QD

UNIVERSITA DEGLI STUDI DI GENOVA
DIPARTIMENTO DI MATEMATICA
PHD PROGRAM IN MATHEMATICS AND APPLICATIONS
Coordinated by Prof. Stefano VIGNI

PhD Thesis in Mathematical Logic

INVESTIGATIONS OF

PROOF THEORY AND AUTOMATED REASONING
FOR NON-CLASSICAL LOGICS

Cosimo PERINI BROGI

Supervised by
Prof. Sara NEGRI
Prof. Giuseppe ROSOLINI

Defended on July 12, 2022

ABSTRACT

This thesis presents some new results in structural proof theory for modal,
intuitionistic, and intuitionistic modal logics.

The first part introduces three original Gentzen-style natural deduction
calculi for, respectively, intuitionistic verification-based epistemic states -
namely, belief and knowledge operators - and intuitionistic strong Lob logic
for arithmetical provability. For each of these calculi strong normalisation
results are proven w.r.t. several systems of proof rewritings, which are con-
sidered on the basis of their structural relevance, e.g. for establishing the re-
lated subformula principles, or for providing a categorical semantics of nor-
mal deductions. The presentation of new and original sequent calculi for a
wide family of interpretability logics closes this first part of the thesis. These
sequent systems are modularly designed by recurring to internalisation tech-
niques which make possible their fine grained structural analysis, this way
establishing both their semantic and structural completeness.

The second part has a more applicative nature. It presents first an imple-
mentation in the HOL Light proof assistant of an internal theorem prover and
countermodel constructor for Gédel-Lob logic, relying on a previous com-
puterised proof of modal completeness for that logic within the same formal
environment. The design of that proof search algorithm is surveyed, and ex-
amples of both its interactive and automated use are shown. An overview of
an ongoing automation-oriented implementation in UniMath of the basics of
univalent universal algebra closes this second part of the thesis. The coding
style and methodology used are discussed besides some concrete formalisa-
tion examples of algebraic structures.

Finally, two appendices describe the logical engine underlying each of
the proof assistants that are used for the results presented in the second part,
namely classical higher order logic for HOL Light, and univalent type theory
for UniMath.

o —
In memory of Maria Magini,
structuring element of each Cosmos.
o —

ACKNOWLEDGEMENTS

I would like to thank my supervisors, Prof. Sara Negri and Prof. Giuseppe
“Pino” Rosolini: They let me pursue my own research interests with no fear
of wrecking, since I could have always relied on their expertise.

I am also thankful to the coordinator of the PhD Program, Prof. Stefano
Vigni, for his kind and absolute helpfulness during these years at the Depart-
ment of Mathematics in Genoa: In many situations, his and Pino’s support
and advice played a key and rebalancing role for my academic progress.

I am grateful to the referees of this thesis, Prof. Martin Hyland and Dr.
Eugenio Orlandelli: I have been honoured by their acceptance to review my
manuscript, and I care to express all my gratitude to them for their detailed
and constructive feedback on my work.

I wish also to thank the people whom I worked with: Prof. Gianluca Am-
ato, Prof. Marco Maggesi, and Prof. Maurizio Parton, since our discussions
and collaboration were invaluable. In particular, I want to express my deepest
gratitude to Marco, for hosting me at the University of Florence, and, even
more, for his guidance in the jungle of implicit traditions and non-optional
social conventions characterising academic life.

During this three years - and a bit more - journey, I was lucky to have
met, in person and online, many further inspiring researchers.

I am thankful to Prof. Nicola Olivetti for our online discussions with Sara
on structural proof theory for interpretability logics, which were very impor-
tant for achieving some of the definite results presented here.

[am grateful to Dr. Reuben Rowe for our chatting during the Proof Soci-
ety Summer School at Swansea University - and, in particular, on the way to
Rhosili - which was more than enlightening and made me achieve a concrete
insight on the directions my PhD would have taken.

[wish to thank the members of the Genoa Logic Group and, in particular,
Prof. Riccardo Camerlo for keeping the activities at the DiMa going on during
these unusual years.

Many thanks also to Dr. Ulrich von der Ohe and Dr. Rémi Bignalet-Cazalet
for being kindest office-mates, and for the pleasant hours we spent together
in Room 810 talking about maths, natural languages, and culture. Special
thanks to Ulrich for our Matrix sessions during the confinement months, and
for his contagious enthusiasm about free software.

My endless gratitude goes to my family and friends for helping me in
moving forward.

In particular, I wish to thank my close friend Marianna, since her encour-
agement has been a cipher for my personal development; I am glad to have
find in her a kindred academic who truly values rational nonconformity.

Most of all, I care to thank Laura Brogi, my mother “generalessa von
Kurtewitz™ Your courage, strength, and intelligence nurtured my mind and
spirit. We both achieved this, together, and I wouldn’t have been able to cope
with all that without you by my side.

I have dedicated this thesis to your mother, my stellar grandmother Maria
Magini: The life years that the three of us shared have marked an invariant
in all possible Cosmoses.

1%

ii

CONTENTS

Prologue

General introduction

1 Preliminary material

11

1.2

1.3

14

1.5

Normal modal logics
111 Elementarysyntax
11.2 Axiomaticcalculi
11.3 Relational semantics

114 Canonical models, finite models, bisimulations

Godel-Lob provability logic
121 Axiomatisation and relational semantics
1.2.2 Arithmetical realisation
Sequent calculi for non-classical logics
1.31 G3cpsequentcalculus
1.3.2 Formal relational semantics
Natural deduction for propositional logic
141 Basic natural deduction systems
142 Normalisation.
14.3 Analyticity.
144 Perspectives from mathematical philosophy
Typetheory
151 Proofsasprograms
1.5.2 Computational trinitarianism

I Structural Proof Theory

Introduction to Part I

2 Natural deduction for intuitionistic belief

2.1

Axiomatic calculus for intuitionistic belief
211 SystemIEL™
21.2 Kripke semantics for IEL™

iii

NN e N)

10
11
14
15
16
19
19
23
25
26
28
31
32
33
35
39

44

2.2 Natural deduction for intuitionistic belief
221 SystemlEL™ L
222 Normalisation.
2.3 Analyticity and other properties.
2.31 Proof of the subformula property
2.3.2 Further properties of intuitionistic belief
24 Proof-theoretic semantics for [EL™
241 Some functors on monoidal categories
242 Categorical interpretation
Relatedworko o

Natural deduction for intuitionistic knowledge

3.1 Axiomatic calculus for intuitionistic knowledge
311 SystemIEL,
31.2 Kripke semantics forTEL

3.2 Natural deduction for intuitionistic knowledge
321 SystemlIEL.
322 Normalisation.

3.3 Analyticity and other properties.
3.31 Proof of the subformula property
3.3.2 Further properties of intuitionistic knowledge

Relatedworko o

Natural deduction for intuitionistic strong Lob logic

41 Axiomatic calculus for intuitionistic strong Lob logic
411 SystemISL
412 Kripke Semantics forISL

4.2 Natural deduction for intuitionistic strong Lob logic.
421 SystemISL. o L.
42.2 Normalisation.
4.2.3 On analyticity of normal ISL-deductions

Relatedwork o

Modular sequent calculi for interpretability logics

51 Axiomaticcalculio L o o
511 Axiomatic eXtensions

5.2 Semantics for interpretability logics L.,
521 Veltmansemantics
5.2.2 Generalised Veltman semantics

5.3 Design of the labelled sequent calculi
531 Coresystemot
532 Extensions.

5.4 Structural properties

v

70
72
73
74
74
74
75
77
77

81

82
84
84
84
85
86
87
89
91

54.1 General initial sequents, weakening, contraction, in-

vertibilityo o 108

54.2 Cut-elimination theorem 110

5.5 Completeness i e 115
5.51 Syntactic completeness 115

552 Soundness 120

5,53 Ontermination v v v v v v v v e e 122

Related work 123

II Automated Reasoning 125
Introduction to Part I1 126

6 A theorem prover and countermodel constructor for provability

logic in HOL Light 129
6.1 Basicsof modallogic 134
6.1.1 Language and semantics defined 134

612 FramesforGL 136

6.2 Axiomatizing GL o oo 137
621 GL-lemmas 138

6.2.2 Soundnesslemma 140

6.3 Modal completeness 140
6.3.1 Maximal consistentlists 141

6.3.2 Maximal extensions 143

6.3.3 Truth lemma and completeness 145

6.34 Generalizing via bisimulation. 145

64 Implementing G3KGL 147
641 ThecalculusG3KGL 148

64.2 Design of the proof search 151

643 Someexamples 153
Relatedworko o 156
7 Universal algebra in UniMath 159
71 Surveyingthecode 162
711 Signatures and algebras Lo 164

712 Terms and free algebras 166

713 Inductionontermsot 168

714 Terms with variables and free algebras 169

715 Equations and equational algebras 170

71.6 Categorical structures 171

7.2 Some successful experiments 172
721 Listalgebras L oL 173

72.2 Equational algebras of monoids 174

7.2.3 Algebra of booleans and Tarski’s semantics

Related work

Appendices

A HOL Light logical engine

B Univalent type theory and UniMath

Bibliography

vi

179
180

185

195

PROLOGUE

GENERAL INTRODUCTION

This thesis can be thought to dwell at the intersection of two research
topics: structural proof theory and automated reasoning. It is then organised
in two parts, dealing with each of the two subjects.

Overall, its focus is on mathematical logics that behave differently from
the usual way of reasoning in mathematical practice. The classically trained
mathematician is generally interested in the truth value of a statement: If
that statement is true, then she calls it a theorem; if it is false, she says to
have refuted it. The logic underlying this reasoning is called classical: It
is bivalent and based on the assumption that every statement is either true
or false. Non-classical logics challenge that perspective, by investigating the
ways a statement can be true or false | J. This is formally done by means
of different logical operators, or by changing the classical behaviour of the
standard ones.

Here we will discuss exclusively modal and intuitionistic logics, as well
as their interplay. More exotic non-classical logics do exist and have a wide
range of applications, but mainly outside the mathematical realm. In fact,
our interest will be directed towards those non-classical systems that deal
with notions that are somehow related to mathematics; in more details: ver-
ification and formal provability; interpretability over a base formal theory;
constructive and algorithmic reasoning in mathematics.

Modal logics [] are interested in the modes in which a statement is
true (or false): It is clear that, outside everyday mathematics, a statement can
be contingently true; true in the past, and false at a different time; or true after
performing a task - or process; or even true (or false) according to the back-
ground knowledge of an agent. In all these cases, our language is enriched by
modal expressions, which are formally rendered by modal operators. Modal
logics are now a powerful tool for investigations in computer science, philos-
ophy, linguistics and the foundations of mathematics, since many mathemat-
ical constructions can be described in abstract terms by means of modalities.
It is then not unusual to read about mathematical modal logics in scientific
literature | .

But even before the advent of modal systems, non-classical logics have
been applied in mathematical inquiries. Intuitionistic mathematics []

have been developed since the first decades of 20th century to challenge the
metaphysical assumptions underlying the traditional mathematical practice.
On logical terms, such a challenge is made concrete my rejecting the princi-
ple of bivalence of classical logic: It is not possible to claim that any statement
is either true or false, since the truth of a proposition is mathematically es-
tablished only by producing a constructive proof, and we know that in some
cases we are not able to prove or refute a conjecture. Accordingly, intutionis-
tic logic | , | describes the behaviour of the standard logical oper-
ators in very different terms from their classical analogous, by emphasising
the constructive and algorithmic nature of proving and refuting a mathematical
statement.
Then there exist their mutual interactions: Intuitionistic modal logics |

] introduce modal operators besides intuitionistic ones, and in re-
cent years are experiencing a new dawn in virtue of their applications to the-
oretical computer science, as well as to meta-mathematical inquiries in intu-
itionistic arithmetic.

In this thesis these kinds of logics - modal, intuitionistic, and intuitionis-
tic modal - will be investigated by the methods and techniques of proof the-
ory. But we will also use further non-classical systems - respectively, higher
order logic and univalent type theory - for performing deductions in a modal
system - namely, Godel-Lob logic - and computations in mathematical struc-
tures — namely, basic constructions in universal algebra - by recourse to proof
assistants that do their job thanks to knowledge coming from structural proof
theory applied to computer science and computerised mathematics.

STRUCTURE OF THE THESIS AND ITS CONTENTS

The thesis is organised in two parts, for a total of seven chapters and
two appendices. Chapter 1 is introductory: It briefly collects all the material
that is shared by at least two of the subsequent chapters, and recalls the ba-
sics of normal modal logics and provability logics; sequent calculi in the G3
paradigm and their extensions for non-classical reasoning; natural deduction
for intuitionistic propositional logic; type theory from the perspective of the
proof-as-programs paradigm, together with a minimalist primer on category
theory for natural deduction systems.

The remaining chapters offer original contributions.

> In Part [, Chapter 2 introduces a natural deduction system for the logic
of intuitionistic belief axiomatised in []. The calculus is shown to
strongly normalise w.r.t. several systems of rewritings, that are based on
fulfilled proof-theoretic expectations and categorical considerations.

Chapter 3 extends the results about intuitionistic belief to a natural
deduction system for intutionistic knowledge, that we have designed on

3

the basis of the BHK explanation given in [| for verification-based
epistemic states. Even for this system, we prove strong normalisation
of deductions as well as further proof-theoretic desiderata.

Chapter 4 extends the natural deduction for intuitionistic belief into a
new natural deduction calculus for intuitionistic provability logic based
on the strong version of Lob axiom investigated first in []. This
extension is rather modular, so that the normalisation results for deduc-
tions in this intuitionistic provability logic are obtained by adapting the
proof strategies developed in the previous chapters.

Chapter 5 closes the first part of the thesis by presenting a uniform fam-
ily of labelled sequent calculi for interpratability logics over a classical
propositional system, based on the semantics surveyed in [J.
This chapter contains the description of what is probably the largest
class of analytic calculi for those mathematical modal logics currently
available, and presents detailed proofs of their excellent behaviour from
the point of view of structural proof theory. Most notably, we produce
a uniform cut-elimination procedure showing that the rule of cut is ad-
missible in any of the calculi under investigation.

In Part 11, we move from structural proof theory to its applications in
automated reasoning.

Chapter 6 describes a theorem prover and countermodel constructor
for Godel-Lob logic (GL) developed within the theorem prover HOL
Light. It surveys the code that is now part of the official distribution of
HOL Light, and gives the main details of how the GL-theorem prover
has been designed on the basis of the methodology of structural proof
theory for modal logics analysed in [|. The chapter contains also
some hands-on examples of proof search for a modal formula given as
input to the theorem prover, as well as some reflections on the possibil-
ity to widen the implementation presented here to develop automated
theorem provers in HOL Light for many other non-classical logics by
working on the same methodological idea.

Chapter 7 gives an overview of the UniMath library for universal al-
gebra that we developed with the intent of making an efficient use of
the computational relevance of computerisation of mathematics: We
wanted to highlight the demonstrative contents of our formalisation by
leaving to the computer all the trivial steps of computation that are in-
volved in the development of formal proofs about mathematical struc-
tures. We have been largely inspired by Henk Barendregt’s Poincaré
principle [|, and we have instantiated it by our definition of terms
of an algebra over a signature, which does not recur to Coq inductive
type constructors. Therefore, we present our implementation of uni-
versal algebra from the very basics of the subject, and then proceed

4

with the definition of the categorical structures determined by the basic
notions - namely, signatures, algebras, and equational algebras. Some
examples of concrete algebraic structures rephrased in our formalism
close the chapter, which contains also some methodological remarks
and perspectives on future work on the library.

>> Finally, there are the two appendices describing the logical theories
underlying the proof assistants that we used in the second part of the
thesis.

Appendix A gives a concise introduction to the deductive engine of
HOL Light, and contains some personal considerations about the main
characteristics of that theorem prover, namely its flexibility and mini-
malist nature. We recall the primitive rules on top of which any formal
proof can be carried out in HOL Light, and discuss its proof devel-
opment environment based on rules, tactics and tacticals. Finally, we
point to the official documentation of HOL Light, and we recall some
worth noticing examples of use of that theorem prover in both academic
and industrial research.

Appendix B proposes a formal definition of intuitionistic type theory
as a single conclusion sequent calculus, and discuss its extension by
the univalence principle. This is the logical kernel of UniMath, that we
describe as a very minimal system for univalent type theory. We collect
some general information about univalent reasoning and its relevance
for the foundations of mathematics and for theoretical computer sci-
ence, and we point to the most recent literature about this new research
field, with an emphasis on meta-theoretical investigations.

Part of the results presented in this thesis have already been published. The
papers in which they appear are the following:

o Chapter 2: The natural deduction calculus for intuitionistic belief, its
strong normalisation and corresponding categorical semantics can be
foundin| |; some preliminary results are also discussed in |]

and [.

o Chapter 6: The formalisation of modal completeness of GL. appeared
first in | |; the theorem prover and countermodel constructor is
described in [|. The code surveyed in the chapter is freely avail-
able from the official HOL Light distribution [.

o Chapter7: The implementation of universal algebra is surveyed in [
A preliminary version appeared in [|. The version discussed
here is part of the official UniMath library [.

PRELIMINARY MATERIAL

This chapter recalls the basic tools that are common in investigations
concerning modal logics, structural proof theory, and type theory.

The material in these pages can be thought of as a minimal set of con-
cepts, ideas, and results that will recur often in the main parts of this dis-
sertation, or that will be common to more than one chapter to follow: They
are collected here since thay are the unavoidable preliminaries for the sub-
sequent presentation.

No aim of completeness leads the following exposition, and the reader
might find further and more detailed results among the appropriate refer-
ences that will be cited in the next few pages.

11. NORMAL MODAL LOGICS

Modal notions are ubiquitous in natural languages as well as in science.
In all areas of inquiring, concepts having modal character appear, and their
study under the light of logic dates back to Aristotle’s De Interpretatione, 12-13.

In general terms, a modality expresses a mode in which a statement may
be true (or false). Modal logics arise then as a very general framework to
model those modes, and their peculiar characteristic is the possibility to ex-
pand the descriptive power of standard - i.e. classical or intuitionistic - log-
ics.

An informal logical treatment of modalities runs across the Middle Ages
in the works of several philosophers discussing problems in metaphysics, the-
ology and proto-linguistics; they were largely inspired by Aristotle’s previous
reflections on necessity, possibility, and Fate. After the advent of modern
mathematical logic, we are able to rephrase their modal arguments by means
of modal logical systems obtained by enriching the base language and deduc-
tive apparatus for standard logic by new non-truth-functional operators that
are usually called modalities, or modal operators.

The father of modern modal logic is C.I. Lewis whose pioneering |]
contains almost the whole syntactic “toolbox” that we use to develop modal

systems nowadays.' In the 1930s, modal concepts appear in the study of foun-
dations of mathematics thanks to Ivan Orlov| Jand Kurt Godel | 12,
while Jan Eukasiewicz investigated formal semantics of modal concepts start-
ing from the 1920s |].

In the following decades, many further modalities are standing in the
spotlight: G.H. von Wright introduces deontic logics to study obligations and
permissions [J; Arthur Prior uses modalities dealing with time [5;
Jaakko Hintikka introduces multi-modal systems for studying epistemic no-
tions | |. These are also the years when a powerful unifying tool arises,
namely relational semantics, independently developed by Saul Kripke, Stig
Kanger, and Jaakko Hintikka.’

Itis also because of this new general semantic framework that many other
research fields have started to inquire on and apply modalities. More promi-
nently, dynamic logic marks the advent of modal logic for computer science,
thanks to RW. Floyd [], Vaughan Pratt |], and Krister Segerberg
[|. By now, modal operators modelling script runs, branching and lin-
ear time flows, conditionals, knowledge and its evolution have appeared in
any branch of theoretical computer science, as well as formal hardware and
software verification, game theory, and social choice theory | I.

Modern coalgebraic methods [| are furthermore progressing towards
a unifying theoretical account on modal phenomena in terms of categorical
notions. On the more applicative side, description logics [| are used in
several domains involving computational information flow and knowledge
representation, from molecular biology [] to the modelling of decen-
tralised and distributed systems | .

The interested reader may find several good textbooks on modal logic -
e.g | [], and [|: She may consider [| for an excellent
starting point for surveying more advanced topics in theory and applications
of modalities. Finally, an exceptionally clear history of modern modal logic
is provided by [|. Here, we limit ourselves to collect the very basic the-
oretical ingredients for syntax and semantics of normal modal logics. The
contents of the present section will be used partially in Chapters 3-5, and,
more extensively, in Chapter 6. The latter provides also a computer formali-
sation of all the notions and results collected here.

1.1.1. ELEMENTARY SYNTAX

Let’s start by recalling the formal definitions of a propositional modal
language and its formulas.

TPrevious investigations were carried out in [1.

2See Section 1.2 below.

3See Section 1.1.3. Previously, an algebraic interpretation was proposed by Alfred Tarski,
J.C.C. McKinsey and Bjarni Jénsson: Refer [, Ch. 7] for a modern presentation.

DEFINITION 1.1.1. A (mono)modal propositional language Lg is given by:
+ a denumerable infinite set Atm of propositional atoms pg, p1, . . ;
+ propositional operators —, L, A, V;
+ aunary modal operator O,

+ auxiliary symbols “(” and)

DEFINITION 1.1.2. The set of formulas Form of £n is inductively defined as
follows

« for each p;, p; is a formula;

o 1 isaformula;

if A and B are formulas, soare A —+ B,AA B, AV B;
+ if Ais aformula, so is OA;

+ nothing else is a formula.

Truth, negation, coimplication are defined in the standard way: T := 1L — 1|

“A:=A— Ll,and A <> B := (A — B) A (B — A), respectively. When
we are reasoning in a classical setting, we can also consider a further modal
operator <, that we define as A := -0O-A.

We will often recur to the following formalism to define the admissible
expressions of a given language:
The formulas of our language are inductively defined by the following gram-
mar

Form:= p | ANB|AVB | A—-B| A< B|-A|T| 1|04,
where p € Atmand A, B € Form.
The inductive definition of subformula easily follows:

DEFINITION 1.1.3. The set Sb(A) of subformulas of a given formula A is de-
fined by:

« A€ Sb(A);

« if poccurs in A, then p € Sb(A);

« if BoC € Sb(A), then B € Sb(A) and C € Sb(A),whereo € {—, A, V};
« if OB € Sb(A), then B € Sb(A)

Let the degree of a formula be the number of logical operators in it.

DEFINITION 1.14. Let A € Form and ¢ : Atm — Form. Then “ A, i.e. the
formula obtained from A by simultaneously substituting every occurrence in
A of each p € Sb(A) with o(p) is defined by induction on the degree of A:

« ‘p:=o(p);

e 71 =15

« 9(BoC):=7Bo 9C foro e {—,A,V};
. 7(0A) = 0O(° A).

1.1.2. AXIOMATIC CALCULI

Any logic is made of a language along with a calculus and a semantics.
For the moment, we start by characterising a normal modal logic as the
set of all formulas of £ that are derivable in an axiomatic calculus extend-
ing any sound and complete axiomatic system for classical or intuitionistic
propositional logic by means of specific axiom schemas and inference rules.
The minimal normal modal system is usually denoted by K.

DEFINITION 1.1.5. The axiomatic calculus K is defined by the following ax-
iom schemas:

« standard schemas for propositional logic;
+ schema K: O(A — B) - 0A — OB;

along with the following inference rules:

. A—> B A
MP: 5 ;
A
NR: A -

A normal modal system S is then any axiomatic extension of K that is
closed under MP, NR and substitution. When the basic propositional logic is
intuitionistic we denote the resulting system by IS.

A formal derivation in S is a finite sequence of formulas where each
one is an instance of an axiom schema of S, or has been obtained from the
previous formulas in the sequence by applying one of the rules of S.

We write S - A when A is the last formula of a formal derivation in S.
Derivability from a set of hypotheses is then defined as follows:

DEFINITION 1.1.6. Givenaset I of formulas of £n, we say that A is S-derivable
from I', and write I' kg A, when there exists a finite sequence A4y, ..., 4, of
formulas such that A, = A and, for 1 < k <n, A, is an instance of an axiom
schema of S, or it belongs to I, or it is obtained from previous formulas in
the sequence by applying MP, or it is obtained by applying NR to a previous
formula in the sequence non-depending from any formula in T

9

For such a notion, the standard version of the deduction theorem holds:*
I'NArs B iff THs A— B

That, as it is known, has a prominent role in helping the development of
formal derivation by pencil and paper.
Finally, let’s convey to say that a set " of formulas is S-consistent when
T L.
1.1.3. RELATIONAL SEMANTICS

Turning now to the model-theoretic side, it is usual to deal with normal
modal logics by relying on relational semantics, which is also called Kripke
semantics, or possible world semantics.’

DEFINITION 1.1.7. A modal frame F = (W, R) is made of a non-empty set W
“of possible worlds” and a binary “accessibility” relation R C W x W. (W, R)
is said to be finite if W is so. ©

DEFINITION 1.1.8. The notion of model is defined as follows:
+ Let F = (W, R) be a frame. An evaluation function v on F is a function
v: W x Atm — {0,1}
associating toeachi € Wand eachp € Atma truth-value v(é, p) € {0, 1}.

+ A model M is a triple (W, R, v) where F = (W, R) is a frame and v is
an evaluation function on F. When that is in the case, we say that M
is based on F.

DEFINITION 1.1.9. The relation IF holding between a model M = (W, R, v), a
world ¢ € W and a formula A of L5 when ‘A is forced by i in M’ is inductively
defined on the degree of A:

- ilkpm piffo(i,p) =1,

- i ¥ p L foranyi, M,

ilbpg B— Ciffi¥a Borila C,

ilFag BAC iffil-p BandilFy C;

-~ ilkpm BV Ciffilbpq Borilip C

4See [| for an exhaustive discussion on this most debated property of normal modal
systems.
’] provides a fascinating history of this interpretation of modal operators.

®We formally write 4 Rj to mean that j is accessible to i.

10

- ilkp OB iff forall j € W, if iRj, then j I o B.

The previous definitions are acceptable when dealing with modal logics
based on a classical propositional system. When moving to the intuitionistic
setting, some things need to be modified.

DEFINITION 1.1.10. An intuitionistic modal model’ M := (W, <, R,v) is
made of

+ a preorder < on a non-empty set W;
+ a binary relation R on W;

+ an evaluation function v : W x Atm — {0, 1} such that forany i,j € W
and p € Atm, if ¢ < j, then, ifv(i,p) =1, v(j,p) =1

The right forcing condition |- in the intuitionistic modal setting has been
debated for a long time, and no universal agreement has been achieved, nor
should be expected, since the choice heavily depends on the concepts the
single logician strives to capture by an appropriate modality. Indeed, it is
common to distinguish between intuitionistic modal logic | , ,]
and constructive modal logic [, | on the basis of the expected
behaviour of the modal operators - for our purposes, the O-modality only.

Part of the present work is committed to a proof-theoretic analysis of
modal logics based on an intuitionistic propositional system. We will not
dwell on these subtleties, so that the appropriate definition of IF will be given
in due time for each specific logic considered.

1.1.4. CANONICAL MODELS, FINITE MODELS, BISIMULATIONS

The real interest in relational semantics, actually, is not revealed by the
notion of validity of theorems in a single model, but in a whole class of frames.

DEFINITION 1.1.11. We say that:

+ Aformula A is true in a model M = (W, (<,)R, v) iff it is forced by any
w € W; formally, one writes Eaq A iff w IFpq A forany w € W.

+ A formula A is valid in a frame F iff it is true in any model based on
that frame, i.e. iff if is forced by any world w.r.t. any evaluation function
on F; formally, one writes Fx A iff Foq A for any M based on F.

+ A formula A in a class of frames € iff A is valid in any frame belonging
to €; formally, one writes F¢ A iff Fx A for any frame F € €.

"See Sect. 2.1 for a concrete example of such a structure

11

Proving that a normal modal system S is sound and complete w.r.t. possi-
ble world semantics means establishing that the set of theorems of S corre-
sponds to the set of formulas that are valid in a class of frames whose acces-
sibility relations satisfy a specific group of (first- or higher-order) properties
corresponding to the modal schemas characterising S. It is common to prove
that adequacy theorem by means of the canonical model construction.

THEOREM 1.1.12. Let S be an axiomatic calculus for a normal modal logic. Then
the following hold:

Soundness: If St A, then Aisvalidin all the frames satisfying the properties correspond-
ing to the characteristic schemas of S.

Completeness: If St/ A, there exists a countermodel to A which is based on a frame satisfying
the properties corresponding to the characteristic schemas of S.

Proof sketch. Soundness is usually proven by induction on the derivation of
A.

The construction of the canonical models plays the main role in proving
completeness. The proof strategy can be summarised as follows:

1. Define a set of formulas I" to be S-maximal when it is S-consistent, but
none of its proper extension is so. Let MAXg denote the collection of
S-maximal consistent sets. It is not hard to prove that any I' € MAXg
contains any formula that is S-derivable from I" and that it also behaves
as a standard evaluation for (classical) propositional connectives.

2. Anextension lemma can then be proven by a Lindenbaum construction,
assuring that any S-consistent set can be extended to an S-maximal set,
so that MAXg # @.

3. Toeach system Sa canonical model is associated, forwhich W = MAXs.
To be more precise, set

+ acanonical frame s = (MAXg, (C,) Rs), where
F'RsA iff, when TI'FgOA, Akg Aforanyformula A;
+ acanonical model Mg = (MAXs, (C,)Rs, vs) where

vs(T'yp) =1 iff T kgp.

By the extension lemma it is also provable that if I' € MAXgs and
I' #s OB, then there exists a A € MAXgs such that 'RsA and
A ¥Fs B.

4. By induction on the degree of A, a truth-lemma is proven:

12

ForanyI' € MAXs and any formula A, T' lFpyq, Aiff A€ T

5. Consider now a formula A such that S ¥ A. Then {—A} is S-consistent;
by the extension lemma, {-A} C T € MAXgs for some I, so that " ¥g A
and, by the truth-lemma, I" ¥ y(, A.

6. This suffices to prove the completeness of (I)K: For its normal exten-
sions it is enough to show that the related canonical model does satisfy
the required property.

X

For many normal modal systems, moreover, the previous adequacy theo-
rem can be strengthened to finite frames. It is common to refer to that result
as the finite model property (FMP) of a given system S.

Proving that the property does hold for a specific S requires further no-
tions that will not be necessary for the purposes of the present work, includ-
ing filtration results that are highly sensitive to the logic under investigation.
Notice, however, that if S satisfies the finite model property, it is decidable.
Seee.g. | ,] for more details.

Let us conclude this survey by recalling a central notion in model theory
for modal logic.

DEFINITION 1.1.13. Let M e M’ two relational models. Let B be a non-empty
binary relation between their world sets, resp. W e W’. B is said to be a
bisimulation between M and M’ if, whenever wBw’, we have

Atomic harmony: x |- p iff 2/ |- p for any p € Atm;
Zig: if wRy, then there exists a world 3/ € W’ such that y By’ and w'R'y/;
Zag: if w' R’y , then there exists a world y € W such that y By’ and wRy.

If there is a bisimulation between M and M’, one says that those models
are bisimilar.

Bisimulation subsumes several model-theoretic notions, including model
isomorphism.
The key result about bisimilar models is indeed the following:

LEMMA 1.1.14. Modal forcing is invariant under bisimulation.

Proof. Let M, M’ be bisimilar via B. Let wBw'. A straightforward induction
on the degree of A proves that

U)”_MA iff w/ ”—M/ A,

as desired.

13

1.2. GODEL-LOB PROVABILITY LOGIC

The origin of provability logic dates back to a short paper by Godel []
where propositions about provability are formalised by means of a unary op-
erator B with the aim of giving a classical reading of intuitionistic logic.

The resulting system corresponds to the logic S4, and the proposition Bp
is interpreted as ‘p is informally provable’ - as claimed by Gédel himself. This
implies that S4 can be considered a provability logic lacking an appropriate
semantics.

At the same time, that work opened the question of finding an adequate
modal calculus for the formal properties of the provability predicate used in
Godel’s incompleteness theorems. That problem has been settled since 1970s
for many formal systems of arithmetic by means of Gédel-Lob logic GL.

The corresponding axiomatic calculus GL consists of the axiomatic sys-
tem for classical propositional logic, extended by the distributivity axiom
schema K, the necessitation rule NR, and the axiom schema GL

O(0A — A) - OA.

This schema consists of a formal version of Lob’s theorem, which states
that an arithmetical sentence S is provable in a theory T iff in T the reflec-
tion formula Bew("S™) — S is provable, where Bew(z) denotes the for-
mal provability predicate for T. Indeed, Lob’s theorem holds for a wide class
of arithmetical theories satisfying the so-called Hilbert-Bernays-L6b (HBL)
provability conditions:

(1) IF TF S, then T+ Bew("S7);

(12) TE Bew(™S — T7) — (Bew("S™) — Bew("T7));
(13) TF Bew(™S7) — Bew("Bew("S™)7);

(t4) Bew("S7) isin Xy;

(r5) If S is in £y, then T - S — Bew("S").

The formal analogy with the axiomatic calculus GL is clear.

The semantic counterpart of that calculus is - through the Kripke for-
malism - the logic of irreflexive transitive finite frames. Moreover, the calcu-
lus can be interpreted arithmetically in a sound and complete way. In other
terms, GLL solves the problem raised in Godel’s paper by identifying a propo-
sitional formal system for provability in all arithmetical theories that satisfies
the previously mentioned HBL conditions.

14

Published in 1976, Solovay’s arithmetical completeness theorem []is
in this sense a milestone result in the fields of proof theory and modal logic.®
As GL is arithmetically complete, it is capable of capturing and identifying
all relevant properties of formal provability for arithmetic in a very simple system,
which is decidable and neatly characterised.

Such a deep result, however, uses in an essential way the modal complete-
ness of GIL: Solovay’s technique basically consists of an arithmetisation of a
relational countermodel for a given formula that is not a theorem of GLL, from
which it is possible to define an appropriate arithmetical formula that is not
a theorem of the mathematical system.

In contemporary research, this is still the main strategy to prove arith-
metical completeness for other modalities for provability and related con-
cepts, in particular for interpretability logics. In spite of this, for many theo-
ries of arithmetic - including Heyting Arithmetic - this technique cannot be
applied, and no alternatives are currently known.

In this section, the basic definitions and properties of GL are recalled.
This contents gives an elementary background for Chapters 4-6.
1.2.1. AXIOMATISATION AND RELATIONAL SEMANTICS
DEFINITION 1.2.1. The axiomatic calculus GL is given by
« axiom schemas for classical propositional logic;
+ schema K 0(A— B) = (DA — OB);
« schemaGL O(0OA — A) — OA, also called Lob schema;

together with the following inference rules:

A— B A
MP 5 :
A
*+ NR 04

It is not hard to see that GL - OA — OOA. Actually, it is possible to give
an equivalent definition of GLL - that we will call K4LLR - which extends K
by means of the schema
4: 0OA— 0O0OA

together with the Lob rule

8 Actually, four different schools originated from the first years of research leading to the
arithmetical completeness theorem: In the US, George Boolos, Craig Smorynski and Robert
Solovay were the principal investigators on provability logic; in the Netherlands, Albert Visser
and Dick de Jongh led a very active research group; in the USSR, Sergei Artemov started an
extremely prolific school on provability logic and ordinal analysis; in Italy, Roberto Magari,
Franco Montagna, Giovanni Sambin e Silvio Valentini focused their research on algebraic and
proof-theoretic treatments of GL.

15

04 — A
— LR

On the semantic side, GL is adequate to the class of relational frames
which are irreflexive, transitive and finite, which we denote by ITF.

THEOREM 1.2.2. The following hold:
(Soundness) If GL - A, then A is valid in any frame in ITF.
(Completeness) If GIL t/ A, then there exists a countermodel for A in ITF.

Proof. Soundness is proven by induction on the derivation of A.

There are several way to prove completeness for GLL: See [] and its
implementation described in Chapter 6 below for a proof based on a variation
of the canonical model construction.

X

Notice, however, that it is possible to prove both a weaker and a stronger
completeness result: GLL is complete w.r.t. the class of transitive and Noethe-
rian frames,” which ITF is a proper subclass of, and w.r.t. the class of irreflex-
ive finite trees, which are a proper subclass of ITF.

1.2.2. ARITHMETICAL REALISATION

We want now to make clear how a modal formula OA can be interpreted
as asserting the formal provability of an arithmetical sentence corresponding
to A. This is achieved by means of the following

DEFINITION 1.2.3. Let T be an arithmetical theory over a classical basis sat-
isfying the provability conditions HBL. A realisation of a modal formula into
an arithmetical sentence of T consists of a function * that commutes with the
propositional connectives and such that

(OA)* := Bew("A™"),

where the mapping ™- " denotes the Godelianisation of arithmetical formulas,
and Bew(z) is the standard provability predicate for T.'

Proving that any realisation preserves the theorems of GL is a rather easy
task.

LEMMA 1.2.4 (Arithmetical soundness). Let T be a classical arithmetical theory
satisfying the provability conditions HBL. If GIL - A then T+ A* for any realisation

X,

"We say that a relation R is Noetherian on W when for any X C W there exists a w € X
such that for no z € X wRz.
ORefer to e.g. [, Ch. 2] for more details.

16

Proof. Straightforward induction on the height of the derivation in K4GL.
X

This soundness lemma suffices to study some phenomena of formal arith-
metical theories from an abstract point of view, by considering their modal
counterparts. For instance, by working in GL we can state the modal version
of very well-know meta-mathematical results.

LEMMA 1.2.5. The following hold:

(i) Formal second incompleteness theorem:

GLFOOL —0Ol;

(ii) Arithmetical ignorance about unprovability statements:

GL F OL « OOp;

(iii) Unprovability of consistency implies undecidability of consistency:

|(DDJ) — —\(D—\DJ_) A _|(|:|_|—\DJ_),

(iv) Undecidability of Godel’s sentence:

O(A + -OA) A—0O0L — —O0A A -0O-4;

(v) Godel’s sentence is equiconsistent with a consistency statement:

O(A <» -0A) > O(A < —-0O1).

Proof. All the items are proven by direct reasoning within the axiomatic cal-
culus.
X

Another central result about Gédel-Lob logic is the fixpoint theorem,
which provides an abstract, structural, and extensional version of self-reference
in arithmetical theories.!!

THEOREM 1.2.6 (Modal fixpoint, Sambin 1976, Smorynski 1979). Let us say
that a modal formula A is modalised in p € Atm iff all occurrences of p in A are
within the scope of O. Furthermore, let us define 1B := B A OB. Then for any
modal formula A modalised in p, it is possible to explicitly find a modal sentence H
made of the same atoms of A except for p such that

GLFOH(p+ A) < Hp« H).

'The original proof is due to Sambin and, independently, de Jongh, but several other proofs
have been carried out over the years, including some of constructive nature.

17

Proof. Seee.g.| , Ch. 8|.
X

Soundness of Gédel-Lob logic allows to reason in a simple modal system
to prove relevant facts about arithmetic. However, GL is capable of provid-
ing relevant information about arithmetical theories even in an indirect way,
namely by considering what is not provable in that modal system. This is
possible thanks to Solovay’s arithmetical completeness theorem:

THEOREM 1.2.7 (Arithmetical completeness, Solovay 1976). For any modal for-
mula A, if GIL I/ A, then there exists an arithmetical realisation * such that T t/ A*
for any classical T satisfying the provability conditions HBL.

Proof. Referto |], or [, Ch.9].
X

The proof of Solovay’s theorem makes essential use of the modal com-
pleteness of GIL: The proof strategy consists of an arithmetical endcoding of
a countermodel for A, and a construction of an appropriate realisation * from
that encoded countermodel via Godel-Carnap diagonal lemma for arithmeti-
cal theories.

More prominently, it is relevant to notice that this strategy relies on the
classical nature of the theory T. At present time, no other proof strategy is
known for proving arithmetical completeness of modal logic for arithmetical
theories. This implies, in particular, that a provability logic for intuitionis-
tic arithmetic is still unknown. However, recent advances on that field seem
promising: For instance, it is known that the intuitionistic version of GL -
i.e. IGL, the axiomatic system obtained by adding the rule NR together with
schemas K and GL to intuitionistic propositional calculus - is not the prov-
ability logic for Heyting arithmetic HA.!? But if we consider the intuitionis-
tic version of strong Lob logic - that we recall in Chapter 4 - then we obtain
a modal system that is sound and complete w.r.t. HA + (A — Oyas).A),
where HA?® is an axiomatisation of intuitionistic arithmetic with only small
axioms, and (HA®)x is the unique theory such that provably in HA: (HA®)x =
(HAS) + (A — D(HAS)*A).B

Furthermore, arithmetical completeness of GL can be extended to a modal
treatment of different mathematical notions by means of proper extensions
of the logic and the language underlying G6del-Lob system: More on this is
described in Chapter 5.

Finally, it is worth noticing that proof theory for provability logic has been
considered for long very complex. It suffices to mention that the history of

While the present thesis was already under review, the preprint | proposed a defini-
tive solution to the open problem for HA. See also the related footnote at the beginning of
Chapter 4.

Bgee [| for the definitions and the main result.

18

the design of an analytic sequent calculus for GL - beginning with Valentini’s
proof of cut elimination for calculus GLS | | - has been characterised by
controversy, erroneous claims and alleged proof gaps. The situation changed
with the advent of internalisation techniques, that we briefly recall in Section
1.3.2." The theorem prover for GL that we describe in Chapter 6 is based
indeed on a sequent calculus designed by an explicit internalisation of the
relational semantics that we recalled in the previous pages.

1.3. SEQUENT CALCULI FOR NON-CLASSICAL LOGICS

In very abstract terms, a proof system consists of a set of starting formal
expressions together with inference rules. Its principal aim is to find proofs
of valid expressions w.r.t. a given logic L. A proof (or derivation) in a proof sys-
tem is obtained by application of the inference rules to starting expressions,
followed by further application of the inference rules to the conclusion, and
so on, recursively. A theorem (or lemma) in such a system is the formal ex-
pression obtained after a finite run of the procedure just sketched.

These definitions capture the axiomatic calculi of Section 1.1.2, and the
associated derivability relation Fsg.

The proof-theoretic paradigm behind axiomatic systems could be called
synthetic: Proof search in such systems is not guided by the components of the
formula one wishes to prove. The human prover - as well as an hypothetical
proof assistant dealing with a formal derivability relation w.r.t. this paradigm
- has to guess both the correct instances of the axiom schemas and the correct
application order of inference rules required in the proof. No explicit tip
is given to her for mechanically finding a proof. Thus, this kind of proof
systems has automation shortcomings that a naive computerisation is unable
to solve."”

A better paradigm is provided by sequent calculi, introduced firstin [

|. That work marks the advent of structural proof theory and the def-
inite shift from investigations in synthetic proof systems to analytic ones.

1.3.1. G3cp SEQUENT CALCULUS

Gerhard Gentzen’s original calculi have been further refined in []
and [| into the so-called G3-style systems.
In those systems, a sequent is a formal expression with shape

I'= A,

In any case, this has happened in parallel with the development of different proof strate-
gies for proving cut elimination from standard Gentzen style sequent calculi, and a more fine-
grained analysis of proofs for the original systems thanks to the systematic use of proof assis-
tants, as witnessed by the recent [].

5See also Section 6.2 for some remarks on proof search w.r.t. an explicit implementation of
FgL.

19

where T'; A are finite multisets - i.e. finite lists modulo permutations - of
formulas of a given language. The symbol = reflects in the object language
the deducibility relation at the meta-level. I is called the antecedent of the
sequent; A is its consequent.

A derivation in a G3-style sequent calculus is a finite rooted tree labelled
with sequents such that:

« its leaves are labelled by initial sequents (the starting formal expres-
sions of the abstract proof system);

« its intermediate nodes are labelled by sequents obtained from the se-
quent(s) labelling the node(s) directly above by a correct application of
an inference rule of the calculus;

« its root is the conclusion of the derivation, and it is called the end-
sequent.

Figure 1.1 summarises the calculus G3cp for classical propositional logic.
For each rule, one distinguishes:

« its main formula, which is the formula occurring in the conclusion and
containing the logical connective naming the rule;

« its active formulas, which are the formulas occurring in the premise(s)
of the rule;

« its context, which consists of the formulas occurring in the premise(s)
and the conclusion, untouched by the rule.

G3-style systems are the best available option for (efficiently) automat-
ing decision procedures: Once an adequate - i.e. sound and complete - G3-
calculus for a given logic L has been defined, in order to decide whether a
formula is a theorem of L it suffices to start a root-first proof search of that
very formula in the related G3-calculus.

This is so because, by design, good G3-style systems satisfy the following
desiderata:

1. Analyticity: Each formula occurring in a derivation is a subformula of
the formulas occurring lower in the derivation branch. This means that
no guesses are required to the prover when developing a formal proof in
the G3-calculus;

2. Avoiding of backtracking: For each rule of the system, derivability of
the conclusion implies the derivability of the premise(s). This invertibil-
ity of all the rules is what avoids backtracking on the proof search. It also
means that at each step of the proof search procedure no bit of informa-
tion gets lost, so that the tentative construction of one derivation tree is
enough to decide derivability of a sequent;

20

Initial sequents:

p,I'=Ap

Propositional rules:

IT=A
A BT =A . r=AA '=AB
ANBT=A " T=AAAB o
AT = A B T'=A . I'=AAB ®

AVB.T = A Y T=AAvB
I'=sAA . AT = A »
—AT=A "7 F=A-A
'=AA B I'=A . AT =AB »

A5 BTI=A T T=AASB

Figure 1.1: Rules of the calculus G3cp

3. Termination: Each proof search must come to an end. If the final state
of the procedure does generate a derivation, the end-sequent is a theo-
rem indeed; otherwise, it is generally possible to extract a refutation of
the sequent from the failed proof search.'®

G3cp does satisfy these desiderata because of its structural properties. By
this term, it is common to denote a small set of meta-results that can be con-
densed in a “canonical form theorem” for G3cp-derivations: Each derivation
in G3cp can be rearranged so that it acquires a well-defined structure. The
structure itself is what guides the prover in the proof search of a given for-
mula.

THEOREM 1.3.1. Let us say that a rule of a sequent calculus is admissible if from
the derivability of its premise(s) the derivability of its conclusion follows.
Then, for G3cp the following hold:

+ Generalised initial sequents A,T" = A, A are derivable.

« The structural rules of weakening

1*Notice, however, that sometimes invertibility of a rule could break termination of the
proof search, as witnessed by £ — in G3ip for intuitionistic propositional logic [].

21

I'=A .. _I=4 ..

AT =A '=AA
are admissible.

« The structural rules of contraction

AAT=A T=AAA
AT=A " I=AA u

are admissible.

o The cut rule

'=AA AT = A
LI = A, A

Cut

is admissible.

Proof. Refertoe.g.| , Ch. 3], or| , Ch. 3-4].
X

Admissibility of Cut deserves some further remarks.
It is rather usual to define a G3-style sequent calculus by considering Cut as
the only structural rule of the system. This is so because that rule corresponds
to the argumentation by Modus Ponens, i.e. to the rule MP of the synthetic
paradigm. Having Cut among the defining rules of the calculus makes the
proof of completeness w.r.t. an already given axiomatic system much easier.
Afterwards, admissibility of Cut is proven to guarantee analyticity of the se-
quent calculus.

There are, however, at least two ways to prove that Cut is indeed admissi-
ble.
The easiest way is to prove that the cut-free version of the G3-system for a
logic L is complete w.r.t. the semantics for L itself. This method establishes
admissibility of Cut as a normal form theorem for G3-derivations.
A stronger result is obtained by effectively transforming each derivation in the
full G3-style sequent calculus - including the cut rule - into a derivation
where no application of Cut occurs: This version of admissibility is called
cut-elimination theorem, or, in Gentzen’s own words, Hauptsatz.

Thus, the algorithmic version of admissibility of cut should be rephrased
as follows:

THEOREM 1.3.2 (Cut-elimination for G3cp). A constructive procedure can be
defined to transform any derivation of a sequent I' = A in G3cp into a cut-free
derivation of the same sequent in G3cp.

22

There is nothing special in G3cp: The analogous of Theorems 1.3.1 and
1.3.2 do hold for first-order G3c as well as for its intuitionistic counterpart.
More generally, the seminal work collected [, Ch. 6] shows that any
(co)geometric theory can be formalised in a G3-style sequent calculus satis-
fying those excellent structural properties.

Chapter 5 contains a detailed proof of cut-elimination for a G3-style se-
quent calculus for a mathematical modal logic, and makes precise all the pre-
vious remarks by considering that specific case study.

1.3.2. FORMAL RELATIONAL SEMANTICS

Besides the previously mentioned “computational” properties, G3-style
sequent calculi could be expected to satisfy more principled desiderata.

Among those, modularity is a property that fits the spirit of (normal)
modal logics: The rules of G3-systems for those logics should be designed so
that stronger logics should be captured by only adding rules to weaker systems, with-
out any further rearrangement of the calculus. That requirement might clash
with another computational desideratum, namely efficiency: A resource aware
proof search should provide an optimal decision procedure for a given logic L
w.r.t. the “best” complexity classification for L.

Satisfaction of all those desiderata by a pure Gentzen-style sequent cal-
culus has been considered for long almost a mirage for logics involving extra-
mathematical reasoning."”

Times have changed with the advent of internalisation techniques of se-
mantic notions in sequent calculi for non-classical logics.

The starting point of that perspective is still the basic G3-paradigm, but
the formalism of sequent systems is extended either by

« enriching the language of the calculi themselves (explicit internalisa-
tion); or by

« enriching the structure of sequents (implicit internalisation).

The implicit approach adds structural connectives to sequents, other than
‘=’ and commas.

Hypersequents, in more detail, enrich sequents by the connective ‘| to
handle several sequents in parallel. The rules are defined so that the occur-
ring sequents may interact with each other.'®

Hypersequent calculi were fully exploited first in [], on the basis
of preliminary and embryonic formalisations in [N ,], and
[|. Further refinements - not limited to modal logics - include | I,

[J, [M514], and |]

In spite of this, several advances have been made in investigating both limits and poten-
tiality of that formalism, as witnessed by [1.
®The connective ‘|’ is informally interpreted as a disjunction operator at the meta-level.

23

That formalism naturally generalises to nested sequents, that enrich the
structure of sequents by the structural connective ‘], allowing the design of
inference rules operating at any deep in the entire tree of sequents defined
by means of the additional connective itself.

Nested sequents were introduced first in [], and independently in
[l,and in| |."” Nested sequent calculi for other non-classical logics
have since then further developed in e.g. [.

Most of G3-style calculi obtained this way provide in general very efficient
decision procedures for the related logics, but they are sometimes rather hard
to design, and might lack the desideratum of modularity.

The situation is reversed by the explicit approach.

Implicit internalisation uses specific items to represent semantic elements;
the formulas of the basic language are then labelled by those items, and have
shape e.g. z : A. That expression formalises the forcing relation of Def. 1.1.9,
and classical propositional rules operate within the scope of labels. Further-
more, to handle modal operators, the antecedent of any sequent may now
contain relational atoms of shape xRy, or any other expression borrowed
from the semantics for the logic under investigation.

