing expressivity for a trace is the same of using CHECK_FLOW as
done by function COMPUTE_TRACE. Finally, Theorem 1 reduces
the expressivity of a language to that of its traces.

For proving item 2), we simplify Algorithm 2 to operate on
a single pair (p, f), obtaining Algorithm 4; then the statement
follows trivially. Consider Lemma 7 and an expressible pair

Algorithm 4 Single packet version of Algorithm 2.

1: function cHECK _FUNCTION(T, C, V)

2 forallg e Qdo g(g) < 0

3 for all (p,t) € Tdo

4: h < coMpUTE_TRACE(C, V, (p, 1))

5 if 4 = Null then print (p, f) not expressible
6 else g « cHECK_PAIR(A, (P, 1), 8)

7: function compuTE_TRACE(C, V, (p, 1))
8: for all 2 € H, do
9: if t € &(v) A CHECK_FLOW(, p)A
CHECK _FLOW(REV(h), t(p)) then return h
10: return Null

11: function cHECK PAIR(K, (p, 1), &)
12: (pa,t,ts) «— (p,t,(id : id, id : id))
13: for all (g,]) € h do

14: (t@,t,) < spLiT(t,,[)

15: for all (Ppe,f.,fe),(P,D) € g(q) s.t. fe # te do

16: if Pe = Pe then

17: print (p,t) and (p,7) clashin g : (pe,te,fe)
18: 8(q) < g(g) U{((pe, s, t@), (P, 1))}

19: f.—t@ ol

20: Pe < te(pe)

21: return g

(p,t). Because of Assumption 3, we know there is only one
trace h such that

dr,...t,.
tho-rotp =t AV flg)(p)) =t; A(j<n=¢i(pj1)

It is trivial to prove that, because of Assumption 4, for each
expressible pair (p, f) and trace h, there is only one legal way of
decomposing ¢ in such fy,. .. t,. Hence ((Cyg, f) )(p) = tiff

Vi fg)p) =t; A (j<n=i(pj1))

with & returned by COMPUTE_TRACE, and ¢y, ..., unique legal
decomposition of ¢.

Note that, as & and ¢, ...t, are uniquely determined, we
can show that Vj. f(g))(p;)) = t; = (j < n = ¥i(pj+1)). In-
deed, the opposite would imply that (p, ) is not expressible,
leading to a contradiction. Hence, we can finally conclude that
((Ce, H)p) = tiff V). f(g)(p;)) = t; with h returned by
COMPUTE_TRACE, and f1,...#, unique legal decomposition of
t. To show the correctness of Algorithm 4 it is then sufficient
to prove that the list of transformations 7@ generated by Algo-
rithm 4 is a legal decomposition of #, which is true by definition
of SPLIT. O

Corollary 1. A fiv-function t is expressible by L if and only if
Algorithm 2 prints nothing.

Proof. We show that 7 is expressible by L (i.e. T € T) iff

1. all pairs (p, 7(p)) are expressible by L;



2. mno pairs (p, 7(p)) and (p, 7(p)) collide on some node g.

7€ Ty = (1),(2) trivially holds. Conversely, assume (1) and
(2). For each pair (p, 7(p)) there is only one possible trace and
decomposition of ¢. Thus, we can accumulate the set of condi-
tions on f, that are necessary and sufficient to have ((Cz, 1) )(p)
7(p). Each of these conditions states that f(¢e)(pe) = te for
some ge, Pe and te. Hence, for any p € P we build a set ), of
triplets (g, p@,t@) such that, for any legal configuration f

((C. Np) = 1(p) & Y(ge. pe.te) € Fp. f(ge)(pe) = te

We build then the following configuration f:

£ (@ p. EF
VCI’P'f(q)(p)z{;d if (¢, p.1) € Upep F)p

Note that f is indeed a function because we assume there are
no clash. O
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