The rules for the modalities formalise the forcing condition for each modal
connective. For instance, the labelled sequent calculus G3K is defined by the
rules in Figure 1.2.

Extensions of the minimal normal modal logic K are obtained by rules for
relational atoms, formalising the characteristic properties of each specific
extension. For instance, the system G3K4 for the logic K4 is defined by adding
to G3K the rule

xRz, xRy, yRz, ' = A
xRy, yRz, ' = A

Trans

Labelled sequent calculi do satisfy in general the basic desiderata of G3-
style systems, and are rather modular. However, since analyticity holds in a
less strict version”” than the subformula principle mentioned in the previous
definition, termination of proof search is sometimes hard to prove, and in
many cases produces complexity results far from being optimal.

Their origin dates back to [], followed by the refinements in [],
[], and [. However, labelled sequent calculi have established as
a well-structured methodology after [|. Extensions, refinements, and

further results have since then obtained for a plethora of logics.?!

In this thesis, internalisation is considered only in its explicit version, for
reasons that appear clear in Chapter 5. However, the connections between

“The latter deals with nested sequents under the name ‘tree-hypersequents’, and a uniform
treatment of many normal modal logics is presented in [].

3ee Section 5.5.

“Refer to e.g. [, : 5[, LI Il I) ,
[I

24

Initial sequents:

z:p,=Azx:p

Propositional rules:

z: 1L, I'= A o

z:Az:BT=A . '=Az:A I'=Azxz:B »
r: ANB, T = A " I'=sAx:AANB "
x: AT =A z:B,I'=A . I'sAx:Az:B »

r: AVBT=A v I'=sAx:AVvB v
'=sAz:A . z: AT=A »
z:-AT=A"" F=Az:-4
'=sAzxz:A z:B,I'=A z: Al'=Az:B

L— R—

r: A= B T'= A I'sAzxz:A—B
Modal rules:

y: A xRy, x: DA T = A o zRy,I'=Ay: A RO
zRy,z:0A,T = A T=A,z:0A4 s

where the annotation (y!) in RO states that the label y does not occur in T', A.

Figure 1.2: Rules of the calculus G3K

the two approaches are being investigated in the literature: The reader is

referred to | 1, [1, [], and [.

14. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC

Natural deduction calculi are, among the proof systems currently avail-
able, those that are closest to the informal reasoning of mathematical prac-
tice.

They have been developed by Gentzen as a formal model for the notion
of deduction under hypotheses. Systems of natural deduction for classical and
intuitionistic logics have been introduced first in his [], and since then
are usually denoted by NK and NJ, respectively.

The key feature of these systems is the absence of logical axioms from the

25

calculus: The whole deductive apparatus only rests on inference rules that
encode the atomic deductive steps involved in any logical argument. Fur-
thermore, these rules reflect the operational meaning of the logical connec-
tives of a given base language. Indeed, to each connective, a pair of rules is
associated:

+ The elimination rule instructs the prover on how to use in a formal
proof a formula having that connective as main logical operator;

+ The introduction rule instructs the prover on how to construct a de-
duction of a formula having that connective as main logical operator.

In principle, these constitute the (formal model of the) whole deductive
engine behind the great leap that characterises the practice of arguing from
premisses to conclusions that in everyday mathematics is called ‘proof’. The
same is clearly achieved also by the synthetic paradigm behind axiomatic cal-
culi. However, what makes the real difference here is that Gentzen’s natural
deduction determines a new paradigm by which it is not only possible to as-
sure that the conclusion one reaches in a proof is correct, but also to justify
- and to make explicit by formalising it in a natural way - how the correct
conclusion has been reached from the premises - i.e. to trace the logical con-
nection from the premises to the conclusion by recurring, as an internal justi-
ficatory tool, to the actual use of the logical connectives in the mathematical
practice.

In these sections we recall the rules of natural deduction for intuitionistic
and classical logics. Our focus will be on the propositional fragment of NJ,
since in subsequent chapters we will build on top of that calculus further
systems for modal logics. Moreover, we discuss here the structural analysis of
formal proofs in this paradigm, and collect the main results from the existing
literature on the topic, starting with the notion of normal deduction, due to
Dag Prawitz | ,].

1.4.1. BASIC NATURAL DEDUCTION SYSTEMS

As previously stated, there are no axioms in a natural deduction system.
The starting point of any formal proof is thus an assumption: Any formula
A is per se a proof, whose premise and conclusion are A itself. This starting
points are then developed according to the rules in Figure 1.3, defining the
propositional fragment of NJ, here denoted by NJp. In those rules,”” T' de-
notes a set of (occurrences of) formulas, which are called active assumptions
of the deduction. Notice that in — Z and V& some assumptions are brack-
eted and labelled by numbers that are repeated on the side of the rule: This
formalism denotes the discharge of assumptions. In NJp several as well as

We omitted rules for negation, since we can define A as A — L.

26

A A B AT A NEL B NE2
r T A, [A]! O, [B)?
A% Vi A€B VE AV B CC < venz
I, [A]! r A
Pryabe B I
T
: -
4

Figure 1.3: Rules for NJp

no occurrences of the same assumption can be labelled by the same number,
and so discharged by a single application of the rule. These possibilities cor-
respond to the structural rules of contraction (multiple discharge) and weak-
ening (vacuous discharge) in Gentzen’s sequent calculi [I.

Full NJ is obtained by adding the following rules for first-order quanti-
fiers:

27

A o V. A
VoA Alzx = t] v
r T A, A
Az =t ; .
= BA O,

In VZ the side condition (x!) imposes that must not occur free in the
assumptions of I'. Similarly, for 3€ the side condition requires that must
not occur free in C' and in A.

NK(p) extends NJ(p) by the classical rule for absurdity:

[_'A]la I

% 1o 1

Finally, the identity predicate can be handled by adding the following
rules to the basic system, be it classical or intuitionistic, this way obtaining
NK™ or NJ7, respectively:

14.2. NORMALISATION

Gentzen’s paradigm succeeds in endowing the notion of proof with a pre-
cise and natural mathematical structure, namely that of a derivation tree hav-
ing active assumptions as leaves, the conclusion of the proof as root, and each
intermediate node labelled by a formula occurrence derived from the nodes
above it by a correct application of the inference rules.

Could one say something mathematically relevant about these structures?
The first question to address is whether it is possible to find a simplest struc-
tural arrangement of a given deduction. Indeed, one of the key features of
deductions in Gentzen’s paradigm is that branches can be grafted in corre-
spondence of a formula occurring as the root of a given deduction, and as an

28

active assumption of another one. This is a highly practical move that cap-
tures the mathematician’s common way of proving complex theorems: She
achieves the goal by proving intermediate lemmas. In sequent calculi, graft-
ing is localised by the Cut rule. Cut elimination assures then that any deriva-
tion of a sequent can be rearranged into a derivation which uses Cut in no
place. Therefore, it can be considered a theorem assuring the existence of
canonical derivations in sequent calculi.

An analogous canonical form theorem holds for deductions in NJ(p)~ and
NK(p)~: It was established in []in terms of a normalisation process of de-
ductions in those systems. Whenever a deduction fj is grafted onto another
one, say fa, a structural detour may occur: It is possible that the conclusion
of f1 has been obtained by an Z-rule, while the corresponding assumption of
f2 is the major premise of an £-rule. The resulting deduction lacks a certain
directedness, and therefore its structure is unnecessarily complex.

The main aim of normalisation is to eliminate this kind - as well as more
general forms - of useless complexities in the structure of deductions, by ma-
nipulating them until simplest and most direct deductions are obtained. This
manipulation is made precise by the simplification steps - also called conver-
sions or proof-rewritings, see Section 1.5.1 - of NJp-deductions summarised
in Figure 1.4.%

If no simplification step needs to be performed in a deduction, then we
will call that deduction normal. The main question that structural proof the-
ory may ask about deductions is then the following:

If ' F Ain a given natural deduction calculus, is it possible to
have a normal deduction in the same calculus of A from I" - i.e.
without detours and permutations?**

The answer is: Yes, definitely. But there are several ways to reach such
a positive answer. The simplest justification for the latter is given by show-
ing that, whenever A is deducible from T', it is always possible to find a nor-
mal deduction, without giving an explicit instance of such a canonical formal
proof. This is a weakest - and non-constructive - normalisation result, that
is usually called normal form theorem.

A normalisation theorem, on the contrary, would perform an algorith-
mic procedure on any deduction of A from I" to explicitly construct a normal
deduction of the same conclusion from the same assumptions. By involving
a procedure, a proof-theorist might further wonder whether the order of the

BFor the other systems, further simplifications are required: See [| for their definition.

% Notice that the set of simplifications can be made smaller if some connectives can be de-
fined by others. Thus, for NKp one could consider only some detours and the permutations for
the Vv, L-free language. However, this cannot happen for NJp, since intuitionistic connectives
are not interdefinable. This implies that proving normalisation of deductions in NKp is much
easier than in NJp, and the structure of normal NKp-deductions is also easier to identify than
that of normal NJp-deductions. See immediately below and Section 1.4.3.

29

Detours:

Z; -
A1V Ay ’ ¢ VEL2 :
C o .
C
A— B A e B
B
Permutations:
[A]* [B]?
. ~>
AV B C C VEL2
c E—rule
(A [B]?
~ : :
: C : C :
- ———— E—rule ——— &—rule
AV B D 5 D VEL2
J:_ ~
o L,
B E—rule B
i ~
— 1 1
1 — Ls
— 1
A 30 -

Figure 1.4: Simplifications for NJp-deductions

single algorithmic steps is important for achieving the desired normal de-
duction from the input deduction. A strong normalisation theorem would
guarantees that the termination of the normalisation algorithm is indepen-
dent from the order of the single algorithmic steps.?’

For NJ(p)~ and NK(p)™ we know that the latter strongest result does hold:

THEOREM 1.4.1 (Strong normalisation, Prawitz 1965-71). Given a deduction of
A from I in NJ(p)~ (NK(p)~) every simplification sequence based on the conver-
sions in Figure 1.4 (and further rewritings for first-order quantifiers) terminates in a
normal deduction.

Proof. Referto |].

14.3. ANALYTICITY

As stated in Section 1.3.1, cut elimination assures the analyticity of se-
quent calculi. Similarly, the (strong) normalisation theorem guarantees that
any deduction in NJ(p)~ (or NK(p)~) can be turned into a normal deduction;
an inspection of the inference rules reveals that normal deductions share a
single and precise structure (Figure 1.5).

r
o-part
S-part
A

Figure 1.5: The regular structure of a normal deduction of A from I" in NJ.

With no regards to I and A, any normal deduction of A from I' consists of
a first part made of a (possibly empty) sequence of elimination rules, followed
by a (possible) part consisting of an application of L j; and finally a part made
of a (possibly empty) sequence of introduction rules.?®

Sometimes, one requires also that the normalisation algorithm is confluent, i.e. that for
any input deduction there exists a unique normal deduction as output of the normalisation
process.

26Th . . . C . P .

e structure is in fact a bit more complex than this: See e.g. Section 2.3.1 for a precise
definition of these parts, based on [].

31

Thus we might loosely say that according to the natural deduction model
we can always start the deductive process by analysing the constituents of the
assumptions I' and then proceed in building complex formulas by combining
those constituents until the conclusion A is reached. That informal account
has a most relevant structural analogous:

THEOREM 14.2 (Subformula principle, Prawitz 1965-71). Every formula oc-
curring in a normal deduction is a subformula of the conclusion, or of some active
assumption.

Therefore, good natural deduction systems are expected to share the an-
alyticity property with good sequent calculi, since, as for the latter, such a
property is essential for proving by purely proof-theoretic methods relevant
meta-theorems of the former, including consistency, decidability, as well as
more logic-specific properties. That the subformula principle does hold for
NJ(p)~ and NK(p)~ is shown by a little thought on the structure of normal
deduction, and a proof sketch was given first in [|. Developing a more
precise proof requires, however, some care and several preliminary lemmas
of combinatorial nature. In the first chapter of the present work we present
a detailed proof of the subformula principle for a conservative extension of
NJp dealing with modal operators; in it, all the intermediate steps are made
explicit.

14.4. PERSPECTIVES FROM MATHEMATICAL PHILOSOPHY

Normalisation of natural deduction is far from a purely technical result:
It is a glowing instance of a mathematical theorem that is able to shed light
- and to justify also - a precise philosophical position.

At the beginning of Section 1.4, we asserted that

(x) the rules of natural deduction reflect the operational meaning of logical
operators.

The philosophical branch dealing with semantic notions has progres-
sively shifted from a referentialist-representationalist account of meaning -
that, in mathematics is embodied, in a sense, by Tarskian semantics based on
truth tables for propositional logic - to a pragmatist one - whose most basic
assumptions are embodied by Micheal Dummett’s position that a semantics
of logical operators must rest on their use.”’

If we move into the latter philosophical position, we see that the vague
verb ‘reflect’ used in (x) could be naturally substituted by the more precise
‘define’. But in what sense does an inference rule of natural deduction define
a logical concept?

“The Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic can been seen as
an implicit mathematisation of this perspective, as clearly explained in [.

32

The idea of considering natural deduction rules as definitions was notably
challenged by Arthur Prior [|. His “tonk argument” shows that introduc-
ing a (pair of) rule(s) in natural deduction-style does not suffice to provide a
well-defined logical notion. Further, but not clearly specified, requirements
need to be satisfied.

Neul Belnap proposed a purely proof-theoretic solution: Good natural
deduction rules do explicitly define a logical notion whenever they are con-
servative extending and uniquely defining. His [| gives strong philosoph-
ical arguments supporting the idea that the rules for NJ and NK do satisfy
these two criteria. For arguing that the propositional rules uniquely define
their related connectives no deep analysis is required; on the contrary, with-
out normalisation and the subformula principle the argument supporting the
claim about conservative extension lacks a certain mathematical strength.

Form a philosophical perspective we can read each possible simplifica-
tion - and, in particular, each detour - as a place in which the prover is unnec-
essarily appealing to a logical notion during the deductive process.”® For if A
is deducible from T, then, if we extend the basic language underlying a given
good proof system with a new logical concept * that is not used in A nor in
I, in the normal deduction of A from I' - which exists whenever the normal-
isation theorem holds - no possible rule for % can occur - by the subformula
principle - so that the extended calculus including the rule(s) for * is a con-
servative extension of the original one indeed: It does give the prover new
reasoning methods with no clash with the preexisting deductive apparatus.

Technical treatments of natural deduction are contained in [], as
well as in [|. For the development of Gentzen’s paradigm characterising
both natural deduction and sequent calculi the reader is referred to | . A
marvellous historical account on the origins of natural deduction even before
Gentzen’s systematisation is contained in |].

1.5. TYPE THEORY

A-calculus was proposed in the early 1930s by Alonzo Church as a foun-
dation of logic and mathematics in which the concept of abstraction is taken
as primitive. In 1936, Church’s students Stephen Kleene and Barkley Rosser
proved that the 1933 version of this system was inconsistent, but the pure
formulation turned out to be surprisingly rich.

Progressively, pure A-calculus revealed to be a successful model for the
concept of effectively computable function, and, although the class of A-definable

This remains implicit in Gentzen’s original justification for the rules of natural deduction
in|]. An explicit connection with detour elimination is made first in []. Recently,
Prawitz suggested in [] that the notion of detour elimination could be generalised into
a less formalism-sensitive concept of analytically valid argument, that is closer to Gentzen’s
original informal account of natural deduction.

33

numerical functions was proved to be identical with that of Turing com-
putable ones, it differs from Turing’s model being what is now known as a
(higher order) functional programming language, while Turing machines re-
semble programs in imperative programming languages.

Typed versions of A-calculus were introduced first by Haskell Curry in
1934 (for the related system of combinatory logic in fact) and by Church in
1940, after he had given a series of lectures attended by Alan Turing during
his doctorate studies in Princeton.?’

Types are syntactic objects which can be assigned to A-terms, providing a
partial specification of the represented algorithm. Moreover, types are useful
to check the safety of the very algorithms coded as A-terms, and to improve
the efficiency of this coding. In spite of this, Curry’s and Church’s works
on typed systems were characterized by two different approaches to typing
A-terms:

+ Curry assumed terms of type-free A-calculus, and associated to each
term a set of possible types;

+ Church adopted an annotated version of A-terms, so that there exist
different terms of different type, although they are “morphologically
identical”.

Curry’s approach, which is also called ‘type assignment’, corresponds to
the programming paradigm of writing a program without typing at all, and
then to check by means of a compiler whether this program can receive a type
(and this will happen if the program is correct). This is what usually happens
in programming with implicit typing.

Church’s typing, on the other hand, corresponds to the programming
paradigm of writing a program together with its type, so that the type-checking
results easier. In literature this is known as explicit typing. In this work, only
systems with this kind of typing are discussed, and they will be called ‘typed
systems’.

Several versions of A\-calculus with types have been developed within both
paradigms, and the evolution of this kind of systems has been (and is being)
widespread, with mutual interactions with proof theory’’, theoretical com-
puter science, and computerised mathematics.

®This (and further) technical and historical information on type theory can be found in
eg | N LI LI I

|] gives a friendly introduction to F including an exposition of a categorial seman-
tics for this polymorphic A-calculus; it corresponds to second-order logic and dates back to 1970.
By means of a slightly modified computability predicate, Jean-Yves Girard proved strong nor-
malisation for F and its extension F,,, which corresponds to Takeuti’s GLC sequent-calculus
for higher-order logic: Girard’s proofs of normalization for these systems solved also Takeuti’s
conjecture about cut-elimination in GLC, and (progressively extended) have become standard
techniques in proof theory.

34

On the latter field, constructive versions of type theory play a prominent
role.

In dependent type theory, the correspondence between types and propo-
sitions is more systematically exploited than in systems we will consider in
this section. With an eye at Chapter 7 and Appendix B, let us mention that
this intuitionistic version of typed systems reveals interesting connections
with homotopy theory and higher category theory, catalysing the develop-
ment of homotopical interpretation of types and indirectly legitimizing, from
a constructive point of view, the univalent approach to foundations of mathe-
matics started in 2013 [Jwith the help of various kind of proof assistants.

Types were in fact introduced first in Russell and Whitehead’s Principia
Mathematica, and since then no clear definition of what kind of object a type
should be: From grammatical categories to spaces in the sense of homotopy
theory, various but closely interrelated interpretations have been given.”!

In this work, no specific semantic interpretation of A-calculi is given,
but, since its relevance for proof theory and influence in development mod-
ern computerised mathematics, we will briefly survey an elementary typed
system® according to the proofs-as-programs paradigm, sometimes called
Curry-Howard correspondence. When moving to full NJ with equality, that
correspondence is systematically exploited in the material of Chapter 7, whose
theoretical foundations lie in (univalent) dependent type theory, briefly re-
called in Appendix B.

Similarly, the theory underlying the computerisations presented of Chap-
ter 6 — consisting of a classic axiomatic extension of the type theoryin|]
with polymorphic variables - is more appropriately defined in Appendix A.

1.5.1. PROOFS AS PROGRAMS

For the reader’s sake, let’s start with a partial glossary to summarize in
Figure 1.6 the proofs-as-programs view-point.

This allows to overload notation, so that we can inductively define the
class of types T as the formulas of our propositional language:

AeT=p| ANB|AVB|A—=B | 1]|T,

where p belongs to a denumerable set of type variables, corresponding to Atm.
In the present setting, AA B is called a product type, AV B a (weak) sum
type, A — B a function type, | is the empty type, and T is the unit type.

see |] for a first “type-theoretic” approach to grammatical categories. [] gives
a concise history of set-theoretic interpretation of typed systems and of their “standard mod-
els”. | ,]Jintroduced first the notions of hyperdoctrine and elementary topos as logico-

categorical models for A-abstraction; for a unified exposition of logic and type theory by
means of fibred categories see [.

%2That type theory is used in the first three chapters of Part I as a base-calculus for proof-
terms in NJp-deductions, to be appropriately extended to each modal logic under investiga-
tion.

35

TYPE THEORY LOGIC

type proposition

term proof

type constructor | logic connective
constructor introduction rule
destructor elimination rule
redex proof detour
reduction normalization
normal form normal proof
inhabitation provability

Figure 1.6: Proofs-as-programs paradigm, in brief

DEFINITION 1.5.1. The set of typed-terms A” of the basic simple type theory
is inductively defined by the following grammar:

f:AeAT = 2:A|(fi:A—=B)(fo:A):B|(Ax:Af:B):A— B|
(f1 Af2 B):AANB|(r'.(f:AAB)): A| (#®.(f : AANB)): B|
(ini(f+ 4)): AV B | (ina(f - B)): AV B
(C(F:AVB).x: A(fi: O)y: Bfa:C)):C |
(Ly(f:L):A|*:T

Any expression of the form f : A is said type-assignment of the subject f to
the type A.

A finite set of type-assignments I' = {x; : Ay,...,zm : A} whose subjects
are term-variables and which is consistent, i.e. no variable is subject of more
than one assignment, is said a (type-)context.

[t is easy to see that any type assignment corresponds to a labelled deduc-
tion in NJp based on the following mapping:

A — T, where 7 is the parcel of the
hypothesis A

. — (t:A,s: B), where t : A, s : B corre-
A B spond to f1 and fa resp.
—————— AT
ANB
:f'
. — m.(t: AN B), where t : AA B corre-
A ds to £’
AQB e sponds to f

36

Zf/
1
— 1
A J

— T
T J

— %

T

w2.(t : AN B),

Az; : At : B,

t:A— Bs: A,

inj.t: A,

ing.t: B,

C(t,(z: A1), (y : B.t2))

(Lyt): A

where t : A A B corre-

sponds to f’

where ¢ : B corresponds
to f’ and 4 is the parcel of
discharged hypotheses A

wheret : A—B,s : A
correspond to f1 and fa
resp.

where ¢ : A corresponds

to f!

where ¢ :

to f’

B corresponds

where C bounds all oc-
currences of z in ¢ and
all occurrences of y in to,
and t,t1,t2 correspond to

f/) fl) f2» resp.

where ¢ corresponds to f/

Thus, one could rephrase any proof in NJp in type theoretic terms, which
can be thought as proof-names for deductions. This justifies the notation
overload for deductions and terms of the type theory. Also notice that in the
term-constructor for —-types the discharging of hypothesis A is denoted by
the bounding of the variable x : A in M-abstraction. Similarly, the term-
destructor for V-types bounds the variables z : A and y : B, as expected.

A sequent-style formalisation on this theory of NJp-deductions could then
been defined by decorating the sequent-style version of NJ given in [,

Sect. 1.3] with proof-names.

The sequents of that type theory will be called judgements. For instance,

37

the judgements corresponding to the rules for implication in NJ are®’

F1=>f:A—>B F2:>g:A
F1UF2:>(fg):B

with I'y U T3 consistent.

'=f:A

when T is consistent with z : A.
'-(z:A)= (\e.f): A= B

When a judgement I" = f : A is provable in the type theory, the term f
is said to inhabit the type A in context I'.

The normalisation results that are mentioned in Section 1.4.2 acquire now
a precise procedural meaning: Eliminating a detour or performing a permuta-
tion corresponds to executing a process for computing values; normalisation
assures that a computation can always be continued to a final result.

This is made precise by rephrasing the detour eliminations and permuta-
tions of Section 1.4.2 in type-theoretic manners.

DEFINITION 1.5.2. Let = denote the reflexive and transitive closure of the
relation >z C AT x AT defined as follows:**

Detours: - (Ax.f)g >= flr:=9]
- mi(f1, f2) >= fifori=1,2
- C(inif,z.f1,y.f2) >= filw; = f]fori=1,2

Permutations: - C(f,z.f1,y.f2)g >= C(f,x.f19,y-f29)

- mC(f,z.f1,y.f2) >= C(f,zmifi,y.mfo) fori=1,2
- C(C(f,z f1,9.f2),u.g1,v.92) >= C(f, 2.C(f1,u.91,v.92),y.C(f2,u.91,v.92))
- Ls(fg>= Ls(f)
- mily(f) >= Ly(f) fori=1,2
- C(Ls(f),z-fr,y-f2) >= Lu(f)
- Ls(Ls(f) >= La(f)

where g[x; := f] denotes the substitution of f for all free occurrences of z;
in g.

A Z-normal form is just a term of AT that cannot be rewritten w.r.t. =. For
this system of rewritings it is possible to prove the properties that the reader
of Section 1.4 would expect:*

LEMMA 1.5.3. = has the Church-Rosser Property.

%The judgements for the other typed terms follow the structure of the corresponding rules
in NJ, as the reader might expect. See the beginning of Chapter 7 for the formal definition of
the type theory corresponding to (first-order) NJ.

#Type annotations are omitted for the sake of readability.

BReferto [] for the proofs.

38

As a consequence, we have that a denotational calculus of Z-reduction is
consistent: The Church-Rosser property implies, for any term, the unique-
ness of Z-normal form, so that denotational consistency is shown by the fact
thatifx : A # y : A are =-normal forms, then if we could prove that z : A
and y : A are equal modulo =, by the Church-Rosser property there would
exists an f : A such that z : A rewritesto f : Aand y : A rewrites to f : A,
contra our assumption.

Normalisation of deductions in NJp can also be easily rephrased in type-
theoretic manners:

THEOREM 1.5.4 (Weak Normalization). For every t : A € AT, there exists a
=-normal form.

THEOREM 1.5.5 (Strong Normalization). Foreveryt : A € AT, all Z-rewritings
of f: Aterminate.

Thus, the proofs-as-programs paradigm turns the structural concept of
proof simplifications, as well as the structural normalisation of deductions,
into programming and algorithmic notions, expressed in the language of typed
A-calculus.

Adding specific constructors for V- and 3-rules that occur in NJ, this
paradigm can be extended to a type theory AP;, which expresses the com-
putational meaning of full NJ based on a single sorted language.®® It is worth
noticing, however, that it is possible to define a correspondence between
APy and typed A-calculus with —-types only by means of a contracting map,
so that the latter is indeed the core of all computational significance of NJ-
deductions.

Moreover, the computational reading of proofs in natural deduction sys-
tems are not limited to intuitionistic logic: The proof-as-programs paradigm
extends to classical logic by means of type theories with control operators
[,], as well as arithmetical theories, by means of Gédel’s system
TI[], and second-order theories, by means of polymorphic type theories,
like Girard’s F, [|. The theory behind the proof assistant Coq consists
of a powerful combination of polymorphic and dependent type theory known
as calculus of (co-inductive) constructions. This is further generalised to the
so-called full higher-order dependent type theory, whose categorical shades
are discussed in [].

1.5.2. COMPUTATIONAL TRINITARIANISM

The correspondence between type theory and natural deduction is fur-
ther enlightened by extending the perspective to cover the most algebraic
foundations of mathematics currently available, namely category theory.

Slightly dramatising, Robert Harper has written [|

%The AP, calculus is a restricted version of the dependent type theory discussed in Ap-
pendix B; see [, Ch. 8] for an introduction.

39

The central dogma of computational trinitarianism holds that Logic,
Languages, and Categories are but three manifestations of one
divine notion of computation. There is no preferred route to en-
lightenment: each aspect provides insights that comprise the ex-
perience of computation in our lives.

In less emphatic terms, the correspondence between proofs and programs
is extended to consider arrows in categories which have enough structure to
capture the behaviour of logical operators. The key ideas behind the so-called
computational trinitarianism - or Curry-Howard-Lambek correspondence -
would be summarised by the partial glossary of Figure 1.7.

LOGIC TYPE THEORY CATEGORY THEORY
proposition type object
proof term arrow
theorem inhabitant element-arrow
conjunction product type product
true unit type terminal object
implication function type exponential
disjunction sum type (weak) coproduct
false empty type (weak) initial object

Figure 1.7: Computational trinitarianism

We recall now the basics of categoric theory in order to make explicit the
meaning of this trilogy. From a philosophical view-point, category theory
has been introduced by Samuel Eilenberg and Saunders Mac Lane in |]
as a rearrangement of mathematics on the basis of the notions of (natural)
transformations, and their compositions, which unchain the power of ab-
stract algebra developed in the 1930s by making explicit the relevance, for a
mathematical structure, of its relationships with other structures of the same
kind, i.e. the Daedalus of structure transformations, or homomorphism, exist-
ing among them.?’

DEFINITION 1.5.6. A category % consists of the following data:
« a collection of objects %, generally denoted & also
« acollection of arrows ¢}

« to each arrow f : 1,” a pair of objects (source(f), target(f)) is associ-
ated. When X : %) is the source of f and Y : % is the target of f one

FRefer to | | for the history and philosophy of category theory. Many enlightening
observations are widespread in the pages of [1.

%Here and in the rest of this section we overload the type-theoretic notation to denote
membership: Such a move is justified by the correspondence we are discussing in these pages.

40

writes f : X — Y. The collection of arrows from X to Y is denoted by
hom(X,Y);

+ to each object X : %), an arrow idx : hom(X, X) is associated. This is
called the identity arrow on X;

+ to each pair of arrows f, g such that source(g) = target(f) is associated
an arrow g o f : source(f) — target(g), called the composite arrow of
f with g. When source(g) = target(f), f, g are called composable.

These data need to satisfy specific conditions:

Associativity: For any composable arrows f, g and g, h, we have
ho(gof)=(hog)of;

Identity: Forany f: X — Y, we have
idy o f = f = foidx.

In this thesis we will work with locally small categories only, i.e. we as-
sume that for any category ¢ and any X,Y : %, the collection hom(X,Y)
is indeed a set. Moreover, we will overload the notation and write € for %y
whenever the context makes clear we are dealing with the objects of €.

We turn now to arrows between categories, i.e. functors, and arrows be-
tween functors, i.e. natural transformations.

DEFINITION 1.5.7. Let € and Z be categories. A functor § : € — 2 consists
of the following data:

+ A function §p : € — 2, generally denoted § also.

« Foreach X,Y : ¢, a function §x,y : homg(X,Y) — homgy(FX,TY),
generally denoted § also;

satisfying the following conditions:
(i) Foreach X : €, we have §(idx) = Lyx); and

(ii) Foreach X,Y,Z :%,and f : homy(X,Y) and g : homy (Y, Z), we have
§(go f) =Tgo3/f.

DEFINITION 1.5.8. For functors §,® : ¥ — %, a natural transformation
v : § = & consists of the following data:

« Foreach X : ¢, an arrow vx : homg(FX, 8X), giving the components
of v;

satisfying the naturality condition

41

Foreach X,Y : ¥ and f : homy(X,Y), we have & f o yx = vy o §f.

[t is common to rephrase equations between arrows of a given category by
recurring to graphical tools: A commutative diagram is a graph having ob-
jects as vertices and arrows as directed edges, in which the composite arrow
obtained from any connected path depends only on the starting and ending
point of path itself.

For instance, the previous naturality condition could be graphically rendered
by the commuting diagram

FX XX

W e

SYTN%Y

The identity morphism on z will be simply rendered by x x.
After the very basic definitions just given, we can summarise the further
notions that trinitarianism requires by the following

DEFINITION 1.5.9. Given a category % we define the following objects

+ Product of objects X, Y: Object X x Y of ¢ together with projection
arrows m : X XY = X, 79 : X x Y — Y such that any diagram

Z

2l

X+—XxY—Y
T T

commutes for a unique (f,g) : Z - X x Y.

» Terminal object: Object 1 of % such that for any other X : &, there
exists a unique arrow !x : X — 1.

« Product of arrows f; : X7 — Yy, fo : Xo — Ya: Unique arrow
f1 x fa: X1 x X9 — Y] x Yo making the following diagram commute

X1 X1 x Xo 225 X,

fll JlefQ J{fz

Vi1V X Vs 2 Yy

- Exponential of objects Y and X: An object Y~ of ¢ together with an

42

arrow eval : X x YX — Y such that any diagram

X xZ
idXx)\fJ f

XxYX —3Y
eval

commutes for a unique As : Z — YX.
+ Element of an object X: An arrowz : 1 — X.

+ Coproduct of objects X, Y: Object X +Y of % together with injection
arrows 11 : X > X +Y,15:Y — X 4+ Y such that any diagram

X X4+vY& vy

NI

Z
commutes for a unique [f,¢] : X +Y — Z.

« Initial object: Object 0 of € such that for any other X : ¥, there exists
aunique arrow Ox : 0 — X.

The defining properties of these categorical constructions correspond to
rewritings of deductions in NJ(p), as noticed in | , Ch. 1.8]. Notice, how-
ever, that the system of rewriting imposed by the universal properties of ini-
tial object and coproducts is a proper extension of = discussed in Section 1.4.2.
Therefore we will refer to the categorical counterparts of L and V w.r.t. the
system = as weak initial object and weak coproduct, respectively.

The reader is referred to [Jand [| for further results connecting
type theory, logic, and category theory. It is relevant to note that computa-
tional trinitarianism has been extended in recent times to cover also topo-
logical notions, as well as concepts coming from physics, as witnessed by
[|. These aspects are in any case far beyond the scope of our aims here.

43

PART I

STRUCTURAL PROOF THEORY

44

INTRODUCTION TO PART I

Wherever there is communication, there are proofs.
THE PROOF SOCIETY, The Proof Manifesto, 2017

David Hilbert’s Beweistheorie originated from the discussions on the foun-
dations of mathematics at the beginning of 20th century. Its general aim is
to study mathematical proofs as real mathematical objects, and its first steps
can be traced back to the works Gottlob Frege, the father of mathematical
logic.

Hilbert’s main aim was to study mathematical proofs in order to guarantee
to mathematics a granitic foundation by means of an unquestionable proof of
its consistency. His original research program | | has been partially led
to success in the 1930s by Gerhard Gentzen, whose proof of consistency of
arithmetic has correctly been considered a milestone in the history of math-
ematical logic, and marked the advent of a new topic in the field, namely
ordinal analysis [.

But Gentzen’s work had another revolutionary impact on mathematical
logic, by establishing the birth of structural proof theory | |. With his natu-
ral deduction systems and sequent calculi of [,], Gentzen in-
troduced a new paradigm which substituted the axiomatic approach in the
mathematical modelling of mathematical reasoning: Thanks to those new
models it is possible to study the structure, abstract properties, and interac-
tions of mathematical proofs. Actually, his very proof of the consistency of
arithmetic is based on a result about the structure of formal derivations in
sequent calculi, namely the cut-elimination theorem, which correctly deserved
the name of ‘Hauptsatz’ - ‘central result’, in German.

Its counterpart for natural deduction was later established by Dag Prawitz
[|, as a normalisation theorem for derivations, which later inspired analo-
gous results for type theories and functional programming languages.

In this first part of the thesis, we present three original natural deduc-
tion calculi for intuitionistic modal logics. The first and the second one deal
with Sergei Artemov and Tudor Protopopescu’s logics for verification-based
epistemic states | |; the third one is built on top of the first to model the
reasoning for one of the few known provability logics for intuitionistic arith-
metic, namely Dick de Jongh and Albert Visser’s intuitionistic strong Lob
logic [].

45

The final chapter deals with a modular family of G3-style sequent calculi
for classical interpretability logics - i.e. classical modal logics that, besides
formal arithmetical provability, are capable of identifying the relevant ab-
stract properties of formal interpretability over an arithmetical base theory
[: I

While our natural deduction systems are based on Gentzen’s original paradigm,
the sequent calculi for interpretability logics we are proposing follow the
well-established methodology of internalising semantic notions into the proof
system by recurring to labels. Nevertheless, for each of the systems under in-
vestigations we propose a detailed structural analysis, and prove that they all
satisfy the main proof-theoretic desiderata. In particular, for each of the natu-
ral deduction calculi we prove a (strong) normalisation result — as well as some
relevant corollaries - and for the whole family of labelled sequent systems we
provide a uniform cut-elimination algorithm.

The structure of the present part of the thesis is as follows:

> Chapter 2 introduces the natural deduction system IEL™ for intuition-
istic belief designed with the intent of a natural type-theoretic transla-
tion. The latter is then used to prove a strong normalisation theorem for
IEL™-deductions w.r.t. different systems of proof simplifications. From
normalisation w.r.t. the most comprehensive of those systems we de-
rive the subformula principle for normal deductions in IEL™, which we
prove by adapting and filling the details of the proof sketch for propo-
sitional intuitionistic logic given in | |. Many other properties of
the logic for intuitionistic belief are then proven as corollaries to those
structural results. Finally, we consider a categorical interpretation of
normal IEL™-deductions w.r.t. a smaller system of proof simplifications,
as an example of proof relevant semantics for our calculus.

> Chapter 3 extends IEL™ into a natural deduction calculus for intuition-
istic knowledge, that we denote by IEL. This extension consists of the
introduction of a new elimination rule for the modal operator, which is
based on the account of intuitionistic factivity of knowledge described
in [|. For IEL we prove a strong normalisation theorem and the
subformula principle on the basis of an extended version of the largest
system of proof rewritings used for intuitionistic belief. As in the previ-
ous chapter, we prove by purely proof-theoretic methods some relevant
properties of the logic for intuitionistic knowledge, namely: consis-
tency, decidability, disjunction property, O-primality, and modal dis-
junction property.

> Chapter 4 extends IEL™ towards a different direction, namely a natural
deduction calculus for intuitionistic strong Lob logic [|, that we
denote by ISL. With this chapter, we shift our attention to modal logic

46

for provability and interpretability. Our calculus is obtained by adding
to IEL™ a special elimination rule for the modality corresponding to
the axiom for strong Lob induction. For ISL we prove a strong normal-
isation theorem w.r.t. specific systems of proof rewritings as a prelimi-
nary result for further proof-theoretic investigations on that provability
logic. A discussion of those perspectives on future research closes the
chapter.

Finally, Chapter 5 presents our family of labelled sequent calculi for
classical interpretability logics, modularly designed on the basis of gen-
eralised Veltman semantics for those logics | |. We prove that
each of our calculi enjoys excellent structural properties, namely: ad-
missibility of weakening, contraction and, more relevantly, cut. To the
best of our knowledge, this is the most extensive class of analytic proof
systems for modal logics of interpretability currently available, and none
of the calculi already present in the literature satisfies as many proof-
theoretic desiderata as ours.

47

2

NATURAL DEDUCTION FOR INTUITIONISTIC BELIEF

When does a mathematician believe in a mathematical statement?

In general terms, she believes that a statement is true when it has been proven.
This does not mean, however, that this very mathematician has proven that
statement, nor that she is capable of producing a proof of it by herself.

Beliefs about mathematics are generated by the existence of proofs, and,
in many cases, such an existence does not presuppose an explicit witness for
provability.

In more practical terms: It is rather usual to believe that a mathematical
statement is a theorem of a given theory even though we do not have a direct
access to any explicit proof of it. Sometimes, we rely on the literature to
check a given claim; in other cases, e.g. when we are new to a given field, we
trust an authority - a lecturer, a supervisor, an expert - about the validity of
a statement. It is not unusual even to trust a computer about the truth of a
mathematical claim.

A very recent episode is quite enlightening on that point.

Peter Scholze and Dustin Clausen are leading very advanced research in
a “grand unification project” called condensed mathematics. The field is
highly specialised, and it is not surprising that only few mathematicians are
able to work on those concepts to prove some meaningful claim in that the-
ory.

But it is astonishing that Scholze and Clausen themselves were not sure
that they had correctly proven a theorem - the famous liquid tensor experi-
ment [| - of their own theory, until their self-questioned proof has been
developed in the proof assistant Lean [I.

Such a formalisation required efforts from several researchers around Eu-
rope, and the resulting formal proof is even less comprehensible to humans
than the original proof by Scholze and Clausen.

However it has been that verification that convinced them to trust in the
liquid tensor experiment.

A constructive account for truth requires that a statement can be consid-
ered true only if it has been proven. The liquid tensor experiment episode
supports such an account; moreover, it sheds some light on the meaningful-

48

ness of a verificationist account of epistemic states. According to that view,
a rational agent should believe a statement when it has been at least verified.

[| extends the standard constructive-intuitionistic analysis of truth
to cover also epistemic states. In few words, they claim that if proving a state-
ment A assures that A is true, then we might believe that A is true even though
we do not have a direct proof of A: A correct verification of A suffices. Thus
belief is mainly considered as the result of a process of verification.

At the same time, it is clear that a proof of a mathematical statement is a
most strict type of verification. Hence, their proposed intuitionistic account
for belief validates the following principle of ‘constructivity of truth’

A— OA,

where O is the modal operator for belief in our formal language.

Even at the informal setting, that principle is clearly validated by contem-
porary mathematical practice: When a statement A is proven, then its very
proof can be checked by another mathematician, both by ‘pencil and paper’,
and by relying on computer proof assistants. It is that very checking that lets
the mathematical community believe that A holds indeed.

Now, the standard intuitionistic account for truth is embodied by the
Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic. That
interpretation is based on a semantic reading of propositional variables as
problems (or tasks), and of logical connectives as operations on proofs. In this
way, it provides a semantics of mathematical statements in which the com-
putational aspects of proving and refuting are highlighted.!

In spite of being named after L.E.]. Brouwer, this approach is rather away
from the deeply philosophical attitude at the origin of intuitionism: In BHK
interpretation, reasoning intuitionistically is similar to a safe mode of pro-
gram execution which always terminates; on the contrary, according to the
founders of intuitionism, at the basis of the mathematical activity there is a
continuous mental process of construction of objects starting with the flow
of time underlying the chain of natural numbers, and intuitionistic reasoning
is what structures that process.”

This reading of the mathematical activity is formally captured by Kripke
semantics for intuitionistic logic [|: Relational structures based on pre-
orders capture the informal idea of a process of growth of knowledge in time
which characterises the mental life of the mathematician.

It is worth noticing that the focuses of these semantics are quite different:
BHK interpretation stresses the importance of the concept of proof in the
semantics for intuitionistic logic; Kripke’s approach highlights the epistemic
process behind the provability of a statement.

"The reader is referred to [| for an introduction.
%For instance, Dummett’s [| advocates a purely philosophical justification of the
whole current of intuitionistic mathematics.

49

The lines of reasoning of [| are the following: In the BHK interpre-
tation we have an implicit notion of proof whose epistemic aspects are mod-
elled by Kripke structures; the construction of a proof for a specific propo-
sition that we carried out as a cumulative mental process gives us sufficient
reason for (at least) believing in that proposition. It is then possible to cover
also traditional epistemic states of belief and knowledge within such a frame-
work, once we recognise the correct clauses for corresponding modal oper-
ators: Proving A assures that A is true; proving JA is weaker, for we may
believe A even though we do not have a direct proof of A itself.

The insight of BHK interpretation is formally captured by the rules of
natural deduction for intuitionistic logic, and, even more precisely, by the
associated A-calculus with types of the proofs-as-programs paradigm.’ In
spite of this, [| discusses only axiomatic calculi and possible world se-
mantics for intuitionistic epistemic logics, so that the stimulating question
of considering the proof-theoretic/computational aspects of epistemic states
remained at an informal level and a very beginning stage.

In the present chapter, on the contrary, we propose a natural deduction
system |[EL™ designed with the intent of translating it into a functional calcu-
lus for deductions. In a sense, that defines a formal counterpart to Artemov
and Protopopescu’s reading of the belief operator by extending the proofs-
as-programs paradigm between NJp and simple type theory to handle that
modal operator and its corresponding constructor in the proof-term calcu-
lus.

The resulting modal A-calculus is then used to prove a strong normal-
isation theorem for |IEL™, from which the subformula property is derived.
As corollaries, many properties of the logic under investigation are proven,
namely: consistency, decidability, disjunction property, admissibility of the
reflection rule, modal disjunction property, and O-primality.

The chapter is organised as follows: Section 2.1 recalls the axiomatic cal-
culus for intuitionistic belief and its Kripke semantics, as defined in | .
In Section 2.2, the natural deduction system IEL™ is introduced, and its logi-
cal equivalence with the axiomatic calculus is proven. Then proof-rewritings
are defined by using a corresponding modal A-calculus for IEL™, in order
to handle deductions without detours and permutation conversions. Strong
normalisation is proven w.r.t. these rewritings. In Section 2.3, analyticity of
IEL™ is established by proving the subformula property for normal deduc-
tions; furthermore, purely proof-theoretic proofs of known properties of in-
tuitionistic belief are given. Finally, in Section 2.4, I discuss a categorical
interpretation of the belief modality and a potential proof-theoretic seman-
tics for IEL™ based on that interpretation.

3See Section 1.5.1, and [] for deeper results in the field.

50

WRITING AND REVISION NOTES. This chapterisbasedon| Jand|[

Nevertheless, many changes have been made to that material: In particu-
lar, the proof of the strong normalisation theorem for IEL™ given here sub-
stantially differs from the one developed in [], for being much clearer
and simpler than the latter, which was based on a rather technical CPS-
translation of IEL™ in NJp. More prominently, we present here an original
and fully detailed proof of the subformula property for our system of natural

deduction on the basis of the techniques sketched in [|. That, in turn, let
us present very neat proof-theoretic properties of the logic for intuitionistic
belief established in [] by model-theoretic means.

2.1. AXIOMATIC CALCULUS FOR INTUITIONISTIC BELIEF

Let’s start by recalling the syntax and relational semantics for the logic of
intuitionistic belief as introduced in [.
2.1.1. SYSTEM IEL™
DEFINITION 2.1.1. TEL™ is the axiomatic calculus given by:
+ Axiom schemas for intuitionistic propositional logic;
+ Axiom schema K:O(A — B) - 0A — OB;

« Axiom schema of co-reflection A — OA;

A— B A
B

We write I' Fyp; - A when A is derivable in IEL™ assuming the set of hy-
potheses I', and we write [EL™ - Awhen " = @.

+ Modus Pones MP as the only inference rule.

We immediately have

PROPOSITION 2.1.2. The following properties hold:

(i) Necessitation rule is derivable in TELL™;

A
OA
(ii) The deduction theorem holds in TELL~;

(ii) TEIL™ is a normal intuitionistic modal system.

Proof. See| .
X

As stated before, this system axiomatises the idea of belief as the result
of verification within a framework in which truth corresponds to provabil-
ity, accordingly to the Brouwer-Heyting-Kolmogorov interpretation of intu-
itionistic logic. Note also that, in this perspective, the co-reflection schema

51

]

is valid, while its converse does not hold: If A is true, then it has a proof,
hence it is verified; but A can be verified without disclosing a specific proof,
therefore the standard epistemic schema OA — A is not valid under this
interpretation.*

2.1.2. KRIPKE SEMANTICS FOR IEL™

Turning to relational semantics, in [| the following class of Kripke
models is given.

DEFINITION 2.1.3. A model for IEL™ is a quadruple (W, <, v, E') where
« (W, <,v) is a standard model for intuitionistic propositional logic;
+ Eis a binary ‘knowledge’ relation on W such that:

- if By, then z < y; and
- ifz < yand yEz, then xEz; graphically we have

E
Yoz

E

+ v extends to a forcing relation IF such that
- x |- OAiff y IF A for all y such that zEy.

A formula A is true in a model iff it is forced by each world of that model; we
write [EL™ F A iff A is true in each model for IEL .

Notice that this semantics assumes Kripke’s original interpretation of in-
tuitionistic reasoning as a growing knowledge - or discovery process - for an
epistemic agent: The relation E defines an audit of ‘cognitively’ <-accessible
states in which the agent can commit a verification.

This semantics is adequate to the calculus:

THEOREM 2.1.4. The following hold:
(Soundness) IfIEL™ F A, then IEL™ F A.
(Completeness) IfIEL™ E A, then IEL™ - A.

Proof. Soundness is proven by induction on the derivation of A.
Completeness is proven by a standard construction of a canonical model.
See | | for the details.

X

*Different versions of intuitionistic epistemic states are discussed in []and [.

52

2.2. NATURAL DEDUCTION FOR INTUITIONISTIC BELIEF

We now introduce a natural deduction system which is logically equiv-
alent to TEL™, but which is also capable of a computational reading of the
epistemic operator and of proofs involving this kind of modality.

Accordingly, the starting point is proving that our of natural deduction
calculus IEL™ is sound and complete w.r.t. TEL™; then, we prove that proofs in
IEL™ can be named by means of A-terms as stated in the proofs-as-programs
paradigm for intuitionistic logic. By using this formalism, we prove a strong
normalisation theorem for IEL™ stating that detours and permutation con-
versions can be eliminated from all deductions.

2.2.1. SYSTEM IEL™

DEFINITION 2.2.1. Let IEL™ be the calculus extending NJp by the following
rule:

Fl Fn [Alv"' 7A’rl]7A
04, . oa, B
OB
where I' and A are multisets of formulas, and Ay, - - , A, are all discharged.’

We say that B is the major premise of the rule, and each OA; is a minor
premise, whose corresponding discharged assumption is A4;.

The rule can be informally read as follows: Suppose that one can prove
B by assuming, among others, Ay, -+, A,. Then, ifall Ay,--- , A, have been
verified, then one has enough evidence to state that B is verified, without
assuming Ag, - -, Ay.

As before, we write I' -, - A when A is derivable in [EL™ assuming the
set of hypotheses I', and we write IEL™ - Awhen T = &.

Let’simmediately check that we are dealing with the same logic presented
in [|

LEMMA 222. 'k - A iff Tk~ A

Proof. Assume I' ;- A. We proceed by induction on the derivation. We
only need to check that the axiom schemas can be derived in the natural de-
duction calculus:

« Intuitionistic schemas are dealt with NJp rules;

>Notice that this calculus differs from the system introduced in [| by allowing the set
A of additional hypotheses in the subdeduction of B.

53

[A— B, A]

- K: : ;
0(A— B) OA B
oB
Bl
« co-reflection: o4 2 :
A-oa
Conversely, assume I" g - A. We need to consider only the OZ rule:
By induction hypothesis, we have I'y by - OAy,---, Iy by - OA,, and

Ay, Ap, A by - B. Then we have I'y, - -+ | Ty, by - OA A--- AOA,,
and, by the deduction theorem for I[EL ™ and ordinarylogic, A by - A1 A+ A A, — B.
By co-reflection IEL™ F (A; A--- AN A, — B) - 0O(A1A--- AN A, — B),
and by K-schema IEL™ F O(A; A---A A, — B) - 0O(A1A---ANA,) — OB.
Hence we have A by - O(A; A---AA,) — OB, whence, by modal logic, we
obtain A by - OAA---AOA,, — OB,whichgivesI'y, -+ , Ty, A by - OB,
as desired.
X

As for NJp, amodal A-calculus is then obtained by decorating IEL ™ -deductions
with proof names.
The A-term corresponding to OZ is indeed ruled by the single constructor:

F1Ff1:DA1 FnkanAn $1:A1,~--,$n:An,AngB
Ty, Ty AF (box[zy, -+ @) gwith f1,---, f,) : OB

2.2.2. NORMALISATION

In order to eliminate potential modal detours from IEL™-deduction we
introduce the following proof rewriting:

) A [B,D]%,E :
: . r A B DY, E
— . A
OA B .4 : .
OB) oD F :
0Z:2 - -
oFr 0OA oD F

0Z:1

This rewriting collapses two applications of OZ into a single one, making
the deduction much simpler, so that can be correctly called a detour elimina-
tion. Let’s denote it by po.

It is not hard to prove that IEL™-deductions strongly normalise w.r.t. the
rewriting system obtained by adding this detour elimination to the rewriting
system = for NJp recalled in Section 1.4:

54

LEMMA 2.2.3. Deductions in |IEL™ strongly normalise w.r.t. the rewriting system
obtained by adding pg to E.

Proof. We define a translation® | — | from the A-calculus of IEL™-deductions
to typed A-calculus with products, sums, unit and empty types:

Pl =p
|L] = L
|T] = T
A— B	:=	A	l—	B
ANB	=	A	A	B
Av B	:=	A	lV	B]
[OA] = (Al = q) —q

|z| ==z

iLII(f)’ = Ly(fD)

* | = %

|Az. f| := Ax.|f]

[f9l:= [/llg]

(s 9)| == (If]1gl)

|mi(f)] = mi(lf])

C(fs 2 fr,y-f2)| -= Cf | 2L fal, g1 f2])

[ini ()] == ini(|1])

|box[z1, -+, xp]. gwith f1, -, fu] == Ak fi|(Az1. - - | ful Azn- Klg]) -+)
where ¢ is an arbitrary atom.

For the sake of readability, it is convenient to rephrase the translation of
OZ in the natural deduction formalism:’

(1Al |A]
r 4], A Ir| sl
S o ALy 171 [B] = g Bl .
. . . q
OA B : — 1
— = o7 A A
OB (Al = q) = ¢ . Al—=a
—_————— 12
(1B = q) = q

To prove strong normalisation it suffices now to prove that pg is preserved
by this translation, which is almost straightforward. Thus, if IEL™ was not

®This function is introduced in [] to prove detour-elimination for the implicational
fragment of basic intuitionistic modal logic IK by reducing the problem to normalization of
simple type theory. Here we adopt the mapping to consider also product, sum, unit and empty
types, keeping the original strategy due to [.

"We consider w.l.o.g. the case with a single minor premise.

55

normalizing, then we would have an infinite chain of rewritings starting from,
say, f : A. But this would lead to an infinite chain of reductions of NJp-
deductions w.r.t. = starting from | f| : | A|, contradicting strong normalization
for NJpw.rt. =.

X

The system of rewritings = + pn however, does not suffice to establish
analyticity of IEL™. To see that, consider, for instance, the following IEL™-
deduction f:

A= (B—O)! A2
OA— (B—C)® DA BoC oe 14
OA—=(B—=C)VvLl o(B — C) o o(B — C)
OB —O0)
Then we see that the IEL™-deduction
-y
: B = C° B "
O(B—C) OB
07Z:5,6

ac

is normal w.r.t. = + pp. In spite of this, the formula O(B — C) is not a
subformula of either the conclusion OC or of the undischarged hypotheses
{0A4,0B,0(A— (B—C))V L}

Thus we add to Z + pp the following permutation conversions mq:

I
Iy . T'n [Alv"' 7An]7A
. - :f’L . .
. -y . .
tf1 . . L fn .9 ~
OA;
- £+ - -
0A; 0OA; ... OA, B
OB oz
' r; I'n [A1, -, ARl A
:fl :fz :fn :g
~ :
ot 0A; 0A4; .- OAp B
: OB ot
£
OB -

where £+ is VE or L.
We now prove that IEL™ -deductions strongly normalise w.r.t. this extended
system of rewritings. Unfortunately, the translation | — | does not preserve

the required additional rewritings, but another simple translation does the
job.

56

L
VE:3,4

THEOREM 2.2.4. Deductionsin |EL™ strongly normalise w.r.t. the rewriting system
=+ po + 7o

Proof. We define a new translation (—) from our modal A-calculus to simple
type theory with products, sums, unit and empty types as follows:

(L) = 1
(M) = T
(p) = »p
(A= B) = (A)—>(B)
(AN B) = (A)A(B)
(AV B) = (A)V{(B)
(04) = (A)Vg
a:)) =z
L)) =L,
z f) = Az.(f)
g) = (o)
19)) = ((f):(9))

() = m((1)
C(f,z.f1,9-f2)) :== C({(f), z.(f1),y-.(f2))
in;(f)) :==ini((f))

where ¢ is an arbitrary atom.

As in the proof of the previous normalisation lemma, for the sake of read-
ability, it is convenient to rephrase the translation of OZ in the natural de-
duction formalism:®

box[z1,- - ,xn]. gwith f1,- -+, fn) := C((fn); zn. - C({f2), 22.C({f1), z1.in1({(9)), y1.in2(y1)), y2.in2(y2)) - - -

I Ty [ADA?]’ A
f1 f2 g }Q)
OA, DA, B
DB oz
[<A1>]17 [<A2>]27 <A>
(1) < >
() T2)) Eg
'—> : (f2) : VI [Q}l VI
: (A1) Vg (B)Vgq (B)Va [q)?
(A2) V q (B)Vq - (B)vg

(B)Vq

It is now straightforward to check that both pg and 7p are preserved by
this translation, and recovered by permutation conversions of Z.
Since deductions in NJp are strongly normalising w.r.t. =, we have the

desired strong normalisation for IEL™-deductions.
X

8This time we can consider w.l.o.g. the case with two minor premises to make the pattern
explicit.

57

+Yn-in2(yn))

COROLLARY 2.2.5. Every |IEL™-deduction uniquely reduces to a normal |IEL™-
deduction w.r.t. = + po + mo.

Proof. We need to prove that every term of the modal A-calculus for IEL™-
deductions has a unique normal form w.r.t. Z + pg + 7. That holds if that
rewriting system has the Church-Rosser property. It is not hard to see that
it does satisfy the weak Church-Rosser property: The desired property then
follows by Newman’s lemma for rewriting systems.’

X

2.3. ANALYTICITY AND OTHER PROPERTIES

In the proofs-as-programs paradigm, a normalisation theorem only states
that any execution of a program written in our modal A-calculus safely termi-
nates. However, from the purely proof-theoretic point of view, Lemma 2.2.3
is less relevant then Theorem 2.2.4, since the latter is much more informative
about the structure of the deductions in IEL™. As Raymond Smullyan once
wrote []

The real importance of cut-free proofs is not the elimination
of cuts per se, but rather that such proofs obey the subformula
principle.

Since normalisation of deductions corresponds to cut-elimination from deriva-
tions in sequent calculi [, Ch. 8], we could rephrase Smullyan’s claim
to refer to the relevance of (strong) normalisation results.

Subformula property is very easy to state, but giving a detailed proof of it
requires some care.

In this section we see how to prove that IEL™-deductions which are nor-
mal w.r.t. 24 po + 7o do satisfy that property, and make explicit all the details
of the proof sketch of that very property for NJ given in [|. Afterwards,
we derive further properties of the logic for intuitionistic belief.

2.3.1. PROOF OF THE SUBFORMULA PROPERTY
First we need to generalise the notion of proof-rewriting:

DEFINITION 2.3.1 (After |). A maximal segment in an IEL™-deduction
fis asequence Ay, -, A, of formula occurrences in f where:

1. Aj is the conclusion of an Z-rule, or of L j;

2. for 1 < i < n, A; is a minor premise of an V& rule, and A;11 is its
conclusion;

° A proof of Newman’s result relating strong normalization and Church-Rosser property is
given in [, Prop. 3.6.2].

58

3. A, is the major premise of an £-rule, of L 7, or a minor premise of OZ.

Notice that, since in any V& rule, the conclusion is the same formula as
the minor premises, all 4; in a maximal segment are (different occurences
of) the same formula. Moreover, the rewritings in E + pg + 7g are special

instances of maximal segments Ay, -« , A,.
By normal deduction we will refer to a deduction in IEL™ with no maximal
segments.

Next we need to generalise the notion of branch in a deduction:

DEFINITION 2.3.2 (After [). A path in an IEL™-deduction f is a se-
quence of formula occurrences Ay, - - , A, where:

1. A; is either an open assumption of f, or an assumption discharged by
-7

2. if 1 <i < k, then
« if A; is the major premise of V&, or a minor premise of OZ, then
A1 is the corresponding assumption discharged by that rule;
. if A;
a premise of L j;

a premise of a propositional Z-rule;
a major premise of OZ;

o oo

a major premise of an £-rule other than V¢&;

e. a minor premise of V&

then A;11 is the conclusion of that rule;
3. Ay is either the end formula of the deduction, or the minor premise of
—&.
We will call any sequence of formula occurrences in a path, in which one

isaminor premise of an V& and the following one is its conclusion, a segment.

We can now show that any path in a normal IEL™-deduction has a very
neat structure.

LEMMA 2.3.3. Any pathin a normal IEL™-deduction f is made of segments ordered
as follows:

* first, there are segments where the last formula occurrence is a major premise
of an E-rule, or a minor premise of OZ;

« then, there are segments whose last formula occurrence is the premise of a L z;

59

« finally, there are segments where the last formula occurrence is a (major)
premise of an Z-rule."’

We call the first segment ending in the premise of a L 5, or in the (major) premise
of an Z-rule the minimum segment of f, and the formula repeating in it is called
the minimum formula.

Proof. Suppose that the claim were false. Then we would have one of the
following cases:

a. a segment ends with a (major) premise of a Z-rule, followed by a seg-
ment that ends in the major premise of an £-rule;

b. a segment ends with a (major) premise of a Z-rule, followed by a seg-
ment that ends in a minor premise of 0OZ;

c. a segment ends with a (major) premise of a Z-rule, followed by a seg-
ment that ends in the premise of 1 j;

d. asegment endswith the premise of | j, followed by a segment that ends
in the premise of L j;

e. asegment ends with the premise of L , followed by a segment that ends
in the major premise of an £-rule;

f. asegment endswith the premise of | j, followed by a segment that ends
in the minor premise of OZ.

Each of those cases defines a maximal segment, contra the hypothesis that f
is normal, or an impossible situation, by connective mismatch. Therefore we
conclude that the lemma holds.

X

At this point we need to consider a

PROPOSITION 2.34. In a path Aj,---, Ay, of a normal IEL™-deduction, every
formula A in it is either a subformula of A1, or of A,,.

Proof. If A occurs before the minimum segment, it is a subformula of A;,
since all rules leading to A either go from major premises of £-rules others
than V& to their conclusions, or from major premises of V& to assumptions
discharged by that very rule, or from minor premises of OZ to the appropri-
ate assumption discharged by that rule, or from minor premises of V& to its
conclusion.

If A is the minimum formula, or occurs after the minimum segment, then
all the rules after A in the path are Z-rules, so that the path proceeds from
premises of propositional Z-rules, to their conclusions, or from major premises

This means that the structure of normal IEL™ is the same as the one in Figure 1.5.

60

of OZ to their conclusions, or from minor premises of VE to their conclusions,
and in each case the premises are subformulas of the conclusions.
X

Now we want to prove that every formula in an IEL™-deduction is a subfor-
mula of the starting assumption of the path it is on, or of its ending formula.
That is implied by the following

PROPOSITION 2.3.5. Every formula A in an |IEL™-deduction f lies in at least one
path of f.

Proof. By induction on the height h(f) of f.

If h(f) =0, then f is just an assumption, and that single formula makes a
path. Otherwise, apply the inductive hypothesis to the subdeductions ending
in the premises of the last rule of f. Each premise of that rule lies on a path,
and it must be its ending formula. Any path ending in the premise of L, a
propositional Z-rule, the major premise of — £, a minor premise of V&, or
the major premise of OZ can be extended to a path in f the conclusion of the
rule is on. Every other path in the subdeductions ending in the premises of
the last rule in f is still a path in f.

X

After the following definition, we can proceed with the last intermediate
lemmas towards the main result.

DEFINITION 2.3.6. Given an IEL™-deduction f, and a path in f we define its
order o as follows:

+ the order o of a path ending in the end-formula of f is 0;

+ the order of a path ending in the minor premise of — &, whose major
premise lies on a path with order o, is 0 + 1.

LEMMA 2.3.7. If a formula A lies on a path of order o in a normal IEL™-deduction
f, then it is either a subformula of the first formula of that path, of the endformula
of that path, or of a formula lying on a path of order o — 1.

Proof. If 0 equals 0, then the path ends with the end-formula of f, and we rely
on Prop. 2.34.

Otherwise, the path ends with a minor premise B of — £. By Prop. 2.3.4,
we know that A is a subformula of B or of the first formula in the path. In the
former case, it is also a subformula of the major premise, which is on a path
of order o — 1, and we are done.

X

LEMMA 2.3.8. Ifthe starting formula A of a path with order o in an |EL™ -deduction
is discharged by — T in f, then the conclusion of that rule is on the same path, or
on a path of order < o.

61

Proof. Suppose that A; is not discharged on the path. Then it must be dis-
charged on a branch between the ending formula A,, of that path and the
end-formula of f. All formulas lying there are on paths of order < o.

X

THEOREM 2.3.9 (Subformula principle). Every formula B occurring in a normal
IEL™-deduction f of A from assumptions I is a subformula of A or of some formula
inT.

Proof. By induction on the order o of a path an occurrence of B is on.

If o = 0, then B is on a path ending with the end-formula of f. By
Prop. 2.3.4, B is a subformula of the end-formula, or of the starting formula of
the path. By Lemma 2.3.8, since there are no paths of order less than 0, if that
starting formula is discharged by — Z, the conclusion of that very rule is on
the same path. Since that conclusion appears after the minimum segment, it
is a subformula of the end-formula of f.

Otherwise, by Prop. 2.3.4, B is a subformula of the ending formula of the
path, or of its starting formula. If the latter is an assumption discharged on
the path, B is a subformula of the ending formula of that path, which, in
turn, is a minor premise of — £. Therefore it is also a subformula of the
associated major premise, which lies on a path of order < o: By applying the
inductive hypothesis we are done. If B is a subformula of the starting formula
of the path, and that assumption is discharged by — Z on a different path,
by Lemma 2.3.8, the conclusion of that rule is on a path of order < o, and by
applying the inductive hypothesis we are done.

X

2.3.2. FURTHER PROPERTIES OF INTUITIONISTIC BELIEF

In [], several properties of the logic for intuitionistic belief are es-
tablished by means of semantic techniques.

Here all those properties are proven by purely proof-theoretic remarks
about the natural deduction system IEL™.

LEMMA 2.3.10. The logic of intuitionistic belief is consistent.

Proof. If it was not the case, then we would have IEL™ F L. By normalisation,
there would be a normal IEL™-deduction of L from no hypothesis, which is
impossible because of the subformula principle and the absence of any Z-rule
for L.

X

LEMMA 2.3.11. The calculus IEL™ is decidable.

Proof. By Theorem 2.3.9, proof search in IEL™ is bounded by the degree of
the formula one wishes to deduce.
X

62

Let’s say that a deduction is neutral if it consists of an assumption, or its
last rule is not an Z-rule.

PROPOSITION 2.3.12. In any normal and neutral IEL™-deduction of A from T,
I+

Proof. By induction on the height b of the given deduction.
The case h = 0 is trivial.
If h > 0, we proceed by considering the last rule of the deduction:

a. if that rule is — &, we can apply the inductive hypothesis to the major
premise, which is neutral by normality of the deduction;

b. if that rule is AE, we can apply the inductive hypothesis to the premise,
which is neutral by normality of the deduction;

c. if that rule is V&, we can apply the inductive hypothesis to the major
premise, which is neutral by normality of the deduction;

d. if that rule is L ;, we can apply the inductive hypothesis to the premise,
which is neutral since there are no Z-rules for L.

X

LEMMA 2.3.13 (Canonicity). In any normal |IEL™-deduction of A, the last rule
applied is the introduction rule for the main connective of A.

Proof. By Proposition 2.3.12, since I' = & here, and the deduction is normal

by assumption, its last rule cannot be an elimination.
X

COROLLARY 2.3.14 (Admissibility of the reflection rule). If IEL™ - OA, then
IEL™ F A.

Proof. By Lemma 2.3.13, since A is deducible from no assumption, its last

rule in the corresponding normal deduction must be OZ.
X

COROLLARY 2.3.15 (Disjunction property). If IEL™ - AV B, then [EL™ - A
orlEL™ F B.

Proof. Assume IEL™ F AV B. Then consider a normal IEL™-deduction of
AV B. By Lemma 2.3.3, that deduction must end either by L ;, VZ;, or VZ,.
But since that very deduction has no assumptions, it cannot end by L ;. Then

we have the result.!!
X

"Even more directly: It is a straightforward application of Lemma 2.3.13.

63

COROLLARY 2.3.16 (O-primality). If IEL™ = OA v OB, then IEL™ - A or
IEL™ - B.

Proof. The result follows by the disjunction property and the admissibility of
the reflection rule.
X

COROLLARY 2.3.17 (Modal disjunction property). If IEL™ - O(A Vv B), then
I[EL™ F OAorlEL™ + OB.

Proof. If we have a deduction of O(AV B), then by the reflection rule we have
a deduction of A vV B. By the disjunction property we have a deduction of A
or a deduction of B. In each case, by applying OZ we have the desired result.

X

Finally, notice that the consistency of IEL™ can be established also as a
corollary of Lemma 2.3.13, without recurring to the subformula principle.

24. PROOF-THEORETIC SEMANTICS FOR IEL™

If A-calculus gives a computational semantics of proofs in NJp - and, as
we showed in the previous section, in IEL™ also - category theory furnishes
the tools for an ‘algebraic’ semantics which is proof relevant - i.e. contrary to
traditional algebraic semantics based on Heyting algebras and to relational
semantics based on Kripke models, it focuses on the very notion of proof,
distinguishing between different deductions of the same formula.

We know that cartesian product models conjunction, and exponential
models implication. Any category having products and exponentials for any
of its objects is called cartesian closed (CCCat); moreover, if it has also (weak)
coproducts - modelling disjunction - it is called bi-cartesian closed (bi-CCCat):
T and L correspond to empty product - the terminal object 1 - and empty
coproduct - the (weak) initial object 0 - respectively.'?

For our calculus, in order to capture the behaviour of the epistemic modal-
ity, some more structure is required, which is what will be sketched in the
next subsections.

2.4.1. SOME FUNCTORS ON MONOIDAL CATEGORIES

DEFINITION 2.4.1. Given a CCCat %, a monoidal endofunctor consists of a
functor § : € — ¢ together with

- anatural transformation

map:SAXFB — F(A x B);

2The reader is referred to the classic [] for the details of such completeness result.

64

+ amorphism
my:1— §1,

preserving the monoidal structure of €."
These are called structure morphisms of §.

It is quite easy to see that a monoidal endofunctor on the category of
logical formulas induces a modal operator satisfying K-schema, as proven in

[I

DEFINITION 2.4.2. Given any category ¢, an endofunctor § : 4 — % is
pointed iff there exists a natural transformation

m:ldy = F
ma:A— FA

A4 =A

1

BB
7 is called the point of §.

In the present setting, a pointed endofunctor on the category of logical
formulas ‘represents’ the co-reflection schema.

Since we want to give a semantics of proofs - and not simply of derivability
-1in |[EL™, we need a further notion from category theory.

DEFINITION 2.4.3. Given a monoidal category ¥, and monoidal endofunc-
tors §,® : € — €, a natural transformation : § = & is monoidal when the
following commute:

m3
A x 3B —%F(A x B)

HAXHB‘L J{NAXB

BAX BB —— 6(Ax B)

MA B

and

ms

1—§(1)

|-

1—— 6(1)

my

BSee | , Sect. VIL1] for the corresponding commuting diagrams and the definition of
monoidal category.

65

2.4.2. CATEGORICAL INTERPRETATION

For our intents, all the previous categorical notions will be packed in a
single kind of structures.

DEFINITION 2.4.4. An |[EL™-category is given by a bi-CCCat % together with
a monoidal pointed endofunctor 8 whose point x is monoidal.

The reader is invited to check that by taking the poset reflection of an
IEL™-model, one obtains a model for provability in the logic of intuitionis-
tic belief according to the usual algebraic semantics for modal logics, i.e. a
Heyting algebra with an operator satisfying the axioms and rules of TEL ™.

Shifting to the categorical perspective, a general IEL™-model provides
thus the tools for an algebraic semantics of deductions in IEL™.

But what kind of identity of proofs does an IEL™-category capture?

For sure, if two |IEL™-deductions normalise to the same proofs w.r.t. =,
then that equality is adequately modelled by any IEL™ -category.

At the beginning of Section 2.3, I claimed that Lemma 2.2.3 does not
have a deep proof-theoretic relevance, since normalisation w.r.t. = + pg is
not enough for deriving the subformula principle for IEL™.

Itis not hard to see that pg is what is needed to prove that the construction
induced by the modal operator preserves arrow composition.

However, that construction cannot be a functor unless one considers the
following extensionality principle g for OZ:

r

OA [4] :
— 01 OA
OA
Now, it is not hard to see that IEL ™ -deductions strongly normalise w.r.t. the
rewriting system = + pg + no."*
Henceforth, we can now show the adequacy of this categorical interpre-
tation.

" As a matter of fact, there are two ways to see that: One could simply reason as in the
proof of Lemma 2.2.3, and showing that o can be simulated in a rewriting system for sim-
ple type theory extended by function extensionality n—,, which is strongly normalising [,
Lem.1.3.11]; or, one could easily prove that in any sequence of = + po + no-reductions, no-
rewritings can be postponed, so that Lemma 2.2.3 implies strong normalisation w.r.t. the sys-
tem including no.

The reader is also invited to notice that even the translation (—) is capable of mimicking 1o
in a simple type theory extended by a sum extensionality principle v, which in type-theoretic
syntax can be defined as

C(f’ a:,inl(:n)7 ym?(y)) ~ f.
Normalisation of IEL™-deductions w.r.t. 2 + po + 7o + 1o is then derived from the fact that
nv-reductions can be postponed in any sequence of = + 7y -rewritings, so that simple type
theory is normalising w.r.t. E + 7y too.

66

THEOREM 2.4.5 (Soundness). Let € be an |IEL™ -category. Then there is a canon-
ical interpretation [—] of IEL™ in € such that

+ a formula A is mapped to a €-object [A];
« adeduction f of Ay, -+, Ap F g~ B is mapped to an arrow

[/ [AD > -+ < [An] — [BI;

« forany two deductions f and g which are equal modulo 2+ po+ngo-rewritings,

we have [f] = [g]

Proof. By structural induction on f : A kg - B.

The intuitionistic cases are interpreted according to the remarks about
bi-CCCats at the beginning of this section.

We overload the notation using (O, m, k) for the monoidal pointed end-
ofunctor of €, its structure morphisms, and its point.

The deduction

fi: T FOA fn: Tn FOA, g: [A1,-+,An],C1,--- ,C - B
OB

is mapped to

(Blgl) o mpa],. [ALIC T~ [Cm] © L] X -+ X [ful X Koy X -+ X K]

where my, ... x, is defined inductively as

MX1, Xno1,Xn = MX1xxXpn_1,Xn © (mxly“‘vxn—l) X idDXn'

It is straightforward to check that identity modulo 75 holds in the cate-
gory ¢ by functoriality of O.

Identity modulo pg is also valid by naturality of m and x: The reader is
invited to check that x must be monoidal in order to model correctly the
following special case'

I I,
[Ala"' ,An}l,Ch"' 7Cm
A A, : ~
DAl my DAn YA B o
OB ’
Fl .« .. Fn
-~ Al An Cl’...,cm
B
7DB oz

SEverything reduces to long categorical calculations.

67

It remains to show that this interpretation is also complete.

THEOREM 2.4.6 (Completeness). If the interpretation of two IEL™-deductions is
equal in all IEL™ -categories, then the two deductions are equal modulo Z+ po+no-
rewritings.

Proof. We proceed by constructing a term model for the modal A-calculus for
IEL™-deductions. Consider the following category M:

+ its objects are formulas;

« anarrow f : A — BisanIEL™-deduction of B from A modulo Z+ pg+
No-rewritings;

« identities are given by assuming a hypothesis;
+ composition is given by transitivity of deductions.

Then M has a bi-cartesian closed structure given by =-rewritings for NJp.
Moreover, the modal operator O induces a functor 8 by mapping A to OA,
and

A A

B 0A B

myA
OB

which preserves identities by 7o , and preserves composition as a special
case of ppo.
The structure morphism is given by

OAA OB OAA OB [A] [B]
DA NE \:‘B NE 714 A B I:]I/\I
O(AA B)

whose properties follow as a special case of pp.

DAA and its characteristic property is given as a
special case of pg. Finally, such a point is monoidal by pg up to Z-rewritings.

Thus, if an equation between interpreted IEL™-deductions holds in all
IEL™ -categories, then it holds also in M, so that those deductions are equal

whenever they normalise to the same proof w.r.t. E + pg + no-rewritings.

The point is given by

X

68

RELATED WORK

The calculus IEL™ presented here is an original natural deduction system
for Artemov and Protopopescu’s logic of intuitionistic belief.

Before the papers [,], the only proof-theoretic investigations
on the intuitionistic logics of |] involved standard sequent calculi as wit-
nessed by [, 1.

Sequent calculi internalising relational semantics for those logics are de-
veloped in [] with an eye towards complexity-related aspects.

The paper [| is closer to the perspective of the material presented
here. In that work, a natural deduction system for the L, V-free fragment of
the logic for intuitionistic belief is discussed, and a categorical interpretation
of the belief modality is given in terms of applicative functors, described first
in|], along with an algebraic semantics for a first-order extension of the
logic for intuitionistic knowledge. Since the tensorial strength and the co-
reflection schemas are “naturally” interderivable over the minimal intuition-
istic modal logic IK, the applicative functor based interpretation is equivalent
to the one discussed in the present work. On the purely proof-theoretic side,

the calculus discussed in [| differs from IEL™ for extending the natu-
ral deduction system IK of [] with a further modal introduction rule
mimicking co-reflection. Our preliminary work [| had already discussed

normalisation and a categorical reading of that formalisation option, and ex-
pressed some of its limits. These become explicit when IEL™ is considered
as a starting point for axiomatising various logics involving co-reflection, not
necessarily related to the epistemic reading of the modality.

By adding different sorts of elimination rules, our IEL™ characterises in-
deed as an invariant kernel of several potential natural deduction systems
capturing modal notions even outside the original verificationist account of
belief and knowledge. An evidence for this claim is given by the very next
two chapters.

69

3

NATURAL DEDUCTION FOR INTUITIONISTIC
KNOWLEDGE

Consider the following scenario.
Your favourite top-rated mathematician has posted on her blog a proof-sketch
of a conjecture A in a very specialised mathematical field. Her informal ar-
gument is convincing, and her expertise justifies your trust in the conjecture.
You are not an expert on that field, but she is; you do not have direct access
to a detailed proof of A, but is reasonable for you to believe that A does hold.

This is completely in line with the verificationist account of belief in []
that we have seen in Chapter 2. But how could you safely claim that you know
that A is a theorem indeed?

In philosophy, knowledge is usually defined as justified true belief (JTB).
These conditions are considered - in general, but not universally [I518] - to
be individually necessary and jointly sufficient for defining knowledge: One
cannot know something without believing it (condition B); and one does not
know a thing unless she also has reasons for believing it (condition J). Con-
dition B lets us overload the formal epistemic notation, so that we can use
the same O-modality to capture both epistemic states. Condition J implies
that co-reflection A — OA is still valid when dealing with knowledge. What
about condition T?

Even at the very intuitive level, the standard way of capturing condition
T - i.e. adding the schema OA — A to the modal principles of out theory -
reveals disastrous in the present setting: It causes the modal collapse of the
whole language.

It is then appropriate to ask how to formalise the factivity of knowledge
required by condition T according to Artemov and Protopopescu’s verifica-
tionist epistemology. In order to answer that question, let us return to the
scenario at the beginning of the chapter, and expand it a little bit.

Some time has passed since the mathematician’s post about the conjec-
ture A. You are again surfing the Net looking for new results in the field A
belongs to, and come across another post about that very conjecture. This
time, it is a famous top-rated computer scientist’s blog announcing that A
has been refuted. And there’s more: Her refutation has been computerised,

70

and the formal proof is freely available on the Net. If you know the program-
ming language at the base of her computer program for refuting A - a proof
assistant, or a highly specialised theorem prover - you can read the proof, and
see that = A holds, so that your original trust in A was misplaced.

In [| five different schemas are proposed to capture this idea:

1. =A — —-0A4;
. (O0ANA-A);

R

2

3 ;

4. —=—(0A — A);
5. 0A —» A

Principle 3, despite being the weakest among 1-5, is arguably the closest
to a naive intuitionistic version of condition T - “you cannot known some-
thing false” - while principle 4 is the double negation of the classical schema
for condition T, and principle 1 is its contrapositive. Principle 5 is chosen
by Artemov and Protopopescu to extend IEL ™, for intuitionistic belief, to the
logic of intuitionistic knowledge TEL, but, as they notice, all of those principles
are intuitionistically equivalent over IEL™, and each of them is intuitionisti-
cally weaker that the classical schema for condition T.

This verificationist version of factivity of knowledge allows a rational
agent to know that a proposition A holds even if she has not a proof of A. This
is not surprising at all, if we consider empirical knowledge, and the previous
scenario about the conjecture A suggests that the same is valid for mathe-
matical knowledge: Even if the proof of = A were classified, or written in a
computer program completely unknown to you, you would still know that A
does not hold, and your original belief in A would have been false.

What [] is proposing is, in a sense, a formal BHK-based version of
Robert Nozick’s general definition of knowledge as belief tracking the truth of
the matter under discussion [).!

In more plain terms: The verificationist account of epistemic states in
| | is inspired by the intuitionistic interpretation of mathematical ratio-
nality, but its potential applications are not limited to the realm of mathe-
matics.

Instead of talking about conjectures, proof sketches, and computer checked
proofs, one could consider the following much more ordinary scenario.

Any stopped clock tells the right time twice a day. That statement has become
a platitude. But look at such a clock at the right moment, and according to the

'Notice, however, that Nozick’s account denies also the closure under known logical entail-
ment - i.e. the schema K - that is endorsed in [J. This denying is due to Nozick’s original
aim to criticise the basic assumptions of [| questioning the JTB theory on knowledge.
That Nozickian position about K is, in any case, challenged by several views that still adopt
Nozick’s proposal for defining knowledge: See e.g. [].

71

JTB theory, you should know the time, since your belief is (uselessly) justified
and true.

On the contrary, from the verificationist view-point, this example fails
to be considered knowledge producing: If my belief about the time is actual
knowledge, then, if it hadn’t be that very time, I wouldn’t have believed it
was. The intuitionistic version of this argument is captured by any of the
modal schemas 1-5 above, but principle 2 is, as far as we see, the one that
better reveals the pattern of reasoning shared by the clock and the conjecture
examples.

In the present chapter, a natural deduction calculus for intuitionistic knowl-
edge is introduced, consisting of an extension of the system IEL™ - already
discussed in Chapter 2 - by an appropriate OE-rule. The resulting system is
denoted by IEL.

The presentation loosely follows the same structure as Chapter 2: Af-
ter recalling Artemov and Protopopescu’s axiomatic calculus and relational
semantics for intuitionistic knowledge in Section 3.1, the natural deduction
system IEL is introduced and proven to be equivalent to its axiomatic counter-
part in Section 3.2. Its final subsection discusses an original proof of a strong
normalisation theorem for IEL-deductions, and presents a modal A-calculus
for handling proofs in IEL in a computational manner via an algebraic nota-
tion. That extension of the proof-as-programs paradigm for the knowledge
operator is rather natural, and requires no deep tweaks for the calculus con-
sidered in Section 2.2, as the reader will see. Section 3.3 deals with relevant
properties of normal IEL-deductions: on the lines of Section 2.3, a proof of
the subformula principle is given, and all the results syntactically proven for
IEL™ are shown to hold also for IEL by using the same proof-theoretic tech-
niques.

WRITING AND REVISION NOTES. This chapter exclusively contains unpub-
lished original material on the logic of intuitionistic knowledge. The results
and proofs here presented have been developed in parallel with their analo-
gous of Chapter 2. The design principles leading to IEL™ have guided the def-
inition of IEL, and the proof strategies for the meta-properties of the former
have been adapted to the analogous properties of the latter. Thus everything
reveals a certain modularity of this approach.

31. AXIOMATIC CALCULUS FOR INTUITIONISTIC KNOWLEDGE

The axiomatisation and relational semantics for the logic of intuitionistic
knowledge is introduced in [] as follows.

72

3.1.1. SYSTEM IEL

DEFINITION 3.1.1. TEL is the axiomatic calculus extending TEL™ by the ax-
iom schema corresponding to the principle of intuitionistic factivity of knowl-
edge

0A — ——A.

Thus, IEL is defined as the system made of
+ Axiom schemas for intuitionistic propositional logic;
+ Axiom schema K:O(A — B) - 0A — OB;
« Axiom schema of co-reflection A — OA;

« Axiom schema of intuitionistic reflection OA — ——A;

A— B A
B

As usual, we write I" Fgr, A when A is derivable in IEL assuming the set of
hypotheses I, and we write I[EL - A when T = &.

MP as the only inference rule.

« Modus Pones

This system defines, as for intuitionistic belief, a normal modal intuition-
istic logic:

PROPOSITION 3.1.2. The following hold:

(i) Necessitation rule is derivable in IEL;

A
OA
(i) The deduction theorem holds in TEL;

(iii) TEL is a normal intuitionistic modal system;

(v 1. IEL F —A — —0A;
2. IEL F —(OA A -A);
3. IEL - —-OL;
4. IEL F ——(0A — A);

Proof. See| .
X

Notice that intuitionistic reflection is classically equivalent to the schema
T for classical reflection DA — A. The former is justified by the BHK read-
ing of the knowledge modality as the result of a process of verification, and,
in turn, makes knowledge justify the mere possibility of proof. Provability
of =01, however, shows that IEL is not capable of distinguishing between
knowledge from provably consistent belief: This means that philosophical
criticisms to Sh-based epistemic logics are biting IEL too.

73

3.1.2. KRIPKE SEMANTICS FOR IEL

The paper | | proposes the following class of Kripke models for intu-
itionistic knowledge.

DEFINITION 3.1.3. A model for IEL is a model for IEL™ (W, <,v, E) (as in
Def. 2.1.3), where the relation E satisfies the seriality condition

- for any x € W, there exists ay € W such that xEy.
We write TELL E A iff A is true in each model for TEL.

The seriality condition on E is what assures the consistency of audits,
since w Iff O_L for any world w.
This extended semantics is still adequate to the calculus:

THEOREM 3.14. The following hold:
(Soundness) If[EL - A, then IEL F A.
(Completeness) IfTEL E A, then TEL + A.

Proof. Soundness is proven by induction on the derivation of A.
Completeness is proven by a standard construction of a canonical model.
See [] for the details.

X

3.2. NATURAL DEDUCTION FOR INTUITIONISTIC KNOWLEDGE

The natural deduction that we are going to present is a modular extension
of IEL™ that, in a sense, balances the structural asymmetry of the latter by
means of a rule for eliminating modal formulas. The harmony lacking to IEL™
is thus recovered in IEL.

For this calculus, a strong normalisation theorem is proven w.r.t. an ex-
tended system of proof-rewritings that also considers OZ-O& detours. As
for IEL™, a modal A-calculus is naturally defined by adding a destructor for
O-types.

3.2.1. SYSTEM IEL

The natural deduction system for intuitionistic knowledge under discus-
sion is obtained by extending IEL™ with an elimination rule for the epistemic
modality. That rule is the operational counterpart of intuitionistic reflection,
and captures the intuitionistic principle of factivity of knowledge described
in the introduction of this chapter.

DEFINITION 3.2.1. Let IEL be the system extending the natural deduction
calculus IEL™ of Def. 2.2.1 by the following elimination rule:

74

rooa

OA 1
1L
where I" and A are multisets of formulas, and A is discharged by OE.
We say that 0 A is the major premise of the rule, and L is its minor premise;
the discharged assumption of the rule is A.

og

The rule closely corresponds to the truth-tracking definition of knowl-
edge: Suppose that one can prove OA, i.e. she is allowed to believe A. But
if it is possible to prove that A is false, then something among the overall
assumptions must be reviewed.

As usual, we write I" g A when A is derivable in IEL assuming the set
of hypotheses I', and we write IEL - A when T = &.

It is easy to show that the axiomatic system IEL and the new natural de-
duction calculus IEL are logically equivalent.

LEMMA 3.22. 'L A lﬁ[I' b A

Proof. The proof strategy is the standard one, and the same as that for intu-
itionistic belief. By Lemma 2.2.2, it suffices to consider intuitionistic reflec-
tion only, in both paradigms.

The schema OA — ——A is clearly deducible in IEL by applying — &, then
O€&, and — 7 twice.

Conversely, consider the OE rule: By inductive hypothesis T' gy, OA
and A, A ki L. Then by MP and intuitionistic reflection T' by, ——A4;
moreover, by the deduction theorem, A gy, = A. An application of MP gives
the result.

X

It is straightforward to extend the modal A-calculus for IEL™ by decorat-
ing O& with proof names.

The A-term corresponding to OE gives the eliminator for modal terms, as
expected:

'k f:O04 x:AAFg: L
At (unbox fwithz.g) : L

3.2.2. NORMALISATION

The presence of an introduction and an elimination rule for the modal
operator requires to consider potential detours with the following general
pattern

75

04, - 04, B :
OB] 1L

This situation is easily handled by the following rewriting, that we denote
by dn:

Iy T'n [Al,“',An]l,A
. . . [B]Q,@
|:|1'41 . DATL B -
0Z:1 N
OB 1
T o&:2
[A1]17 T [A’ﬂ]n7 A
r B, ©
) : :
- L oA T
DAs L .. ’
Fn T og:2
0A, L.
L n

We now prove that IEL-deductions strongly normalise w.r.t. the system of
rewritings = + pg + 7o + do.
All we need to do is to specialise the proof strategy for Theorem 2.2.4.

THEOREM 3.2.3. Deductions in IEL strongly normalise w.r.t. the rewriting system
E+ po +mo + o

Proof. Tweak the translation (—) in the proof of Theorem 2.2.4 as follows:

(L) = 1

(T) = T

(p) = p

(A= B) = (A) —(B)
(AAB) = (A)A(B)
(AVB) = (A)V(B)
(DA) = (A)vL

76

Clfsz-f1,y.f2)) := C((f), =.(f1), y-(f2))
ini(f)) == ini((f))

box[z1, - ,xn]. gwith f1,--+, fn) ==
unbox f withz.g) := C({f), z.(9),y.y)-

For the sake of readability, it is again convenient to rephrase the transla-
tion of OE in the natural deduction formalism:

() ==z

(%) = =

(Ls() =L,(M
Az f) = Az.(f)
(fg) = (f)9)
((f,9)) == ({f)s (9))
gm(f» =m({f))

(

(

(

I [A], A () (A (A)
s g 0, §<f> (9)
0A . L., (A)V L LJ_ L

This translation preserves dp too, by means of applications of rewritings
in = concerning V-detours and permutations.
Thus, since deductions in NJp are strongly normalising w.r.t. =, we have
the desired strong normalisation for IEL-deductions.
X

3.3. ANALYTICITY AND OTHER PROPERTIES

This section rephrases all the results for IEL™ shown in Section 2.3. The
proof of the subformula property of normal IEL-deductions follows the same
pattern as that for IEL™, but definitions and preliminary lemmas need to pay
attention to the additional rewriting g introduced for O-detours that cannot
occur in [EL™.

The careful structural analysis of normal IEL-deductions allows, as in Sec-
tion 2.3, to establish by proof-theoretic means all the properties of intuition-
istic knowledge that in [] are proven my model-theoretic arguments. In
particular, the fact that the logic of intuitionistic knowledge is a proper ex-
tension of the logic of intuitionistic belief is here proven by using Lemma
2.3.13 and the subformula principle, without recurring to semantic consider-
ations.

3.3.1. PROOF OF THE SUBFORMULA PROPERTY

DEFINITION 3.3.1 (After []). A pathin an IEL-deduction f is a sequence
of formula occurrences Ay, - -- , A, where:

77

C{{fn)yxn. - C({f2), 22.C({f1), z1.in1({9)), y1.in2(y1)), y2.in2(y2)) - --

s Yn-in2(yn))

1. A; is either an open assumption of f, or an assumption discharged by
— 7T

2. if 1 <14 < k, then

« if A; is the major premise of V&, or a minor premise of OZ, then
Ay is the corresponding assumption discharged by that rule;

. if A;

a premise of | j;

a premise of a propositional Z-rule;

a major premise of OZ;

a major premise of an £-rule other than V¢&;

o 8o T

a minor premise of V&;
f. a minor premise of OE;

then A;11 is the conclusion of that rule;

3. Ay is either the end formula of the deduction, or the minor premise of
— £.

We will call any sequence of formula occurrences in a path, in which one is
aminor premise of an V&, or of an O and the following one is its conclusion,
a segment.

The definition just given generalises Def. 2.3.2 to consider also O occur-
rences in a deduction.

We can now show that any path in a normal IEL-deduction has the ex-
pected structure.

LEMMA 3.3.2. Any path in a normal IEL-deduction f is made of segments ordered
as follows:

« first, there are segments where the last formula occurrence is a major premise
of an E-rule, or a minor premise of OZ;

« then, there are segments whose last formula occurrence is a minor premise of
an O&-rule;

« afterwards, there are segments whose last formula occurrence is the premise
ofa_ly;

« finally, there are segments where the last formula occurrence is a (major)
premise of an Z-rule.”

This means that the structure of normal IEL is still similar to the one in Figure 1.5, even
though OE rules follow all the propositional E-rules.

78

We call the first segment ending in the premise of a L 5, or in the (major) premise
of an Z-rule the minimum segment of f, and the formula repeating in it is called
the minimum formula.

Proof. Proceed by contradiction, as in the proof of Lemma 2.3.3.

Now, it is easy to prove the analogous of Prop. 2.3.4.

PROPOSITION 3.3.3. Inapath Ay, --- , Ay, of a normal IEL-deduction, every for-
mula A in it is either a subformula of A1, or of A,,.

Proof. As for the proof of Prop: 2.3.4, a straightforward analysis of the struc-
ture of normal IEL-deductions justifies the claim.
X

To prove that every formula in an IEL-deduction is a subformula of the
starting assumption of the path it is on, or of its ending formula, we can use
the following

PROPOSITION 3.34. Every formula A in an |EL-deduction f lies in at least one
path of f.

Proof. Straightforward induction on the height h(f) of f, as for Prop. 2.3.5.
X

We can maintain Def. 2.3.6 and proceed proving the analogous of Lem-
mas 2.3.7 and 2.3.8. Those complete the ingredients to prove the main result,
namely

THEOREM 3.3.5 (Subformula principle). Every formula B occurring in a normal
|[EL-deduction f of A from assumptions I" is a subformula of A or of some formula
inT.

Proof. By induction on the order o of a path an occurrence of B is on, follow-
ing the lines of reasoning in the proof of Theorem 2.3.9.
X

3.3.2. FURTHER PROPERTIES OF INTUITIONISTIC KNOWLEDGE

For IEL, a more traditional definition of neutral proofs can be given: We
say that a IEL-deduction is neutral if it consists of an assumption, or its last
inference is an £-rule.

PROPOSITION 3.3.6. In any normal and neutral |IEL-deduction of A fromT', T’ # .

Proof. By induction on the height h of the given deduction, as in the proof of
Prop. 2.3.12.
If h > 0, we need to consider the further case:

79

e. if the last rule is O, then the inductive hypothesis can be applied to
the subdeduction ending in the major premise of that rule.

X

All the other properties for intuitionistic belief follow in the same man-
ner:

LEMMA 3.3.7. The following hold:

(i) In any normal |IEL-deduction of A, the last rule applied is the introduction
rule for the main connective of A.

(ii) The reflection rule is admissible in IEL.
(iii) |EL satisfies the disjunction property.
(iv) IEL is O-prime.
(v) IfIELF O(AV B), then |[EL+ OA or IEL - OB.
(vi) |EL is consistent.
(vii) |EL is decidable.

Proof. Each claim is proven in the same way as the analogous for IEL™, dis-
cussed in Section 2.3.2. X

By a pure structural analysis of IEL and IEL™ we can also show that the
the logic of intuitionistic knowledge is a proper extension of the logic of in-
tuitionistic belief, as shown in [| by a semantic argument.

LEMMA 3.3.8. IEL™ C IEL.

Proof. Consider the formula —0O_L.
That formula is clearly provable in IEL:

Lo S £

72
—olL

Now suppose that IEL™ F =01 too. Then by the normalisation theorem
(Theorem 2.2.4) there exists a normal IEL™-deduction of -OL1. By Lemma
2.3.13, the last rule of that deduction must be an — Z, so that | is derived from
the hypothesis O in a normal IEL™-deduction. By the structure of normal
deduction (Prop. 2.3.4), and the subformula principle (Theorem 2.3.9), that
deduction must consist of Z-rules, and all formulas occurring in it can be
among {01, 1 } only. But these two requirements cannot be simultaneously
satisfied, so that IEL™ t/ =0 L after all.

X

80

A similar structural and combinatorial reasoning establishes also the fol-
lowing result of [I:

LEMMA 3.3.9. Intuitionistic verifications do not have the disjunction property, i.e. for
L e {IEL~,IEL}, L/ O(AV B) — OAV OB.

RELATED WORK

In the previous pages it has been shown that all the structural and proof-
theoretic properties for intuitionistic belief presented in | , ,]
and discussed in Chapter 2 hold also for intuitionistic knowledge.

As previous recalled, proof theory for IEL in terms of standard Gentzen-
style sequent calculi is proposed in | , J. Those works are also rele-
vant for complexity related investigations into the (first-order) logic of intu-
itionistic knowledge.

Similar remarks could be made for | |, where sequent calculi for in-
tuitionistic knowledge and belief are by introducing semantic notions in the
structure of sequents according to the paradigm of implicit internalisation
for sequent calculi. The resulting system is very efficient from the compu-
tational view-point, and resembles nested sequent calculi for intuitionistic
logics of [].

In [|, a proof-irrelevant algebraic-categorical semantics for first-
order IEL is given. It might be interesting to consider in future how the
results discussed in the present chapter relate to that interpretation, and see
if the proof-relevant categorical models for intuitionistic belief recalled in
Section 2.4 can be extended to cover knowledge too.’

On the more traditional proof-theoretic side, it might be relevant to de-
fine translations of the natural deduction systems discussed here with the
Gentzen-style sequent calculi of [] and | |, by recurring to the gen-
eral framework established in [, Ch. 8]. Those intriguing aspects are
left to future work.

3The interpretation of [] is based on cover systems, which were originally devel-
oped by Robert Goldblatt [] for a topos-theoretic analysis of Heyting algebras with a
nucleus operator. For epistemic modalities, the original perspective is generalised to consider
a more general class of cover systems, but the view-point is still proof-irrelevant. Actually, it
is not trivial at all to find the right insight to connect those algebraic considerations with the
proof-theoretic semantics given in Sect. 2.4, and a reasonable categorical interpretation of
IEL-deduction is still under development by the author.

81

4

NATURAL DEDUCTION FOR INTUITIONISTIC STRONG
LOB LOGIC

In the previous chapters, we have interpreted the co-reflection schema
A— DA

in epistemic terms, by relying on the provability account of intuitionistic
truth embodied in BHK informal semantics.

But what happen if we seriously take OA as a provability statement over
base (arithmetical) theory? It is clear that the provability condition (75) share
the same “abstract” structure of co-reflection. That arithmetical formula
states ¥1-completeness of an underlying theory T which is based on classical
logic: If the 31 sentence A* is true, then it is also provable.

We know that any theorem of Godel-Lob provability logic can be arith-
metically interpreted by a realisation function * w.r.t. any “reasonable” T'
over a classical basis. What about intuitionistic theories of arithmetic?

At present time, there is no uniform solution to the task of finding an
adequate intuitionistic logic for provability w.r.t. those arithmetical systems.
This is partially due to the highly classical object-level reasoning involved
in the proof of Solovay’s theorem. For sure, the intuitionistic counterpart of
GL is not the provability logic for Heyting arithmetic: For the letter, a proper
extension of IGL is needed.” Nevertheless, there are some modal systems
that are known to capture the structural properties of formal provability in
very specific intuitionistic theories of arithmetic. We discuss one of them,
namely intuitionistic strong Lo6b logic, denoted by ISL.

This logic was identified first by Dick de Jongh and Alber Visser as a
modal version of algebraic presentations of arithmetic over intuitionistic bases
[|. Those authors describe it as a ‘Kindergarten Theory’, since most of

'Refer to Section 1.2.2.

A most promising candidate is presented in [], in which a provability logic for HA
is axiomatised by adding to IGL very specific conservativity principles, rephrased in modal
terms. It is worth noticing that the definition of that final modal system goes through inter-
mediate axiomatisations involving restricted co-reflection schemas: The reader is referred to
that very recent preprint for the details.

82

the proof-theoretic results about GL have strikingly simple versions. This
is true even for the fixpoint theorem, that, for GL, we recalled in Theorem
1.2.6. Since that theorem can be interpreted as a very abstract version of self-
referential phenomena, it is not surprising that the interest in ISL went be-
yond the arithmetical realm, towards the areas of computer science dealing
with fixpoint operators and (co)recursive definitions.

In particular, the type-theoretic community has become in recent years
very attracted by intuitionistic strong Lob logic - as well as by intuitionistic
Godel-Lob logic - so that the provability smack of those modalities has ac-
quired very different interpretations: For instance, |] proposes IGL as
a logic for recursion, while [| reads ISL and IGL as systems for study-
ing later operators and guarded (co)recursion, and identifies the categorical
structure underlying the modality in terms of the topos of trees. Similar con-
siderations are made in [| for a fragment of ISL using only O, T, A as
logical connectives; in that paper, a correspondence between the strong Lob
schema

(OA—-A)— A

and contraction endofunctors in cartesian categories is proposed.

In this chapter, we shall restrict our attention to the design of a natural
deduction system for ISL - denoted by ISL - having good structural prop-
erties. In particular, we cared to define the calculus as a natural extension
of IEL™ by means of an elimination rule for the modal operator without in-
juring the introduction rule characterising our natural deduction system for
intuitionistic belief.

Section 4.1 recalls the original axiomatisation of intuitionistic strong Lob
logic, and its relational semantics. In Section 4.2 we introduce our natural
deduction calculus ISL and the modal A-calculus obtained by decorating ISL-
deductions with proof-terms; moreover, we discuss the design style of our
system, which has been led by the intent of defining a calculus enjoying good
structural properties. In particular, we prove that ISL strongly normalises
w.r.t. a system of rewritings involving OZ/0& detours. Finally, we discuss
strong normalisation w.r.t. further simplifications of deductions and its rele-
vance for assuring analyticity of our calculus.

WRITING AND REVISION NOTES. This chapter exclusively contains unpub-
lished original material on the intuitionistic strong Lob logic. It can be thought
as a collection of preliminary results that the author has autonomously ob-
tained in his own investigations of proof theory for (intuitionistic) provability
logic. From another perspective, the calculus ISL described here can been
seen as an evidence for the flexibility of system obtained by adding the OZ
corresponding to the schema A — OA: In a sense, the results for ISL pre-
sented here suggest that IEL™ can be really used as a kernel calculus for de-
veloping natural deduction systems for intuitionistic modal logic based on

83

co-reflection.

41. AXIOMATIC CALCULUS FOR INTUITIONISTIC STRONG LOB
LOGIC

A first axiomatisation of intuitionistic strong Lob logic dates back to
[|, where an algebraic semantics is also discussed. We start by recall-
ing the axiomatic calculus ISLL together with its relational models, defined in

[Lit14].
41.1. SYSTEM ISL

DEFINITION 4.1.1. ISL is the axiomatic calculus given by:
+ Axiom schemas for intuitionistic propositional logic;
+ Axiom schema K:O(A — B) — 0A — OB;
« Axiom schema of co-reflection A — OA;

+ Axiom schema GL : O(0OA — A) — OA4;

A— B A
B

As usual, we write I' Frgr, A when A is derivable in ISL assuming the set of
hypotheses I, and we write ISL - A whenT" = .

+ Modus Pones MP as the only inference rule.

It is clear that ISL defines a normal intuitionistic modal logic.

The notion of arithmetical realisation of Section 1.2.2 is still valid for this
system when considering intuitionistic arithmetical theories. As stated at the
beginning of this chapter, ISL is indeed special among the provability logics
over an intuitionistic basis, for identifying all the relevant properties of for-
mal provability in an intuitionistic arithmetical system: Only few other modal
logics for intuitionistic arithmetic are known, so that it provides an impor-
tant insight into constructive provability by means of a simple propositional
calculus.”

4.1.2. KRIPKE SEMANTICS FOR ISL

Even though ISL was originally defined on the basis of algebraic consid-
erations about (subsystems of) Heyting arithmetic, it is possible to prove that
intuitionistic strong Lob logic is sound and complete w.r.t. a relatively simple
possible world semantics.

®Notice that a less interesting arithmetical completeness result relates ISL with the prov-
ability logic of ¥ -sentences, since the co-reflection schema corresponds to X1 -completeness,
i.e. the provability condition (75) of Section 1.2.

84

DEFINITION 4.1.2. A model for ISL is a quadruple (W, <, v, R) where
« (W, <,v) is a standard model for intuitionistic propositional logic;
+ Ris a binary relation on W such that:

- if xRy, then x < y; and
- if z < yand yRz, then zRz; graphically we have

R
yooye

s

- R is transitive;

- R is Noetherian;
+ v extends to a forcing relation I such that
-z |- OAiff y IF A for all y such that zRy.

Validity of a formula in a model and in a class of frames are defined as usual,
and denoted by the relation F, as for intuitionistic epistemic logics of the
previous chapters.

THEOREM 4.1.3. The following hold:
(Soundness) IfISL - A, then ISL F A.
(Completeness) IfISL F A, then ISL - A.

Proof. Soundness is proven by induction on the derivation of A.
For a proof of completeness, refer to | .
X

4.2. NATURAL DEDUCTION FOR INTUITIONISTIC STRONG LOB
LOGIC

As for IEL, we are going to present a modular extension of IEL™ that for-
malises in the natural deduction paradigm ISL by means of a rule for elimi-
nating modal formulas.

For this calculus, a strong normalisation theorem is proven w.r.t. an ex-
tended system of proof-rewritings that also considers OZ/OE detours. A modal
A-calculus is naturally defined by adding a destructor for O-types, on the lines
of what is proven in the previous chapters about epistemic logics.

85

421. SYSTEM ISL

The natural deduction calculus for intuitionistic strong Lob logic we want
to define is obtained by considering an elimination rule for modal assump-
tions. That move - i.e. considering an elimination operating of hypotheses
instead of the root of the subderivation immediately above the rule itself - fits
the original philosophical motivations of Gentzen’s paradigm only partially.
Nevertheless, it has some technical advantages that need to be considered.

DEFINITION 4.2.1. Let ISL be the system extending the natural deduction
calculus IEL™ of Def. 2.2.1 by the following elimination rule:

I, [OA]* [A]*, A

A C
C

where T" and A are multisets of formulas, and OE allows both multiple and
vacuous discharge.

0&:x

The rule corresponds to the strong Lob schema:
(O0A — A) = A,

which can be used for an alternative axiomatisation of ISL []. However,
for structural reasons that we explain below, we have designed it as a G3-rule
for natural deduction, on the lines of the formulation of propositional rules
in| , Ch.1and 8].

As usual, we write I' k. A when A is derivable in ISL assuming the set
of hypotheses I', and we write ISLF- A when T" = @.

It is easy to show that the axiomatic system ISLL and the new natural de-
duction calculus ISL are logically equivalent.

LEMMA 422 I'kg A lﬁ(T ks A

Proof. Both directions are proven by induction on the height of the respective

formal proof. By Lemma 2.2.2, it suffices to consider the additional schema

GL for the axiomatic calculus, and the OE for the natural deduction system.
The schema O(0OA — A) — OA is deduced in ISL as follows:

[0A— A2 [DA]
A —& [A]l
[O(OA = A A
oA
O(0A > A) - 04

0Z:2

73

86

Conversely, consider the OE rule: By inductive hypothesis I', DA b, A
and A, A Fgp, C. By the deduction theorem, I" Fygp, OA — Aand A Figp, A — C.
Then, by normality, OT" Fpgp, O(0A — A),and by co-reflectionI" g, O(OA — A).
An application of MP with GL gives I' Frgp, OA. A further application of MP
with ' Frgr, OA — Aand applying again MP to the result with A Figp, A — C
gives the desired conclusion.
X

As for IEL we are able to extend the modal A-calculus for IEL™ by deco-
rating OE with proof names.
The A-term corresponding to OE gives the eliminator for modal variables:

r:0A4TH/f:A y: A AFg:C
A (I8bx. fwithy.g) : C

4.2.2. NORMALISATION

For the modal operator we now need to consider potential detours made
of the modal introduction rule followed by the corresponding elimination
rule. That is the point where the efficiency of the G3-style formulation of O&
for natural deduction plays its key role.

Suppose, indeed, that we had defined the eliminator for O in a most nat-
ural way as

I, [OA]

% O& %

Then, the OZ/0&’ detour would be

Fl Fn [Alu'”)AH]I)A
PR)
DAl = DA” B 0zZ:1
0B O&:%
oB

where x labels occurrences of OOB among the assumptions. If OB occurs
only among the assumptions of the subdeduction g, no issue arises, since we
can easily rewrite the whole deduction as follows:

87

[OB]! -

e 2
I, r, 0oB [él, Anl? A
Efl f'n B
DA, .- DA, B
oB '

However, a little thought shows that no simplification can be performed
when OOB does not lie in the subdeduction g.

On the contrary, by using the G3-style elimination rule for the O, we can
consider the following rewritings, that we denote by of, and 02, respectively:

r T (A1, An]", A, [DOBJ?
. . . [DB]Q7 @
. ol
04, e A, B .
07Z:1 b
OB C _—
C :
[OB]*
[my
r Th 0OoB [Ag,--- ,An}Q,A
. . 1
ob, . : . B 5] ne:l
~ 0A; cee OA, B
OB 0Z:2
c
Fl [DDBP,Fi Fn [Ala"’ 7An]1aA
. . . . [E\B]Q7 e}
. 0%
04, OA; OAn B :
OB 0Z:1 C
0e:2
OB
I Iy [Alv"'yAn]lvA
[0DOBJ3, Ty : :
: (OB
of : : X :
~ : 04, [0A;)2 0A, B
0A; 0B o :
og&:2 i
OB ¢ og&:3
C :

We are now ready to prove that ISL-deductions strongly normalise w.r.t. the
system of rewritings = + po 4+ 7o + o} + 03. As for IEL, we can rely on the
general proof strategy for Theorem 2.2.4.

88

THEOREM 4.2.3. Deductions in ISL strongly normalise w.r.t. the rewriting system
=+ po + mo + o + 0.

Proof. Tweak the translation (—) in the proof of Theorem 2.2.4 as follows:

C(J(”}O;»’)flyh(z%): C(f) z{f1),y-(f2))
ng[xh."' a;n]-QWith Ji, o fa) = C({fn)y T - - C((f2), 22.C({f1), 21.in1((9)), y1.in2(y1)), y2.in2(y2)) -+ , Yn.in2(yn))
16b . f withy.g) := (gy := (f[z :=ina(Az.(z : L))])]).

As for the previous proofs, it is convenient to rephrase the translation of
O in the natural deduction formalism:

(L) = L
(T) = T
(p) = p
(A— B) := (A)— (B)
(AAB) = (A)A(B)
(AvB)y = (A)V(B)
(OA) = (A)VT

() ==

(%) := %

(L)) =Ls()

Az f) == Az.(f)

(fg) = (f)g)

((f;9)) == ({f): (9))

gm‘(f» =mi((f)

(

(

(

T
I, [DA]* [A}*, A <F> <A> VT "
; g & E(f)
: (A) (A)
A C ¢ O&:x E(Q)
(@)

It is straightforward to see that all the rewritings in Z + pg + mo + o}, +
o? are preserved by the translation and turned into rewritings in Z. Thus,
since deductions in NJp are strongly normalising w.r.t. =, we have the desired
strong normalisation for ISL-deductions.

X

4.2.3. ON ANALYTICITY OF NORMAL ISL-DEDUCTIONS

As stated in Chapter 2, there might be several reasons to prove a normal-
isation theorem for a given natural deduction, but the main proof-theoretic
aim of it is establishing the subformula property for the system under inves-
tigation.

We have also seen that that principle follows from the precise structural
properties of normal deductions: In particular, for NJ(p)~, the subformula

89

property follows from the canonical structure of normal deductions made of
an analytic part followed by a synthetic part.* Similar considerations can be
made for IEL(™), since an analogous structural analysis can be performed on
normal deductions for those systems.

However, for establishing the subformula property of IEL(™) we needed to
consider further conversions characterising the interaction of rules for the
O operator and for the disjunction. Similar considerations could be made
for ISL: In the present setting, it is pretty natural to consider the following
additional proof-rewritings Koo

roolAra 1 AP.A (86
S B).0 roo -
: : : > : : .
A OB .. : : OB cC __
OB - a 0Z:1 A Dc O&:% o
ac ' acC ’
r [A5A [A]*, A
r
: ~ :
A c . : : C C o
C e : E—prop A D DE-*g "
D C '

Notice that the translation used in proving Theorem 4.2.3 preserves the
rewritings of kg too, so that ISL strongly normalises w.r.t. the extended system
Z + po + 7o + oh + 0 + ka.

Moreover, these simplifications should suffice for establishing analyticity
of normal ISL-deductions. Actually, we are pretty confident that the subfor-
mula principle does hold for our calculus when we consider the whole sys-
tems of rewritings under discussion. Nevertheless, we are not currently in the
position of proving a sufficiently detailed proof of that claim: The main is-
sue here is identifying the precise canonical structure of normal deductions,
since O& seems to be able to “ramble on” deductions and, at the same time,
it has a peculiar non-local nature. Therefore, in full intellectual earnestness,
we prefer to formulate the subformula property for ISL as

*See Section 1.4.2.

>It order to enhance readability, we only consider special cases of OZ, and use the nota-
tion * for discharging in O without making explicit the position of the boxed assumption
discharged by the rule: No confusion should arise, since the general setting is dealt with the
same way as the special one we are considering here.

90

CONJECTURE 4.2.4 (Subformula principle). Every formula B occurring in a nor-
mal - w.r.t. 2+ po + 7m0 + ol + 0% + ko — ISL-deduction f of A from assumptions
I is a subformula of A or of some formula in T.

RELATED WORK

In this chapter we have seen some preliminary results on structural proof
theory for intuitionistic strong Lob logic ISL, investigated first in [l. A
natural deduction system ISL has been presented, and a strong normalisation
theorem has been proven for it w.r.t. a specific set of proof-rewritings which
are designed for establishing analyticity - hence consistency and decidability
- of our calculus.

A different proof-theoretic analysis of ISL is presented in [|. They
develop G3 and G4 sequent calculi for intuitionistic strong Lob logic on the
basis of their previous results for intuitionistic GL [|. Their systems
enjoy syntactic cut-elimination and Craig interpolation, and are designed so
that a relational countermodel can be extracted from a failed proof search of
a given sequent. Cut-elimination for those calculi does not suffice for estab-
lishing their analyticity, but it might be relevant to consider potential trans-
lations between their formalism and the one presented here.

Another structural investigation has been carried out by Albert Visser and
Tadeusz Litak with a focus on interpolation - Craig’s as well as uniform ver-
sions - results for ISL, based on their previous work on Lewisian implication
[LV18, I

Outside structural proof theory, it might be interesting to confront our
system ISL with the categorical account of (guarded co-)recursion operators
givenin | |. As stated at the end of the previous section, a structural anal-
ysis of ISL is made a bit more convoluted because of the peculiar “non-local
and erratic” nature of O&, which does not allow a direct derivation of the
subformula principle from normalisation of deductions. At the risk of over-
simplifying, one might say that the correspondence between normalisation
and local completeness of natural deduction rules is not clear for ISL. From
that perspective, a careful comparison with Conway’s conditions [] for
recursion categories — which do not determine a purely equational system of
rewritings - might be worth investigating, for the relevance that the Lob ax-
iom has acquired in the study of fixpoint operators and in an abstract account
of recursion.’

Refer to e.g |] and, more recently, [.

91

5

MODULAR SEQUENT CALCULI FOR INTERPRETABILITY
LOGICS

Interpretations arise in several areas of (meta)mathematics and there ex-
ist many variations on them.! For instance, it is possible to interpret propo-
sitional intuitionistic logic into classical Godel-Lob logic, by establishing an
equivalence between GIL and the axiomatic calculus IIPC; from that, one could
also interpret IPC into an arithmetical theory T that is adequate to GL.

An even simpler example is given by Gddel’s numbering, which inter-
prets (a model for) meta-mathematical reasoning into the standard model for
arithmetic by defining an injective function that maps finite strings of arith-
metical symbols into N, and a further function mapping each meta-predicate
into its arithmetical counterpart.

In the present chapter, we will assume a very general version of it: An
interpretation of a theory T into a theory T” is just a structure preserving
translation ¢ such that if T = A then 7" + ¢(A). More precisely, we will
consider arithmetical theories satisfying the Hilbert-Bernays-Lob provability
conditions of Section 1.2.%

Modal logics for interpretability arise as an extension of the language of
provability logic by means of a binary modal operator > capturing the relation
of (relative) interpretability between two arithmetical theories: The proposi-
tional formula A > B is then intended as the modal counterpart of the arith-
metical formula Inet(TA*7, " B*7) - where Intt(x,y) is the formal predicate
for relative interpretability over T - expressing the fact that the arithmetical
theory T extended by A* interprets the arithmetical theory T extended by B*.

The origins of interpretability logics date back to the work by Albert
Visser [|, who axiomatised the basic modal framework by extending the
language of GL with the following schemas:*

« AxiomIL1:3(A— B) —» A B

'A first methodological treatment of the notion was presented first in [], where the
basic properties of this concept are introduced.

2Here we recover the notation introduced in that section, to which the reader is referred.

*We assume that > binds stronger than —, but weaker than the other connectives.

92

Axiom IL2: A>B - B>C = A C

AxiomIL3: A>C —-B>C —-AVB>C

AxiomIL4: A>B —- A —- OB

Axiom IL5: CA> A

These constitute the minimal logic for interpretability I, on top of which
several systems can be constructed.

Completeness results w.r.t. a Kripke-style relational semantics were pre-
sented first by Dick de Jongh and Frank Veltman in [| for I and some
extensions by using a canonical model construction. More complex proofs
were developed by the same authors in 1999, and further techniques were in-
troduced to achieve subsequent completeness results since the beginning of
2000s by Joost Joosten and collaborators |]. Recent results have been ob-
tained also for subsystems of IL by Taishi Kurahashi and Yuya Okawa [J.

On the arithmetical side, by tweaking Solovay’s proof strategy for GL, it
is possible to prove also the arithmetical completeness of some extensions of
IL. The interpretability logic for T is, as expected,

IL(T) := {A]| Vs, TH A*}.

In|], it is proved that this notion is ¥3-complete.
However, if we assume that T is ¥;-sound and proves full induction, by
adding the schema

M:=A>B — AANOC> BAOC,

we have that
IL(T) = ILM := IL + M.

Similarly if we add to IL the schema
P:=Ap B — O(A> B),

then
IL + P =: ILP = IL(T)

for any T that is ¥1-sound, finitely axiomatised, and such that it proves the
totality of supexp.

The most intriguing aspect of interpretability logics is exactly such a sen-
sitivity to the base arithmetical theory. The main open question in the field
is indeed establishing the interpretability logic of all reasonable arithmetical
theories, i.e.,

IL(ALl) == {A|VT D I1Ag + exp, Vs, T - A*}.

93

What we know is that IL C IL(All) C ILM NILP, but a modal characteri-
sation of IL(All) is still unknown.

There are many further open questions in the field. It is worth noticing
that very few is known about proof theory for interpretability logics: Katsumi
Sasaki gives in [| a Gentzen-style sequent calculus for IL only; while
Tuomas Hakonemi and Joost Joosten present in [] a labelled tableaux
system for some extensions of IIL based on standard Veltman semantics.*

In the present chapter, this gap in the proof-theoretic analysis of inter-
pretability logics is partially filled by introducing a family G3IL* of labelled
sequent calculi which covers in a natural way a wide range of modal systems
for interpretability. Their design is based on the methodology of [,

] but, instead of working with formal relational semantics or formal
neighbourhood semantics, these original calculi internalise the hybrid mod-
els by Rineke Verbrugge, usually called generalised Veltman structures [J.

The main contribution of the work presented here consists then of the
design of modular sequent systems satisfying the main structural desiderata,
namely: admissibility of contraction and weakening, invertibility of logical
rules, and a cut-elimination algorithm.

The chapter is organised as follows: In Section 5.1 we recall the axiomatic
calculi for the main interpretability logics under investigations; in Section 5.2
the basic definitions and results in the model theory for interpretability logics
are recalled, and the generalised Veltman semantics (GVS) is defined accord-
ing to the most recent literature on the topic. Our family of sequent calculi
G3IL* is then presented in Section 5.3; Section 5.4 is committed to the struc-
tural analysis of those calculi, and includes a constructive proof of admissi-
bility of the cut rule for all the extensions. Finally, in Section 5.5 we prove
soundness and completeness of our systems w.r.t. the standard axiomatic and
semantic presentations.

WRITING AND REVISION NOTES. This chapter exclusively contains unpub-
lished original material on modal logics for interpretability. To the best of
our knowledge, G3IL* is the most comprehensive class of analytic calculi for
interpretability logics that is currently available from the literature. The main
result presented here is the cut-elimination theorem for these calculi, based
on the complexity measure introduced in [|, that we modified accord-
ing to our more general setting.

51. AXIOMATIC CALCULI

Let’s start by extending the language £ with a binary modal operator >
the resulting formal language will be denoted by Lo .

“See Section 5.2.1 below for a definition of the latter.

94

The basic axiomatic calculus for interpretability logics is given by the
following

DEFINITION 5.1.1. Let ILL denote the axiomatic system determined by
« the axiom schemas of CPPC;
+ schemaK:O(A - B) - 0A — OB;
« schema GL: O(0A4 — A) — 0OA4;
« interpretability schemas
~IL1: O(A - B) - A B;
-IL2: A>B—-B>C—A>C

-IL3: AC—-Br>C—-AVB>C
-1L4: A B = CA—- OB

- IL5:CA> A
e MP rule A_>BB A

A
OA

As usual, we write I' by, A when A is derivable in IL assuming the set of
hypotheses I', and we write IL - A when I' = &.

« Necessitation rule

For this calculus, some interesting lemmas are provable:
LEMMA 5.1.2. The following hold
i) IL+O0-A — (A> B);
(i) ILFAVOAD A
(i) ILF A AAO-A4;
(ivv A> B, ANO-A> Band Ar> B A O-B are interderivable over IIL;
(v) A L and O—-A are interderivable over IL;

W) ILF CA > ~(A> CA).

Proof. Refertoe.g.| .
X

Item (v) of the previous lemma shows that we could dismiss the O modal-
ity, since we could define OA as =A > L. This would simplify our base lan-
guage. However, we will see in Sections 5.2.1 and 5.2.2 that it is possible to
define O via > as well as > via O by semantics considerations. Those will
lead to the design of our family of sequent calculi in Section 5.3.°

>Similar considerations underlie the definition of the tableaux systems in [], which
deal, in any case, with a more limited number of interpretability logics.

95

51.1. AXIOMATIC EXTENSIONS

On top of I, it is possible to add further modal principles that have spe-
cific relevance for arithmetical realisations. Here we will consider the fol-
lowing calculi:

DEFINITION 5.1.3. Let us define as proper extensions of TIL
o ILM := IL + M, where
M:=A>B - ANOC>BAOC

is called the Montagna schema;

« TLP :=1IL + P, where

P:=A>B— O(A> B)

is called the persistence schema;

o ILW := 1L + W, where

W:=A>B— A> BAO-A

is called the de Jongh-Visser schema;

o ILKM]1 :=IL + KM1, where

KM1:=Ap>OT — T > -4;

o LMy := IL + Mg, where

Mp:=A> B — CAANDOC > BAOC,

5.2. SEMANTICS FOR INTERPRETABILITY LOGICS

As stated in the introduction of the chapter, we know - after [,
], and [, |, respectively - that TLM is the interpretability
logic for arithmetical theories proving full induction, and ILP captures in an
adequate the properties of formal interpretability over finitely axiomatised
theories proving the totality of the superexponential function.®
Their proofs are based on Solovay’s strategy for arithmetical complete-
ness of Godel-Lob logic, therefore they use in an essential way the charac-
terisation of those axiomatic systems in terms of relational models. We now
turn our presentation to these semantic aspects of interpretabilty logics.

®This means, for instance, that Montagna’s principle holds for Peano arithmetic, but does
not hold for Gédel-Bernays set theory; on the contrary, the persistence principle holds for
Godel-Bernays set theory, but does not hold for Peano arithmetic. Nevertheless, they share
the same provability logic, namely GL.

96

5.2.1. VELTMAN SEMANTICS

A standard relational semantics for interpretability logics is obtained from
possible world semantics by “decorating” frames with additional indexed ac-
cessibility relations.

DEFINITION 5.2.1. A Veltman frame F consists of:
+ anon-empty set W of possible worlds;
+ a binary relation R on W which is transitive and Noetherian;

« acollection {S, | x € W} of binary relations which are reflexive, tran-
sitive and such that

- each S is defined on R|x], where R[z] := {y € W |xRy}; and
- if xRyRz, then yS, 2.

A Veltman model M is obtained by adding an evaluation function v to
a given Veltman frame, as usual. A forcing relation is then obtained by a
standard definition for propositional connectives and O-modality, while for
>>-modality we stipulate that

z |- A>B iff forall y,ifxRyandy I+ A, then there exists a z such thatyS,zand z I+ B.

According to the notation of Section 1.1, we write Eoq A when A is forced
by any world in M; similarly, we write Fr A when F A for any model M
based on F.

For extensions, some frame conditions are needed. A frame condition
for a modal schema A is a (first or higher order) formula (A) in the language
{R,{S:}} such that the structure F satisfies the property (A) iff, for any Velt-
man model M based on F, Eo A.

In| , | many principles for interpretability were proposed first,
together with their semantic characterisations. Nowadays, we know that

(W) = (KW1) = (F) = “R o S, is Noetherian” for anyxz € W,
where

KW1 = ApOT —-Tp>-A4
F = Ap CA — O-A.

Moreover we have that
(M) = (KM1) = (KM2) = if yS;zRu, then yRu,
where

KM2 = Ap> B— (OB — <C) = 0(A — 00)),

97

and we know that KM1 and KM2 are interderivable over IL.
By using Veltman semantics, it is also possible to show that

IL{F, KW1} If KW1°,

where
KW1°:=AANBD>CA— A> (AAN-B).

This means that ILF, ILKW1, ILKW1° are incomplete w.r.t. the standard
relational semantics.
5.2.2. GENERALISED VELTMAN SEMANTICS

Generalised Veltman semantics (GVS) comes to rescue the situation. It
has been developed by Rineke Verbrugge in [| by considering interpre-
tations which are reminiscent of neighbourhood semantics for non-classical
logics.

To be more precise, each S, is now a relation between worlds and sets of
worlds, satisfying specific properties which are identified by the schemas for
>.

DEFINITION 5.2.2. A generalised Veltman frame F consists of

+ afinite set W # &;

+ abinary relation R C W x W which is irreflexive and transitive;

+ a W-indexed set of relations S, C R[z] x (p(R[z]) ~ {2});
satisfying the following conditions:

+ Quasi-reflexivity: if z Ry then yS,{y};

+ Definiteness: if tRyRz then yS,{z};

+ Monotonicity: if ySya and @ C b C Rx| then yS,b;

+ Quasi-transitivity: if yS,a and vS.b, for all v € a, then yS; (U, bv)-

vea Y
A generalised Veltman model is obtained by considering an usual eval-
uation function, which can be extended to a forcing relation defined as for
standard semantics, with only one difference:
z Ik A>B iff forally if xRyandy I A, then there exists an a such that yS,aand a -7 B,

where a |FY B abbreviates the expression “for any z € a, z I+ B”.

98

As for relational semantics, extensions for IL need generalised frame con-
ditions: We denote by (A)g, the frame condition w.r.t. generalised Veltman
semantics corresponding to the modal schema A.

We know that the following hold’

M)gen = ySza= 3bCa, nyb&R[b} - R[y]

KM1)gen = ySya= Fi€a,Vz(iRz = yRz)

P)gen = zR2'RyS,a = 3b C a,ySyb

wRuRzS,a = 3b C a,uS,b& R[b] C R[u]
wRrzRuS,a&Yv € a(R[v]Nb# &) = Je C b,uSzc
ySza = 3b C a,ySb& RPN S; b =2

R)gen = wRxRuSya = Ve € C(x,u),Ib C a,zSywb& R[b] C ¢

Y
(=)
~
og
[
S

e N N e R e e
==
T a2
S]
=
I I

- 1 € R[b] iff there is an x € b such that xRj;
i€ S;biffiS,b;

- C(x,u) :=={c C R[z]|Vd,uSyd = dNc+# T},
- Py:= A OB — O(A> B);

-R:=A> B — —(A>-C)>BAOC),

- W':=Ap>B— BAOCD>BAOCAO-A.

For the basic system I completeness results are known w.r.t. both stan-
dard Veltman semantics and GVS. Moreover, the techniques used to prove
the completeness theorem for that system w.r.t. GVS can be easily extended
to consider analogous results for ILM, ILP, and TLW | , L1 .

However, for the other extensions the proof of modal completeness can
be quite convoluted and very sensitive to the logic under consideration, so
that proving that an extension of a given system is complete may need a very
different proof strategy w.r.t. the one used for the completeness of the orig-
inal subsystem. Some promising advances have been made recently by Joost
Joosten and collaborators in a series of works aiming at developing a modular
and uniform methodology to deal with GVS completeness of interpretabil-
ity logic: The most recent literature on the topic includes |

: 15

In any case, investigations on GVS suffice to establish that for the in-
terpretability logics we have mentioned the interdependencies rendered in
Figure 5.1 hold.

))

"We need to use symbolic connectives for the meta-level in order to enhance readability.
81t is worth noticing that there exist flourishing research in finding even more general
interpretability principles, whose semantics is still under investigation: See e.g. [,

.

929

M
KM1

Mo we KM2
w KW1°
7
Figure 5.1: Interdependencies among interpretability logics, after [I.

An arrow from S to ' is interpreted as IL + S C IL 4+ S'.

Finally, we can summarise the current model-theoretic knowledge on in-
terpretability logic by the following glossary:’

Modal principle | Veltman completeness | GVS completeness | Veltman FMP | GVS FMP
M v v v v
P v v v v
w v v v v
W v v ? v
Mo v v ? v
Po X v ? v
R ? v ? v
F X ? v v

5.3. DESIGN OF THE LABELLED SEQUENT CALCULI

We have seen that the language £ 1 is somehow redundant: After Lemma
5.1.2(v) we know that OA is equivalent to = Ap>_L. This invites to minimise the
formal language for interpretability by considering the >-modality as primi-
tive. The resulting language will be denoted by L.

We need now to rephrase the inductive definition of well-formed formu-
las of IL - and its extensions - as follows:

DEFINITION 5.3.1. The set of well-formed formulas of IL and its extensions
w.rt. L is given by the following grammar

Formyp :== p| ANB|AVB|A—-B | Ll1| A>B,

where p € Atmand A, B € Form..

°This information is collected from the results in [1, [,], [1, [,
N J. Recall from Section 1.1 that FMP abbreviates “finite model property”.

100

As the reader might expect, we define -A:= A4 — 1, A+ B := (A —
B)AN(B— A),0A4:=-Ap> 1,and CA :=-0-A.

On the axiomatic side, such a minimalist choice about the basic lan-
guage is reflected by a minimalist axiomatisation of the basic system for in-
terpretability:

DEFINITION 5.3.2. Let IL denote the axiomatic calculus defined by
+ Axiom schemas of CPC;
o schemall2: A>B — Bp>C — A>C;
o schemall3: A>C —- B>C — AV B> C,
+ schema IL-Lob: A> (AN (AD> L));

« MP Rule Ao B A R
B
A—>B
PRule o5

The extensions of I are obtained by adding the axiom schemas that we
discussed in Sections 5.1.1 and 5.2; they will be denoted analogously to the
systems based on multimodal IL.

The calculi we are now going to present are obtained by labelling the
formulas in Form.. The classes of models we are using for the definition
of these calculi are based on generalised Veltman semantics: This is in line
with the procedure we recalled in Section 1.3.2, which has been initiated by
[] for relational semantics, and generalised further to neighbourhood
semantics | , 1.10

5.3.1. CORE SYSTEM

By G3IL we denote the labelled sequent calculus for IL;.. The design of
G3IL is based on an explicit internalisation of GVS by means of labels which
allow the formalisation of the semantic information into a proof system.

According to Def. 5.2.2, the forcing condition for the >-modality is

xzl-A>B iff forally,if xtRyandylF A,
then there exists an a such that yS,a and a IF¥ B,

where a IF¥ B abbreviates the expression “for any z € a, z I+ B”.

As it comes, that forcing condition cannot be directly translated into a
single sequent calculus rule because of the presence on alternating nested
quantifiers on the right hand side of (f).

Such a move is clearly possible in virtue of the adequacy results for the systems under
investigations w.r.t. GVS that we briefly recalled in the glossary at the end of Section 5.2.2.

101

Therefore it is necessary to introduce an intermediate indexed modality,
which obeys the following forcing condition

b)) yl-(]zB iff there existsan a such thatyS,a and a I B,

where a I B abbreviates the expression “for any z € a, z IF B”, as in (f).
The forcing condition for &> can then be rephrased as

#) xzl- A B iff forally,if tRyandylF A,
then y IF (], B.

Unfortunately, this is not enough yet. As a matter of fact, models for L
are based on frames which are irreflexive, transitive and finite - or, equiva-
lently, transitive and Noetherian: Neither finiteness nor Noetherianess can
be expressed by a semantic rule in line with the methodology of explicit in-
ternalisation, for first-order formulations need to be considered only."!

However, the treatment of Gédel-Lob logic described in [| gives
the right hint for proceeding with the design. Notice first that condition (8b)
establishes the logical equivalence

zIFA> B iff zlF0O(A— (.B).
Moreover, we know that in any model based on ITF'?
z - OA iff for any y, if Ry and y I OA, then y IF A.

This suggests to index with worlds the >-modality, and to take the fol-
lowing forcing condition for it, whenever we are reasoning in models based
on GVS:

) xl-A>; B iff forally,if tRyandylF A>; B,
then, if y IF A, y IF (;B.

Let Form!, denote the formulas allowing indexed >-modalities as well as
the intermediate indexed modalities (|,.
We are now ready to define the labelled sequent calculus G3IL.

DEFINITION 5.3.3. Leti,j,k, -+ ,x,y, 2, - - be variables for worlds in a gen-
eralised Veltman model, and a,b,c,--- variables for sets of worlds. Rela-
tional atoms are formulas of the following form and meaning:

-y € R|x], “world y is accessible to world z”;

- ySga, “set a is Sy-accessible to world 37

It is worth noticing, however, that in some cases this limitation can be partially circum-
vented by adopting the systems of rules described in [].

21n Section 1.2 we defined ITF as the class of relational frames that are irreflexive transitive
and finite.

102

-y € a, “world y is a member of set a”;
- a C b, “set aisincluded into set b”.
Labelled formulas are defined as follows, for A € Form, :
- Relational atoms are labelled formulas;
- x: A, “world z forces formula A”;
- alFY A, “formula A is forced by any world belonging to set a”.
We will use {2} to denote the singleton set consisting of exactly the world x.

DEFINITION 5.34. Sequents of G3IL are expressions I' = A, where I" and A
are multisets of relational atoms and labelled formulas, and relational atoms
may occur only in T".

The rules defining G3IL are given in Figure 5.2.

Some of those rules might deserve a little explanation:

- Side condition (z!) in R IF¥ expresses the fact that x is a “fresh varibale’,
i.e. it does not occur in the conclusion of the rule; similarly for (y!) in
Rr>;; the meaning of (a!) in £(] is analogous.

- The rules for (], are defined according to the forcing condition ().
- The rules for i>; are defined according to the forcing condition (f).

- The rules for GVS are defined as geometric rules | |; in partic-
ular we opted for an alternative definition of quasi-transitivity of the
indexed S-relation. The condition imposed by Def. 5.2.2 is

if ySza and vS;b, for all v € a, then ySz (U, ¢, bv)-

As it is clear, this condition cannot be directly translated as a geometric
rule.

Nevertheless, in the literature it is possible to find several different con-
ditions for quasi-transitivity:'

Nr. Semantic requirement for transitivity
(1) [uSaY =9V ey (Vy € Y 48.Y,) = 32 CU, ey Yy u5.2)
(2) | uSeY = ¥{Y, ey (VY €Y uS:Y,) = uSe U,y Vo)
(3) | uS.Y = Iy e Y VY (yS.Y' = AYV’CY usS.Y")
(4) uS,Y = Jy e Y VY (S, Y = uS,Y’)
(5) | uSLY = Vy e Y VY (yS.Y' = AY"CY’ usS.Y")
(6) uS,Y = Vy e YVY' (S, Y = uS,Y’)
(7) | uS.Y = Vye Y VY (yS.Y & yg Y =3IY’'CY" usS.Y")
(8) | wS.Y = Vy e YVY (yS.Y' &y Y = uS,Y')
BThe table is taken from [].

103

Initial sequents

z:p,I'=Az:p

z:Ap>; B, = Ax: Ap>; B

Classical propositional rules: the usual ones, refer to Figure 1.2
Local forcing rules

z:Ax€AallY AT = A
z€AalFY AT = A

LY

r€a,l'=>Az: A v
RIF
= Aalb" A

Intermediate modality rules

ySza,alFY AT = A

L{(an)

ySza, I = Ay : (JzA,alF” A
ySza,I' = Ay : (] A

Interpretability modality rules

y € R[z],z: A>; B, = A,y: A y:(];B,y € Rlz],z: A>; B,T = A y € Rlz],z: Ap>; B, = A,y

:A>; B

y € Rlz],z: A>; B,T = A

y € Rlz],y: A, l'y: A>; B= A,y:(;B
' A,z:A>; B

REi(yn

Rules for GVS

aCal'=A aCecalCbblcI'= A
——————— RefIC TransC
I'=A aCbbleI'=A

rE€bxr€aalCbl = A
r€a,aCbhl =A

ze€{z}, T = A
'=A
Atm(y), Atm(z),y € {z}, T = A A Atm(z), Atm(y),y € {=}, T = A

eply Reply
Atm(z),y € {z},T = A Atm(y),y € {=},T = A

Sing

where Atm(x) has one of the following forms: = : p,z € a,z € {z},x € R[?], z € R[z],zSa, 2Sza.

Irrefl z € R[z],y € Rz],z € R[y],T = A
y € Rlz],z € Rly],T = A

Trans

z € Rlz], T = A

z € a,ySga, I = A y € R[z],a C R[z|,ySza,I' = A
NE (.1 DefS1
ySza,I' = A ySga,I' = A
ySz{z},v € R[z], 2z € R[y],T = A pefs2 ySzb,ySza,a Cb,b C R[z],I' = A
] M
y € Rlz],2 € R[y/,T = A ySza,a CbbC Rz, T=A
ySz{y},y € R[z],[= A ySab,ySza,z € a,28:b,T = A
Qrefl Qtrans6
y € Rlz], ' = A ySza, z € a,zS:b,I = A

Figure 5.2: Rules for G3IL

104

Lr>

i

Condition 2 is in a sense the more natural one: The monotone closure of
any S satisfying any of conditions 1-8 satisfies condition 2, and allows
us to define an equivalent model However, for conditions 2-6 it is always
possible to obtain a related standard model from a GVS-model, as it is
shown in [|. The rule Qtransé is just the natural formalisation of
condition 6 in the previous table, which is the simplest one.

- Rule Sing assures that the singleton contains at least one element; rules
Repl, and Repl, that it contains at most one element, for indiscernibility
of identicals.

- From Figure 5.2 the rules obtained by the closure condition | |
of the system are omitted. For some rules dealing with GVS - for in-
stance, Trans - there might be a duplication of a relational atom in the
conclusion. Structural considerations - namely, the desideratum of ad-
missibility of contraction - require then that a new rule is added to
the system, in which the duplicated formulas are contracted into one.'*
However, the rules added to a system in order to satisfy such a closure
condition play no role in the proof of semantic completeness of the cal-
culi we are considering here and they can be shown to me admissible:
This justifies our omission in favour of a better readability of the figure.

Here we see that the generalised Veltman semantics for ILL can be consid-
ered as a geometric theory, and thus it can be formalised by a sequent calculus
based on purely geometric rules.

5.3.2. EXTENSIONS

Calculi for extensions of IL are denoted by adding to G3IL the name of
a modal schema as apex: Thus, for instance, G3ILM is the labelled calculus
for TLM, and G3ILP is the labelled calculus for ILIP. We denote by G3IL* the
whole family of calculi for the interpretability logics considered in Def. 5.1.3.

Figure 5.3 shows the rules for the extensions of IIL we are are interested
in.

Asyou see, these rules are obtained by considering the generalised frame
conditions characterising each extension of IL.. Moreover, we need to con-
sider an extension of the language of labelled formulas:

DEFINITION 5.3.5. Extend the Def. 5.3.3 by considering among relational
atoms

"1t is relevant to notice here that for each semantic characterisation, there is only a
bounded number of additional rules generated by the closure condition. Moreover, that num-
ber is generally made smaller, since many cases of contracted rules are shown to be admissible
in the base calculus. Refer to [, Ch. 6 and 11] for an exhaustive description of the pro-
cedure and its relevance for labelled calculi for modal logics. Similar considerations hold for
the rules in Figure 5.3.

105

Additional rules for GVS

z € a,y € Rlz],y € R[a],T' = A

y € Rla],z € a,y € R[z],I' = A

RSC[](.’E!)
y € Rla],I = A
ySza,y € S;la,FﬁA
T Ssetl
y€Sy a, = A
cCa,cCbcCanb = A
cCanbdI'= A !
reg,I'=A

Rules for interpretability principles

b C a,ySzb, R[b] C Rly],ySza, I’ = A
ySza, ' = A

Mpry

b Ca,zSyb,y € Rlz],z € R[y],2Sza,T = A
y € R[z],z € R[y], 25za, T = A
bC a,yS.b, Rb] NSz a C @,yS.a,T = A
ySga,I' = A

Py

Wy

b C a,ySzb, R[b] C R[y],y € R[z],z € R[y], 25za,T = A

x €a,y € Rlz],T = A

Yy € S;la,ySza,F = A
ySza, ' = A

cCanbcCa,cChI'=A

Sset2

cCa,cCbhI'=A

2 €a,R. C Rly|,ySza,I' = A

ySga,I' = A

y € R[z],z € R[y], 25za, T = A

Mo,y

Rset2

KMl

Figure 5.3: Rules for G3IL*

- anb, “set a intersects set b”.

-y € RJa], “world y is accessible to a world x belonging to a”;

-y € S;1a, “set ais Sy-accessible to a world y”;

- x € &, “world x is a member of the set &” - we take the latter as the
only constant for sets of our language.

Labelled formulas are defined as as in Def. 5.3.3 w.r.t. this extended set of

relation atoms.

54. STRUCTURAL PROPERTIES

We now want to study the structural properties of the whole family of
calculi G3IL*. In order to proceed, we need first some preliminary definitions.
By the height of a derivation, we mean the number of nodes occurring
in the longest derivation branch, minus one. In particular, the height of a

n
derivation consisting only of an initial sequent is 0. We write - T' = A
whenever there is a derivation of the sequent I' = A in G3IL* with height

bounded by n.

Next, we need the notion of weight of labelled formulas.

106

DEFINITION 5.4.1. The weight of relational atoms is 0. As for the other la-
belled formulas, let us say that the label of : A is x; and the label of a IF¥ A
is a. The label of a formula ¢ is denoted by I(), and p(¢) denotes the pure
part of the formula, i.e. the part of the formula without the label and without
the forcing condition.

The weight w(p) of a labelled formula ¢ is given by the ordered pair

(ro(p(p)), 0 (l(v)) where

- For all world labels x and all set labels a, to(z) = 0 and w(a) = 14+n(N),
where n(N) denotes the number of formal intersections in q;

- w(p) =w(l) =1

- to(Ao B) =mw(A) +w(B) + 1, for o conjunction, disjunction or impli-
cation;

- w((Jid) =w(4) +1
- w(A>; B) = w(A) + w(B) + 2.

For substitution of labels, we can rely on the definitions given in [,
|. We borrow notation from those works, and write e.g. a IF7 A[b/a]
to mean the result of simultaneously substituting b for a, this way obtaining
b IF" A; similarly for world label substitution.
It is now routine to show that G3IL* enjoys height preserving substitution
for world and set labels:

PROPOSITION 5.4.2. The following hold:
i) IFFT = A, thenF Tly/a] = Aly/a];

i) IFET = A, thenF T[b/a] = Alb/a].

Proof. Straightforward induction on n. If n = 0, then I" = A is an initial se-
quent, or a conclusion of L1, L&, or Irrefl. The same is true forI'[y/z] = Aly/x]
and for I'[b/a] = A[b/a).”> If n > 0, we consider the last rule applied. If the
latter has no variable conditions, then we apply the inductive hypothesis to
the premise(s), followed by that very rule. Otherwise, the rule needs some
care in case the substituted variable coincides with the fresh variable of the
premise: In that case, we need to apply twice the inductive hypothesis to the
premise, first to replace the fresh variable with another fresh variable - differ-
ent from the one we wish to substitute - and secondly to perform the desired
substitution.

X

31t is important to notice that @ is a constant of our language, and therefore it cannot be
subject to substitution.

107

5.4.1. GENERAL INITIAL SEQUENTS, WEAKENING, CONTRACTION,
INVERTIBILITY

For the remaining sections, let ¢ denote either a relational atom or a
(proper) labelled formula.
We start with a rather simple result.

LEMMA 5.4.3. The following sequents are derivable in G3IL*:
1. alF" AT = A,a b A;
2. x: A= Ax: A

Proof. The two cases are proven by mutual induction on the weight of the
labelled formulas. The general strategy is to apply the left and right rule to
treat the two formula occurrences, until two formula occurrences of smaller
weight are reached.

By means of example, we prove case 2, subcase x : (J;A:

‘TH

eSia,al AT = Az : (A, alFY A -
rSia,alFY AT = Az (A
X <]ZA,F = A x: <]1A

£(]

where we can apply the inductive hypothesis to the top sequent since to(a IF7 A) < to(x :

Notice that the subcase x : A >; B is easily managed since sequents
x:Ap>; B,' = A,z : Ar>; B are initial, and hence derivable by design.
X

We want now to establish admissibility of weakening in G3IL*.

LEMMA 5.4.4. The rules of weakening

L= A L=8

are height-preserving admissible in G3IL*.

Proof. We need to show that ifET = A, then & o, ' = Aand FT = A p.
The proof consists of a straightforward induction on n, following the lines
of the analogous results in [,], which the reader is referred to for
the details.

X

Next we can prove that all the rules of G3IL* are invertible.'®

16Recall from Section 1.3.1 that a rule is invertible when if its conclusion is derivable, so are
its premise(s). This is a key feature of G3-style sequent calculi, whose main consequence is
the dismiss of backtracking in a root-first proof search.

108

LEMMA 54.5. All the rules of G3IL* are invertible.

Proof. We proceed by induction on the height of the derivation, distinguish-
ing cases on the basis of the rule under consideration. Notice first that the
rules for extensions are clearly (height-preserving) invertible by (height-preserving)
admissibility of weakening; the same remark applies to the rules for GVS, as
well as to £t>, £ IFY, and R(]. Propositional cases are dealt with asin | J.
We can thus limit our to proof to the invertibility of Rr>. Assume then that

n
FT = Ax: A>; B. If n = 0and z : A>; B is not principal, then also

0
Fy e Rzl,y: Ajy : A>; B,T' = Ajy : (|;B. If it is principal, then
I'=T',z: Ar>; B and we need to prove that

yER[z),y: Ay: A>; BT x: A>; B= A,y:{;B

is derivable. But this is provable by application of £r> to the initial sequent
y € Rlz|,y: Ajy: A>; B, 1", 2: A; B= A,y : (];B,y : Ar>; B with the
derivable sequents

y€Rlz],y: Ay: A; BT 2: A; B= A,y : (|;B,y: A
and
y:{;iB,y€ Rlx],y: Ajy: A; B,T,2: A>; B= A,y : (;B.

If n > 0and z : Ar>; B is principal in the last rule, then we have the
desired result. Otherwise, it suffices to apply the inductive hypothesis to the
premise(s).

X

Notice that Lemma 5.4.5 cannot be strengthened into an height-preserving
invertibility of the rules just because of the case we discussed in its proof:
This is analogous to what happens for G3GL in | |, which we used as a
model for the design of G3IL*.

We now want to prove admissibility of contraction. Before we proceed
with the proof, it is appropriate to introduce a notion that will be also used
in the proof of cut-elimination.

DEFINITION 54.6 (After |). The range t(z) of a world label = in a
derivation D in G3IL* is the set of world labels y such that either y € R[z]
or for some n > 1 and for some x1,--- ,x, the relational atoms z; € R|x],
x2 € R[x1],- ,y € R[z,] appear in the antecedent of sequents of D. The
range t(a) of a set label a in D is defined as v(a) := max{t(x) |z € a} U {*}
ordered w.r.t. set inclusion. We set t({z}) = t(z) and t(@) = @.

Finally, we say that a rule is range-preserving admissible if the elimina-
tion of the rule does not increase the ranges of labels in the derivation.

109

THEOREM 5.4.7. The rules of contraction

S”;;”’FF: AA oo —FF;;A A‘PZP‘P RCor

are range-preserving admissible in G3IL*.

Proof. By simultaneous induction for left and right contraction, with primary
induction on the weight of the contracted formula, and secondary induction
on the height of the derivation. The only case requiring some care is when
the contracted formula is z : A >; B in the consequent, of weight n. If the
contracted formula is not principal for the last rule in the derivation - i.e.
the latter is not R> on z : A >>; B - then we apply the secondary inductive
hypothesis to the premise(s), followed by the rule. Otherwise, we invert the
premise of Rr> to obtain

y€ R[z],y: Ayy: A>; By € Rl[z|,y: A,y: A>; B= A,y : (|;B,y: (];B.
We can now apply the inductive hypotheses to obtain the derivation of
y€R[z],y: Ay: A>;B=Ay:(;B

from which the conclusion of RCtr follows by applying Rr>. Range is pre-
served since in inverting Rr> we use a label that is already present in the
derivation tree.

For the other cases, refer to e.g. [,].

54.2. CUT-ELIMINATION THEOREM

We have finally collected all the material required to prove the main result
of the present chapter, namely cut-elimination for G3IL*.

THEOREM 5.4.8 (Cut admissibility). The rule of cut

= A p o, I = A/
L, = AA

Cut

is admissible in G3IL*.

Proof. The proof proceeds by primary induction on the weight of the cut for-
mula, secondary induction on the range of the label of the cut formula, and
tertiary induction on the sum of heights of the premises of cut.

Notice first that if y is in the range of = then t(y) < t(x), because of the
proof system design.

Following [,], we start by distinguishing cases according to
the rules applied to derive the premises of cut:

110

1. At least one of the premises of Cut is an initial sequent;
2. The cut formula is not principal in the derivation of a least one premise;

3. The cut formula is the principal formula of both derivations of the
premises.

Case 1. Assume the leftmost premise of Cut is an initial sequent. Then the cut
formulaisx : porx : A>; B, and the conclusion of the cut can be
obtained from the rightmost premise by weakening. If the sequent is
initial in virtue of some labelled formula ¢ occurring in both I" and A,
then the conclusion of Cut is an initial sequent too. A similar argument
works if we assume that the rightmost premise of Cut is an initial se-
quent. If x : L is the cut formula ¢ and the leftmost premise of Cut is
not initial, it has been derived by some rule R. If Ris £, thenz : L
occurs in the conclusion of the cut, and therefore we can obtain that
sequent from £.L. Similarly if R is L& or Irrefl. Otherwise, if R is dif-
ferent from £1, L& and Irrefl, we can permute the cut up on the left
premise and eliminate it by inductive hypotheses.

Case 2. Assume the cut formula is not principal in the last rule leading to the
leftmost premise of Cut. The general situation is the following:

Dy)
. EDQ
' = A*p " .
'= A o, I = A’
T = A A Cut

Then we perform the following lifting of the cut and rely on the induc-
tive hypotheses:

ED1 D2

rx :>'A*,g0 o, I = A
=1 = A* A’
LIV = AA

Cut

A bit of care is needed for the subcases of Repl; and Repl,. We describe
the situation with the right premise of Cut obtained by Repl;, since the
general setting follows the same line of reasoning. Assume then we
have

111

Case 3.

1Dy

b ;
ot ye{zhx:py:p M= A

T'=Auxz:p ye{z},x:p I = A
ye{z}, I,V = A A

Reply

Cut

Now, if D; is an initial sequent, orifz : L, x : @, or x € R[z] occurs in
I" we can weaken the right premise of Cut, or recur to the appropriate
0-ary L-rule. Otherwise, the left premise of the cut must have been
derived by some rule, and = : p cannot be its principal formula. Lifting
the cut does the job.

We omit the propositional case, referring to [, Thm. 11.9]. Notice
first that we need not to consider the rules for extensions of IIL, since
by design relational atoms only occur in the antecedent of sequents;
similar considerations hold for the rules for GVS. For the local forcing
rules we have

‘D, "D,

yeal=Ay:A a::A,a:Ea,a'II—VA,F’:>A’

v RIFY ; ; LIFY
I'=Aalt" A re€a,alt" AT = A c
ut

Nrxeal = A A

which is solved by

. EDQ
L Prlw/y] = Aalb'A z:Azcaal’ AT = A
rea, = Ax: A rea,x: AT, T = A A

Cut
re€a,real,[N\"=AA A

where the upper cut is on derivations of smaller height, and on a label
of same range; the lower one is on formulas of smaller weight. Appli-
cation(s) of contraction to the conclusion gives the conclusion of the
cut.

For the intermediate modality we have

5771 EDQ
ySza,T = A,y : (s A, alF7 A o YSibbIE AT = A

ySza,I' = Ay : (JzA y: (AT = A
ySza, T, T = A A/

Cut

112

Cut

which is solved by

. D

; :D a/b
ySea, L= Ay (oAl A y: AT = A f 2la/b]
yS.a, I, T = AN alF" A O ySeaa AT = A/

ySza,ySya, T, TV TV = A, A" A/

where the upper cut is on derivations of smaller height, and the lower
one is on formulas of smaller weight. Application(s) of contraction to
the conclusion gives the conclusion of the cut.

Finally we consider the case of rules for i>. The general setting is

!

z€R[z],z: A,z: A>; B, = A,z: (l;B = Do D3 Dy .
I'=>Az:A>; B > y € Rlz],z: A, B,T' = A/
C
y € Rz),[,I" = A, A "

where Dy is a derivation of y € R[z], 2 : Ar>; B,T' = A,y : A; D3 is a
derivation of y : (|;B,y € R[z],x : A>; B,I" = A’; and Dy is a deriva-
tionofy € R[z|,z: A>; B,T' = A",y : A>; B.

Perform the following steps:

a.
5772
I=>Az:A>;B yeRa]z:A>; B =A,y: A)
t
y € R[z],T,I"= A A y: A !
where the cut is on derivations of smaller height.
b.

EDS

'=sAz:A>; B yER[w],y:(}iB,aé:ADiB,F’:A’ .
y € Rlz],y: (;B,[,I" = A, A “

where the cut is on derivations of smaller height.

113

Cut

ED3

'=Az:A>; B yGR[m],x:ADiB;F’:A’,y:ADiB

Cut
y € Rlz],I,T" = A A Jy: A>; B
where the cut is on derivations of smaller height.
d. Finally proceed as follows:
‘e EDl[y/z]
- Dy A B yER[ly:Ay: Ab; BT = A, y: (;B .
: y € R[z)%,T2,T,y: A= A%, A,y : ;B y: (B,
=y A y € R[z]3, 13,172, y: A= A3, A2

Cut
y € R[z]*, 1%, 1773 = A%, A"

where the first cut from the top is on a label of smaller range, the second
one and the third are on formulas of smaller weight.!” The conclusion
of the original cut can then be obtained by applying steps of contraction
to the conclusion of the derivation described at point d.

X

Now that we know that the cut rule is admissible in G3IL* we can prove
admissibility of generalised replacement rules.

LEMMA 5.4.9. The rules Repl, and Repl, generalised to all formulas of the language
are admissible in G3IL*.

Proof. By simultaneous induction on the weight of formulas. Since contrac-
tion and cut are admissible for our calculi, it is enough to prove that the se-
quent y € {x}, p(x) = ¢(y) is derivable for any labelled formula ¢, and then
apply a Cut, followed by contraction steps, to the premise of generalised Repl,.
For Repl,, we reason symmetrically.
The proof then proceed by a straightforward induction on the weight of
©(x) on the lines of | , Lemma 6.5.2].
X

We opened Section 2.3 by endorsing a famous claim of Raymond Smullyan’s
about the real relevance of cut elimination theorems. For classical proposi-
tional logic, indeed, cut admissibility guarantees that the subformula princi-
ple holds in G3cp. For labelled calculi that principle needs to be somehow

For reasons of space, we had to replace some unessential formulas in sequents by dots.

114

Cut

relaxed. In its original version, the subformula property holds whenever any
sequent occurring in a derivation of a given sequent I' = A contains only
subformulas of the formulas composing the latter. In our systems, the rules
for > introduce the intermediate modality (];, by decomposing A>; B into A
and (]; B, and the latter is not, in strict terms, a subformula of A >; B. How-
ever, its weight is defined to be smaller than that of interpretability formulas:
Therefore, we might say that it is less complex, and, in that flexible sense,
loosely generated by a >-formula. Moreover, it is not hard to prove a pureness
condition on labels: In G3IL*, any derivation contains either eigenvariables
in rules with freshness condition, or labels already present in the conclusion.
In this sense, the family of calculi we have design can be considered analytic,
in line with the standard G3 paradigm.

5.5. COMPLETENESS

In the present section, we prove that our family of labelled sequent cal-
culi is sound and complete w.r.t. the semantic and axiomatic presentations of
interpretability logics under investigation.

We give syntactic proofs of those results, and then discuss some aspects
concerning a direct proof of semantic completeness for G3IL*.

5.5.1. SYNTACTIC COMPLETENESS

For a start we need to interpret the underlying language of the labelled
formulas into L., in which the modality is not indexed. Therefore we agree
toreadz: A Basax: A, B unless otherwise stated.

We immediately have

THEOREM 5.5.1 (Completeness). If a formula A is a lemma of ILL or any of its
extensions, then there is a derivation of the sequent = x : A in the calculus G3IL*
for the corresponding logic.

Proof. We rely on the equivalence between IL and IL., and prove that all the
axiom schemas and inference rules of the latter are derivable or proven to
be admissible in G3IL. For the extensions, we only need to prove the axiom
schema corresponding to the specific semantic rule of the family of labelled
systems.

We recall the axiomatisation of IL and its extensions from Def. 5.3.2 and
Section 5.1.1:

115

Ly

Extensions

standard axiomatisation of CPPC
schemall2: A>B —-Bp>C — A>C
schemall3: A>C - Bp>C - AVBp>C

schema IL-Léb: A> (AN (AD> 1))

A— B
A B

schema M : A>B 5 AN(-C>1L)>BA(-C> 1)

>Rule

schema P : A>B— —(A>B)> L
schema W : A>B - A>BA(A> 1)
schema KM1 : A (T 1l)—>T>-A

schema My A>B — (A L)A(=-C> L)>BA(-C> 1)

For propositional logic, the derivability of axiom schemas is straightfor-
ward; admissibility of cut assures the admissibility of modus ponens.
Next notice that the simplest £-rule for >

y € Rlz],z: A; BT = Ay: A y:(liB,y € Rlz],z: A>; B,T = A

L5

y € Rz],xz: A>; B,I' = A

is admissible in our systems, for any sequent of the form

y€ Rz],x: A; B, = Ajy: A; B

is derivable in G3IL*. The same holds for the rule

y€ R[z],y: A, T = Ay:(;B

R>S
I'=Az:A>,B wh

Now, we proceed with the basic calculus:

IL2: The derivation is rendered in Figure 5.4.

IL3: The derivation is rendered in Figure 5.5.

IL-Lob: The derivation is rendered in Figure 5.6.

116

7

DAy T EDg gAY e
D) i< pigrigray 'y hifaly oA

<

D) fiepig aig Ay ay y>hig):h
O i pig rigray iy hifzly > fitg 4 vvegh
O AP) fieprag agray ey Afaly 3A'g Hivv7gh
DD)iiepiagirigray iy hifzly 5 fitg Hvvghi'n > 2
02D M) pragiatg Ay ety A faly 3 Atg 40wt Sz 2]y So
Dz iiepragirgraAy iy i D fitg HIpoighi‘ > zizly Sty 5%
DD iepTageg Ay ey Y oa'g HivvTghin Sz aly Svfaly 32'g iz
gzt &=tgiz b Dz)iiepragirgraAy iy i D fitg Apoigfi‘v s 2ialy Sotfalyszig iz D)2
D zD)i pTagiag Ay ety A faly 3 Atg oot Sz 2]y Sv'faly 3 2'g 12D H19°9°5%
D:zp)iieprag iaigiay aty Al faly 3 Atg v 0rghiv S 2 zly Sofaly 3 2'g 12D 199757 47sh

[
D
adl2

Tsfoa

o7

AT

o]

DD 2D%) ifisprag aig "y caty Al [zly 5 Atg qvotghio szl Sy 52 2D 4199757 ‘975

ivation of IL2

1vat

Der

Figure 54

117

£97

OIgAY TEDRAg i DiAy i

<A
T o ifiepiagiap Ay ivg Ay Ay 36

D) ifisprtag e prtAy g Ay hifaly 3 AD) h ViADY) e pTag v DAY gAY

EX0

s AT i< () 2 fi
D)= D) fi
V i) 0D Ay

Figure 5.5: Derivation of IL3

118

va

oy

<

(Tay)vy)ay o«

o TAV VYD A= (T V) V) *a
T e vy e (Tav Vi) Ay g > (A} gh
TV VY AT Av) V)T A= (T Qv) Vi) "y Ay <Ay > A} gh
T e vy (T v i = (TAV) V) Ty ey > f{f}7s Ell
V(T v) i< (TIv) V) PEIROSIROEY] Ty (T AV V) D= (Tay) vy) "y iy ey 5 A} sl (i} 5 w
702 (T V) D= (Tay)vy) "y iy Ay > A{A}eh{A} 51y <= —
<7 (T AV A= (TAy)VY) Ay ity PELRON I RUEYR RN EEN z

Ysfi{A} s vy iz [y 3= Ay 3= (T<y)vv)D:z
BROEYR: il 52 (T <A¥) V) 199757

Vizios Yz T (T vy D= (Tay) vy) "y iy

Tz (Tay)v)) i (Tay)vy) <9y iy
T2 Ty vy) D fie(Tay) vy) *ay
T (T V)Y A e (T V) Ty oA :
TH: =2 (T vy)D:fis(TAy) V) Ay SAfaly 3 A{AY SR {A} S ey 2y S = 9°5= {=} 3 = {=} gl q7sh

sus

Do

(Tav)vy) .9 (T VDA (Tay) V) ay iy s kS ‘ (T av)vy) Aiaesz{z} o 2 {=}shi'e"sh

ion of IL-Lob

1vat

Der

Figure 5.6

Lob Rule:

- By assumption [i/]

M[VWGUMHR—)
1:A=i:B Wk
ySz{yt,y € Rlz],y: A, B,y: Ajie{y},i:A=1:B o
ySz{y}t,y € Rlz],y : A>, B,y: Ajie{y}=1i:B :Wk

yS.{v},y € Rlz],y: A>. B,y: Ajie {y} =i:B,y: (.B
yS:{y},y € Rlzl,y: A>, Byy: A=y: (.B,{y} "' B
ySz{y},y € Rlz],y : A, B,y: A=y: (|.B
yERz],y: A>, B,y: A=>vy: (.B
=z:A>, B

RIFY
R(]

Qrefl

R>

For reasons of space, we are forced to omit the derivations of the inter-
pretability principles for extensions of ILy, since they could not be readable
in their rendering on screen. In any case, the reader is warmly invited to
check by pencil and paper that each of the modal schemas characterising
those extensions is indeed derivable in the calculus defined by the appropri-
ate semantic rule.

X

5.5.2. SOUNDNESS

For proving the converse direction, we need to interpret relational atoms
and labelled formulas in generalised Veltman models. The calculi per se do
not have a direct formula interpretation in the language of Forml(ﬁ) but we
can define an interpretation for them in GVS: We need a function that inter-
prets the labels in generalised Veltman frames, thus connecting the syntactic

elements of the calculus with the semantic notions of Section 5.2.2.

DEFINITION 5.5.2. Let M = (W, R, {Sy}sew,v) be a generalised Veltman
model for IL or its extensions, W a set of world labels, and A a set of set
labels. A W.A-interpretation over M consists of a pair of functions (p, o)
such that:

« p: W — W maps each i € W into a world p(i) € W,

e 0: A= (p(W)~{2}) maps each a € Ainto a non-empty set of worlds
o(a) € p(R[z]), forz € W.

The notion of satisfiability of a labelled formula under a YW.A-interpretation
is defined by cases on the form of that formula

* p,0 Fmy € Rla]if p(z) Rp(y);

120

« p, o Emy €aif py) € o(a);

« po EpmySeaiffy € Sptazif p(y)S,o(a);

« p,0 Epm y € Rla] if, for some x € o(a), xRp(y);
. p,oEpmaCbifo(a) C o(b)

« p,oEpmanbifo(a)no(d);

« poFay e{z}ifp(y) € {p(x)};

© pro EaySi{a}if p(y)Spey{p(z)};

e p,o Fpm i opif p(z) ko p, and similarly for formulas obtained by
classical propositional connectives;

s pyoEpmalt” Aif p(a) IFY A;

« po Fpm oz (iAif, for some a € (p(R[p(7)]) ~ {2}), p(z)S,i)a and
alF¥ A;

« pyo Epma s A Bif forally € Rp(z)], if y IFa A, theny Iaq (Jp)B-

Given a sequent I' = A, let W, A be the sets of world and set labels
occurring in ' U A, and let (p, o) be a W A-interpretation.
Define p,0 Fpq I' = A if either p, o HFaq ¢ for some ¢ € T or p, o Faq 9 for
some ¢ € A. Define then validity under all interpretations by Fy I' = A iff
p,0 Fpm I' = A forall (p, o). Finally, let us say that a sequent is valid in all
generalised Veltman models if p,o Foq ' = A for all models based on GVS
appropriate to a specific interpretability logic.

THEOREM 5.5.3 (Soundness). If a sequent = x : A is derivable in G3IL*, then A
is a lemma of ILL or of the corresponding extension.

Proof. We prove something stronger, namely:

(#) If asequent I' = A is derivable in G3IL*, then it is valid in the corre-
sponding class of generalised Veltman models.

By modal completeness of the axiomatic calculi for interpretability we are
dealing with, the main theorem follows.

Now, the proof of () is by straightforward induction on the height of
the derivation, by recurring to the notion of interpretation defined before.
By means of example we show soundness of the left and right rule for the
[>-operator.

121

Lr> Byinductive hypothesiswe have p,o Fapq y € R[z],x : A; B,T' = Ay :
p,0 Epmy:(iB,y € R[z],x : A>; B,I' = A; and
p,o Emy € Rlz],z: A>; B,)T = Ajy: A, B.p(y) € R[p(x)]. There
are two relevant cases to consider.

One has p,o0 Fypr y @ A, p,o Epm y € Rlx] and p,0 Faq (];B. From
the former we have that p(y) IF A; from the latter that p(y) If (J; B. By
definition, this means that p, o ¥ 2 : A>; B, so that

p,0 Epmy € Rlx],x: A B, = A.

The second one is p,o0 Faoq y € Rlz] and p,0 Fapq y : A>; B. From
the latter we have that p(y) I A >; B, from which we know that there
exists a z € R[y| such that z IF A and z I (|;B. By transitivity we see
that we can reduce the situation to the first one.

Rr> Assume by inductive hypothesis that

p,o Emy € R[z],y: A; B,y: A,T = A,y : (| B. We reason by con-
tradiction. If none of A and = : Ar>; B isvalid under this interpretation,
then there exists a w € R[p(z)] such that w IF A and w ¥ (];B. Then
we can define a new p’ which is identical to p except possibly on y, for
which we set p/(y) = w. But by assumption on validity of the premise
of the rule, since w IF A and w I (|; B, we have w | A >; B. It is now
straightforward to see that an ascending R-chain can be built on the
model, contrary to the assumption that M is finite - or, equivalently,
Noetherian.

X

5.5.3. ON TERMINATION

Labelled sequent calculi have a peculiar characteristic: From a failed proof
search, it is generally possible to extract a countermodel to the sequent at the
root of the derivation tree. This way, a direct and constructive proof of modal
completeness is obtained.'®

For our family G3IL*, we could claim that the same holds: It is clearly
possible to define a Tait-Schiitte-Takeuti procedure to construct a refutation
of a sequent from a failed proof-search; however, in the present setting, it is
essential to define that saturation process along with a terminating strategy
for performing proof search in G3IL*.

The reader familiar with this kind of tasks will see at once that our sys-
tems are rather complex to handle from a combinatorial perspective, and this
imposes several cases to check when proving that root-first proof search in
G3IL* does terminate."”

18Refer [| for an extensive discussion.

¥In particular, it is rather difficult to handle the interaction of labels, because of the pres-
ence of the indexed relation S, as well as the need to label the interpretability modality to
express Noetherian induction by the R> rule.

122

For sure, it is first essential to present an equivalent basic proof system
for IL, that - following [, Sect. 5] - might call G3KIL. This basic calculus
is obtained by replacing £r> with the simplified rule £t>° that we used in the
proof of Theorem 5.5.1; extensions are built on top of it, according to the rules
in Figure 5.3.

We are confident that G3KIL - as well as its extensions G3KILM and G3KILP
- can be shown to satisfy terminating proof search, by adapting the proof
strategy of | | to our much more intricate setting. A complete proof
of termination for those systems should be then easily extended to the other
interpretability logic constituting our uniform family. A further step in dif-
ficulty would probably materialise when dealing with the labelled sequent
calculus for ILP, since -in order to define the generalised frame condition
corresponding to the schema Py by means of a geometric rule - we would
need further rules for set theoretic operations on world sets, and thus further
cases of interaction between world and set labels.

Since at present time, we can only provide an informal argument support-
ing our claims, in complete earnestness, we prefer to propose termination of
proof search in our family of labelled sequent calculi as the following

CONJECTURE 5.54 (Termination). There exists a strategy making proof search
in G3KIL* for a sequent of the form = x : A always terminate in a finite number of
steps. Moreover, from a failed proof search, it is possible to extract a countermodel
to A belonging to appropriate class of generalised Veltman frames.

RELATED WORK

In this chapter we have presented a family G3IL* of labelled sequent cal-
culi for interpretability logics based on the generalised Veltman semantics by
[|, which subsumes the standard relational semantics for those modal

logic discussed in |].
Our systems are modularly obtained from a basic calculus G3IL according
to the methodology of [, Ch. 6] for formalising geometric theories in

the G3 paradigm for sequent calculi. We have proved that all these calculi
do satisfy the main desiderata for good G3-sequent systems; in particular, we
have given a detailed proof of the cut-elimination theorem for G3IL* (The-
orem 5.4.8), for which we used a ternary measure of complexity of the cut
instance.

To the best of our knowledge, there are no proof-theoretic treatments of
interpretability logics as extensive as the one we have presented here.

A labelled system for IL and some extensions is defined in | | as pre-
fixed tableaux internalising standard Veltman semantics. Our approach can
be considered its direct dual - in virtue of the duality subsisting among la-
belled tableaux and labelled sequent calculi - but it differs from that work by
Joost Joosten and Tuomas Hakoniemi for our focus on structural properties

123

of the calculi, and for being based on generalised Veltman semantics: This has
allowed us to cover a wider range of interpretability principles - notably, the
system ILW based on de Jongh-Visser schema, that cannot be characterised
by a first-order formula of the language of standard Veltman semantics.

On the more traditional side, Katsumi Sasaki gives in [] a Gentzen-
style sequent calculus for the basic interpretability logic IL. No extension is
considered in that work, nor - as it is common for standard sequent calculi
- it is easy to see how to extend the calculus discussed in that paper to cover
further interpretability logics.

We care to stress that what we have discussed in the present chapter can
be also seen as a case study for investigating the potentiality of explicit inter-
nalisation of semantics in sequent calculi: Indeed, it is far from obvious how
to design a sequent system for the logics we have considered according to the
methodology of implicit internalisation. Actually, to the best of our knowl-
edge, no attempt has been made yet to do so by the scientific community.

As future work, we would be pleased to solve Conjecture 5.5.4 by provid-
ing a fully detailed proof of termination of proof search in our sequent calculi.
This would be far from a purely technical result, since although decidability
of all the interpretability logics under consideration is known, their analysis
from the complexity theory point of view is still at its very beginning, and it
is limited to the results in | Jand [.

Finally, it might be relevant to apply the labelling technique we adopted
here to provide constructive proof of modal completeness for interpretabil-
ity logics: The latter is indeed a flourishing research field on the topic, and
several model-theoretic techniques have been developed in recent years, as
summarised by [|. In spite of progressively achieving a modular char-
acter, parts of those proofs are still slightly obscure, and sensitive to the logic
under investigation, since they rely on (variations of) Henkin’s method.?’ A
“reverse engineering” approach relying on the design methodology we used
in the present chapter might then been useful to develop alternative mod-
ular proofs of completeness, and even solve some open problems on model
theoretic matters for specific interpretability principles.

*The proofs by Joosten and collaborators are based on a ‘labelling technique’ that has no
relation to labelled sequent calculi: It is just a coincidence that their approach and ours are
both talking about labels for interpretability logics.

124

PART II

AUTOMATED REASONING

125

INTRODUCTION TO PART II

Civilisation advances by extending the number of important operations
which can be performed without thinking about them.

ALFRED NORTH WHITEHEAD, An introduction to mathematics, 1911

In 2023, 110 years since the publication of Bertrand Russell and Alfred

Whitehead’s Principia Mathematica will be celebrated.
That work should be correctly considered a first mammoth achievement in
rigorous formalisation of mathematics and mathematical reasoning on the
basis of logical primitives. Their success was mainly technical - even though
it was led by a very principled philosophical position, namely logicism -
since the development of formal proofs from their basic laws was painstaking,
but, rephrasing Russell’s own words, required a most exhausting intellectual
strain.

From a philosophical perspective, however, Russell and Whitehead’s mas-
terpiece can also be thought of as a concrete embodiment in type theory of
Gottfried Leibniz’s calculus ratiocinator and characteristica universalis.

From the practical point of view, the advent of computers made a revo-
lution in the field, since they are designed to handle formal objects without
incurring into error, so that formalising proofs is made easier, and it is also
possible to check formal derivations. Thanks to computers, the correctness
of a mathematical proof becomes an algorithmically verifiable question - at
least, when the right research tool is chosen.

There exist several kinds of computer programs - generally categorised as
proof assistants, or theorem provers — that are capable of helping the mathemati-
cian in developing or verifying a proof of a statement, concerning a mathe-
matical theory as well as the expected behaviour of a hardware or software
component, as witnessed by the survey [J.

The design of those proof assistants is the exact place where structural
proof theory acquires a most relevant applicative nature. Because of the com-
binatorial and procedural nature of its results and methodology, structural
proof theory plays a key role in the development and theory of modern proof
assistants and theorem provers [,].

The level of automation varies from each proof assistant to another, but
their general relevance for mathematical practice has been largely recognised
in the last decades. In particular, impressive developments in connecting ge-

126

ometric ideas with the formal notions underlying the logical engine of several
proof assistants - namely, the advent of homotopy type theory and univalent rea-
soning, patronised by the Fields Medalist Vladimir Voevodsky [|- have
shown that there exist mutual benefits in thinking about and practising math-
ematics from a computerised — hence, applied proof-theoretic - perspective
[|. The intuitionistic version of type theory by Per Martin-L6f can be
consistently extended by logical principles capturing the informal practice
of mathematicians of identifying isomorphic structures, so that the computer
formalisation of common everyday mathematics is even more natural for the
user. On the other hand, introducing topological and geometrical ideas in
the design of computer programs is capable of making easier the computer
verification of mathematical models for hardware and software, by allowing
more flexible - sometimes referred to as ‘synthetic’ - coding procedures. On
paper, univalence should also be able to provide a completely new approach
to theoretical computer science by coding techniques that work uniformly on
isomorphic data structures when formalised in different ways.

Nevertheless, even before the advent of homotopy type theory, proof-
theoretic techniques and results have played a very active role in comput-
erised reasoning: The correctness of formal proofs developed by a proof as-
sistant depends in an essential way on good computational and structural
properties of the very proof assistant. And those properties can be thought of
as the type theoretic counterparts of very well-known proof-theoretic results,
like normalisation and cut-elimination for calculi in Gentzen’s paradigm [

In this second part of the thesis, we will make an extensive use of two
proof assistants, namely HOL Light - based on simple type theory - and Uni-
Math - based on univalent type theory. We have chosen these two tools since
each of them has a peculiar characteristic.

HOL Light [|is designed according to the LCF paradigm, therefore
it has a minimalist logical engine that can be safely extended by construct-
ing within the system new deductive rules for performing specific tasks. We
have used this intrinsic flexibility of the proof assistant to define within HOL
Light itself a theorem prover and countermodel constructor for Godel-Lob
logic: This has been possible since higher order reasoning facilitates the for-
malisation of modal completeness results, and the proof development mech-
anism of HOL Light can be extended to efficiently perform a proof search in
labelled sequent calculi in complete autonomy.

UniMath [|, on the contrary, is a univalent version of (a subsystem
of) a highly structured and engineered proof assistant, namely Coq [] It
has an intuitionstic and algorithmic nature, and it is therefore a most natu-
ral environment to experiment on formalisation of mathematical structures
with an eye towards computational aspects of coding. In particular, we have
used the normalisation algorithm of Coq to perform automated evaluations
of known constructions in universal algebra, which we have implemented

127

according to the univalent point of view.

The structure of the present part of the thesis is as follows:

> Chapter 6 presents a complete formalisation in HOL Light of modal
completeness of Godel-Lob logic. We start with a standard deep em-
bedding in HOL Light of the axiomatic calculus GLL and its relational
semantics, and then proceed with the proof of soundness and complete-
ness of the former w.r.t. the latter. Our formal proof for completeness
uses automated higher order reasoning of the proof assistant to sim-
plify some convoluted passages in Henkin’s method adapted for deal-
ing with GL, which are only sketched in the literature - e.g. in [J.
To the best of our knowledge, this is the only formalisation of modal
completeness for that logic currently available.

Furthermore, and more importantly, we use our proof of completeness
to proceed with a shallow embedding of the labelled sequent calculus
G3KGL in HOL Light, by defining general proof development rules that
are capable of mimicking a proof search in G3KGL without the need
to define the calculus at the object level. That proof search strategy is
completely automated as a tactic of HOL Light which, in case of failure,
is capable of providing the user with a countermodel to the formula she
has wished to prove in Gédel-Lob logic.

> Chapter 7 surveys the code we have developed for the UniMath library
on universal algebra. We recall the basic notions of the field - namely,
of algebraic multisorted signatures, algebras over a signature, and equa-
tional algebras — and then proceed with an implementation of a stack
machine that, thanks to the normalisation procedure of Coq, we use
to define the terms of an algebra over a signature in such a way that
the computer is capable of performing autonomously several opera-
tions on them - without recurring to Coq mechanisms for inductive
types, which are not allowed in the UniMath coding style. Moreover, we
show that the algebras over a signature and equational systems define
two univalent categories - that we construct by recurring to the formal-
ism of displayed categories. Besides the formalisation, some concrete
examples are proposed of known algebraic structures rephrased in our
formalism; these can be thought as an invitation for the reader to check
our claims about the computability of our constructions in univalent
universal algebra, which has been the main aim of our implementation,
largely inspired by the so-called Poincaré principle [.

128

6

A THEOREM PROVER AND COUNTERMODEL
CONSTRUCTOR FOR PROVABILITY LOGIC IN HOL
LIGHT

This chapter deals with two different, but closely related, properties of
Godel-Lob provability logic (GL): Its modal completeness, and its decidabil-
ity.

We present first a formalised proof in HOL Light proof assistant of modal
completeness of GL, that we then use to implement within that very proof
assistant a theorem prover for the same logic, which, in case of failure of the
proof search, produces a countermodel for the formula that is not a theorem
of GL.

Our work starts with a deep embedding of the syntax of propositional
modal logic together with the corresponding relational semantics. Next, we
introduce the traditional axiomatic calculus GIL and prove the validity of the
system w.r.t. irreflexive transitive finite frames.

A more interesting part then follows, consisting of the proof of a number
of lemmas in GL which are necessary for proving

THEOREM 6.0.1. For any formula A, GLL - A iff A is true in any irreflexive tran-
sitive finite frame.

In order to achieve that, we have to formally verify a series of prelimi-
nary lemmas and constructions involving the behaviour of syntactical objects
used in the standard proof of the completeness theorem. These unavoidable
steps are very often only proof-sketched in wide-adopted textbooks in logic,
for they mainly involve “standard” reasoning within the proof system we are
dealing with. But when we are working in a formal setting like we did with
HOL Light, we need to split down the main goal into several subgoals, deal-
ing with both the object- and the meta-level. Sometimes, the HOL Light
infrastructure does play a very active role in checking the details of the in-
formal reasoning; in other occasions, we have to make a smart use of our
formal tools, and develop alternative (or simpler) proof-strategies, still totally
verified by the computer.

129

As it is known, for any logical calculus, a completeness result w.r.t. finite
models -aka finite model property- implies the decidability of that very logic.
Therefore, the formal proof for Theorem 6.0.1 we discuss in the first part of
the present work could be used, in principle, to develop a decision algorithm
for GL. That, in turn, would be a useful tool for automating in HOL Light
the proof of theorems of GL.

As a matter of fact, developing proofs in axiomatic calculi is never an easy
task. In our formalisation we had to develop several proof in the axiomatic
calculus for GL, and only in few cases it has been possible to let the proof
search to the automation mechanism of HOL Light.

By having a formal proof of the finite model property, one could hope to
solve the goal of checking whether a formula is a theorem of GL by shifting
from the syntactic problem of finding a proof of that formula in the axiomatic
calculus to the semantic problem of checking the validity of that formula in
any finite model by applying automated first-order reasoning as implemented
in the proof assistant.

Such a strategy has many shortcomings, unfortunately. From the com-
plexity theory view-point, the syntax-to-semantic shift is far from being op-
timal, since testing the validity of a formula A of size n requires to consider
all models with cardinality k, for any & < 2™. Less technically, from the prac-
tical view-point, nothing assures that the semantic problem is always easier
to handle by the proof assistant than the original syntactic goal.

A more promising strategy is suggested by structural proof theory for
modal logics.

After Section 1.3, we know that many sequent calculi for non-classical log-
ics are based on an “internalisation” of possible world semantics in Gentzen’s
original formalism.

This internalisation can be achieved by extending the syntax of formu-
las constituting standard sequents; or by extending the structure of the very
sequents, with the aim of mimicking the structure of models the logic is ad-
equate for (e.g., nested sequents or hypersequents).

We opted for the first option, since our formalisation of Kripke semantics
for GL is per se a labelling technique in disguise.

Therefore, in the second part of this chapter we introduce what might be
considered a shallow embedding in HOL Light of Negri’s labelled sequent
calculus G3KGL.

To state it clearly: While in the first part we defined the axiomatic sys-
tem GLL within our proof assistant by means of an inductive definition of the
derivability relation for GL, in the second part we define new tactics of HOL
Light in order to perform a proof search in G3KGL by using the automation
infrastructure provided by HOL Light itself.

By relying on the meta-theory for G3KGL developed in [I, we can
safely claim that such an embedding provides a decision algorithm for GL: If

130

our automated proof search positively terminates on a modal formula given as
input, HOL Light produces a new theorem, stating that the input formula is a
theorem of GL; otherwise, our algorithm prints all the information necessary
to construct an appropriate countermodel for the input formula.

Our code is integrated into the current HOL Light distribution, and it
is freely available from []. In the next pages, we will refer to the files
constituting the directory GL of the most recent distribution.

We can briefly summarise the contents of the chapter as follows:

+ In Section 6.1, we introduce the basic ingredients of our development,
namely the formal counterparts of the syntax and relational semantics
for provability logic, along with some lemmas and general definitions
which are useful to handle the implementation of these objects in a
uniform way, i.e. without the restriction to the specific modal system
we are interested in. The formalisation constitutes large part of the file
modal.ml;

+ In Section 6.2, we formally define the axiomatic calculus GL, and prove
in a neat way the validity lemma for this system. Moreover, we give
formal proofs of several lemmas in GL (GLL-lemmas, for short), whose
majority is in fact common to all normal modal logics, so that our proofs
might be re-used in subsequent implementations of different systems.
This corresponds to contents of our code in gl .ml;

+ In Section 6.3 we give our formal proof of modal completeness of GL,
starting with the definition of maximal consistent lists of formulas. In
order to prove their syntactic properties — and, in particular, the ex-
tension lemma for consistent lists of formulas to maximal consistent
lists — we use the GLL-lemmas and, at the same time, we adapt an al-
ready known general proof-strategy to maximise the gain from the for-
mal tools provided by HOL Light - or, informally, from higher-order
reasoning. At the end of the Section, we give the formal definition of
bisimilarity for our setup and we prove the associated bisimulation the-
orem [, Ch. 11]. Our notion of bisimilarity is polymorphic, in the
sense that it can relate classes of frames sitting on different types. With
this tool at hand, we can correctly state our completeness theorem in
its natural generality (COMPLETENESS_THEOREM_GEN) - i.e. for irreflexive,
transitive finite frames over any (infinite) type - this way obtaining the
finite model property for GL w.r.t. frames having finite sets of formu-
las as possible worlds, as in the standard Henkin’s construction. These
results are gathered in the file completeness.ml.

+ Section 6.4 opens the description of our original theorem prover for GL.
We collect some basic notions and techniques for proof-theoretic in-
vestigations on modal logic. In particular, we recall the labelled sequent

131

calculus G3KGL and its main properties. That provides the meta-theory
for our decision algorithm. Finally, we describe our implementation of
G3KGL - documented by the file decid.ml - to give a decision proce-
dure for GL. We recover the formalisation of Kripke semantics for GL
presented in Section 6.1 and use it to define new tactics mimicking the
rules for G3KGL. Then, we properly define our decision algorithm on
the lines of a specific terminating proof search strategy in the labelled
sequent calculus. This way, we succeed in extending the HOL Light au-
tomation toolbox with an “internal” theorem prover for GL that is also
capable of producing a countermodel to any formula for which proof
search fails. We propose some hands-on examples of use by considering
modal principles that have a certain relevance for meta-mathematical
investigations; the interested reader will find further examples in the
file tests.ml.

We could say that our implementation fluidly moves between two differ-
ent levels of abstraction: The deep embedding of the axiomatic calculus is
adequately reflected in the deep embedding of the possible world seman-
tics by means of the completeness theorem formalised at the meta-level of
HOL Light. Such a formal proof, in turn, assures that, at the meta-level, we
can safely proceed with a shallow embedding of the labelled sequent calcu-
lus by extending the tactics of HOL Light in order to mirror the rules of that
calculus. Because of the proof-theoretic property of the “informal” sequent
calculus, its formalised counterpart is in fact a real theorem prover and coun-
termodel constructor for the modal logic, built in HOL Light.

Nothing, in the methodology we have just sketched, is specific to GL, so
that the procedure we present here can be easily adapted to implement any
labelled sequent calculus known in the literature.

We care to stress that our formalisation does not tweak any original HOL
Light tools, and it is therefore “foundationally safe”. Moreover, since we only
used that original formal infrastructure, our results can be easily translated
into another theorem prover belonging to the HOL family - or, more gener-
ally, endowed with the same automation toolbox.

WRITING AND REVISION NOTES. The code we are surveying here is freely
available from the official HOL Light distribution, constituting the direc-
tory GL. The formalisation of modal completeness for GLL has been presented
firstin | | at Interactive Theorem Proving (ITP) Conference 2021. The
description of our theorem prover and countermodel constructor is given in
[], which the present chapter is based on.

HOL LIGHT NOTATION. The HOL Light proof assistant is based on classical
higher-order logic with polymorphic type variables and where equality is the
only primitive notion. From a logical viewpoint, the formal engine defined
by the term-conversions and inference rules underlying HOL Light is the same

132

as that described in [|, extended by an infinity axiom and the classical
characterization of Hilbert’s choice operator. A survey of its logical engine
and implementation is given in Appendix A.

From a practical perspective, it is a theorem prover privileging a proce-
dural proof style development - i.e. when using it, we have to solve goals by
applying tactics that reduce them to (eventually) simpler subgoals, so that the
interactive aspect of proving is highlighted. Proof-terms can then be con-
structed by means of tacticals that compact the proof into a few lines of code
evaluated by the machine.

Logical operators - defined in terms of equality - and A-abstraction are
denoted by specific symbols in ASCII: For the reader’s sake, we give a partial
glossary in the next table. In the third column of the table, we also report
the notation used for the object logic GL (introduced at the beginning of
Section 6.1.1).

Informal notation | HOL notation | GL notation | Description
1 F False Falsity
T T True Truth
-p T p Not p Negation
pAq /\ && Conjunction
Vg \/ [Disjunction
p=q == -—> Implication
p<=q <=> <-> Biconditional
Op Box p Modal Operator
pl,...pNF D pl ... pN |- p HOL theorem
Fp |-- p Derivability in GIL
V. P(x) Ix. P(x) Universal quantification
Jz. P(x) ?x. P(x) Existential quantification
Ax. M(x) \x. M(x) Lambda abstraction
T Es x IN s Set membership

We recall that a Boolean function s : a -> bool is also called a set on v in
the HOL parlance. The notation x IN s is equivalent to s x and must not be
confused with a type annotation x : a.

In the following sections, we will directly state our results as theorems
and definitions in the HOL Light syntax. Note that theorems are prefixed by
the turnstile symbol,asin |- 2 + 2 = 4. We often report a theorem with its
associated name, that is, the name of its associated OCaml constant, e.g.

ADD_SYM
|- 'mn. m+n=n+m

As expository style, we omit formal proofs at all, but the meaning of defini-
tions, lemmas, and theorems in natural language is hopefully clear after the
table we have just given.

133

We warn the reader that the HOL Light printing mechanism omits type
information completely. However, here we manually add type annotations
when they might be useful, or even indispensable, in order to avoid ambi-
guity - including the case of our main results, COMPLETENESS_THEOREM and
COMPLETENESS_THEQREM_GEN.

As already told in the introduction, our contribution is now part of the
HOL Light distribution. The reader interested in performing these results
on her machine - and perhaps building further formalisation on top of it -
can run our code with the command

loadt "GL/make.ml";;

at the HOL Light prompt.

6.1. BASICS OF MODAL LOGIC

Following Section 1.2, we deal with a logic that extends classical propo-
sitional reasoning by means of a single modal operator which is intended to
capture the abstract properties of the provability predicate for arithmetic.

To reason about and within this logic, we have to “teach” HOL Light -
our meta-language - how to identify it, starting with its syntax - the object-
language - and semantics - the interpretation of this very object-language.

We want to keep everything neat and clean from a foundational perspec-
tive, therefore we will define both the object-language and its interpretation
with no relation to the HOL Light environment. In other terms: Our formu-
las and operators are real syntactic objects which we keep distinct from their
semantic counterparts — and from the logical operators of the theorem prover
too.

6.1.1. LANGUAGE AND SEMANTICS DEFINED

Let us start by fixing the propositional modal language £ we will use
throughout the present work. We consider all classical propositional oper-
ators — conjunction, disjunction, implication, equivalence, negation, along
with the 0-ary symbols T and L - and we add a modal unary connective O.
The starting point is, as usual, a denumerable infinite set of propositional
atoms ag, aq, - - - . Accordingly, formulas of this language will have one of the
following forms

a| ANB|AVB|A—-B|A<B|-A|T|L1|DA.

The following code extends the HOL system with an the inductive type of
formulas up to the atoms - which we identify with the denumerable type of
strings - by using the above connectives:

134

let form_INDUCT,form_RECURSION = define_type
"form = False

True

Atom string

Not form

&& form form

Il form form

--> form form

<-> form form

Box form";;

Next, we turn to the semantics for our modal language. We use relational
models defined in Section 1.1. We recall that a relational frame is made of
a non-empty set ‘of possible worlds’ W, together with a binary relation R on
W. To this, we add an evaluation function V which assigns to each atom of
our language and each world w in W a Boolean value. This is extended to
a forcing relation holds, defined recursively on the structure of the input
formula p, that computes the truth-value of p in a specific world w, on the
lines of Def. 1.1.9.

let holds = new_recursive_definition form_RECURSION
“(holds f V False (w:W) <=> F) /\
(holds f V True w <=> T) /\
(holds f V (Atom s) w <=> V s w) /\
(holds f V (Not p) w <=> “(holds £ V p w)) /\
(holds £ V (p &% gq) w <=> holds £ V p w /\ holds £ V q w) /\
(holds £ V (p || q) w <=> holds £ V p w \/ holds £ V q w) /\
(holds £ V (p --> @) w <=> holds £ V p w ==> holds £ V q w) /\
(holds £ V (p <-> q) w <=> holds £ V p w <=> holds £ V q w) /\
(holds f V (Box p) w <=> !u. u IN FST £ /\ SND £ w u ==> holds £ V p u)‘;;

In the previous lines of code, f stands for a generic relational frame - i.e. a pair
(W,R) of a set of worlds and an accessibility relation - and V is an evaluation
of propositional variables. Then, the validity of a formula p with respect to a
frame (W,R), and a class of frames L, denoted respectively holds_in (W,R) p
andL |= p,are

let holds_in = new_definition
‘holds_in (W,R) p <=> 'V w. w IN W ==> holds (W,R) V p w*;;

let valid = new_definition
‘L |=p <=> !f. L f ==> holds_in f p‘;;

The above formalisation is essentially the one presented in John Harrison’s
HOL Light Tutorial [, Sect. 20]. Notice that the usual notion of rela-
tional frame requires that the set of possible worlds is non-empty: That con-
dition could be imposed by adapting the valid relation. We have preferred
to stick to Harrison’s original definitions in our code, but in the next section,
when we define the classes of frames we are dealing with, the requirement
on W is correctly integrated in the corresponding types.

135

6.1.2. FRAMES FOR GL

For carrying out our formalisation, we are interested in the logic of the
(non-empty) frames whose underlying relation R is transitive and conversely
well-founded - aka Noetherian - on the corresponding set of possible worlds;
in other terms, we want to study the modal tautologies in models based on an
accessibility relation R on W such that

« if Ry and yRz, then zRz; and
« for no X C W there are infinite R-chains xzgRx1 Rz - -.

In HOL Light, WF R states that R is a well-founded relation: Then, we express
the latter condition as WF(\x y. R y x). Here we see a recurrent motif in
logic: Defining a system from the semantic perspective requires non-trivial
tools from the foundational point of view, for, to express the second condi-
tion, a first-order language is not enough. However, that is not an issue here,
since our underlying system is natively higher order:'

let TRANSNT = new_definition
¢TRANSNT (W:W->bool,R:W->W->bool) <=>
“wW={» /N
('x y:W.Rxy==>xINW/\yINW /\
(xyz:W. xINW/\NyINW/\NzINW/\Rxy /\Ryz==>Rzxz)/\
WF(\x y. Ry x)¢;;

From a theoretical point of view, moreover, the question has no deep con-
sequences as we can characterize this class of frames by using a propositional
language extended by a modal operator O that satisfies the Gddel-Lob axiom
schema (GL) : O(OA — A) — OA. Here is the formal version of our claim:

TRANSNT_EQ_LOB
|- 1W:W->bool R:W->W->bool.
('x y:W. Rxy==>x INW /\ y IN W)
=> ((!xyz. xINW/\NyINW/\NzINW/\Rxy /\N\Ryz==>Rzxz /\
WF (\x y. Ry x) <=>
(!p. holds_in (W,R) (Box(Box p --> p) --> Box p)))

The informal proof of the above result is standard and can be found in
[, Theorem 5.7]. The computer implementation of the proof is made
easy thanks to Harrison’s tactic MODAL_SCHEMA_TAC for semantic reasoning
in modal logic, documented in [, Sect. 20.3].

By using this preliminary result, we could say that the frame property of
being transitive and Noetherian can be captured by Godel-Lob modal ax-
iom, without recurring to a higher-order language. Nevertheless, that class
of frames is not particularly informative from a logical point of view: A frame

'We warn the reader that in the previous statement there occur two interrelated mathe-
matical objects both denoted W (for convenience): One is the type W and the other is the set W
on the former (in the sense explained in the introduction about the HOL syntax).

136

in TRANSNT can be too huge to be used in practice - for instance, for checking
whether a formula is indeed a theorem of our logic. In particular, when aim-
ing at a completeness theorem, one wants to consider models that are useful
for further investigations on the properties of the very logic under consider-
ation - in the present case, decidability of GL, which, as for any other normal
modal logic, is an easy corollary of the finite model property , Ch.13].

To this aim, we note that, by definition of Noetherianness, our R cannot
be reflexive — otherwise x RxRx - - - would give us an infinite R-chain. This
is not enough: The frames we want to investigate are precisely those whose
W is finite, and whose R is both irreflexive and transitive:

let ITF = new_definition
‘ITF (W:W->bool,R:W->W->bool) <=>
“W={» N
(x y:W. Rxy==>x INW/\y INW /\
FINITE W /\
(!x. x INW==>"R x x) /\
(xyz.xINW/\NyINW/\NzINW/\Rxy /\NRyz==>Rzxz);

Now it is easy to see that ITF is a subclass of TRANSNT:

ITF_NT
|- 'W R:W->W->bool. ITF(W,R) ==> TRANSNT(W,R)

That will be the class of frames whose logic we are now going to define syn-
tactically, on the lines of Section 1.2.

6.2. AXIOMATIZING GL

We want to identify the logical system generating all the modal tautolo-
gies for transitive Noetherian frames; more precisely, we want to isolate the
generators of the modal tautologies in the subclass of transitive Noetherian
frames which are finite, transitive, and irreflexive. Notice that the lemma
ITF_NT allows us to derive the former result as a corollary of the latter.

When dealing with the very notion of tautology - or theoremhood, discard-
ing the complexity or structural aspects of derivability in a formal system - it
is convenient to focus on axiomatic calculi. The calculus we are dealing with
here is precisely GL.

Itis clear from the definition of the forcing relation that for classical oper-
ators any axiomatization of propositional classical logic will do the job. Here,
we adopt a basic system in which only — and L are primitive - from the ax-
iomatic perspective - and all the remaining classical connectives are defined
by axiom schemas and by the inference rule of Modus Ponens imposing their
standard behaviour.

Following Section 1.2, to this classical engine we add

+ the axiom schema K: O(A — B) —» 0OA — OB,

137

+ the axiom schema GL: O(0A — A) — 0O4;
A
o4 "o

where A, B are generic formulas (not simply atoms).
Then, here is the complete definition of the axiom system GL. The set of
axioms is encoded via the inductive predicate GLaxiom:

« the necessitation rule NR:

let GLaxiom_RULES,GLaxiom_INDUCT,GLaxiom_CASES = new_inductive_definition
‘(!p q. GLaxiom (p --> (q --> p))) /\
(!p g r. GLaxiom ((p --> q --> r) --> (p --> q) --> (p --> r))) /\
(!p. GLaxiom (((p --> False) --> False) --> p)) /\
(1p q. GLaxiom ((p <-> @) --> p --> q)) /\
('p q. GLaxiom ((p <-> q) -->q --> p)) /\
(!'p q. GLaxiom ((p --> @) --> (q --> p) --> (p <-> @))) /\
GLaxiom (True <-> False --> False) /\
(!p. GLaxiom (Not p <-> p --> False)) /\
(!p q. GLaxiom (p && q <-> (p --> q --> False) --> False)) /\
(!'p q. GLaxiom (p || g <-> Not(Not p && Not q))) /\
(!p q. GLaxiom (Box (p --> q) --> Box p --> Box q)) /\
(!'p. GLaxiom (Box (Box p --> p) --> Box p))‘;;

The judgment GL F A, denoted |-- A in the machine code (not to be con-
fused with the symbol for HOL theorems |-), is also inductively defined in
the expected way:

let GLproves_RULES,GLproves_INDUCT,GLproves_CASES = new_inductive_definition

‘(!p. GLaxiom p ==> [-- p) /\
(pag. I--(->a /N |--p==>1]--q@ /\
(tp. |-- p ==> |-- (Box p));;

6.2.1. GL-LEMMAS

As usual, GLL - A denotes the existence of a derivation of A from the ax-
ioms of GILL; we could also define a notion of derivability from a set of assump-
tions just by tweaking the previous definitions in order to handle the specific
limitations on NR - so that the deduction theorem would hold |] - but
this would be inessential to our intents.

Proving some lemmas in the axiomatic calculus GL is a technical inter-
lude necessary for obtaining the completeness result.

In accordance with this aim, we denoted the classical axioms and rules of
the system as the propositional schemas used by Harrison in the file Arithmetic/derived.ml
of the HOL Light standard distribution [| - where, in fact, many of our
lemmas relying only on the propositional calculus are already proven there
w.r.t. an axiomatic system for first-order classical logic; our further lemmas
involving modal reasoning are denoted by names that are commonly used in
informal presentations.

Therefore, the code in gl.ml mainly consists of the formalised proofs of
those lemmas in GL that are useful for the formalised results we present in
the next section. This file might be thought of as a “kernel” for further experi-
ments in reasoning about axiomatic calculi by using HOL Light. The lemmas

138

we proved are, indeed, standard tautologies of classical propositional logic,
along with specific theorems of minimal modal logic and its extension for
transitive frames - i.e. of the systems K and K4 [] -, so that by applying
minor changes in basic definitions, they are - so to speak - take-away proof-
terms for extensions of that very minimal system within the realm of normal
modal logics.

More precisely, we have given, whenever it was useful, a “sequent-style
natural deduction” characterization of classical operators both in terms of an
implicit (or internal) deduction - and in that case we named the lemma with
the suffix _th -, such as

GL_modusponens_th
|- 'pq. |-- ({(p -->q) & p --> q)

and as a derived rule of the axiomatic system mimicking the behaviour of the
connective in Gentzen’s formalism, e.g.,

GL_and_elim
l-t'pqr. I--(r->p&&q) ==>|-- (r -->q) /\ |-- (r -->p)

We had to prove about 120 such results of varying degrees of difficulty. We
believe that this file is well worth the effort of its development, for two main
reasons to be considered - along with the just mentioned fact that they pro-
vide a (not so) minimal set of internal lemmas which can be moved to different
axiomatic calculi at, basically, no cost.

Indeed, on the one hand, these lemmas simplify the subsequent formal
proofs involving consistent lists of formulas since they let us work formally
within the scope of I, so that we can rearrange subgoals according to their
most useful equivalent form by applying the appropriate GL-lemma(s).

On the other hand, the endeavour of giving formal proofs of these lemmas
of the calculus GIL has been important for checking how much our proof-
assistant is “friendly” and efficient in performing this specific task.

As it is known, any axiomatic system fits very well an investigation involv-
ing the notion of theoremhood for a specific logic, but its lack of naturalness
w.r.t. the practice of developing informal proofs makes it an unsatisfactory
model for the notion of deducibility. In more practical terms: Developing a
formal proof of a theorem in an axiomatic system by pencil and paper can be a
dull and uninformative task.

We therefore left the proof search to the HOL Light toolbox as much as
possible. Unfortunately, we have to express mixed feelings about the general
experience. In most cases, relying on the automation tools of this specific
proof assistant did save our time and resources when trying to give a formal
proof in GLL. Nevertheless, there has been a number of GIL-lemmas for prov-
ing which those automation tools did not reveal useful at all. In those cases,
actually, we had to perform a tentative search of the specific instances of ax-

139

ioms from which deriving the lemmas,” so that interactive proving them had
advantages as well as traditional instruments of everyday mathematicians.

Just to stress the general point: It is clearly possible — and actually useful
in general - to rely on the resources of HOL Light to develop formal proofs
both about and within an axiomatic calculus for a specific logic, in particular
when the lemmas of the object system have relevance or practical utility for
mechanizing (meta-)results on it; however, these very resources - and, as far
as we can see, the tools of any other general proof assistant - do not look
peculiarly satisfactory for pursuing investigations on derivability within ax-
iomatic systems.

6.2.2. SOUNDNESS LEMMA

At this point, we can prove that GIL is sound - i.e. every formula derivable
in the calculus is a tautology in the class of irreflexive transitive finite frames.
This is obtained by simply unfolding the relevant definitions and applying
theorems TRANSNT_EQ_LOB and ITF_NT of Section 6.1.2:

GL_TRANSNT_VALID
|- 'p. (l-- p) ==> TRANSNT: (W->bool)#(W->W->bool)->bool |= p

GL_ITF_VALID
|- 'p. |-- p ==> ITF:(W->bool)#(W->W->bool)->bool [|= p

From this, we get a model-theoretic proof of consistency for the calculus

GL_consistent
~ |-- False

Having exhausted the contents of file gl.m1, we shall move to consider the
the mechanized proof of completeness for the calculus w.r.t. this very same
class of frames.

6.3. MODAL COMPLETENESS

When dealing with normal modal logics, it is common to develop a proof
of completeness w.r.t. relational semantics by using the so-called ‘canonical
model method’. We sketched the main lines of that procedure in Section 1.1.4.
For GL, we cannot directly pursue this strategy, since the logic is not com-
pact: Maximal consistent sets are (in general) infinite objects, though the no-
tion of derivability involves only a finite set of formulas. We cannot therefore
reduce the semantic notion of (in)coherent set of formulas to the syntactic one
of (in)consistent set of formulas: When extending a consistent set of formulas

*The HOL Light tactics for first-order reasoning MESON and METIS were unable, for ex-
ample, to instantiate autonomously the obvious middle formula for the transitivity of an im-
plication, or even the specific formulas of a schema to apply to the goal in order to rewrite
it.

140

to a maximal consistent one, we might end up with a syntactically consistent
set that nevertheless cannot be semantically satisfied.
In spite of this, it is possible to achieve a completeness result by

1. identifying the relevant properties of maximal consistent sets of formu-
las; and

2. tweaking the definitions so that those properties hold for specific con-
sistent sets of formulas related to the formula we want to find a coun-
termodel to.

That is, basically, the key idea behind the proof given in [, Ch. 5. In
that monograph, however, the construction of a maximal consistent set from
a simply consistent one is only proof-sketched and relies on a syntactic ma-
nipulation of formulas. By using HOL Light we do succeed in giving a de-
tailed proof of completeness as direct as that by Boolos. But, as a matter of
fact, we can claim something more: We can do that by carrying out in a very
natural way a tweaked Lindenbaum construction to extend consistent lists to
maximal consistent ones. This way, we succeed in preserving the standard
Henkin-style completeness proofs; and, at the same time, we avoid the sym-
bolic subtleties sketched in [| that have no real relevance for the argu-
ment, but have the unpleasant consequence of making the formalised proof
unnecessarily long, so that the implementation would sound rather pedantic,
or even dull.

Furthermore, the proof of the main lemma EXTEND_MAXIMAL_CONSISTENT
is rather general and does not rely on any specific property of GL: Our strat-
egy suits all the other normal (mono)modal logics - we only need to modify
the subsequent definition of STANDARD_RELATION according to the specific
system under consideration. Thus, we provide a way for establishing com-
pleteness a la Henkin and the finite model property without recurring to fil-
trations of canonical models for those systems.

6.3.1. MAXIMAL CONSISTENT LISTS

Following the standard practice, we need to consider consistent finite
sets of formulas for our proof of completeness. In principle, we can employ
general sets of formulas in the formalisation, but, from the practical view-
point, lists without repetitions are better suited, since they are automatically
finite and we can easily manipulate them by structural recursion. We define
first the operation of finite conjunction of formulas in a list:*

3Notice that in this definition we perform a case analysis where the singleton list is treated
separately (i.e., we have CONJLIST [p] = p). This is slightly uncomfortable in certain formal
proof steps: In retrospect, we might have used a simpler version of this function. However,
since this is a minor detail, we preferred not to change our code.

141

let CONJLIST = new_recursive_definition list_RECURSION
‘CONJLIST [] = True /\
(1p X. CONJLIST (CONS p X) = if X = [] then p else p && CONJLIST X)*;;

We proceed by proving some properties on lists of formulas and some
GL-lemmas involving CONJLIST. In particular, since GL is a normal modal
logic - i.e. its modal operator distributes over implication and preserves the-
oremhood - we have that our O distributes over the conjunction of X so that
we have CONJLIST_MAP_BOX:

G]LI—D/\X<—>/\DX,

where OX is an abuse of notation for the list obtained by “boxing” each for-
mula in X.

We are now able to define the notion of consistent list of formulas and
prove the main properties of this kind of objects:

let CONSISTENT = new_definition
¢CONSISTENT (1:form list) <=> ~ (|-- (Not (CONJLIST 1)))¢;;

In particular, we prove that:

+ aconsistent list cannot contain both A and = A for any formula A, nor L
(see theorems CONSISTENT _LEMMA, CONSISTENT_NC, and FALSE_IMP_NOT_CONSISTENT,
respectively);

« for any consistent list X and formula A, either X + A is consistent,
or X + —A is consistent (CONSISTENT_EM), where + denotes the usual
operation of appending an element to a list.

Our maximal consistent lists w.r.t. a given formula A will be consistent lists
that do not contain repetitions and that contain, for any subformula of A, that
very subformula or its negation:*

let MAXIMAL_CONSISTENT = new_definition
‘MAXIMAL_CONSISTENT p X <=>
CONSISTENT X /\ NOREPETITION X /\
('q. q SUBFORMULA p ==> MEM q X \/ MEM (Not q) X)‘;;

where X is a list of formulas and MEM q X is the membership relation for lists.
We then establish the main closure property of maximal consistent lists:

MAXIMAL_CONSISTENT_LEMMA
|- !'p X A b. MAXIMAL_CONSISTENT p X /\
('q. MEM q A ==> MEM q X) /\
b SUBFORMULA p /\
|-- (CONJLIST 4 --> b)
==> MEM b X

*Here we define the set of subformulas of A as the reflexive transitive closure of the set of
formulas on which the main connective of A operates: This way, the definition is simplified
and it is easier to establish standard properties of the set of subformulas by means of general
higher-order lemmas in HOL Light for the closure of a given relation.

142

After proving some further lemmas with practical utility - in particular, the

fact that any maximal consistent list behaves like a restricted bivalent evalua-

tion for classical connectives (MAXIMAL_CONSISTENT_MEM_NOT and MAXIMAL_CONSISTENT_MEM_CASES)
- we can finally define the ideal (type of counter)model we are interested in.

The type STANDARD_MODEL consists, for a given formula p, of:

1. the set of maximal consistent lists w.r.t. p made of subsentences of p -
i.e. its subformulas or their negations - as possible worlds;

2. anirreflexive transitive accessibility relation R such that for any subfor-
mula Box q of pand any world w, Box qis in w iff, for any x R-accessible
from w, q is in x;

3. an atomic evaluation that gives value T (true) to a in w iff a is a subfor-
mula of p.

After defining the relation of subsentences as

let SUBSENTENCE = new_definition
“1p q. q SUBSENTENCE p <=>
q SUBFORMULA p \/ (?q’. q = Not g’ /\ q’ SUBFORMULA p)‘;;

we can introduce the corresponding code:

let GL_STANDARD_FRAME = new_definition
‘GL_STANDARD_FRAME p (W,R) <=>
W = {w | MAXIMAL_CONSISTENT p w /\ (!q. MEM q w ==> q SUBSENTENCE p)} /\
ITF (W,R) /\
('q w. Box q SUBFORMULA p /\ w IN W
==> (MEM (Box q) w <=> !x. R w x ==> MEM q x))°*;;

let GL_STANDARD_MODEL = new_definition
¢GL_STANDARD_MODEL p (W,R) V <=>
GL_STANDARD_FRAME p (W,R) /\
(taw. w INW==>(V aw <=>MEM (Atom a) w /\ Atom a SUBFORMULA p))‘;;

6.3.2. MAXIMAL EXTENSIONS

What we have to do now is to show that the type GL_STANDARD_MODEL is
non-empty. We achieve this by constructing suitable maximal consistent lists
of formulas from specific consistent ones.

Our original strategy differs from the presentation given in e.g. []
for being closer to the standard Lindenbaum construction commonly used
in proving completeness results. By doing so, we have been able to circum-
vent both the pure technicalities in formalizing the combinatorial argument
sketched in [, p-79] and the problem - apparently inherent to the Lin-
denbaum extension - due to the non-compactness of the system, as we men-
tioned before.

The main lemma states then that, from any consistent list X of subsen-
tences of a formula A, we can construct a maximal consistent list of subsen-
tences of A by extending (if necessary) X:

143

EXTEND_MAXIMAL_CONSISTENT
|- !'p X.
CONSISTENT X /\
(!'q. MEM q X ==> q SUBSENTENCE p)
==> 7M. MAXIMAL_CONSISTENT p M /\
('q. MEM g M ==> q SUBSENTENCE p) /\
X SUBLIST M

The proof-sketch is basically that one described in Section 1.1.4: Given a
formula A, we proceed in a step-by-step construction by iterating over the
subformulas B of A not contained in X. At each step, we append to the list
X the subformula B - if the resulting list is consistent - or its negation =B
- otherwise.

This way, we are in the pleasant condition of carrying out the construction
by using the HOL Light device efficiently, and, at the same time, we do not
have to worry about the non-compactness of GL, since we are working with
finite objects - the type 1ist - from the very beginning.

Henceforth, we see that - under the assumption that A is not a GL-lemma
- the set of possible worlds in STANDARD_FRAME w.r.t. A is non-empty, as re-
quired by the definition of relational structures:

NONEMPTY_MAXIMAL_CONSISTENT
I- 'p. “ |--p
==> ?M. MAXIMAL_CONSISTENT p M /\
MEM (Not p) M /\
('q. MEM g M ==> q SUBSENTENCE p)

Next, we have to define an R satisfying the condition 2 for a STANDARD_FRAME;
the following does the job:

let GL_STANDARD_REL = new_definition
‘GL_STANDARD_REL p w x <=>
MAXIMAL_CONSISTENT p w /\
('q. MEM q w ==> q SUBSENTENCE p) /\
MAXIMAL_CONSISTENT p x /\
('q. MEM q x ==> q SUBSENTENCE p) /\
(!B. MEM (Box B) w ==> MEM (Box B) x /\ MEM B x) /\
(7E. MEM (Box E) x /\ MEM (Not (Box E)) w)‘;;

Such an accessibility relation, together with the set of the specific maximal
consistent lists we are dealing with, defines a structure in ITF with the re-
quired properties:

ITF_MAXIMAL_CONSISTENT
I- 'p. “ I--p
==> ITF ({M | MAXIMAL_CONSISTENT p M /\
(!q. MEM g M ==> q SUBSENTENCE p)},
GL_STANDARD_REL p),

ACCESSIBILITY_LEMMA
|- 'p Mwgq.
T l--p /\
MAXIMAL_CONSISTENT p M /\
(!'q. MEM q M ==> g SUBSENTENCE p) /\

144

MAXIMAL_CONSISTENT p w /\

(!'q. MEM q w ==> g SUBSENTENCE p) /\
MEM (Not p) M /\

Box q SUBFORMULA p /\

(!'x. GL_STANDARD_REL p w x ==> MEM q x)
==> MEM (Box q) w,

6.3.3. TRUTH LEMMA AND COMPLETENESS

For our ideal model, it remains to reduce the semantic relation of forcing
to the more tractable one of membership to the specific world. More formally,
we prove - by induction on the complexity of the subformula B of A - that
if GL t/ A, then for any world w of the standard model, B holds in w iff B is
member of w:

GL_truth_lemma
|- '"WRpVaq.
“l--p /\
GL_STANDARD_MODEL p (W,R) V /\
q SUBFORMULA p
==> ly. w IN W ==> (MEM q w <=> holds (W,R) V q w),

Finally, we are able to prove the main result: If GL t/ A, then the list [-A] is
consistent, and by applying EXTEND_MAXIMAL_CONSISTENT, we obtain a maxi-
mal consistent list X w.r.t. A that extends it, so that, by applying GL_truth_lemma,
we have that X ¥ A in our standard model. The corresponding formal proof
reduces to the application of those previous results and the appropriate in-
stantiations:

COMPLETENESS_THEOREM
|- !'p. ITF:(form list->bool)#(form list->form list->bool)->bool |= p
==> |-- p,

Notice that the family of frames ITF is polymorphic, but, at this stage, our re-
sult holds only for frames on the domain form list, as indicated by the type
annotation. This is not an intrinsic limitation: The next section is devoted
indeed to generalise this theorem to frames on an arbitrary domain.

6.3.4. GENERALIZING VIA BISIMULATION

As we stated before, our theorem COMPLETENESS_THEOREM provides the
modal completeness for GL with respect to a semantics defined using models
built on the type :form list. It is obvious that the same result must hold
whenever we consider models built on any infinite type. To obtain a formal
proof of this fact, we need to establish a correspondence between models built
on different types. It is well-known that a good way to make rigorous such a
correspondence is by means of the notion of bisimulation recalled in Section
1.14.

145

In our context, given two models (W1,R1) and (W2,R2) sitting respec-
tively on types :A and :B, each with an evaluation function V1 and V2, a bisim-
ulation is a binary relation Z:A->B->bool that relates two worlds wi:A and
w2:B when they can simulate each other. The formal definition is as follows:

BISIMIMULATION
|- BISIMIMULATION (Wi1,R1,V1) (W2,R2,V2) Z <=>
('wil:A w2:B.

Z wl w2

==> w1 IN W1 /\ w2 IN W2 /\
(ta:string. V1 a wl <=> V2 a w2) /\
('wil’. Rl wl wl’ ==> 7w2’, w2’ IN W2 /\ Z w1’ w2’ /\ R2 w2 w2’) /\
(tw2’. R2 w2 w2’ ==> 7wl’. w1’ IN Wi /\ Z wi’ w2’ /\ Rl wil wi’))

Then, we say that two worlds are bisimilar if there exists a bisimulation be-
tween them:

let BISIMILAR = new_definition
‘BISIMILAR (W1,R1,V1) (W2,R2,V2) (wil:A) (w2:B) <=>
?Z. BISIMIMULATION (Wi,R1,V1) (W2,R2,V2) Z /\ Z wl w2¢;;

The key fact is that the semantic predicate holds respects bisimilarity:

BISIMILAR_HOLDS
|- 'Wi R1 V1 W2 R2 V2 wi:A w2:B.
BISIMILAR (Wi,R1,V1) (W2,R2,V2) wl w2
==> (!p. holds (Wi,R1) V1 p wl <=> holds (W2,R2) V2 p w2)

From this, we can prove that validity is preserved by bisimilarity. The precise
statements are the following:
BISIMILAR_HOLDS_IN
|- 'Wi R1 W2 R2.

('V1 wi:A. ?V2 w2:B. BISIMILAR (W1,R1,V1) (W2,R2,V2) wl w2)
==> (!p. holds_in (W2,R2) p ==> holds_in (W1,R1) p)

BISIMILAR_VALID
|- L1 L2.
('Wi R1 V1 wi:A.
L1 (Wi,R1) /\ wl IN Wi
==> 7W2 R2 V2 w2:B. L2 (W2,R2) /\
BISIMILAR (W1,R1,V1) (W2,R2,V2) wi w2)
==> (!p. L2 [= p ==> L1 |= p)

In the last theorem, recall that the statement L(W,R) means that (W R) is a
frame in the class of frames L.

Finally, we can explicitly define a bisimulation between ITF-models on
the type :form list and on any infinite type :A. From this, it follows at once
the desired generalization of completeness for GL:

COMPLETENESS_THEOREM_GEN
|- !'p. INFINITE (:4) /\ ITF:(A->bool)#(A->A->bool)->bool |=p ==> |-- p

Furthermore, from the proof that the relation

\wl w2. MAXIMAL_CONSISTENT p wi /\ (!q. MEM q wl ==> q SUBSENTENCE p) /\
w2 IN GL_STDWORLDS p /\
set_of_list wl = w2

146

defines a bisimulation between the ITF-standard model based on maximal
consistent [ists of formulae and the model based on corresponding sets of for-
mulas we obtain the traditional version of modal completeness, correspond-
ing to theorem GL_COUNTERMODEL_FINITE_SETS in our code.

64. IMPLEMENTING G3KGL

By using our EXTEND_MAXIMAL_CONSISTENT lemma, we succeeded in giv-
ing a rather neat proof of both completeness and the finite model property
for GL.

As an immediate corollary, we have that the system GL is decidable and,
in principle, we could implement a decision procedure for it in OCaml. A
naive approach would proceed as follows.

We define the tactic NAIVE_GL_TAC and its associated rule NAIVE_GL_RULE
that perform the following steps:

1. Apply the completeness theorem;

2. Unfold some definitions;

3. Try to solve the resulting semantic problem using first-order reasoning.
Here is the corresponding code.

let NAIVE_GL_TAC : tactic =
MATCH_MP_TAC COMPLETENESS_THEQOREM THEN
REWRITE_TAC([valid; FORALL_PAIR_THM; holds_in; holds;
ITF; GSYM MEMBER_NOT_EMPTY] THEN
MESON_TAC[];;

let NAIVE_GL_RULE tm = prove(tm, REPEAT GEN_TAC THEN GL_TAC);;

The above strategy is able to prove automatically some lemmas which are
common to normal modal logics, but require some effort when derived in an
axiomatic system. As an example, consider the following GL-lemma:

GL_box_iff_th
|- 'p q. |-- (Box (p <-> q) --> (Box p <-> Box q))

When developing a proof of it within the axiomatic calculus, we need to
“help” HOL Light by instantiating several further GL-lemmas, so that the
resulting proof-term consists of ten lines of code. On the contrary, our rule
is able to check it in few steps:

NAIVE_GL_RULE “!p q. |-- (Box (p <-> q) --> (Box p <-> Box q))°‘;;

0..0..1..6..11..19..32..solved at 39

0..0..1..6..11..19..32..s0lved at 39
val it : thm = |- !p gq. |-- (Box (p <-> q) --> (Box p <-> Box q))

147

In spite of this, the automation offered by MESON tactic is unexpectedly disap-
pointing for some lemmas. For instance, the previous procedure is not even
able to prove the basic instance Godel-Léb scheme

GL+OOL — 1) —Ol.

This suggests that NAIVE_GL_TAC is based on a very inadequate strategy.
And that is where structural proof theory comes at rescue.

6.4.1. THE CALCULUS G3KGL

The frame conditions characterising GL - i.e. Noetherianity and tran-
sitivity, or, equivalently, irreflexivity, transitivity and finiteness - cannot be
expressed by a (co)geometric implication, for being finiteness and Noetheri-
anity intrinsically second order.

Therefore it is not possible to define a labelled sequent calculus for GL
by simply extending G3K with further semantic rules, as described in Section
1.3.

Nevertheless, it is still possible to internalise the possible world seman-
tics by relying on a modified definition of the forcing relation - valid for ITF
models - in which the standard condition for O is substituted by the follow-

ing:

z|FOA iff forally, if tRy and y |- OA, then y IF A.

In| |, this suggests to modify the RO rule according to the right-to-
left direction of that forcing condition.

The resulting labelled sequent calculus G3KGL is summarised in Figure
6.1.

The rule RO obeys to the side condition of not being y free in T', A, on
the line with the universal quantifier used in the forcing condition.

In|], it is proven that G3KGL has good structural properties. More-
over, it is easily shown that the proof search in this calculus is terminating,
and its failure allows to construct a countermodel to the formula at the root
of the derivation tree: It suffices to consider the top sequent of an open
branch, and assume that all the labelled formulas and relational atoms in its
antecedent are true, while all the labelled formulas in its consequent are false.
This way, a syntactic proof of decidability for GL is obtained.

It is not hard to see how to use both our formalisation of modal complete-
ness and the already known proof theory for G3KGL to the aim of implement-
ing a decision algorithm in HOL Light for GL: Our predicate holds (W,R) V A x
corresponds exactly to the labelled formula z : A.

Thus we have three different ways of expressing the fact that a world x
forces A in a given model (W, R, v):

>This idea was exploited in the definition of the sequent calculi G3IL* in Chapter 5.

148

Initial sequents:

z:p,=Azx:p

Propositional rules:

z: 1L, I'= A b

z:Az:BT=A
r: ANB, T = A

LA

x: AT =A x:B,F:>A£
r: AVBT=A v
'=sAz:A
z:-AT=A""
'=sAzxz:A z:B,I'=A
L—

r: A= B T'= A

Modal rules:

y: A xRy, x: DA T = A
zRy,z: 0A T = A

Semantic rules:

- I re
zRx, I = A el

'=Az:A I'=Azxz:B

I'=sAx:AANB

I'sAx:Az:B

I'=sAx:AVvB [

z: AT=A

F=Az:-4

z: Al'=Az:B
R—

I'sAzxz:A—B

zRy,y : AT = Ay: A g

I'=s A,x:04 ()

xRz, xRy, yRz, T = A

Trans

cRy,yRz, T = A

Figure 6.1: Rules of the calculus G3KGL

SEMANTIC NOTATION

Tzl A

LABELLED SEQUENT CALCULUS NOTATION

z: A

HOL LIGHT NOTATION

holds (W,R) V A x

Let us call any expression of forcing in HOL Light notation a holds-
proposition.

This suggests that a deep embedding of G3KGL is not necessary at all.
Since internalising possible world semantics in sequent calculi is, in fact, a
syntactic formalisation of that very semantics, we can use our own formali-
sation in HOL Light of validity in relational frames and adapt the goalstack
mechanism of the theorem prover to develop G3KGL proofs by relying on that
very mechanism.

149

That adaptation starts with a generalisation of the standard tactics for
classical propositional logic which are already defined in HOL Light.

As an abstract deductive system, the logical engine underlying the proof
development in HOL Light consists of a single-consequent sequent calcu-
lus for higher-order logic. We need to work on a multi-consequent sequent
calculus made of multisets of holds-propositions and (formalised) relational
atoms. To handle commas, we recur to the logical operators of HOL Light:
A comma in the antecedent is formalised by the connective /\, while in the
consequent it is formalised by the connective \/.

Since we cannot directly define multisets, we need to formalise the se-
quent calculus rules to operate on lists, and to handle permutations by means
of standard conversions of a goal that has the general shape of an n-ary dis-
junction of holds-propositions, for n > 0.

The intermediate tactics we now need to define operate

+ on the components of a general goal-term consisting of a finite disjunc-
tion of holds-propositions: These correspond to the labelled formulas
that appear on the right-hand side of a sequent of G3KGL, so that some
our tactics can behave as the appropriate right rules of that calculus;

+ on the list of hypotheses of the goal-stack, which correspond to the
labelled formulas and possible relational atoms that occur on the left-
hand side of a sequent of G3KGL, so that some our tactics can behave
as the appropriate left rules of that calculus.

In order to make the automation of the process easier, among the hy-
potheses of each goal-stack we make explicit the assumptions about the tran-
sitivity of the accessibility relation (trans), the left-to-right direction of the
standard forcing condition for the O (box11), (box12), and the right-to-
left direction of the forcing condition for the same modality in ITF models
(boxr1), (boxr2). This way, the formal counterparts of Trans, £0 and RO
can be properly executed by combining standard tactics and applying the re-
sults to those meta-hypotheses made explicit.

Our classical propositional tactics implement, for purely practical rea-
sons, left and right rules for the (bi)implication free fragment of £: This
implies that the only intermediate tactics determining a branching in the
derivation tree - i.e., the generation of subgoals in HOL Light goal-stack -
are those corresponding to £V and RA. The translation of a formula of the la-
belled language, given as a goal, to its equivalent formula in the implemented
fragment is produced automatically by means of the conversions for the nega-
tion and conjunctive normal forms already present in the theorem prover:®

®Here HOLDS_NNFC_UNFOLD is the formal theorem stating that the definition of the pred-
icate holds can be rephrased, for purely propositional formulas, by using only conjunction,
disjunction and negation as operators at the meta-level.

150

let HOLDS_NNFC_UNFOLD_CONV : conv =
GEN_REWRITE_CONV TOP_DEPTH_CONV
[HOLDS_NNFC_UNFOLD; OR_CLAUSES; AND_CLAUSES] THENC
NNFC_CONV

A similar conversion is defined for the labelled formulas that appear among
the hypotheses, i.e. on the left-hand side of our formal sequents.

Left rules for propositional connectives are handled by specific tactics:
Each of them is defined by using HOL Light theorem tactic(al)s, which can
be thought of as operators on a given goal taking theorems as input to apply
a resulting tactic to the latter. For instance, the left rule for negation £ is

defined by

let NEG_LEFT_TAC : thm_tactic =
let pth = MESON [] ¢"P ==> (P \/ Q) ==> Q¢ in
MATCH_MP_TAC o MATCH_MP pth

which uses the propositional tautology “P ==> (P \/ Q) ==> Q in an MP
rule instantiated with a negated holds-proposition occurring among the hy-
potheses; then it adds the holds-proposition among the disjuncts of the new
goal, as expected. R— is defined analogously by NEG_RIGHT_TAC.

On the contrary £V and RA are implemented by combining theorem tac-
tic(al)s based on the basic operators CONJ_TAC and DISJ_CASES.

Modal rules are handled by means of the hypotheses boxr1, boxr2, box11
and box12 that are made explicit in each goal stack. £0 is implemented via
theorem tactic(al)s instantiating box11 or box12 with the appropriate holds-
proposition and relational atom; similarly, RO is obtained by instantiating
boxrl or boxr2, to change the current goal term. The same approach works
also for the rule Trans, implemented by a theorem tactical ACC_TCL that in-
stantiates and applies the meta-hypothesis trans to each appropriate rela-
tional atom among the hypotheses of a current goal stack.

This basically completes the formalisation - or shallow embedding - of
G3KGL in HOL Light.

6.4.2. DESIGN OF THE PROOF SEARCH

Our efforts turn now to run in HOL Light an automated proof search
w.r.t. the implementation of G3KGL we have sketched in the previous section.
We can again rely on theorem tactic(al)s to build the main algorithm, but this
time we need to define them recursively.

First, we have to apply recursively the left rules for propositional con-
nectives, as well as the £0 rule: This is made possible by the theorem tactic
HOLDS_TAC. Furthermore, we need to saturate the sequents w.r.t. the latter
modal rule, by considering all the possible relational atoms and applications
of the rule for transitivity, and, eventually, further left rules: That is the job
of the theorem tactic SATURATE_ACC_TAC.

151

After that, it is possible to proceed with the ROP: That is trigged by the
BOX_RIGHT_TAC, which operates by applying (the implementation of) RO
after SATURATE_ACC_TAC and HOLDS_TAC.

At this point, it is possible to optimise the application of BOX_RIGHT_TAC
by applying the latter tactic after a “sorting tactic” SORT_BOX_TAC: That tactic
performs a conversion of the goal term and orders it so that priority is given to
negated holds-propositions, followed by those holds-propositions formalis-
ing the forcing of a boxed formula. Each of these types of holds-propositions
are sorted furthermore as follows:

holds WR V p w precedes holds WR V q w if p occurs free in q
and q does not occur free in p; orif pis “less than” g w.r.t. the struc-
tural ordering of types provided by the OCaml module Pervasives.

The complete proof search is performed by the definitive tactic GL_TAC,
from which we define the expected GL_RULE, defined as follows:

let GL_RIGHT_TAC : tactic =
CONV_TAC (HOLDS_NNFC_UNFOLD_CONV) THEN
PURE_ASM_REWRITE_TAC[AND_CLAUSES; OR_CLAUSES; NOT_CLAUSES] THEN
CONV_TAC CNF_CONV THEN
REPEAT CONJ_TAC THEN
TRY (NEG_RIGHT_TAC HOLDS_TAC)

let GL_STEP_TAC : tactic =
(FIRST o map CHANGED_TAC)
[GL_RIGHT_TAC;
SORT_BOX_TAC THEN BOX_RIGHT_TAC]

let INNER_GL_TAC : tactic = REPEAT GL_STEP_TAC

let GL_TAC : tactic =
REPEAT GEN_TAC THEN REPEAT (CONV_TAC let_CONV) THEN REPEAT GEN_TAC THEN
REWRITE_TAC[diam_DEF; dotbox_DEF] THEN MATCH_MP_TAC COMPLETENESS_NUM THEN
REPEAT GEN_TAC THEN INTRO_TAC "trans boxrl boxr2 boxll boxl2 w" THEN
REPEAT GEN_TAC THEN Rule_gl.INNER_GL_TAC THEN GL_BUILD_COUNTERMODEL; ;

let GL_RULE (tm:term) : thm =
prove(tm,GL_TAC);;

Our tactic works as expected:

1. Given a formula A of £, OCaml let-terms are rewritten together with
definable modal operators, and the goal is set to |-- A;

2. A model (W, R,v) and a world w € W - where W sits on the type num
- are introduced. The main goal is now holds (W,R) V A w;

3. Meta-hypotheses trans boxrl boxr2 boxll boxl2 ware introduced
to be able to handle modal and relational rules;’

"The meta-hypotheses w states that w € W so that we the labelling at the previous step is
justified indeed.

152

4. All possible propositional rules are applied after unfolding the mod-
ified definition of the predicate holds given by HOLDS_NNFC_UNFOLD.
This assures that, at each step of the proof search, the goal term is
a finite conjunction of disjunctions of positive and negative holds-
propositions. As usual, priority is given to non-branching rules, i.e.
to those that do not generate subgoals. Furthermore, the hypothesis
list is checked, and trans is applied whenever possible; the same holds
for £O, which is applied to any appropriate hypothesis after the tactic
triggering trans. Each new goal term is reordered by SORT_BOX_TAC,
which always precedes the implementation of RO,

The procedure is repeated starting from step 2. The tactic ruling it is
FIRST o map CHANGED_TAC,

which triggers the correct non-failing tactic — corresponding to a specific
step of the very procedure - in GL_STEP_TAC.

At each step, moreover, the following condition is checked by calling
ASM_REWRITE_TAC:

Closing The same holds-proposition occurs both among the current hy-
potheses and the disjuncts of the (sub)goal; orholds (W,R) V False x
occurs in the current hypothesis list for some label x.

This condition states that the current branch is closed, i.e. an initial sequent
has been reached, or the sequent currently analysed has a labelled formula
x : L in the antecedent.

Termination of the proof search is assured by the results presented in
[|. Therefore, we have been authorised to conclude our GL_TAC by a
FAIL_TAC that, when none of the steps 2-4 can be repeated during a proof
search, our algorithm terminates, informing us that a countermodel to the
input formula can be built.

That is exactly the job of our GL_BUILD_COUNTERMODEL tactic: It con-
siders the goal state which the previous tactics of GL_TAC stopped at, col-
lects all the hypotheses, discarding the meta-hypotheses, and negates all the
disjuncts constituting the goal term. Again, by referring to the results in
[, |, we know that this information suffices to the user to con-
struct a relational countermodel for the formula A given as input to our the-
orem prover for GL.

6.4.3. SOME EXAMPLES

Because of its adequate arithmetical semantics, Godel-Lob logic reveals
an exceptionally simple instrument to study arithmetical phenomenon of self-
reference, as well as Godel’s results concerning (in)completeness and (un)provability
of consistency.

153

Recall from Section 1.2 that an arithmetical realisation x in Peano arith-
metic (PA)® of our modal language consists of a function commuting with
propositional connectives and such that (0A)* := Bew(" A*™"), where Bew(x)
is the formal provability predicate for PA.

Under this interpretation, we will read modal formulas as follows:

OA A is provable in PA
-0-A4 A is consistent with PA
-0A A is unprovable in PA
0-A A is refutable in PA

(DA) Vv (O-A) A is decidable in PA
(-O0A) A (-O0-A) Aisundecidable in PA

O(A < B) A and B are equivalent over PA
ol PA is inconsistent
-01, &T PA is consistent

We are now going to test our theorem prover on some modal formulas that
have a meta-mathematical relevance.

FORMALISED GODEL’S SECOND INCOMPLETENESS THEOREM. In PA, the
following is provable: If PA is consistent, it cannot prove its own consistency.
The corresponding modal formula is

-01 —» 00T

Here is the running of our prover:

let GL_second_incompleteness_theorem = GL_RULE
f]-- (Not (Box False) --> Not (Box (Diam True)))‘;;

val GL_second_incompleteness_theorem : thm =
|- |-- (Not Box False --> Not Box Diam True)

UNDECIDABILITY OF CONSISTENCY. If PA is does not prove its inconsis-
tency, then its consistency is undecidable. The corresponding modal formula
is

ﬂ(DDJ_) — _\(\:‘—\DJ_) A _\(D—\—\DJ_)

Here is the running of our prover:

let GL_PA_undecidability_of_consistency = GL_RULE
]-- (Not (Box (Box False))
--> Not (Box (Not (Box False))) &%
Not (Box (Not (Not (Box False)))))¢;;

val GL_PA_undecidability_of_consistency : thm =
- 1--
(Not Box Box False -->
Not Box Not Box False && Not Box Not Not Box False)

8 Actually, we could consider any ¥;-sound arithmetical theory T extending 1X; []

154

UNDECIDABILITY OF GODEL’S FORMULA. The formula stating its own un-
provability is undecidable in PA, if the latter does not prove its inconsistency.
The corresponding modal formula is

D(A > —|DA) A-0O01 — -0A4AA-O-A

Here is the running of our prover:

let GL_undecidability_of_Godels_formula = GL_RULE
“1p. |-- (Box (p <-> Not (Box p)) && Not (Box (Box False))
--> Not (Box p) && Not (Box (Not p)))*;;

val GL_undecidability_of_Godels_formula : thm =

|- 'p. |--
(Box (p <-> Not Box p) && Not Box Box False -->
Not Box p && Not Box Not p)

CONSTRUCTION OF A COUNTERMODEL. This is an example of counter-
model construction from a failed proof search of the following reflection
principle:

O(0Op vV O=p) — (Op V —~0O-p)

Since such a formula is not a theorem of GIL, we know that there exists
an arithmetical sentence ¢ such that it is consistent with PA that both ¢ is
undecidable and it is provable that ¢ is decidable.

Here is the interactive running of our prover:

#g “!'p . |-- (Box (Box p || Box (Not p)) --> (Box p || Box (Not p)))*;;
val it : goalstack = 1 subgoal (1 total)

‘!p. |-- (Box (Box p || Box Not p) --> Box p || Box Not p)*¢

e GL_TAC;;
Exception: Failure "Contermodel stored in reference the_gl_countermodel.".

The tactic notifies that a countermodel as been stored in the memory: All we
have to do in order to read it is to run

!the_gl_countermodel;;
val it : term =
‘holds (W,R) Vp y’ /\
holds (W,R) V (Box Not p) y’ /\
Rwy’ /\
holds (W,R) V (Box p) y’ /\
y? IN W /\
Rwy /\
holds (W,R) V (Box p) y /\
y IN W /\
holds (W,R) V (Box (Box p || Box Not p)) w /\
w IN W /\
“holds (W,R) V p y¢

As expected, the structure that the countermodel constructor returns can be
graphically rendered as

yWP yﬁp

N\

w

155

RELATED WORK

Our formalisation gives a mechanical proof of completeness for GL in
HOL Light which sticks to original Henkin’s method for classical logic. In
its standard version, its nature is synthetic and intrinsically semantic [I,
and, as we stated before, it is the core of the canonical model construction
for most of normal modal logics.

That very approach does not work for GL. Nevertheless, the modified ex-
tension lemma we proved in our mechanization introduces an analytic flavour
to the strategy - for building maximal consistent lists in terms of components
of a given non-provable formula in the calculus - and shows that Henkin’s
idea can be applied to GL too modulo appropriate changes.

As far as we know, no other mechanized proof of modal completeness for GIL
has been given before, despite there exist formalisations of similar results
for several other logics, manly propositional and first-order classical and in-
tuitionistic logic.

Formal proof of semantic completeness for classical logic has defined an
established trend in interactive theorem proving since [], where a Hintikka-
style strategy is used to define a theoremhood checker for formulas built up
by negation and disjunction only.

In fact, a very general treatment of systems for classical propositional
logic is given in [|. There, an axiomatic calculus is investigated along
with natural deduction, sequent calculus, and resolution system in Isabelle/HOL,
and completeness is proven by Hintikka-style method for sequent calculus
first, to be lifted then to the other formalisms by means of translations of
each system into the others. Their formalisation is more ambitious than ours,
but, at the same time, it is focused on a very different aim. A similar overview
of meta-theoretical results for several calculi formalised in Isabelle/HOL is

given in [|, where, again, a more general investigation - unrelated to
modal logics - is provided.
Concerning the area of intuitionistic modalities, [| gives a construc-

tive proof of completeness of IS4 w.r.t. a specific relational semantics verified
in Agda, but it uses natural deduction and applies modal completeness to ob-
tain a normalization result for the terms of the associated A-calculus.

A Henkin-style completeness proof for S5 formalised in Lean is presented

in [|. That work applies the standard method of canonical models -
since S5 is compact.
More recently, [Jused the HOL4 theorem prover for a general treat-

ment of model theory of modal systems. For future work, it might be inter-
esting to make use of the formalisation therein along with the main lines of
our implementation of axiomatic calculi to merge the two presentations -
syntactic and semantic - in an exhaustive way.

Our formalisation, however, has been led by the aim of developing a (pro-

156

totypical) theorem prover in HOL Light for normal modal logics. The results
concerning GL that we have presented here can be thought of as a case study
of our original underlying methodology.

Automated deduction for modal logic has become a relevant scientific
activity in recent years, and exhaustive comparison of our prover with other
implementations of modal systems is beyond our purposes. In spite of this,
we care to mention at least three different development lines on that trend.

The work of [| consists of an extremely efficient hybridism of SAT-
solvers, modal clause-learning, and tableaux methods for modal systems. That
prover deals with minimal modal logic K, and its extensions T and S4. The
current version of their implementation does not produce a proof, nor a coun-
termodel, for the input formula; however, the code is publicly available, and
minor tweaks should make it do so.

The conference paper [| presents a theorem prover for intuitionistic
modal logics implementing proof search for Tait-style nested sequent calculi
in Prolog. Because of the structural properties of those calculi, that prover re-
turns, for each input formula, a proof in the appropriate calculus, or a coun-
termodel extracted from the failed proof search in the system. Similar re-
marks could be formulated for the implementation described in |]
concerning several logics for counterfactuals.

The latter formalisations are just two examples of an established modus
operandi in implementing proof search in extended sequent calculi for non-
classical logics by using the mere depth-first search mechanism of Prolog.
Other instances of that line are e.g. [, , NI , ,

, |, and [|. None of those provers deals explicitly with GL,
but that development approach would find no issue in formalising G3KGL
too.

Notice, in any case, that adequacy (soundness and completeness) of all
those implementations rely on results that are informally proven at the meta-
level. Our theorem prover for GL, on the contrary, is certified to be sound and
complete by our theorems in HOL Light GL_ITF_VALID and COMPLETENESS_THEOREM_GEN,
whose correctness, in turn, depends on the LCF approach. Nothing, in prin-
ciple, prevents the HOL Light user from implementing certified theorem
provers for the logics of the Prolog-based development line by proving the
appropriate adequacy theorems for the logic under investigation. That proof
search is well-behaved would rest, in those cases as well as ours, on the prop-
erties of the general proof techniques of HOL Light.

Similar remarks could be made about [], where a general framework
for object-level reasoning with multiset-based sequent calculi in HOL Light
is proposed. They present a deep embedding of those systems by defining
in HOL Light an appropriate derivability relation between multisets and en-
code two G1 calculi - namely, a fragment of propositional intuitionistic logic
and its Curry-Howard analogous type theory. Specific tactics are then de-
fined in order to perform an interactive proof search of a given sequent. For

157

our purposes, it might be interesting to check whether their implementation
may be of some help to enhance the performance and functionality of our
prototypical theorem prover.’

Indeed, moving from the experiment about GL proposed in the present
work, we plan to develop in future a more general (and more refined) mecha-
nism - still based on the methodology discussed here - to deal with (ideally)
the whole cube of normal modal logic within HOL Light. An immediate step
in that direction would be to enhance the implementation of formal proofs in
G3KGL, so that a positive answer to a given input formula would produce also
a real derivation tree in the labelled sequent calculus of that very formula.

°One might say that the framework of |] is similar to the works in Prolog for aiming
a direct deep embedding of a sequent calculus, but it is also close to our implementation for
adopting the LCF approach and for choosing HOL Light as environment.

158

7

UNIVERSAL ALGEBRA IN UNIMATH

This chapter consists of a report on an ongoing implementation of uni-
versal algebra within the formal environment of UniMath [].

The leading motivation has been to provide a general framework for for-
malizing and studying algebraic structures as presented in the field of uni-
versal algebra [| within a proof assistant. By providing a formal sys-
tem for isolating the invariants of the theory we are interested in, univalent
mathematics has seemed to provide a suitable environment to carry out our
endeavour since the very beginning. In particular, since it is natural to study
algebraic structures up to isomorphism, univalent mathematics seems to be
especially suited for this kind of task.

The choice of working within the UniMath environment has appeared
natural, since it provides a minimalist implementation of univalent type the-
ory. At the same time, the system comes with a large repository of mecha-
nised results covering several fields of mathematics, so that it opens a wide
range of possibilities for future development of our formalisation.

By the code surveyed here, the main notions concerning multi-sorted sig-
natures are introduced. Developing them in a formal environment has re-
quired some expedients in the definitions of the basics, and, accordingly, of
some subsequent constructions too. In particular, we had to introduce het-
erogeneous vectors and generalise types involving signatures by introducing
(what we called) “sorted sets™.

Having signatures, we then have given the related formalisation of the
category of algebras using the notion of a displayed category [] over the
category of sorted hSets, whose univalence is proven by adapting the strategy
used for the univalence of functor categories. The resulting construction is
still a modular one and the resulting proof-term is more concise, for sure,
than the one obtained by checking that algebras and homomorphisms satisfy
the axioms for standard categories.

Defining terms is made complex by the fact that, by precise choice, Uni-
Math does not make use of the theory of (Co)Inductive Constructions.' There-

!See Appendix B for a brief overview of the deductive system underlying UniMath, and
further discussions on formalised univalent reasoning.

159

fore, we encode terms as lists of operation symbols, to be thought of as in-
structions for a stack-based machine. Terms are those lists of symbols that
may be virtually executed without generating type errors or stack underflows.

Moreover, we prove that the term algebra over a signature is the initial
object in the corresponding category, and that, more generally, an algebra of
terms over a signature and a set of variables has the desired universal mapping
property.

Our formalisation also includes the notion of equations and of algebras
modelling an equation system associated with a signature; as for the cate-
gory of algebras, we use the displayed category formalism to construct the
univalent category of equational algebras over a given signature o as the full
subcategory of algebras over o satisfying an equation system.

In the main body of the present chapter, we will discuss all the notions we
introduced in our implementation, so that the overall material is structured
as a presentation of the code, followed by the discussion of some examples,
a quick anticipation of future work and a brief comparison with different
formalisations of similar topics as coda. In details, we can summarise it as
follows:

+ In Section 7.1.1, we introduce the very basics of universal algebra along
with some auxiliary definitions involving the new types we need to han-
dle multi-sorted signatures, their algebras, and homomorphisms;

« In Sections 7.1.2, 7.1.3, and 7.1.4, we present the main details of our im-
plementation of terms, prove that term algebras and free algebras do
have the required universal property — stated as the contractibility of
the type of out-going homomorphisms - and discuss the practical and
methodological relevance of our induction principle on terms;

+ In Section 7.1.5, we introduce systems of equations and equational al-
gebras over a signature;

+ In Section 7.1.6, we sketch the main lines of our constructions of the
categories of algebras and equational algebras over a signature in terms
of displayed categories over a base category of indexed hSets whose
univalence is proven by a proof-strategy very close to that one adopted
for functor categories;

+ Finally, Section 7.2 is devoted to three applications of our implemen-
tation, namely: lists (Section 7.2.1), monoids (Section 7.2.2), and Tarski’s
semantics of propositional boolean formulas (Section 7.2.3).

160

GOALS AND METHODOLOGY. What we have mechanised is not, clearly, a
mathematical novelty, but our endeavour has some payoffs.

Firstly, the code introduces in the UniMath library a minimal set of def-
initions and results that is open to the community of developers for future
achievements and formal investigations on the relation between pre-categorical
research in general algebraic structures and its subsequent development in
e.g. Lawvere theories [.

Secondly, a peculiar feature of our code is the original implementation
of term algebras over a signature, which fits within the original approach to
mechanisation of univalent mathematics, but highlights the computational
relevance of the constructions avoiding the restrictions imposed on the Coq
engine in UniMath.

As a matter of fact, terms for a signature constitute a family inductively
defined over the operation symbols together with an additional set of vari-
ables. As it is known, however, UniMath makes use of just some features of
the Coq proof assistant. To be precise, both record and inductive types are
avoided in order to keep the system sound from a foundational/philosophical
viewpoint.

On the other hand, one of our main goals has been to make all our con-
structions about terms evaluable - as far as possible - by the built-in automa-
tion mechanisms of the proof assistant. More precisely, we represent each
term using a sequence of function symbols. This sequence is thought to be
executed by a stack machine: Each symbol of arity n pops n elements from
the stack and pushes a new element at the top. A term is denoted by a se-
quence of function symbols that a stack-like machine can execute without
type errors and stack underflow, returning a stack with a single element.

This approach led us to prove both a recursion and induction principle
on terms that is evaluable as a functional term of the formal system. This is
somehow mandatory when sticking to a form of (small scale) reflection: with
our formalised stack-machine we have written in UniMath an implicit algo-
rithm to compute terms over a signature; by means of our induction principle
we can run it — so to speak — within the very formal system of UniMath, and
use it to reason about terms in a safe way.

Moreover, our methodology sympathizes (in a sense) with what Henk Baren-
dregt has called Poincaré principle: Our implementation of terms allows us
to rely on the very core engine of UniMath when dealing with these formal
objects, so that whenever we want to handle them we can focus on the real
demonstrative contents of the formalisation, leaving to the automation be-
hind the computer proof assistant the trivial computational steps involved in
the very proof-term.

Generally speaking, we find standard categorical presentations, though
perspicaciously elegant in their abstractness, lacking a certain suitability for
computerized mathematics. By contrast, our goal is justified by a specific
need of methodological coherence - we just sketched it few line above - when

161

approaching a work in formalisation. Having proof-terms that the computa-
tional machinery of UniMath practically evaluates as a correctly typed func-
tion seems to fit the philosophy and aims of the mechanisation of mathemat-
ics better than just giving a formal counterpart of traditional mathematical
notions that the computer cannot handle feasibly.

FORMALISATION. Definitions and results we discuss in the present work are
labelled with their corresponding proof-term identifiers in the formalisation
files. Notice that we make an extensive and exclusive use of the proof-as-
programs paradigm here, so that e.g. existential statements are proven by
inhabiting the corresponding X-type, and similarly for the other kinds of
propositions.

To improve readability, in what follows, most proofs and technicalities
are omitted, even though they are available in our repository. Our code is
freely accessible fromhttps://github.com/amato-gianluca/UniMath. The
revision discussed in this chapter is tagged as ITP2021. That version has been
already integrated in the official UniMath repository [|. In our own
repository, the reader might find further experiments about the encoding of
W-types according to our formalism.

The implementation discussed in the present chapter consists of the files
in the directories

+ UniMath/Algebra/Universal_Algebra for the basics of universal al-
gebra (together with auxiliary definitions and results), and

+ UniMath/CategoryTheory/categories/Universal_Algebra for the cat-
egories of algebras and equational algebras over a signature.

In order to help readers to browse our library, we summarise the dependen-
cies between the files by the diagram in Figure 7.1 - where an arrow pointing
to a node indicate the dependency of the target from the source.

WRITING AND REVISION NOTES. This chapter is based on the conference
paper| | presented at Workshop on Homotopy Type Theory/Univalent
Foundations (HoTT/UF) 2020, and the preprint |]. Changes include
an extended discussion of our constructions of displayed categories of (equa-
tional) algebras, and some minor local revisions.

71. SURVEYING THE CODE

In the following subsections we present and comment on the main con-
structions constituting our library. As anticipated, in the present work we
want to make the code contained in the formalisation files easily readable,
so that we privilege a certain clarity of exposition over its exhaustiveness.
The interested reader can fill in the details by browsing the related files we
mention during the discussion.

162

https://github.com/amato-gianluca/UniMath
https://github.com/amato-gianluca/UniMath/tree/ITP2021

Figure 7.1: Intermodule dependencies of the universal algebra formalisation
in UniMath.

163

7.1.1. SIGNATURES AND ALGEBRAS

We start by defining a multi-sorted signature to be made of a decidable
set of sorts along with operations classified by arities and result sorts, as in
standard practice

Definition signature : UU := E: (S: decSet) (0: hSet), 0 = list S x S.

The three natural projections associated to signatures are named sort, names,
and ar

Definition sorts (o: signature) := prl o.
Definition names (o: signature) := pri2 o.
Definition ar (o: signature) := pr22 o.

We also add specific projections for arities

Definition sort {o: signature} (nm: names o) : sorts o
Definition arity {o: signature} (nm: names o) : list (sorts o) :

pr2 (ar o nm).
prl (ar o nm).

These simple definitions rely on two files in UniMath/Combinatorics, namely
Vectors.vand Lists.v.

We changed these libraries in two aspects. First of all, we redefined lists
in terms of the new datatype vec instead of using the ad-hoc type iterprod in
the standard version of the file. Moreover, we changed a couple of theorems
from opaque (Qed. conclusion) to transparent (Defined. conclusion). The
latter changes are needed to make terms compute correctly.

Note that, in a signature, the set of sorts should be a decSet: This is a
type whose equality is decidable, as defined in the file DecSet.v. We need
this extra property because - as we previously stated - we want to evaluate
terms in the UniMath engine: We can achieve that by pushing sorts into a
stack, and we need to check that the very stack contains certain sequences of
sorts before applying an operator symbol. Note also that a decSet also enjoys
the defining property of an hSet. Operators are only required to be in hSet.

A signature may be alternatively specified through the type signature_simple.
In a simple signature, the types for sorts and operation symbols are standard
finite sets, and the map from operations symbols to domain and range is re-
placed by a list. In this way, the definition of a new signature is made simpler.

Definition signature_simple : UU := > (ms: nat), list (list ([ns]) x [ns D).

Definition make_signature_simple {ns: nat} (ar: list (list ([ns) x [ns)
: signature_simple := ns ,, ar.

Coercion signature_simple_compile (o: signature_simple) : signature
:= make_signature ([prl o | ,, isdecegstn _)
(stnset (length (pr2 o))) (nth (pr2 o)).

Single-sorted signatures are then defined as special cases of signature_simple.

Definition signature_simple_single_sorted : UU := list nat.

164

Definition make_signature_simple_single_sorted (ar: list nat)
signature_simple_single_sorted := ar.

Coercion signature_simple_single_sorted_compile
(o: signature_simple_single_sorted)
: signature
:= make_signature_single_sorted (stnset (length o)) (nth o).

Moving to the file Algebras.v, we define an algebra over a given signature
o to be, as usual, support sets indexed by sorts together with operations with
appropriate sorts:

Definition algebra (o: signature): UU
:= > A: shSet (sorts o), [| nm: names o, Ax (arity nm) + A (sort mm).

Definition supportset {o: signature} (A: algebra o) := pril A.

Definition support {o: signature} (A: algebra o): sUU (sorts o) := prl A.
Definition ops {o: signature} (A: algebra o) := pr2 A.

Definition dom {o: signature} (A: algebra o) (nm: names o): UU := Ax (arity nm).

Definition rng {o: signature} (A: algebra o) (nm: names o): UU
:= support A (sort nm).

We declare the projections supportset, support, and ops as type coercions.
Moreover, as for signatures, we simplify the building term for algebras when
starting from a simple signature:
Definition make_algebra_simple
(o: signature_simple) (A: Vector hSet (prl o))

(ops: (M a, (el A)x (dirprod_prl a) =+ el A (dirprod_pr2 a))x (pr2 o))
: algebra o.

A similar proof-term (make_algebra_simple_single_sorted)is given for single-
sorted signatures.

As the reader can see, these definitions rely on many different notions
and notations. These are introduced in MoreLists.v, SortedTypes.v and
HVectors.v files.

The file MoreLists.v contains notations for lists, such as [v1l; ...; vn]
for list literals and : : for cons, together with additional properties which can-
not be found in the standard library.

The type hvec in HVectors.v denotes heterogeneous vectors:> If v is a
vector of types U1, U2, ..., Un, then hvec visthe producttypeUl x (U2 x ... x (Un x unit)).
We introduce several basic operations on heterogeneous vectors: Often they
have the same syntax as the corresponding operations on plain vectors, and a
name which begins with the prefix h. We also introduce notations for hetero-
geneous vectors, such as [(v1l; ...; vn)] foraliteral and ::: for prefixing.

2We need this type to handle operations taking inputs of different sorts.

165

Sorted types are types indexed by elements of another type (the index
type), so that an element of sUU S is an S-sorted type, i.e. an S-indexed family
of types. Similarly, the type shSet § is an S-indexed family of hSets.

For functions, X s+ Y denotes the type of S-sorted mapping between X
and Y, i.e. of S-indexed families of functionsX s + Y s.

More prominently, for any S-sorted type X, its lifting to 1ist S is denoted
by X%, and is ruled by the identityX [s1; s2; ...; sn] = [X s1 ; X 82 ;
Accordingly, if £ is an indexed mapping between S-indexed types X and Y,
then fxx is the lifting of f to a 1ist S-indexed mapping between Xx and Y.
This operation x* is indeed functorial, and we prove that in a form which does
not require function extensionality, since resorting to axioms would break
computability of terms.

All of these notions allow us to define algebra homomorphisms:
Definition ishom {co: signature} {Al A2: algebra o} (h: Al s+ A2) : UU
1= II (nm: names o) (x: dom Al nm), h _ (A1 nm x) = A2 nm (h*xx _ x).

Definition hom {o: signature} (Al A2: algebra o): UU := > (h: Al s- A2), ishom h.

As expected, the property of being an homomorphism belongs to hProp, so
that the type A1 ~ A2 of homomorphisms between Al and A2 is an hSet:

Theorem isapropishom {o: signature} {Al A2: algebra o} (f: sfun Al A2)
: isaprop (ishom f).

Theorem isasethom {o: signature} (A1 A2: algebra o): isaset (A1l ~ A2).

Next, we prove — by lemmas ishomid and ishomcomp - that the identity func-
tion determines an identity homomorphism, and that the property ishom is
closed under composition.

7.1.2. TERMS AND FREE ALGEBRAS

The file Algebras.v is closed by the construction of the unit algebra as
the final algebra among those defined over a given signature:

Definition unitalgebra (o: signature): algebra o
:= make_algebra (sunitset (sorts o)) tosunit.

Theorem iscontrhomstounit {o: signature} (A: algebra o)
: iscontr (hom A (unitalgebra o)).

However, we are mostly interested in the initial object of the category of al-
gebras, namely the algebra of terms over a given signature. In standard text-
books, the set of terms over a signature o and a (disjoint) set V of variables is
defined as the least set including V' and closed under application of symbols
of 0.

For being inductive types unavailable in our formal system, we have de-
veloped a peculiar device to implement that notion.

In our formalisation we start with the special case where the set of vari-
ables V' is empty. The rough and general idea can be sketched as follows:

166

; X sn].

1. A sequence of function symbols is thought of as a series of commands
to be executed by a stack machine whose stack is made of sorts, and
which we define by means of a maybe monad we construct from raw in
Monad.v:

Local Definition oplist (o: signature):= list (names o).
Local Definition stack (o: signature): UU := maybe (list (sorts o)).

2. When an operation symbol is executed, its arity is popped out from the
stack and replaced by its range. When a stack underflow occurs, or
when the sorts present in the stack are not the ones expected by the
operator, the stack goes into an error condition which is propagated
by successive operations. We implement this process by means of two
functions: opexec and oplistexec:

Local Definition opexec (nm: names o): stack o + stack o
1= flatmap () ss, just (sort mm :: ss)) o
flatmap (A ss, prefix_remove (arity nm) ss).

Local Definition oplistexec (1l: oplist o): stack o := foldr opexec (just []1) 1.

The former is the stack transformation corresponding to the execution
of the operation symbol nm. The latter returns the stack corresponding
to the execution of the entire oplist 1 starting from the empty stack.
The list is executed from the last to the first operation symbol.

Several additional lemmas are required in order to make us able to han-
dle stacks - by concatenating, splitting, etc. - without incurring failures
breaking down the whole process, as defined in Terms.v.’?

3. Finally, we define a term to be just a list of operation symbols that,
after being executed by oplistexec, returns a list of length one with
appropriate sort:*

Local Definition isaterm (s: sorts o) (1: oplist o): UU
1= oplistexec 1 = just ([s]).

Local Definition term (o: signature) (s: sorts o): UU
i= > t: oplist o, isaterm s t.

Terms may be built using the build_term constructor and decomposed trough
the princop and subterms accessors:

®In particular, since we need to decide when a stack is correctly executed and when an
underflow occurs, we see the reasons for choosing sorts to constitute a decidable set.

*From a purely HoTT-perspective, we can easily see also that the type of stacks over o is
an hSet, so that the property of being a term is not proof-relevant (isapropisaterm).

167

Local Definition build_term (nm: names o) (v: (term o)x (arity nm)):
term o (sort nm).

Definition princop {s: sorts o} (t: term ¢ s): names o.

Definition subterms {s: sorts o} (t: term o s): (term o)x.

The implementation function build_term is quite straightforward: It con-
catenates nm and the oplists underlying the terms in v, and builds a proof that
the resulting oplist is a term from the proofs that the elements of v are terms.
The princop and subterms accessors are projections of a more complex op-
eration called term_decompose which breaks a term in principal operation
symbols nm and subterms v, and, at the same time, provides the proof-terms
that characterize their behaviour.

7.1.3. INDUCTION ON TERMS

At this point, we proceed in proving induction over terms. The inductive
hypothesis, being quite complex, is stated in the term_ind_HP type.

Definition term_ind_HP (P: [] (s: sorts o), term o s =+ UU) : UU
:= [] (om: names o) (v: (term o)* (arity mm)) (IH: hvec (hlmap_vector P v))
, P (sort nm) (build_term nm v).

Given a family P of types, indexed by a sort s and a term over s, the inductive
hypothesis is a function that, given an operation symbol nm, a sequence of
terms v, and a sequence of proofs of P for all terms in v, is able to build a
proof of P for the term build_term nm v, i.e. nm(vy,...,v,). The identifier
himap_vector simply denotes the variant of map for heterogeneous vectors.
Given this auxiliary definition, the induction principle for terms may be
easily stated as follows:

Theorem term_ind (P: [] (s: sorts o), term o s = UU) (R: term_ind_HP P)
{s: sorts o} (t: term o s)
: P s t.

The proof proceeds by induction on the length of the oplist underlying t,
using the term_ind_onlength auxiliary function.

Simple examples of use of the induction principle on terms are the depth
and fromterm functions. The former computes the depth of a term, and the
latter is essentially the evaluation map for ground terms in an algebra.”

Local Definition fromterm {A: sUU (sorts o)}
(op : J] (nm : names o), Ax (arity nm) + A (sort nm))
{s: sorts o}

: term 0 s + A s
:= term_ind (A s _, A s) (A nm v rec, op nm (h2lower rec)).

>The h21lower proof-term which appears in the definition of fromtermis just a technicality
needed to convert between types which are provably equal but not convertible. This might be
replaced by a transport, if we were not interested in computability. The same can be said for
the proof term h11ift, later in the definition of term_ind.

168

In order to reason effectively on inductive definitions, we need an induc-
tion unfolding property. For natural numbers, it is

nat_rect P a IH (S n) = IH n (nat_rect P a IH n),

which means that the result of applying the recursive definition to S n may
be obtained by applying the recursive definition to n and then the inductive
hypothesis. While this induction unfolding properties are provable just by
reflexivity for many inductive types, this does not hold for terms, and a
quite complex proof is needed:
Lemma term_ind_step (P: [] (s: sorts o), term o s + UU) (R: term_ind_HP P)
(nm: names o) (v: (term o)x (arity nm))

: term_ind P R (build_term nm v)
=R nmv (h2map (A s t q, term_ind P R t) (hilift v)).

Notice that many of the definitions which appear in Terms.v are declared
as Local. This is so because they are considered internal implementation
details and should not be used unless explicitly needed. In particular, this
holds for a set of identifiers that will be redefined in VTerms.v to work on
terms with variables. Since sometimes it may be convenient to have special-
ized functions that only work with ground terms, they are exported through
a series of notations, such as:

Notation gterm := term.
Notation build_gterm := build_term.

7.14. TERMS WITH VARIABLES AND FREE ALGEBRAS

Considering terms with variables is what we do in file VTerms.v. The
idea is that a term with variables in V' over a signature ¢ is a ground term
in a new signature where constant symbols are enlarged with the variables
in V. Variables and corresponding sorts are declared in a varspec (variable
specification), while vsignature builds the new signature.

Definition varspec (o: signature) := > V: hSet, V =+ sorts o.

Definition vsignature (o : signature) (V: varspec o): signature
:= make_signature (sorts o) (setcoprod (names o) V)
(sumofmaps (ar o) (A v, nil ,, varsort v)).

The proof-terms namelift and varname are the injections of, respectively,
operation sysmbols and variables in the extended signature.

Definition namelift (V: varspec o) (nm: names o): names (vsignature o V)
:= inl nm.

Definition varname {V: varspec o} (v: V): names (vsignature o V) := inr v.

Then, a list of definitions comes: They essentially introduce terms with vari-
ables by resorting to ground terms.

169

Definition term (o: signature) (V: varspec o)
: sUU (sorts o) := gterm (vsignature o V).

Definition build_term {V: varspec o} (nm: names o) (v: (term o V)x (arity nm))
: term o V (sort mm) := build_gterm (namelift V nm) v.

Definition varterm {V: varspec o} (v: V)
: term o V (varsort v) := build_gterm (varname v) [()].

Finally, in FreeAlgebras.vwe pack terms and the build_termoperation into
the algebra 7., (V') of terms over a given signature o and set of variables V.
For this algebra, we prove the expected universal property:

Definition free_algebra (o: signature) (V: varspec o): algebra o :=
Omake_algebra o (termset o V) build_term.

Definition universalmap
: > h: free_algebra o V ~ a, [[v: V, h _ (varterm v) = a v.

Definition iscontr_universalmap
: iscontr (5 h:free_algebra o V ~ a, [[v:V, h (varsort v) (varterm v) = o v).

In TermAlgebras.v we just consider the special case of FreeAlgebras.v for
the empty set of variables, i.e. for ground terms. In this case, the universal
mapping property is replaced by the initiality of the ground term algebra.

71.5. EQUATIONS AND EQUATIONAL ALGEBRAS

Equations and their associated structures are key notions in universal
algebra. Although an extensive treatment of equational algebras and vari-
eties is out of the scope of the present work, the basic definitions are already
present in our implementation in file EqAlgebras.v.

In our setting, an equation is a pair of terms (with variables) of the same
sort. Their intended meaning is to specify identities law where variables are
implicitly universally quantified.

Definition equation (o : signature) (V: varspec o): UU
i= E: s: sorts o, term o V s x term o V s.

The associated projections are denoted eqsort, 1hs, and rhs respectively. An
equation system is just a family of equations.

Definition eqsystem (o : signature) (V: varspec o): UU
:= > E : UU, E + equation o V.

Then, we pack all the above data into an equational specification, that is a sig-
nature endowed with an equation system (and the necessary variable specifi-
cation).

Definition egspec: UU := > (o : signature) (V: varspec o), eqsystem o V.

170

The interpretation of an equation is easily defined using function fromterm

introduced in Sect. 7.1.3. More precisely, the predicate holds that checks if

the universal closure of an equation e holds in an algebra a is given as follows:
Definition holds {o: signature} {V: varspec o}

(a: algebra o) (e: equation o V) : UU
:= [] o, fromterm a a (egsort e) (lhs e) = fromterm a a (egsort e) (rhs e).

From this, it is immediate to define the type eqalgebra of equational algebras
as those algebras in which all the equations of a given equational specifica-
tion hold.

71.6. CATEGORICAL STRUCTURES

Universal algebra has a natural and fruitful interplay with category the-
ory []. As claimed in the introduction, our mechanisation includes basic
categorical constructions for organizing and reasoning about universal alge-
bra structures. In agreement with the general philosophy of univalent math-
ematics,® we can prove that the categories we are interested in - of algebras
and equational algebras - are univalent indeed.

In order to develop formal proofs of that property, two possible strategies
are available.

A simplest one consists of building the desired category from scratch,
and then prove that univalence holds between any pair of isomorphic ob-
jects. However, experience has shown that this strategy often lacks a certain
naturalness, and it makes the steps involved in the construction hard.

The second available strategy has revealed practicable in a more effi-
cient way: We define the desired category in a step-by-step construction by
adding layers to a base category already given. Such a notion of layer corre-
sponds precisely to a displayed category [|: Displayed categories can be
thought of as the type-theoretic counterpart of fibrations, and constitute a
widely adopted instrument to reason about categories even at higher dimen-
sions [| in the UniMath library.

To this end, a simple approach would be to proceed in two separate steps,
first build the desired categories, then write the proofs that they are univa-
lent. After defining a displayed category over a base category, we can then
build a total category whose univalence is proven by checking univalence for
the base category and a displayed version of univalence for the category dis-
played over the base. This is a generalised version of the so-called structure
identity principle, introduced first by Peter Aczel as invariance of all structural
properties of isomorphic structures (broadly considered).

To build our category of algebras, we apply that very principle: The struc-
ture of algebras and homomorphisms is displayed over a base category of
shSets that we construct from raw.

®See the remarks in [|, where category theory was introduced first in a HoT T-setting.

171

In a bit more detailed manner, when building the main category of alge-
bras over a given signature o,

« We associate to each sorted-hSet the property of being an algebra - the
fibration in algebra;

+ To each sorted-function, we associate the property ishom;

+ We then use the fact that the identity sorted-function defines an al-
gebra homomorphism, and that ishom is closed under composition of
sorted-functions, as stated by ishomid and ishomcomp, respectively;’

+ Finally, we use the UniMath Lemma is_univalent_disp_from_SIP_data
to prove displayed univalence by showing that the property of being an
algebra is an hSet indeed, and that any two interpretations of symbols
of o are equal whenever the identity sorted-function is an homomor-
phism w.r.t. these given assignments.

At this point, proving that the base category of shSets is univalent re-
vealed already non-trivial. Nevertheless, we managed on the issue by tweak-
ing the proof-terms already constructed for functor categories in UniMath.
The resulting total category of algebras is therefore univalent in the usual
sense.

Turning now to equational algebras, we do not have to start the con-
struction again from scratch: Within the displayed category formalism we
can identify the “substructure” of algebras over shSets satisfying a system of
equations. In other terms, we can take for equational algebras the layer over
the category of shSets made of the full displayed subcategory of the displayed
category of algebras identified by the type is_eqalgebra.

Again, proving displayed univalence for this layer is not difficult, so that
the total category of equational algebras over a system of equations is univa-
lent, as required.

Finally, we rephrase the universal property of the term algebra shown in
Section 7.1.2: We can state its initiality in the category of algebras over a given
o by means of the proof-term made of the of the algebra itself and the con-
tractibility of out-going homomorphisms, previously constructed.

The reader interested in the details of these categorical results is referred
to our code located in the subdirectory
UniMath/CategoryTheory/categories/UniversalAlgebra.

7.2. SOME SUCCESSFUL EXPERIMENTS

In this section, we want to illustrate by simple examples how to use our
framework in three different settings.

’See the end of Section 7.1.1.

172

7.21. LIST ALGEBRAS

We start with a very simple multi-sorted example, the signature of the list
datatype and its algebras.

We will show how to specify a signature in our framework and how to
interpret a list datatype as an algebra.®

We will need two sorts, one for elements and the other for lists. Corre-
spondingly, we name the two elements o0 and e1 of the standard finite set
with two elements [2].

0.
ol.

Definition elem_sort_idx: [2] :
Definition list_sort_idx: [2] :

nou

Our signature for the language of lists will consist of two operation symbols
for the usual constructors nil and cons respectively.
Such a signature is encoded with a list of pairs. Each pair describe the
input (a list of sorts) and the output (a sort) for the corresponding constructor.
Definition list_signature: signature_simple
:= make_signature_simple

[(nil ,, list_sort_idx) ;
([elem_sort_idx ; list_sort_idx] ,, list_sort_idx) J%list.

For enhanced readability, we assign explicit names to the operator symbols.

Definition mnil_idx: names list_signature := 0.
Definition cons_idx: names list_signature := el.

Now, we can endow the list datatype of UniMath (1istset)with the structure
of an algebra over list_signature by using the list constructors nil and
const.

We fix a type A for our elements.

Variable A : hSet.

Then, the class of algebras over 1ist_signature is given by

Definition list_algebra := make_algebra_simple list_signature
[A ; listset A)]
[C A _, nil ; X p, comns (prl p) (pri2 p))].

From now on in this section, lemmas are just simple verification of convert-
ibility. They are all proven by reflexivity and the proof scripts are omitted.

To begin with, we check that the sort of elements is A and the sort of lists
is given by the associated list datatype:

1l
=

Lemma elem_sort_id : supportset list_algebra elem_sort_idx

Lemma list_sort_id : supportset list_algebra list_sort_idx = listset A.

8The code for this example can be found in the module
UniMath.Algebra.Universal.Examples.ListDataType

173

Next, we define the associated algebra constructors.
First, let’s consider the empty list constructor.

Definition list_nil : listset A := ops list_algebra nil_idx tt.

As expected, it reduces to the usual nil constructor.

Lemma list_nil_id : list_nil = @nil A.

For the list cons constructor, the situation is more complicated. The domain
of the constructor is the product A x listset A x unit, meaning that the
constructor has two (uncurried) arguments

Lemma list_cons_dom_id : dom list_algebra cons_idx = A x listset A x unit.

Thus, the operation extracted by the ops projection has type with the follow-
ing form

Definition list_cons : A x listset A x unit -+ listset A
:= ops list_algebra cons_idx.

That said, our 1ist_cons operation reduces to the usual list cons.

Lemma list_cons_id (x: A) (1: listset A) : list_cons (x,, (1,, tt)) = cons x 1.

7.2.2. EQUATIONAL ALGEBRAS OF MONOIDS

From now on, we will consider single sorted examples for the sake of sim-
plicity.
In this Section, we will discuss the eqalgebra of monoids.”

To define single sorted signatures, our function make_signature_simple_single_sorted
is a handy shorthand - introduced in Section 7.1.1 - taking only a list of natural
numbers.

Definition monoid_signature := make_signature_simple_single_sorted [2; 0].

Monoids are already defined in UniMath.
Similarly to what we did in the previous section with lists, we endow
monoids with the structure of a monoid algebra.
Definition monoid_algebra (M: monoid) : algebra monoid_signature
:= make_algebra_simple_single_sorted monoid_signature M

[C X p, op (prl p) (pri2 p) ;
A _, unel M)].

Next, we provide a variable specification, i.e. an hSet of variables together
with a map from variables to sorts. Since monoid_signature is single-sorted,
the only available sort is tt.

Then, we build the associated algebra of open terms that will be used to
specify the equations of the theory of monoids.

°The code for this example can be found in the module
UniMath.Algebra.Universal.Examples.Monoid

174

Definition monoid_varspec : varspec monoid_signature

:= make_varspec monoid_signature natset (A _, tt).
Definition Mon : UU := term monoid_signature monoid_varspec tt.
Definition mul : Mon = Mon - Mon := build_term_curried (e0: names monoid_signature).
Definition id : Mon := build_term_curried (el: names monoid_signature).

Term variables are associated to natural numebers. In this case, three vari-
ables x, y, z will suffice for our needs:

Definition x : Mon := varterm (0O: monoid_varspec).
Definition y : Mon := varterm (1: monoid_varspec).
Definition z : Mon := varterm (2: monoid_varspec).

Now, we have all the ingredients to specify our equations: The monoid ax-
ioms of associativity, left identity, and right identity.

Definition monoid_equation : UU := equation monoid_signature monoid_varspec.
Definition monoid_mul_lid : monoid_equation := tt,, make_dirprod (mul id x) x.
Definition monoid_mul_rid : monoid_equation := tt,, make_dirprod (mul x id) x.

Definition monoid_mul_assoc : monoid_equation
:= tt,, make_dirprod (mul (mul x y) z) (mul x (mul y z)).

We pack the above equations together into an equation system (monoid_axioms)
and its associated equational specification (monoid_eqgspec); finally, we de-
fine the class of equational algebras of monoids monoid_eqalgebra.'’
Next, we want to show that every “classical” monoid M has a natural
structure of equational algebra.
We have two show that M is a model for our equation system. Let’s begin
then with the left-identity axiom
Lemma holds_monoid_mul_lid : holds (monoid_algebra M) monoid_mul_lid.
Proof.
intro «a. cbn in a.
change (fromterm (monoid_algebra M) a tt (mul id x) = a 0).
change (op (unel M) (a 0) = a 0).

apply lunax.
Qed.

As you see, we fix the variable evaluation «, then we observe that our goal
reduces to the same law expressed in the usual language of monoids - op for
the product, unel M for the identity, @ 0 for the first variable x - and then the
goal is solved at once by applying the corresponding monoid axiom lunax.

The other two laws - for right identity and associativity - are proven in
the same way.

Thus, we can now pack everything into a monoid eqalgebra by definitions
is_eqalgebra_monoid and make_monoid_eqalgebra.

""We omit the formal construction which is uncomplicated and essentially reduces to un-
interesting bookkeeping.

175

7.2.3. ALGEBRA OF BOOLEANS AND TARSKI’S SEMANTICS

We conclude the code survey with a further example based on a simple
single sorted algebraic language: the algebra of booleans, and its connec-
tives.!!

The language considered has the usual boolean operators: truth, falsity,
negation, conjunction, disjunction, and implication. Arities can be simply
specified by naturals (the number of arguments).

We use the function make_signature_simple_single_sorted to build a
signature from the list of arities:

Definition bool_signature :=
make_signature_simple_single_sorted [0; 0; 1; 2; 2; 2].

Obviously, the type of booleans is already defined in UniMath, together with
its usual constants and operations: false, true, negb, andb, orb, implb.

Now, booleans form an hSet, which is denoted boolset. It is easy to orga-
nize all of those constituents into an algebra for our signature by specifying
the translation:

Definition bool_algebra :=
make_algebra_simple_single_sorted bool_signature boolset
[(A _, false ;

_, true ;

x, negb (prl x) ;

andb (prl x) (pri2 x) ;

x, orb (prl x) (pri2 x) ;

x, implb (prl x) (pri2 x))]J.

> > > >
el

Next, we build the algebra of (open) terms, that is, boolean formulas.
This is done in two steps. First, we give a variable specification, i.e. a set
of type variables:

Definition bool_varspec := make_varspec bool_signature natset (A _, tt).

Then, we define the algebra of terms and the associated constructors.

Definition T := term bool_signature bool_varspec tt.

Definition bot : T 1= build_term_curried (o0 : names bool_signature).
Definition top T := build_term_curried (el : names bool_signature).
Definition neg T=+T 1= build_term_curried (e2 : names bool_signature).
Definition conj : T + T + T := build_term_curried (e3 : names bool_signature).
Definition disj T+ T=+T :=build_term_curried (o4 : names bool_signature).
Definition impl : T + T + T := build_term_curried (e5 : names bool_signature).

Finally, we use the universal property of the term algebra to define the inter-
pretation of boolean formulas:

Definition interp (a: assignment bool_algebra bool_varspec) (t: T) : bool :=
fromterm (ops bool_algebra) o tt t.

"The code for this example can be found in the module
UniMath.Algebra.Universal.Examples.Bool.

176

At this point, we can check the effectiveness of our definitions with some
applications.

To set-up our tests, we introduce three variables x, y, z and a simple eval-
uation function v for variables that assigns true to the variable x and y (the
variable of index 0 and 1) and false otherwise.

Now, we can run the interpretation function by using the Coq internal
evaluation mechanism by using the vernacular command Eval strategy in
term.

This way, we see that the evaluation of the formula z A (2 — —y) becomes:

Eval lazy in
interp (A n, match n with O => true | 1 => true _ => false end)
(conj x (impl z (not y)).

The reader is invited to notice that the choice of the lazy strategy is not acci-
dental. Computations required to evaluate such a proof term are pretty heavy
and the standard call by value strategy does not seem able to produce a result
in reasonable time.

A few other examples are available in our code as, for instance, a proof of
Dummett’s tautology:

Lemma Dummett : [[i, interp i (disj (impl x y) (impl y %)) = true.
Proof.

intro i. lazy.

induction (i 0); induction (i 1); apply idpath.
Qed.

Notice that this formal proof is just a case analysis for truth-tables in
disguise: We instantiate the values of x and y by applying induction twice,
but the remaining job is left to the computing mechanism of Coq, which is
able to autonomously verify that the evaluation does yield the value true in
all cases - we only need to apply idpath.

RELATED WORK

By the code just surveyed, we covered most of fundamental concepts in
universal algebra. We plan to enhance our implementation along three di-
rections:

1. First of all, we wish to streamline the interface provided by the library.
With the current state of implementation, the user is exposed to many
technical details which have no theoretical relevance; these include:
the internal signatures generated by vsignature for dealing with vari-
ables in terms; the existence of two term algebras, one for ground terms,
the other for general terms, while the former should only be a particular
case of the latter.

We plan to redesign the interface in order to hide the internal details as
much as possible. Furthermore, the interface for heterogeneous vectors

177

might be generalized to make the HVectors module more useful outside
of the scope of our library.

2. Next, to include more advanced results. On the one hand, we plan to
complete the treatment of equational algebras by defining the initial
algebra of terms modulo equational congruence. On the other hand,
we want to include some relevant theorems, such as the homomorphism
theorems and Birkhoff’s theorem for varieties.

3. Finally, to extend the library with refined applications and examples of
univalent reasoning. This would give evidence that even the minimalist
environment of UniMath does allow its user to approach mechanised
mathematics with the advantages of both univalent reasoning - to han-
dle equivalent objects as naturally as in informal mathematics - and the
automation process of the proof assistant - to be smartly used for per-
forming “internal” implementations in order to leave all computations
with no demonstrative significance to the machine.

The code that the present chapter has surveyed is not the only existing
mechanisation of universal algebra. In fact, different approaches to the field
in computerized mathematics are already known.

A classical work on implementing universal algebra in dependent type
theoryis|], where he systematically uses setoids in Coq to handle equal-
ity on structures. Another attempt, still based on setoids, has been recently
carried on in Agda [].

In even more recent times, the works | , , | draw on
the multi-sorted version of [| to develop an extensive and setoid-based
Agda library on single-sorted universal algebra that strives to be as powerful
as Abel’s formalisation but a bit more sensitive to foundational aspects.

On the categorical side, initial semantics furnishes elegant techniques for
studying induction and recursion principles in a general setting encompass-
ing applications in programming languages and logic. Assuming univalence,
steady research activity has produced over the time a number of contributions

to the UniMath library, see e.g. [I.
However, in the HOTT/UF perspective, the results in [|- further de-
veloped in |] - seem to settle in a framework that more closely compares

with ours. Despite both our formalisation and Lynge’s one assume univalent
mathematics as formal environment, the study we are proposing here differs
from his one by adopting a more foundational perspective. This point of view
materialises in our choice of UniMath over CoqHoTT, which is the system
adopted by Lynge for his encoding. Moreover, our focus makes the imple-
mentation we are proposing different also from categorical treatments men-
tioned above because of the care we have taken about making the construc-
tions easily evaluable by the very normalisation procedure of proof-terms.

178

APPENDICES

179

A

HOL LIGHT LOGICAL ENGINE

HOL Light is a fully programmable proof assistant based on classical
higher-order logic, using the programming language OCaml at both the im-
plementation and interaction levels [|. It has been developed and main-
tained by John Harrison, and belongs to the family of theorem provers origi-
nated by Michael Gordon’s HOL system |]: It differs from its ancestor
because of a minimalist design and a very small logical kernel.

From a mathematical point of view, HOL Light engine consists of simple
type theory with polymorphic variables. This logical system is, at the same
time, an instantiation of the theory introduced first in [] and the inter-
nal logic of an elementary topos.!

Let us start by making explicit this underlying deductive calculus.

The type theory of HOL Light is based on two primitive types: The type bool
of Booleans and the type ind of individuals. Given two types A, B, a function
type A — B can be constructed.

Each typed term has a single well-defined type, but each constant with
polymorphic type determines an infinite family of constant terms.

The only primitive logical constant is polymorphic equality

=: A— A — bool.

Functional application of = is rendered by infixing it, so that we write t; = to
instead of (= ¢1)t2. Moreover, equality between Booleans is used as logical
equivalence <, since formulas of our theory inhabit the type bool.

The proof system is based on ten primitive inference rules, rendered by
sequent-style natural deduction. This means that we are dealing with judge-
ments of the form I' = P where I is a set of formulas - i.e. a context of terms
sitting on bool - and P is a single formula - i.e. a term sitting on bool.” This
allows us to omit type annotation from the rules, which are collected in Fig-
ure A.l.

'In [| this system is called higher order categorical logic, and corresponds to local set
theory of []. Both these presentation were largely inspired by [.

*We need to change the sequent symbol in order to avoid a formalism clash between that
symbol, the symbol for function types —, and the symbol for implication between Booleans
=.

180

I's=t AFt=u

T=t TUA s —u TRANS
IEs=t Atu=v —————— ASSUME
MK_COMB

TUAF s(u) =t(v) B {Py-P

FEs=t — BETA(y
TF s =t o F Oat)z =t
r-req A}_PEQMP rep AFQ

FUaARQ ’ C—{Qhu@a—{P}FP&Q

F[:l:l’... 7$n]|_P[$1,--- 7xn] F[Ah--. ,ATL]}—P[AI’... 7An}

Llty, - ,tn) F Plty,- -

INST INST_TYPE

F[Bla"' aBn] }_P[Bl, ;Bn]

Figure A.1: Primitive rules of HOL Light

The side condition (z!) of ABS imposes that x does not occur free in T,
while INST and INST_TYPE assume capture-avoiding substitution. MK_COMB
requires that the composite terms are well-typed, therefore the types need to
agree.

Logical operators are apparently lacking. This is not the case, since after
| we know how to define them in such a setting:

[

Wy o w< > F << A

(AP.P) = (\P.P)
AP.(P = Az.T)
VP.P

APAQ.(M.fPQ) = (\f.fTT)

APAQ.PAQ & P

APAQVYR.(P=R)= (Q@=R)=R

APNQ.(Vx.P(z) = Q) = Q
AP.P= 1

APAP ANV Ny.Px NPy=x =1y

Then we see that the rules of Figure A.1 suffice to define an intuitionistic
higher-order logical kernel, which is further extended by three “mathemati-
cal axioms” characterising HOL Light:

1.

2.

ETA_AX

EXTENSIONALITY: This is given by the rule [(\z.tz) =t ;

SELECT_AX

CHOICE: This is given by the rule " “ypv, pr — P=(P) ,

which requires the introduction of a further polymorphic logical con-
stant in the base language, namely the Hilbert choice operator

£: (A — bool) — A;

181

DEDUCT_ANTISYM RULE

3. INFINITY: This is given by the rule

INFINITY_ AX
- 3f : ind — ind.ONE_ONE f A —ONTO f

and imposes that the type ind is infinite by postulating the existence
of an injective endofunction on ind that is not surjective.

The ETA_AX makes pointwise equal functions formally equal, so that it
does work as a function extensionality axiom.

It is known, after []and [1,° that the axiom of choice implies that
the logic of HOL Light is classical.

The axiom of infinity postulates that the type of individuals is Dedekind-
infinite, so that one could select a subset of ind that would behave like a
natural numbers type with f as successor function.

Overall, the proof-theoretic strength of the system obtained by adding these
three axioms equals bounded Zermelo set theory BZC [|, so that a huge
amount of mathematical constructions can be carried out in it, after the math-
ematical basic concepts one is interested in are defined.

New constants and types are introduced indeed by two definitory princi-
ples: The rule for defining a constant allows one to introduce a new constant
¢ and an axiom - ¢ = t - subject to some side conditions on free variables
and polymorphic types in t - unless ¢ has been previously defined; the rule for
defining a new type behaves similarly. Both definitory principles operates at
the object level, but are designed to produce only conservative extensions of
the basic system: That is on the lines of the design principles of the theorem
provers in the HOL family | |, which require that new mathematical en-
tities can be defined only by exhibiting a model of them in the existing theory,
so that new constants are only definitional extensions.

That is the whole logical kernel at the foundations of HOL Light. Its im-
plementation is based on the LCF programming paradigm [|, whose
main principles are:

+ The deductive engine behind any proof must be built on top of a min-
imal number of primitive rules, so that its consistency should assure the
correctness of the proof themselves;

+ The entire system is embedded inside a programming language that is then
used to implement new inference rules, whose soundness relies on the
primitive rules and the type discipline of the ambient programming
language.

SRefer however to the discussion in [
to that claim.

,] about the base hypotheses leading

182

For HOL Light, these principles are made factual by an OCaml embed-
ding that represents logical notions by defining three basic datatypes: hol_type
for types; term for terms; thm for theorems.

This means that the rules of the abstract proof system of Figure A.1 be-
comes programs returning type thm: Proving a statement turns into exhibit-
ing an inhabitant of that very type. The validity of such a statement relies
then on the correctness of the (program implementing the) rules of the proof
system.”

Nevertheless, the user is not forced to apply directly those rules, since
HOL Light comes with several higher-level derived rules that are easier to
interact with. These are designed by combining the primitive rules, and even
though no user is expected to concern with their definitions, any user can
write her own special purpose proof-rules on the basis of the primitives and
the “standard” higher-level ones.

Furthermore, proof development in HOL Light is highly procedural, and
human-machine interaction is privileged. The most common way of proving
a theorem is via the interactive discovery of proofs by the tactics and the goal
stack mechanism of HOL Light.

Tactics break down a goal - i.e. a theorem the user wishes to prove -
into more manageable subgoals. Moreover, if a subgoal is solved, the tactics
are also able to tackle the development of the proof of the main goal by an
appropriate OCaml function. This is, in a sense, a computerised version of
what happens in a root-first proof search in a sequent calculus, but here the
user has only to keep applying the tactics, and the computer automatically
reverses the proof into the top-down construction of the derivation tree built
suing the standard primitive rules.

The goal stack allows the user to perform tactics and, if necessary, to
retract a step of the proof development or correct an application of a tactic.
When a tactic generates more than one subgoal, then the latter are presented
to the user one at a time, together with the related lists of hypotheses. This
is similar to considering a branch of a derivation tree at a time, since the goal
stack keeps track of the current subgoals to be solved like the root-first proof
seeker does when dealing with branching rules.

Some tactics are very simple and very natural to use in the goal stack, since
they correspond closely to the rules of natural deduction. But in HOL Light
tactics can be combined by means of the so-called tacticals. For instance, a
most basic tactical is REPEAT, that repeats the application of an input tactic
until it fails. Another tactical that appears everywhere in the code discussed
in Chapter 6 is THEN: It simply executes two tactics in sequence, so that in
principle any proof development can be compressed into a single large tactic
- this way, the user may dispense with the goal stack at all when presenting
a formal proof in the theorem prover.

*Clearly, the correctness of those programs rests in turn on the OCaml type discipline.

183

HOL Light comes equipped with much more complex tactic(al)s,” some
of which are rather domain specific - e.g. real arithmetic or cardinality - so
that the construction of proofs is more user friendly. Moreover, a declarative
interface has been developed by Harrison, in order to make proof scripts even
more easier to read and adapt, as well as more portable, than the standard
procedural approach [.

It is worth noticing that HOL Light has been applied over the years to
very different contexts for academic research as well as industrial research,
as witnessed by the very HOL Light standard distribution, that includes code
ranging from modules of the Flyspeck project | , | to verifi-
cation of floating-point algorithms [, , .

For further information about HOL Light, refer to [|; for a hands-
on introduction to the theorem prover see [| and consider surfing the
official distribution [J. A key feature that we stress to point at is the
really minimalistic design approach of HOL Light: The core that the user
needs to trust for developing correct proofs - even when defining new domain
specific rules - is so small that it only consists of about 400 l.o.c. This is what
makes peculiarly simple a formal verification of that very core, as witnessed
by the experiment in self-verification of [I.

>Among them ASM_MESON_TAC is able to semi-decide statements in first-order theories
with identity via model elimination of | | here based on a backward search introduced in

[I

184

B

UNIVALENT TYPE THEORY AND UNIMATH

Per Martin-Lo6f’s intuitionistic type theory — here called dependent type
theory, [,] - dates back to 1971, and, after various revisions dur-
ing subsequent years, consists of an intuitionistic theory of iterated inductive
definitions which had widespread conceptual influence on logically oriented
programming languages

The basic syntax of that theory is much more expressive than that of sim-
ple type theory. Indeed, most of the informal definitions given in Section 1.5
can be formally defined from scratch in the sequent-style calculus for this
extended theory.

Let’s start by recalling that formal calculus.
Our objects and types consist of terms generated by the following grammar:

’

t = x| Azt | tt) | ¢ | f

where z indicates a variable, c a primitive constant, and f a defined constant.
We will work with three kinds of judgements:

I' ctx I'=a:A I'sa=a :A.

Asin Section 1.5, T (and, generally, capitalized greeks) indicates a type-theoretic
context, i.e. a list z; : Aj,...,x, : A, informing that the distinct variables
x1,...,Ty have type, respectively, Ay, ..., A,.

Furthermore, in the present setting, we assume a hierarchy of type uni-
verses, denoted by primitive constants

Z/{O y e) Z/{Tl)

Judgement I ctx expresses formally the fact that I is a consistent context,
and it is defined in Figure B.1.

The hierarchy of type universes is defined in Figure B.2. Less formally,
we assume given a cumulative hierarchy of universes where

Uy : U, for m<mn, and

185

T1: A1, Tyt A1 = Ap i U;

Cctx-EMP

. Ctx-EXT |
ctx (1 : A1, .. -1 Apn—1,2n : An)ctx
where z,, & {z1,...,2n-1}
Figure B.1: Rules for well-formed contexts
I ctx ' = A: U
——— 5, U-INTRO ——————— U-CUMUL .
F'=U; : Ui I' = A: Uit u

Figure B.2: Rules for universes

if A:U, and m<n, then A:U,.

The only basic structural rule is

(x1: A1, .,z 0 Ay Cx
x1 A, T Ay = x A

Vble

where i € {i,...,n}.!

Finally, we assume = is an equivalence relation preserved by typing and
constructors of each type.”

Type-formers are defined by the standard methodology, i.e. we define
each type-former by:

+ a formation rule, stating when the type-former can be applied,;
« introduction rules, stating how to inhabit the type;
+ elimination rules, stating how to use an inhabitant of the type;

« computation rules, consisting in judgemental equalities which define
the result of the application of elimination rules to results of introduc-
tion rules;

!Actually, the following rules are admissible:

'=a:A z: A,/ A=5b:B I'=A:U; I''A=10b:B

bst Wk
I, Ala/z] = bla/x] Subst: Nz: AAA=b:B &1
F'=a:A F7I:A’A:>bEC:BSbt I'=sA:U; F,A:bEC:BWk
T, Ala/z] = bla/x] = cla/z] ubstz Nz:AAA=b=c:B &2 -

?We will not formalize the corresponding rules defining these conditions, since they
should be easily identified.

186

+ (optional) uniqueness principles, consisting in judgemental equalities
determining uniquely an inhabitant of the type by means of the result
of an elimination rule applied to it.

Function types correspond to | [-types and are defined in Figure B.3. We
see that computation rule for [[-types corresponds to S-reduction for depen-
dent functions, and the uniqueness principle consists of n-reduction. Note
also that the arrow type is just a special case of dependent function type with
constant B : A — U;.

In the proof-as-programs paradigm, an inhabitant of a general [[-type
corresponds to a deduction in NJ of a universal formula Vz.A(z) — B(x).

I'=s A:U; Nz: A= B:U;

[1-FOrRM
= TJIB:U;
13
I'N'z:A=b:B
I —INTRO
I'= (Az:Ab): [[B
x: A
'=f:[]B F'sa:A
z:A
[T—-ELIM
I' = f(a): Bla/x]
I'z:A=b:B I'=a:A
[T —comp
I'= (Az: A.b)a = bla/z] : Bla/z]
'=sf:]IB
x:A H—UNIQ
s (Mz:Afx)=f

Figure B.3: Rules for dependent function types

For) -types we have the rules in Figure B.4. Informally, elimination and
computation rules state that to construct a dependent function froma > -type
to a family C : Y- B — U;, we only need for a functiong : [[[[C(a,b)

x:A z:Ay:Bla/x]
fromwhichwe canderivea function f : [[C(p)suchthat f((a,b)) := g(a)(b).
p:Y.B
wA

Note also that when B does not depend from A, we have the product type
A x B; moreover, canonical projections 71 and 7y can be derived from the
induction rule in both dependent and non-dependent cases.

In the proof-as-programs paradigm, an inhabitant of a general > -type
corresponds to a deduction in NJ of an existential formula 3z.A(x) A B(x).

187

I'=A:U; 'z: A= B:U;

-FORM
r=>.B:U >
x:A
Nz: A= B:U, '=a:A I'=b: Bla/z]
> -INTRO
I'= (a,b): > B
x:A
I'z: > B=C:U; Nz:Avy:B=g:C|(z,y)/z] P=p:> B
z:A : x:A Z—ELIM
I indy 5(=C.x9.0.9) : Olp/7]
@A
T,z: > B=C:U; I'=sa:A Nz:Ay:B=g:Cl(z,y)/7]
z:A
I'=b:B
lo/] > -COMP

I' = ind Z;’B('Z'Cv z.Y.9, (a’v b)) = g[(a1 b)/(mv y)]

Here punctuations indicate that) B binds (free occurrences of) z in B, ind B binds (free occurrences
x:A z:A
of) z in C, and (free occurrences of) x and y in g.

Figure B.4: Rules for dependent pair types

Sum types are defined according to their behaviour in simple type theory
by the rules in Figure B.5. Informally, elimination and computation rules state

thata function f: [] CforC: A+ B — U; can be defined by case analysis
r:A+B
fromc: [[C(in1(z)) and d: [[C(in2(y)), and generalised the proof-term of
z:A y:B

simple tyl.)e theory C(¢, x.11, y:tg) to handle dependent types.

For the empty type L we use the rules in Figure B.6. They state that there
are no elements with type L, and that 1 -elimination consists of the ex falso
quodlibet: from an inhabitant of L, we obtain an inhabitant of C for any type
C, as expected in the proofs-as-programs paradigm. Notice also that those
rules make explicit that we could consider L as a nullary version of sum types.

The unit type T is defined in Figure B.7. Here we see how to consider T
as a nullary version of product types with x as unique inhabitant: uniqueness
principle for this type is in fact easily derivable from T-ELIM.

The logical engine of dependent type theory is thus that of first-order NJ
extended by extensionality principles - the uniqueness rules in the sequent-
style presentation — for each canonical proof-term.

To this, the intensional version of dependent type theory adds identity

188

= A:UY; I'=s B:U;

I'= A+B:U FORM
I'=A:U; I'= B: Uy I'=a:A
+-INTRO1
I'=ini(a): A+ B
I'=s A: Uy, I'= B: Y, I'=b:B
+-INTRO>
I =ina(b): A+ B
Nz:A+B=C:U; Iz: A= c:Clinl(z)/z] I,y:B=d:Clinr(y)/z]
: I'=>e: A+ B -ELIM
I'=indayp(2.C,z.c,y.d,e) : Cle/z]
INz:A+B=C:U; I,z: A= c:Clinl(z)/z] I,y:B=d:Clinr(y)/z]
. [=a:d _ +-COMP;
I = indayp(2.C,z.c,y.d,in1(a)) = cla/z] : Clin1(a)/z]
Nz:A+B=C:U; Iz: A= c:Clinl(z)/z] I,y:B=d:Clinr(y)/z]
I'=b:B +-COMPs

I' = indayp(2.C,z.c,y.d,in2(b)) = d[b/y] : Clin2(b)/z]

Here indg4 g binds zin C,z incand y in d.

Figure B.5: Rules for sum types

__Tetx | orMm
I'=1:U;
Te:1L=0C:U; I'=a:1l

ind) (z.C,a) : Cla/x] L-ELIM

Figure B.6: Rules for the empty type

types, so that the logical system is in fact first-order NJ with equality, in the

proofs-as-programs paradigm.

For identity types, the rules are collected in Figure B.8. Inhabitants of the
identity type in a type A are called paths in A, and we will refer to the= -ELIM
rule as path induction: Informally, this rule states that to prove that a prop-
erty holds for every x,y : A and every path p: x =4 y, it suffices to consider
the case when z and y are equal and p is refl,; from a computational point of
view, given p : a =4 b, path induction permits to substitute both a and b by
a variable x, and to define an element of C, given a couple of elements of A,

189

I ctx

To T | O
I" ctx
T x. T T-INTRO
ae:T=C:U; T'=c:Cx/z] '=sa:T
- T-ELIM
I' = ind7(2.C, ¢, a) : Cla/z]
Te:T=C:UY; T'=c: Clx/x]
T-cOMP

I' = ind7(2.C,c,*) = c: C[x/x]

As usual punctuations define binding of free occurrences.

Figure B.7: Rules for unit type

by defining it on the diagonal (x, z, refl,).

Notice that the distinction between judgemental equality (=) and propo-
sitional equality (=) is what really makes the version of dependent type the-
ory we use here an intensional calculus. This roughly means that in Martin-
Lo6f’s type theory one may have a =4 b and a statement ¢(a), and yet may not
be able to claim ¢(b), though whenever a = b : A and (a) holds, one always
has ¢(b).”

For identity types, elimination and computation rules are defined to cap-
ture Leibniz’s principle of indiscernibility:

Identical elements are those that satisfy the same properties.

In this system, however, this is achieved without any (impredicative) quan-
tification over all properties, but defining the whole identity-type family as

30One could reasonably consider judgemental equality a stricter notion of sameness than its
propositional counterpart, and introduce a specific rule designed to collapse the two versions
into the sole judgemental equality:

p:a=ab
a=b:A REF
This rule, known as identity reflection, turns dependent type theory into a purely extensional

calculus with dependent types which is, in some sense, simpler to be conceptually grasped,;
here substitution of equals for equals is always permitted in all contexts. That move has, how-
ever, a quite unpleasant consequence: In the extensional theory, type-checking is undecidable,
since equality itself is so. Vice versa, intensional dependent type theory is strongly normalis-
ing, thus every term has a unique normal form and every computational process of the calculus
always terminates.

190

L= A:U F=a:A F=b:A

= -FORM
IF'=a=4b:U;
I'=A:U; I'=a:A
= -INTRO
T'=reflg:a=4a
ae:Ay:Ap:ia=ay=>C:U; Dz: A= c: C|(z,2,refl2)/(2,y,p)]
I'=a:A I'=5b:A
F:»p/ ta=4b
- " n = -ELIM
F = Ind:A (x-y.p.C,Z.C, a, bzp) : C[(av b7p)/(xiy7p))]
Dx:Ay:Ap:xa=a4y=C:U; D,z: A= c:C|(z,z,refly) /(z,y,p)]
l'=a:A — -COMP

I'=ind=, (z.y.p.C, z.c,a,a,refly) : C[(a,a,refly)/(x,y,p))]

Figure B.8: Rules for identity types

inductively generated by the sole reflexivity constructor refl,.

Now, set-theoretic models and many recursion-theoretic models validate
extensional Martin-Lof’s type theory, making the calculus even more intu-
itive from a mathematical point of view than the intensional version in spite
of its computational intractability.

The highly constructive philosophy beneath the latter actually invites to
consider proofs of an equality between elements of a given type to be worth
of further mathematical inquiries, eventually becoming objects of further
proofs and constructions.

In such a situation we may have, say, a witness p of the equality between
x and y in the type A,

P-T=4aY,

together with another term g witnessing the same equality. Clearly a question
now arises whether p equals ¢. But in fact, one may give different proofs «, 3
of this very statement:
a: p = q
r=4y
B: p = ¢q
T=AY
And we may ask whether « is equal to 3, and so on.

This pattern of reasoning yields a “tower of equality proofs” stratified on
levels which has been for a long time attempted to be “bombed down” using
various ad hoc informal principles, or formally adding external axioms to the
calculus.

191

In spite of this, in 1998, Martin Hofmann and Thomas Streicher observed
that each type of dependent type theory is endowed by equality proofs within
the calculus with a groupoid structure basically definable via =-elimination
rule.*

This is the key insight beneath homotopy type theory as a whole, whose
basic idea is to use this correspondence between types and oo-groupoids to
relate type theory, higher category theory, and, definitely, homotopy theory.

That is the reason why a proof p of an equality z =4 y is called a path:
It can interpreted as a continuous path from the point z to the point y in
the space associated to A. Another proof ¢ of the same equality can now
be considered a different path from x to y in A; and a possible proof a of
the higher equality p = ¢ as a continuous deformation of the path p into the
path g, i.e. a homotopy between p and ¢q. Accordingly, any dependent type
x: A= P(x):U,; can be regarded as a fibration, since we can always transport
atermt : P(z) along a given path p : * =4 y to obtain an element of P(y),
defining the transport function by sole =-elimination.”

It is clear that in this perspective, the relevant notion of sameness for
types is not equality, but rather homotopy equivalence.

It is then not surprising at all that the definitive idea for completing the
horizon revealed by homotopy type theory has come from homotopy theorist
Vladimir Voevodsky, who independently formulated a homotopical reading
of the dependent type theory underlying the Coq proof assistant.
Voevodsky’s Univalence Axiom states that the type of equivalences between
two types is itself equivalent to the type of their equalities.

More formally, a function f : X — Y is an equivalence if any y : Y is the
image of a unique = : X. This way, any equivalence f : X — Y comes with
a homotopic - i.e. punctual on type inhabitants - inverse f' : ¥ — X. Now
it is straightforward to see that the identity map on any X is an equivalence,
so that the type X ~ X° is inhabited indeed. At this point, it is possible to
construct an inhabitant idtoeqv of the type (A =, A) — (A ~ A), proving
that identical types are equivalent. Univalence imposes that idtoeqv is itself
an equivalence.

Homotopically, this can be rephrased as follows:

In the space of all types, the continuous paths between any two types
correspond to the equivalences between them.’

*A groupoid is a category in which every arrow has an inverse; hence the types of in-
tensional Martin-Lof’s theory are actually weak oo-groupoids, i.e. groupoids with arrows of
higher dimensions, where higher equality proofs correspond to these higher arrows.

>These are the key features of the homotopical interpretation of dependent type theory as
it was originally proposed in [.

®The inhabitants of the type of equivalences X ~ Y between any two types X,Y are just
pairs (f, p) where p is a proof-term assuring that f : X — Y is in fact an equivalence.

7 A formal treatment of this principle is presented in | , Ch.3-4]. For an exceptionally
clear analysis of the univalent principle, the reader is referred to [.

192

As a consequence, univalence permits to clarify the status of the equality
relation on any type universe, and to work on equalities between types as we
were handling homotopy equivalences between spaces.®

In type-theoretic terms, univalence generalises propositional extension-
ality: If the latter states that equivalent propositions are identical - as it hap-
pens in e.g. the local set theory described in Appendix A - univalence makes
precise the meaning of that statement, and extends that identification to each
type, independently of the complexity of the categorical structure defined by
its associated identity type.’

At a more general level, univalence makes the whole (extended) inten-
sional calculus of dependent type theory a theory of invariants w.r.t. the
relation of equivalence of types.

The informal structuralist approach to mathematics has quested for a for-
mal foundational theory for long, since the common practice of identifying
isomorphic structures and investigating properties unaffected by concrete
instantiations of a given structure has lacked a principled theoretical account.
Univalent type theory does embody this account as a precise logical systems
for the foundations of mathematics.! Moreover, by considering structured
identity types, it is possible to define new kinds of inductive types, built by
the parallel definition of the generators for inhabitants of the type and further
generators for paths of the associated identity type.'!

Thus, in homotopy type theory, structural and synthetic style of reasoning
is encouraged, along with more frequent interactions between mathemati-
cians and program developers, in order to analyse - and to make efficient use
of - the computational character of proofs in this foundational meta-theory.'?

The theory we use to develop universal algebra in Chapter 7 adds only one
basic inductive type N to this underlying theory, which is defined according
to the rules in Figure B.9. Less formally, elimination and computation rules
states the possibility to define a function f : [[C, with C : N — U; by

z:N
primitive recursion from ¢q : C'(0) and a function ¢5 : [[C(n) — C(suc(n)).
x:N

8From this axiom we can derive a principle of function extensionality for dependent func-
tions which homotopically states the equality of any two sections of the same fibration just
whenever these are homotopic.

°In the homotopic perspective, propositional extensionality deals with contractible spaces
only, set-theoretic extensionality deals with discrete spaces - that are here called hSets - while
univalence deals with any kind of spaces.

0gee [Jand [,] for clear discussions of that perspective.

NThe reader is referred to [, Ch. 6] for an introduction.

2Recent advances are made concerning the full-constructivisation of univalent type theory
by means of new categorical-geometric formal principles for unchaining the computational
aspects of univalent reasoning, as witnessed by the new generation of proof assistants for
cubical type theory [N], [1,1 1.

193

—Tetx __ N.Form
I'=N:U;

I ctx
T=o:n N
M N-INTROQ

I = suc(n): N
Tz:N=C:U; I'=co: C[0/x] T,z :N,y:C = cs: Clsuc(x)/x]
I'=sn:N
I' = indn(z.C, co, z.y.cs,n) : C[n/z]

N-ELIM

Tz:N=C:U; I'=co: Cl0/z] Iz :N,y:C = cs: Clsuc(z)/x]
I' = indn(z.C, co, z.y.cs,0) = ¢o : C[0/x]

N-comP;

Nz:N=C:U, T'=co:C[0/z] e :N,y:C = cs: Clsuc(z)/x]
I'sn:N
T = indn (2.0, cor 2o, 50e(m)) = e (. indy (.G co, 2. o)) (.9)] : Clouc(m) /2]

N-cOMP2y

Figure B.9: Rules for natural numbers type

This version of dependent type theory constitutes the engine of the Uni-
Math proof development.

Therefore one could say that UniMath lies somehow in between the cate-
gories of proof assistants and of proof formalisation styles.

In very rough terms, it consists of a proper subsystem of the proof assis-
tant Coq | |. That, in turn, is based on Thierry Coquand’s Calculus of
(Co)Inductive Constructions (Co(C)IC), which extends intensional dependent
type theory by means of polymorphic variables, as well as several (co)inductive
data types and related constructions.

Coquand’s system - already mentioned at the end of Section 1.5.1 - is used
as well as different proper extensions of dependent type theory to provide the
basic logical engine of different implementations of homotopy type theory,
e.gl N N]. However, it is relevant to notice that, at
present time, no homotopical interpretation of those extensions is known.
This means that the univalent/homotopic constructions carried out on the
basis of those systems might necessitate revisions if some parts of the under-
lying base theory needed arrangement in future.'

BThere is a further potential flaw in this pleroma: To the best of our knowledge, a complete
description as abstract proof systems of these theories does not exists, so that it is rather hard
to analyse them from a proof-theoretic perspective in order to establish neat and definitive re-
sults on them. In contrast with the minimalist approach of the system described in Appendix

194

This cannot happen for UniMath, since it uses only the skeleton of Coq
necessary to implement the constructions presented in the previous pages of
this appendix, i.e. intensional dependent type theory with natural numbers

type.*
This is achieved since, by design, in UniMath it is made use of

* no record types;
+ no inductive types (other than N);
« nomatch constructs.

Univalent reasoning is implemented by adding to this core system a uni-
valence axiom - from which function extensionality is derived - and a propo-
sitional resizing principle, that characterises the overall system as impred-
icative. The latter principle is simulated by the type-in-type Coq flag, which
however exposes the general user to the risk of inconsistencies. Nevertheless,
resizing is mandatory for a full account of univalent/homotopical reasoning,
as it is the only method assuring that any set quotient (X, R) does live in the
same universe as X : U;. This is required in the structural approach behind
univalent foundations and the related “intuitive” computerisation of mathe-
matics without recurring to ad hoc setoid-related constructions.

Since univalence is formalised by an axiom, the constructions involving
univalent reasoning need to be carried out by the user of UniMath, for the
normalisation procedures of Coq are broken by this non-constructive imple-
mentation.'

The consistency of propositional resizing with univalence was sketched
in| |. Refinements, improvements, and better implementations of this
minimalist version of univalent type theory are still under development by the
maintainers of the main library [| and several collaborators, pointing
towards an autonomous proof assistant for that underlying theory.

A, it is also quite hard to develop a description of formal proofs in those extensions that can
be checked by independent verifiers. Partial results in this latter research line, considering
only Cogq, are presented in [], and more recently in []
“Refer to |] and [| for an introduction to the full mechanisms behind Coq.
BThe theoretical computability of univalence is in any case definitely established in [|
and []. Its practicability is witnessed by [.

195

[Abe21]

[AF98|

[AFMvdW19]

[AHLM18]

[AKS15]

[AL19]

[AM18]

BIBLIOGRAPHY

Andreas Abel. Birkhoff’s Completeness Theorem for Multi-
Sorted Algebras Formalized in Agda. CoRR, abs/2111.07936,
2021.

Jeremy Avigad and Solomon Feferman. Godel’s functional
(“Dialectica”) interpretation. Handbook of proof theory, 137:337-
405, 1998.

Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels
van der Weide. Bicategories in Univalent Foundations. In
Herman Geuvers, editor, 4th International Conference on Formal
Structures for Computation and Deduction (FSCD 2019), volume
131 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 5:1-5:17, Dagstuhl, Germany, 2019. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and
Marco Maggesi. High-Level Signatures and Initial Seman-
tics. In Dan Ghica and Achim Jung, editors, 27th EACSL An-
nual Conference on Computer Science Logic (CSL 2018), volume 119
of Leibniz International Proceedings in Informatics (LIPIcs), pages
4:1-4:22, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman.
Univalent Categories and the Rezk Completion. In Maria
del Mar Gonzdlez, Paul C. Yang, Nicola Gambino, and Joachim
Kock, editors, Extended Abstracts Fall 2013, pages 75-76, Cham,
2015. Springer International Publishing.

Benedikt Ahrens and Peter LeFanu Lumsdaine. Displayed Cat-
egories. Logical Methods in Computer Science, Volume 15, Issue
1, March 2019.

Mohammad Ardeshir and Mojtaba Mojtahedi. = The X1-
provability logic of HA. Annals of Pure and Applied Logic,
169(10):997-1043, 2018.

196

[AMPB21]

[AMPPB20]

[AN19]

[ANST21]

[AOP10]

[AP16]

[ARV10]

[Avil8]

[Avi19]

[Avi21]

[Avro6]

[AWO09]

Gianluca Amato, Marco Maggesi, and Cosimo Perini Brogi.
Universal algebra in UniMath. arXiv preprint arXiv:2102.05952,
2021.

Gianluca Amato, Marco Maggesi, Maurizio Parton, and
Cosimo Perini Brogi. Universal Algebra in UniMath. In
Workshop on Homotopy Type Theory/Univalent Foundations -
HoTT/UF2020, 2020.

Benedikt Ahrens and Paige Randall North. Univalent founda-
tions and the equivalence principle. In Reflections on the Foun-
dations of Mathematics, pages 137-150. Springer, 2019.

Benedikt Ahrens, Paige Randall North, Michael Shulman, and
Dimitris Tsementzis. The univalence principle. arXiv preprint
arXiv:2102.06275, 2021.

Régis Alenda, Nicola Olivetti, and Gian Luca Pozzato. CSL-
lean: A theorem-prover for the logic of comparative concept
similarity. Electronic Notes in Theoretical Computer Science,
262:3-16, 2010.

Sergei Artemov and Tudor Protopopescu. Intuitionistic epis-
temic logic. The Review of Symbolic Logic, 9.2:266-298, 2016.

Jiti Addmek, Jifi Rosicky, and Enrico Maria Vitale. Algebraic
theories: a categorical introduction to general algebra, volume 184.
Cambridge University Press, 2010.

Jeremy Avigad. Proof theory. In Introduction to Formal Philoso-
phy, pages 177-190. Springer, 2018.

Jeremy Avigad. The mechanization of mathematics. In The Best
Writing on Mathematics 2019, pages 150-170. Princeton Univer-
sity Press, 2019.

Jeremy Avigad. Foundations. arXiv preprint arXiv:2009.09541,
2021.

Arnon Avron. The method of hypersequents in the proof the-
ory of propositional non-classical logics. In Logic: from founda-
tions to applications: European logic colloquium, pages 1-32, 1996.

Steve Awodey and Michael A Warren. Homotopy theoretic
models of identity types. In Mathematical proceedings of the cam-
bridge philosophical society, volume 146, pages 45-55. Cambridge
University Press, 2009.

197

[Bak17]

[Bal21]

[Bar92]

[BC13]

[Bel62]

[Bel08]

[Bel12]

[Ben19]

[Ber90]

[Ber06]

[BFS20]

[BGJ04]

[BGLT17]

Miétek Bak. Introspective Kripke models and normalisa-
tion by evaluation for the A”-calculus. 7th Workshop on
Intuitionistic Modal Logic and Applications (IMLA 2017).
https://github.com/mietek/imla2017/blob/master/doc/
imla2017.pdf, 2017.

Roberta Ballarin. Modern Origins of Modal Logic. In Ed-
ward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, Fall 2021 edi-
tion, 2021.

Henk P. Barendregt. Lambda calculi with types. Oxford: Claren-
don Press, 1992.

Yves Bertot and Pierre Castéran. Interactive theorem proving and
program development: Coq’Art: the calculus of inductive construc-
tions. Springer Science & Business Media, 2013.

Nuel D. Belnap. Tonk, plonk and plink. Analysis, 22(6):130-134,
1962.

John L. Bell. Toposes and local set theories: an introduction. Dover,
2008.

John L. Bell. Types, Sets, and Categories. Sets and Extensions in
the Twentieth Century, 6:633-687, 2012.

Bruno Bentzen. A Henkin-style completeness proof for the
modal logic S5. CoRR, abs/1910.01697, 2019.

Alessandro Berarducci. The interpretability logic of peano
arithmetic. The Journal of Symbolic Logic, 55(3):1059-1089, 1990.

Yves Bertot. Coq in a Hurry. arXiv preprint cs/0603118, 2006.

Kai Briinnler, Dandolo Flumini, and Thomas Studer. A logic of
blockchain updates. Journal of logic and computation, 30(8):1469-
1485, 2020.

Marta Bilkova, Evan Goris, and Joost J. Joosten. Smart labels.
Liber Amicorum for Dick de Jongh. Institute for Logic, Language and
Computation, 2004.

Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael
Shulman, Matthieu Sozeau, and Bas Spitters. The HoTT li-
brary: a formalization of homotopy type theory in Coq. In Pro-
ceedings of the 6th ACM SIGPLAN Conference on Certified Pro-
grams and Proofs, pages 164-172, 2017.

198

https://github.com/mietek/imla2017/blob/master/doc/imla2017.pdf
https://github.com/mietek/imla2017/blob/master/doc/imla2017.pdf

[BHC*22]

[B]81]

[BJ11]

[Bla19]

[BM13]

[Boo95]

[Bri09]

[BvBO7]

[BW97]

[Cap99]

[Chu40]

[Cop02]

Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan Cavallo,
Tim Baumann, Eric Finster, Jesper Cockx, Christian Sattler,
Chris Jeris, Michael Shulman, et al. Homotopy Type Theory
in Agda. Available at https://github.com/HoTT/HoTT-Agda,
2022.

André Boileau and André Joyal. La logique des topos. The
Journal of Symbolic Logic, 46(1):6-16, 1981.

Félix Bou and Joost J. Joosten. The closed fragment of IL is
PSPACE hard. Electronic Notes in Theoretical Computer Science,
278:47-54, 2011.

Jasmin Christian Blanchette. Formalizing the Metatheory of
Logical Calculi and Automatic Provers in Isabelle/HOL (In-
vited Talk). In Proceedings of the 8th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2019,
page 1-13, New York, NY, USA, 2019. Association for Com-
puting Machinery.

Lars Birkedal and Rasmus Ejlers Mggelberg. Intensional type
theory with guarded recursive types qua fixed points on uni-
verses. In 2013 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 213-222. IEEE, 2013.

George Boolos. The logic of provability. Cambridge university
press, 1995.

Kai Briinnler. Deep sequent systems for modal logic. Archive
for Mathematical Logic, 48(6):551-577, 2009.

Patrick Blackburn and Johan van Benthem. Modal logic: a se-
mantic perspective. In Handbook of modal logic, volume 3, pages
1-84. Elsevier, 2007.

Bruno Barras and Benjamin Werner. Coq in coq. 1997.

Venanzio Capretta. Universal algebra in type theory. In Yves
Bertot, Gilles Dowek, André Hirschowits, Christine Paulin,
and Laurent Théry, editors, Theorem Proving in Higher Order
Logics, 12th International Conference, TPHOLs "99, volume 1690
of LNCS, pages 131-148. Springer, 1999.

Alonzo Church. A formulation of the simple theory of types.
The Journal of Symbolic Logic, 5(2):56-68, 1940.

B. Jack Copeland. The genesis of possible worlds semantics.
Journal of Philosophical logic, 31(2):99-137, 2002.

199

https://github.com/HoTT/HoTT-Agda

[Coq22]

[CZ97]

[DC21]

[DeM21a]

[DeM21b]

[dGO02]

[Dia75]

[dJV90]

[dJV95]

[dJV99]

[DNO3]

[DNOP21]

[DON18|

The Coq proof assistant Development Team. The Coq proof
assistant. Available at https://coq.inria.fr/, 2022.

Alexander V. Chagrov and Michael Zakharyaschev. Modal
Logic, volume 35 of Oxford logic guides. Oxford University Press,
1997.

William DeMeo and Jacques Carette. A Machine-checked
proof of Birkhoff’s Variety Theorem in Martin-Lof Type The-
ory. arXiv e-prints, pages arXiv-2101, 2021.

William DeMeo. The Agda Universal Algebra Library, Part 1:
Foundation. arXiv preprint arXiv:2103.05581, 2021.

William DeMeo. The Agda Universal Algebra Library, Part 2:
Structure. arXiv preprint arXiv:2103.09092, 2021.

Philippe de Groote. On the strong normalisation of intuition-
istic natural deduction with permutation-conversions. Infor-
mation and Computation, 178.2:441-464, 2002.

Radu Diaconescu. Axiom of choice and complementation. Pro-
ceedings of the American Mathematical Society, 51(1):176-178,1975.

Dick de Jongh and Frank Veltman. Provability logics for
relative interpretability. In Mathematical logic, pages 31-42.
Springer, 1990.

Dick de Jongh and Albert Visser. Embeddings of Heyting Al-
gebras (revised version of ML-1993-14). 1995.

Dick de Jongh and Frank Veltman. Modal completeness of
ILW. Essays dedicated to Johan van Benthem on the occasion of his
50th birthday. Amsterdam University Press, Amsterdam, 1999.

René David and Karim Nour. A short proof of the strong nor-
malization of classical natural deduction with disjunction. The
Journal of Symbolic Logic, 68(4):1277-1288, 2003.

Tiziano Dalmonte, Sara Negri, Nicola Olivetti, and Gian Luca
Pozzato. Theorem Proving for Non-normal Modal Logics. In
OVERLAY 2020, Udine, Italy, September 2021.

Tiziano Dalmonte, Nicola Olivetti, and Sara Negri. Non-
normal modal logics: Bi-neighbourhood semantics and its la-
belled calculi. In Advances in Modal Logic 2018, 2018.

200

https://coq.inria.fr/

[dPGMO04]

[dPR11]

[DumO0]

[EB93]

[EM45]

[Esc18]

[Esc19]

[Fio21]

[Fit12]

[Fit13]

[FJBE*17]

[FKS20]

Valeria de Paiva, Rajeev Goré, and Michael Mendler. Modal-
ities in constructive logics and type theories. Journal of Logic
and Computation, 14(4):439-446, 2004.

Valeria de Paiva and Eike Ritter. Basic constructive modality.
Logic without Frontiers: Festschrift for Walter Alexandre Carnielli
on the occasion of his 60th Birthday, pages 411-428, 2011.

Michael Dummett. Elements of intuitionism. Oxford University
Press, 2000.

Zoltédn Esik and Stephen L Bloom. Iteration theories: The equa-
tional logic of iterative processes. Springer-Vlg, 1993.

Samuel Eilenberg and Saunders MacLane. General theory of
natural equivalences. Transactions of the American Mathematical
Society, 58(2):231-294, 1945.

Martin Hotzel Escardd. A self-contained, brief and com-
plete formulation of Voevodsky’s Univalence Axiom. https:
//arxiv.org/abs/1803.02294, 2018.

Martin Hotzel Escardd. Equality of mathematical structures.
CCC 2019: Computability, Continuity, Constructivity-from Logic to
Algorithms, page 17, 2019.

Guido Fiorino. Linear depth deduction with subformula
property for intuitionistic epistemic logic. arXiv preprint
arXiv:2103.03377, 2021.

Melvin Fitting. Prefixed tableaus and nested sequents. Annals
of Pure and Applied Logic, 163(3):291-313, 2012.

Melvin Fitting. Proof methods for modal and intuitionistic logics,
volume 169. Springer Science & Business Media, 2013.

Warren E Ferguson Jr, Jesse Bingham, Levent Erkok, John R
Harrison, and Joe Leslie-Hurd. Digit serial methods with
applications to division and square root (with mechanically
checked correctness proofs). arXiv preprint arXiv:1708.00140,
2017.

Peng Fu, Kohei Kishida, and Peter Selinger. Linear dependent
type theory for quantum programming languages: Extended
abstract. In Proceedings of the 35¢th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’20, page 440-453, New York,
NY, USA, 2020. Association for Computing Machinery.

201

https://arxiv.org/abs/1803.02294
https://arxiv.org/abs/1803.02294

[Flo67]

[FM12]

[FS77]

[Gab9e]

[GBJM20]

[Gen35a]

[Gen35b]

[Get63]

[GGOPO5]

[GGP07]

[GGP18]

[GJO8]

[GK21]

R.W. Floyd. Assigning meanings to program. In Proc. Symposia
in Applied Mathematics, 1967, volume 19, pages 19-32, 1967.

Melvin Fitting and Richard L. Mendelsohn. First-order modal
logic, volume 277. Springer Science & Business Media, 2012.

Gisele Fischer Servi. On modal logic with an intuitionistic
base. Studia Logica, 36(3):141-149, 1977.

Dov M. Gabbay. Labelled Deductive Systems. Oxford Logic
Guides 33, 1, 1996.

Evan Goris, Marta Bilkovd, Joost J Joosten, and Luka Mikec.
Assuring and critical labels for relations between maximal
consistent sets for interpretability logics. arXiv preprint
arXiv:2003.04623, 2020.

Gerhard Gentzen. Untersuchungen {iber das logische
Schlieflen I. Mathematische zeitschrift, 39:176-210, 1935.

Gerhard Gentzen. Untersuchungen {iber das logische
Schlieflen II. Mathematische zeitschrift, 39:405-431, 1935.

Edmund L. Gettier. Is Justified True Belief Knowledge? Anal-
ysis, 23(6):121-123, 1963.

Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and
Gian Luca Pozzato. Analytic tableaux for KLM preferential
and cumulative logics. In International Conference on Logic for
Programming Artificial Intelligence and Reasoning, pages 666-681.
Springer, 2005.

Laura Giordano, Valentina Gliozzi, and Gian Luca Pozzato.
KLMLean 2.0: A theorem prover for KLM logics of nonmono-
tonic reasoning. In International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods, pages 238-
244. Springer, 2007.

Emmanuel Gunther, Alejandro Gadea, and Miguel Pagano.
Formalization of universal algebra in Agda. Electronic Notes
in Theoretical Computer Science, 338:147-166, 2018.

Evan Goris and Joost Joosten. Modal Matters for Interpretabil-
ity Logics. Logic Journal of the IGPL, 16(4):371-412, 2008.

Rajeev Goré and Cormac Kikkert. CEGAR-Tableaux: Im-
proved Modal Satisfiability via Modal Clause-Learning and
SAT. In International Conference on Automated Reasoning with

202

[GLO™17]

[GLOT22]

[GM93]

[GMW?79]

[GNO18]

[GNO21]

[GNOR18]

[GO21]

[Go6d8e]

Analytic Tableaux and Related Methods, pages 74-91. Springer,
2021.

Marianna Girlando, Bjoern Lellmann, Nicola Olivetti,
Gian Luca Pozzato, and Quentin Vitalis. VINTE: an imple-
mentation of internal calculi for Lewis’ logics of counterfactual
reasoning. In International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods, pages 149-159.
Springer, 2017.

Marianna Girlando, Bjorn Lellmann, Nicola Olivetti, Stefano
Pesce, and Gian Luca Pozzato. Calculi, countermodel gener-
ation and theorem prover for strong logics of counterfactual
reasoning. Journal of Logic and Computation, 01 2022. exab084.

Michael JC Gordon and Tom F. Melham. Introduction to HOL:
A theorem proving environment for higher order logic. Cambridge
University Press, 1993.

Michael Gordon, Robin Milner, and Christopher Wadsworth.
Edinburgh LCF, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

Marianna Girlando, Sara Negri, and Nicola Olivetti. Counter-
factual logic: Labelled and internal calculi, two sides of the
same coin? In Advances in Modal Logics 2018, volume 12, pages
291-310, 2018.

Marianna Girlando, Sara Negri, and Nicola Olivetti. Uniform
labelled calculi for preferential conditional logics based on
neighbourhood semantics. Journal of Logic and Computation,
31(3):947-997, 2021.

Marianna Girlando, Sara Negri, Nicola Olivetti, and Vincent
Risch. Conditional beliefs: from neighbourhood semantics
to sequent calculus. The review of symbolic logic, 11(4):736-779,
2018.

Guido Gherardi and Eugenio Orlandelli. Super-strict implica-
tions. Bulletin of the Section of Logic, 50(1):1-34, Jan. 2021.

Kurt Godel. Eine Interpretation des Intuitionistischen Aus-
sagenkalkils. Ergebnisse eines Mathematischen Kolloquiums,
4: 39-40, 1933. english translation, with an introductory note
by A.S. Troelstra. Kurt Gédel, Collected Works, 1:296-303, 1986.

203

[Gol06]

[Gol11]

[GR12]

[Gral8]

[Gri89]

[GRS21]

[GS20]

[GTL89]

[HABT15]

[HAB*17]

[Har96a]

Robert Goldblatt. Mathematical modal logic: A view of its evo-
lution. In Handbook of the History of Logic, volume 7, pages 1-98.
Elsevier, 2006.

Robert Goldblatt. Cover semantics for quantified lax logic.
Journal of Logic and Computation, 21(6):1035-1063, 2011.

Rajeev Goré and Revantha Ramanayake. Labelled tree se-
quents, tree hypersequents and nested (deep) sequents. Ad-
vances in modal logic, 9:279-299, 2012.

Daniel Grayson. An introduction to univalent foundations for
mathematicians. Bulletin of the American Mathematical Society,
55(4):427-450, 2018.

Timothy G. Griffin. A formulae-as-type notion of control. In
Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 47-58, 1989.

Rajeev Goré, Revantha Ramanayake, and Ian Shillito. Cut-
elimination for provability logic by terminating proof-search:
formalised and deconstructed using Coq. In International Con-
ference on Automated Reasoning with Analytic Tableaux and Re-
lated Methods, pages 299-313. Springer, 2021.

Marianna Girlando and Lutz Straflburger. Moin: A nested se-
quent theorem prover for intuitionistic modal logics (system
description). In International Joint Conference on Automated Rea-
soning, pages 398-407. Springer, 2020.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and
types. Cambridge University Press, 1989.

Thomas Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang,
John Harrison, Truong Le Hoang, Cezary Kaliszyk, Victor Ma-
gron, Sean McLaughlin, Thang Tat Nguyen, et al. A formal
proof of the kepler conjecture. arXiv preprint arXiv:1501.02155,
2015.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang,
John Harrison, Hoang Le Truong, Cezary Kaliszyk, Victor Ma-
gron, Sean McLaughlin, Tat Thang Nguyen, et al. A formal
proof of the kepler conjecture. In Forum of mathematics, Pi,
volume 5. Cambridge University Press, 2017.

John Harrison. Optimizing proof search in model elimination.
In International Conference on Automated Deduction, pages 313-
327. Springer, 1996.

204

[Har96b]

[Har06a]

[HarO6b]

[Har11]

[Har12]

[Har16]

[Har17]

[Har22]

[Hen63]

[Hin62]

[Hin97]

[HJ16]

[HN12]

[HPO7]

John Harrison. Proof style. In International Workshop on Types
for Proofs and Programs, pages 154-172. Springer, 1996.

John Harrison. Floating-point verification using theorem
proving. In International School on Formal Methods for the Design
of Computer, Communication and Software Systems, pages 211-
242. Springer, 2006.

John Harrison. Towards self-verification of hol light. In Inter-
national Joint Conference on Automated Reasoning, pages 177-191.
Springer, 2006.

Robert Harper. The Holy Trinity. Post at https:
//existentialtype.wordpress.com/2011/03/27/
the-holy-trinity/, 2011.

John Harrison. Theorem proving with the real numbers. Springer
Science & Business Media, 2012.

John Harrison. The HOL Light System Reference. https:
//www.cl.cam.ac.uk/"jrh13/hol-light/reference.pdf,
2016.

John Harrison. HOL Light tutorial. http://www.cl.cam.ac.
uk/~jrh13/hol-1light/tutorial.pdf, 2017.

John Harrison. The HOL Light Theorem Prover. Available at
https://github.com/jrh13/hol-1light, 2022.

Leon Henkin. A theory of propositional types. Fundamenta
Mathematicae, 52(3):323-344, 1963.

Kaarlo Jaakko Juhani Hintikka. Knowledge and belief: An intro-
duction to the logic of the two notions. Cornell University Press,
1962.

J. Roger Hindley. Basic simple type theory. Number 42. Cam-
bridge University Press, 1997.

Tuomas A Hakoniemi and Joost J Joosten. Labelled tableaux
for interpretability logics. arXiv preprint arXiv:1605.05612, 2016.

Raul Hakli and Sara Negri. Does the deduction theorem fail
for modal logic? Synthese, 187(3):849-867, 2012.

Martin Hyland and John Power. The category theoretic un-
derstanding of universal algebra: Lawvere theories and mon-
ads. Electronic Notes in Theoretical Computer Science, 172:437-
458, 2007.

205

https://existentialtype.wordpress.com/2011/03/27/the-holy-trinity/
https://existentialtype.wordpress.com/2011/03/27/the-holy-trinity/
https://existentialtype.wordpress.com/2011/03/27/the-holy-trinity/
https://www.cl.cam.ac.uk/~jrh13/hol-light/reference.pdf
https://www.cl.cam.ac.uk/~jrh13/hol-light/reference.pdf
http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf
http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf
https://github.com/jrh13/hol-light

[HSO08]

[Hum15]

[HUW14]

[Iem19]

[Iem20]

[1S18]

[Jac99]
[Jet22]

[JRMV20]

[Kak16]

[Kan57]

[Kas94]

[Ket45]

[KL16]

J. Roger Hindley and Jonathan P. Seldin. Lambda-calculus and
Combinators, an Introduction, volume 2. Cambridge University
Press Cambridge, 2008.

Lloyd Humberstone. Philosophical applications of modal logic.
College Publications, 2015.

John Harrison, Josef Urban, and Freek Wiedijk. History of In-
teractive Theorem Proving. In Computational Logic, volume 9,
pages 135-214, 2014.

Rosalie Iemhoff. Uniform interpolation and sequent calculi in
modal logic. Archive for Mathematical Logic, 58(1):155-181, 2019.

Rosalie Iemhoff. Intuitionism in the Philosophy of Mathemat-
ics. In Edward N. Zalta, editor, The Stanford Encyclopedia of Phi-
losophy. Metaphysics Research Lab, Stanford University, Fall
2020 edition, 2020.

Jonathan Jenkins Ichikawa and Matthias Steup. The Analysis
of Knowledge. In Edward N. Zalta, editor, The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Summer 2018 edition, 2018.

Bart Jacobs. Categorical logic and type theory. Elsevier, 1999.

Contributors of JetBrains. Arend Theorem Prover. https://
arend-lang.github.io/, 2022.

Joost J. Joosten, Jan Mas Rovira, Luka Mikec, and Mladen
Vukovic. An overview of generalised Veltman semantics. arXiv
preprint arXiv:2007.04722, 2020.

Yoshihiko Kakutani. Calculi for intuitionistic normal modal
logic. arXiv preprint arXiv:1606.03180, 2016.

Stig Kanger. Provability in logic. Stockholm studies in philosophy,
1957.

Ryo Kashima. Cut-free sequent calculi for some tense logics.
Studia Logica, pages 119-135, 1994.

Oiva Ketonen. Untersuchungen Zum Pradikatenkalkul. Journal
of Symbolic Logic, 10(4):127-130, 1945.

Roman Kuznets and Bjorn Lellmann. Grafting hypersequents
onto nested sequents. Logic Journal of the IGPL, 24(3):375-423,
2016.

206

https://arend-lang.github.io/
https://arend-lang.github.io/

[Kle52]

[KO21]

[KP11]

[Kri59]

[Kri65]

[Kur13]

[KY16]

[Lam58]

[Law69]

[Law71]

[Lew18]

[Lip00]

[Lit14]

[Lon00]

S.C. Kleene. Permutability of inferences in Gentzen’s calculi
LK and L]. Memoirs of the American Mathematical Society, 1952.

Taishi Kurahashi and Yuya Okawa. Modal completeness of
sublogics of the interpretability logic IL. Mathematical Logic
Quarterly, 67(2):164-185, 2021.

Clemens Kupke and Dirk Pattinson. Coalgebraic semantics
of modal logics: An overview. Theoretical Computer Science,
412(38):5070-5094, 2011.

Saul A Kripke. A completeness theorem in modal logic 1. The
Journal of Symbolic Logic, 24(1):1-14, 1959.

Saul A. Kripke. Semantical analysis of intuitionistic logic I. In
Studies in Logic and the Foundations of Mathematics, volume 40,
pages 92-130. Elsevier, 1965.

Hidenori Kurokawa. Hypersequent calculi for modal logics ex-
tending S4. In JSAI International Symposium on Artificial Intelli-
gence, pages 51-68. Springer, 2013.

Vladimir N. Krupski and Alexey Yatmanov. Sequent calculus
for intuitionistic epistemic logic IEL. In International Sympo-
sium on Logical Foundations of Computer Science, pages 187-201.
Springer, 2016.

Joachim Lambek. The mathematics of sentence structure. The
American Mathematical Monthly, 65(3):154-170, 1958.

F William Lawvere. Adjointness in foundations. Dialectica,
pages 281-296, 1969.

F. William Lawvere. Quantifiers as sheaves. In Proc Intern.
Congress of Math., pages 1506-1511. Gauthier-Villars, 1971.

Clarence Irving Lewis. A survey of symbolic logic. University of
California press, 1918.

Peter Lipton. Tracking Track Records: John Worrall: Relying
on Meta-induction? In Aristotelian Society Supplementary Vol-
ume, volume 74, pages 179-205. Wiley Online Library, 2000.

Tadeusz Litak. Constructive modalities with provability
smack. In Leo Esakia on duality in modal and intuitionistic log-
ics, pages 187-216. Springer, 2014.

John R. Longley. Notions of computability at higher types I. In
Logic Colloguium, volume 19, pages 32-142, 2000.

207

[Lov68]

[LS88]

[LS19]

[£.u30]

[LV18]

[LV19]

[Lyn17]

[Mac06]

[Mac12]

[Mac13]

[Mar08]

[MBO6]

[MF74]

[IMG78]

Donald W. Loveland. Mechanical theorem-proving by model
elimination. In Automation of Reasoning, pages 117-134.
Springer, 1968.

Joachim Lambek and Philip J. Scott. Introduction to higher-order
categorical logic, volume 7. Cambridge University Press, 1988.

Andreas Lynge and Bas Spitters. Universal algebra in HoTT.
In TYPES 2019, 25th International Conference on Types for Proofs
and Programs, 2019.

Jan BLukasiewicz. Philosophical remarks on many-valued sys-
tems of propositional logic. Jan Lukasiewicz Selected Works,
1930.

Tadeusz Litak and Albert Visser. Lewis meets Brouwer:
constructive strict implication. Indagationes Mathematicae,
29(1):36-90, 2018.

Tadeusz Litak and Albert Visser. Lewisian fixed points I: two
incomparable constructions. arXiv preprint arXiv:1905.09450,
2019.

Andreas Lynge. Universal algebra in HoTT, 2017. Bachelor’s
thesis, Department of Mathematics, Aarhus University.

Hugh MacColl. Symbolic Logic and its applications. Longmans,
Green, 1906.

Saunders MacLane. Mathematics: form and function. Springer
Science & Business Media, 2012.

Saunders MacLane. Categories for the working mathematician,
volume 5. Springer Science & Business Media, 2013.

Jean-Pierre Marquis. From a geometrical point of view: A study of
the history and philosophy of category theory, volume 14. Springer
Science & Business Media, 2008.

Marino Miculan and Giorgio Bacci. Modal logics for brane
calculus. In International Conference on Computational Methods
in Systems Biology, pages 1-16. Springer, 2006.

Grigori Mints and R. Feys. Sistemy Lyuisa i sistema T (Sup-
plement to the Russian translation). R. Feys, Modal Logic, pages
422-509, 1974.

John Myhill and Nelson Goodman. Choice implies excluded
middle. Zeit Math Log, 23:461, 1978.

208

[Min92]

[MJV20a]

[MJV20b]

[MKO95]

[ML87]

[ML17]

[MLS84]

[MN18]

[Moj22]

[Mos21]

[MPO08]

[MPB21]

G. Mints. Short Introduction to Modal Logic. Center for the Study
of Language and Information Publication Lecture Notes. Cam-
bridge University Press, 1992.

Luka Mikec, Joost J. Joosten, and Mladen Vukovié. A W-
flavoured series of interpretability principles. Short Papers, Ad-
vances in Modal Logic, AiML, 2020:60-64, 2020.

Luka Mikec, Joost J. Joosten, and Mladen Vukovic. On ILWR-
frames. Logic and Applications LAP 2020, page 50, 2020.

David McAllester, Jakov Kucan, and D.F. Otth. A proof of
strong normalization for F2, Fw, and beyond. Information and
Computation, 121(2):193-200, 1995.

Per Martin-Lo6f. Truth of a proposition, evidence of a judge-
ment, validity of a proof. Synthese, pages 407-420, 1987.

Stefan Milius and Tadeusz Litak. Guard your daggers and
traces: Properties of guarded (co-) recursion. Fundamenta In-
formaticae, 150(3-4):407-449, 2017.

Per Martin-Lof and Giovanni Sambin. Intuitionistic type theory,
volume 9. Bibliopolis Naples, 1984.

Julius Michaelis and Tobias Nipkow. Formalized proof sys-
tems for propositional logic. In A. Abel, F. Nordvall Fors-
berg, and A. Kaposi, editors, 23rd Int. Conf. Types for Proofs and
Programs (TYPES 2017), volume 104 of LIPIcs, pages 6:1-6:16.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

Mojtaba Mojtahedi. On Provability Logic of HA. arXiv preprint
arXiv:2206.00445, 2022.

Joan Moschovakis. Intuitionistic Logic. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, Fall 2021 edition, 2021.

Conor McBride and R.A. Paterson. Applicative programming
with effects. Journal of functional programming, 18(1):1-13, 2008.

Marco Maggesi and Cosimo Perini Brogi. A Formal Proof of
Modal Completeness for Provability Logic. In Liron Cohen
and Cezary Kaliszyk, editors, 12th International Conference on
Interactive Theorem Proving (ITP 2021), volume 193 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 26:1-26:18,
Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum
fir Informatik.

209

[MPB22]

[MPV17]

[MPV19]

[MS14]

(MU21]

(MV20]

[Nak0O]

[Neg05]

[Negl4a]

[Neg14b]

[Neg17]

[INO19]

[Noz81]

Marco Maggesi and Cosimo Perini Brogi. A theorem prover
and countermodel constructor for provability logic in HOL
Light. arXiv preprint 2205.03659, 2022.

Luka Mikec, Tin Perkov, and Mladen Vukovié. Decidability
of interpretability logics I LMy and ILW*. Logic Journal of the
IGPL, 25(5):758-772, 2017.

Luka Mikec, Fedor Pakhomov, and Mladen Vukovi¢. Com-
plexity of the interpretability logic il. Logic Journal of the IGPL,
27(1):1-7, 2019.

Sonia Marin and Lutz Straflburger. Label-free modular sys-
tems for classical and intuitionistic modal logics. In Advances
in Modal Logic 10, 2014.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 Theo-
rem Prover and Programming Language. In International Con-
ference on Automated Deduction, pages 625-635. Springer, 2021.

Luka Mikec and Mladen Vukovié. Interpretability logics and
generalised Veltman semantics. The Journal of Symbolic Logic,
85(2):749-772, 2020.

Hiroshi Nakano. A modality for recursion. In Proceedings Fif-
teenth Annual IEEE Symposium on Logic in Computer Science (Cat.
No0.99CB36332), pages 255-266, 2000.

Sara Negri. Proof analysis in modal logic. Journal of Philosoph-
ical Logic, 34(5):507-544, 2005.

Sara Negri. Proof analysis beyond geometric theories: from
rule systems to systems of rules. Journal of Logic and Computa-
tion, 26(2):513-537, 2014.

Sara Negri. Proofs and countermodels in non-classical logics.
Logica Universalis, 8(1):25-60, 2014.

Sara Negri. Proof theory for non-normal modal logics: The
neighbourhood formalism and basic results. IfCoLog Journal of
Logics and their Applications, 4(4):1241-1286, 2017.

Sara Negri and Eugenio Orlandelli. Proof theory for quantified
monotone modal logics. Logic Journal of the IGPL, 27(4):478-506,
2019.

Robert Nozick. Philosophical explanations. Ethics, 94(2), 1981.

210

[NP21]

[NVPOS|

[NVP11]

[OC18]

[OP03]

[OPO5]

[OP08|

[OP14]

[OP15]

[Orl28]

[Orl21]

[PB19]

Sara Negri and Edi Pavlovi¢. Proof-theoretic analysis of the
logics of agency: The deliberative stit. Studia Logica, 109(3):473-
507, 2021.

Sara Negri and Jan von Plato. Structural proof theory. Cambridge
university press, 2008.

Sara Negri and Jan von Plato. Proof analysis: a contribution to
Hilbert’s last problem. Cambridge University Press, 2011.

Eugenio Orlandelli and Giovanna Corsi. Labelled calculi
for quantified modal logics with non-rigid and non-denoting
terms. Automated Reasoning in Quantified Non-Classical Logics,
page 64, 2018.

Nicola Olivetti and Gian Luca Pozzato. CondLean: A theorem
prover for conditional logics. In International Conference on Au-
tomated Reasoning with Analytic Tableaux and Related Methods,
pages 264-270. Springer, 2003.

Nicola Olivetti and Gian Luca Pozzato. CondLean 3.0: Improv-
ing CondLean for stronger conditional logics. In International
Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, pages 328-332. Springer, 2005.

Nicola Olivetti and Gian Luca Pozzato. Theorem proving for
conditional logics: CondLean and GoalDuck. Journal of Applied
Non-Classical Logics, 18(4):427-473, 2008.

Nicola Olivetti and Gian Luca Pozzato. NESCOND: an im-
plementation of nested sequent calculi for conditional logics.
In International Joint Conference on Automated Reasoning, pages
511-518. Springer, 2014.

Nicola Olivetti and Gian Luca Pozzato. A standard internal
calculus for Lewis’ counterfactual logics. In International Con-
ference on Automated Reasoning with Analytic Tableaux and Re-
lated Methods, pages 270-286. Springer, 2015.

Ivan E. Orlov. The calculus of compatibility of propositions.
Mathematics of the USSR, Shornik, 35:263-286, 1928.

Eugenio Orlandelli. Labelled calculi for quantified modal log-
ics with definite descriptions. Journal of Logic and Computation,
31(3):923-946, 2021.

Cosimo Perini Brogi. A Curry-Howard Correspondence for
Intuitionistic Belief. Poster session of The Proof Society Summer
School 2019. Swansea University. Computational Foundry, 2019.

21

[PB21a]

[PB21b]

[Pel99]

[PF21]

[Pog09]

[Pog10]

[Pog16]

[Pop94]

[Pot83]

[Pra65]

[Pra71]

[Pra76]

[Pra19]

[Pri57]

Cosimo Perini Brogi. An analytic calculus for intuitionistic
belief. arXiv preprint arXiv:2103.01734, 2021.

Cosimo Perini Brogi. Curry-Howard-Lambek correspondence
for intuitionistic belief. Studia Logica, 109(6):1441-1461, 2021.

Francis Jeffry Pelletier. A brief history of natural deduction.
History and Philosophy of Logic, 20(1):1-31, 1999.

Petros Papapanagiotou and Jacques Fleuriot. Object-level rea-
soning with logics encoded in hol light. In Fifteenth Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice,
pages 18-34. Open Publishing Association, 2021.

Francesca Poggiolesi. The method of tree-hypersequents for
modal propositional logic. In Towards mathematical philosophy,
pages 31-51. Springer, 2009.

Francesca Poggiolesi. Gentzen calculi for modal propositional
logic, volume 32. Springer Science & Business Media, 2010.

Francesca Poggiolesi. Natural deduction calculi and sequent
calculi for counterfactual logics. Studia Logica, 104(5):1003-
1036, 2016.

Sally Popkorn. First steps in modal logic. Cambridge University
Press, 1994.

Garrel Pottinger. Uniform, cut-free formulations of T, S4 and
SS. Journal of Symbolic Logic, 48(3):900, 1983.

Dag Prawitz. Natural deduction: A proof-theoretical study.
Courier Dover Publications, 1965.

Dag Prawitz. Ideas and results in proof theory. In Studies in
Logic and the Foundations of Mathematics, volume 63, pages 235-
307. Elsevier, 1971.

Vaughan R. Pratt. Semantical considerations on Floyd-Hoare
logic. In 17th Annual Symposium on Foundations of Computer Sci-
ence (sfcs 1976), pages 109-121. IEEE, 1976.

Dag Prawitz. The fundamental problem of general proof the-
ory. Studia Logica, 107(1):11-29, 2019.

Arthur N. Prior. Time and modality. Oxford University Press,
1957.

212

[Pri60]

[Pri08]

[Pro12]

[PS86]

[PV16]

[RDT22]

[Res05]

[RM]J20]

[Rog21]

[RS20]

[SA21]

[SABT20]

[Sas02]

Arthur N. Prior. The Runabout Inference-Ticket. Analysis,
21(2):38-39, 12 1960.

Graham Priest. An introduction to non-classical logic: From if to
is. Cambridge University Press, 2008.

Carlo Proietti. Intuitionistic epistemic logic, Kripke models
and Fitch’s paradox. Journal of philosophical logic, 41(5):877-900,
2012.

Gordon Plotkin and Colin Stirling. A framework for intuition-
istic modal logics. In Proceedings of the 1st Conference on Theo-
retical Aspects of Reasoning about Knowledge (TARK), pages 399-
406, 1986.

Tin Perkov and Mladen Vukovié. Filtrations of generalized
Veltman models. Mathematical Logic Quarterly, 62(4-5):412-419,
2016.

The RedPRL Development Team. The Red* family of proof
assistants. https://redprl.org/, 2022.

Greg Restall. Proofnets for S5: sequents and circuits for modal
logic. In Logic Collogquium, volume 28, pages 3-1, 2005.

J. Mas Rovira, Luka Mikec, and Joost J. Joosten. Generalised
veltman semantics in agda. Short Papers, Advances in Modal
Logic, AiIML, 2020:86-90, 2020.

Daniel Rogozin. Categorical and algebraic aspects of the intu-
itionistic modal logic IEL-and its predicate extensions. Journal
of Logic and Computation, 31(1):347-374, 2021.

Michael Rathjen and Wilfried Sieg. Proof Theory. In Ed-
ward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, Fall 2020 edi-
tion, 2020.

Jonathan Sterling and Carlo Angiuli. Normalization for Cubi-
cal Type Theory. In 2021 36th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 1-15, 2021.

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Co-
hen, Yannick Forster, Fabian Kunze, Gregory Malecha, Nico-
las Tabareau, and Théo Winterhalter. The METACOQ project.
Journal of Automated Reasoning, 64(5):947-999, 2020.

Katsumi Sasaki. A cut-free sequent system for the smallest
interpretability logic. Studia Logica, 70(3):353-372, 2002.

213

https://redprl.org/

[Sch93]

[Sch21]

[Seg82]

[Sha85]

[Sha88]

[Sha97]

[SHC22]

[Sim94]

[Smu68]

[Sol76]

[SS19]

[SUO06]

[Ten20a]

Klaus Schild. Combining terminological logics with tense
logic. In Portuguese Conference on Artificial Intelligence, pages
105-120. Springer, 1993.

Peter Scholze. Liquid tensor experiment. Experimental Mathe-
matics, pages 1-6, 2021.

Krister Segerberg. A completeness theorem in the modal logic
of programs. Banach Center Publications, 9:31-46, 1982.

Natarajan Shankar. Towards mechanical metamathematics.
Journal of Automated Reasoning, 1(4):407-434, 1985.

Vladimir Yurievich Shavrukov. The logic of relative inter-
pretability over Peano arithmetic. Preprint, 5, 1988.

Vladimir Yurievich Shavrukov. Interpreting reflexive theories
in finitely many axioms. Fundamenta Mathematicae, 152(2):99-
116, 1997.

Christian Sattler, Simon Huber, and Thierry Coquand. Canon-
icity and homotopy canonicity for cubical type theory. Logical
Methods in Computer Science, 18, 2022.

Alex K. Simpson. The proof theory and semantics of intuition-
istic modal logic. PhD thesis, University of Edinburgh. College of
Science and Engineering. School of Informatics, 1994.

Raymond M. Smullyan. Analytic cut. The Journal of Symbolic
Logic, 33(4):560-564, 1968.

Robert M. Solovay. Provability interpretations of modal logic.
Israel journal of mathematics, 25(3-4):287-304, 1976.

Youan Su and Katsuhiko Sano. First-order intuitionistic epis-
temic logic. In International Workshop on Logic, Rationality and
Interaction, pages 326-339. Springer, 2019.

Morten H. Sgrensen and Pawel Urzyczyn. Lectures on the Curry-
Howard isomorphism, volume 149 of Studies in Logic and the Foun-
dations of Mathematics. Elsevier, 2006.

Neil Tennant. Does Choice Really Imply Excluded Middle?
Part I: Regimentation of the Goodman-Myhill Result, and Its
Immediate Reception. Philosophia Mathematica, 28(2):139-171,
2020.

214

[Ten20b]

[Thel3]

[TMR53]

[Tro69]
[TS00]

[VAG22]

[Val83]

[vB16]

[vdGI120]

[vdGI21]

[vDTS88]

[Ver92]

[Verl7]

Neil Tennant. Does Choice Really Imply Excluded Middle?
Part II: Historical, Philosophical, and Foundational Reflec-

tions on the Goodman-Myhill Result. Philosophia Mathematica,
29(1):28-63, 2020.

The Univalent Foundations Program. Homotopy Type
Theory: Univalent Foundations of Mathematics. https:
//homotopytypetheory.org/book, Institute for Advanced
Study, 2013.

Alfred Tarski, Andrzej Mostowski, and Raphael Mitchel
Robinson. Undecidable theories, volume 13. Elsevier, 1953.

Anne Sjerp Troelstra. Principles of Intuitionism. Springer, 1969.

Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic proof
theory. Number 43. Cambridge University Press, 2000.

Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al.
UniMath — A computer-checked library of univalent mathe-
matics. Available at https://github.com/UniMath/UniMath,
2022.

Silvio Valentini. =~ The modal logic of provability: cut-
elimination. Journal of Philosophical logic, pages 471-476, 1983.

Johan van Benthem. Modal logic: A contemporary view. In-
ternet Encyclopedia of Philosophy, http: //www. tep. utm. edu/
modal-1lo,2016.

Iris van der Giessen and Rosalie Iemhoff. Proof theory for in-
tuitionistic strong 1\" ob logic. arXiv preprint arXiv:2011.10383,
2020.

Iris van der Giessen and Rosalie Iemhoff. Sequent calculi for
intuitionistic godel-16b logic. Notre Dame Journal of Formal
Logic, 62(2):221-246, 2021.

Dirk van Dalen and Anne Troelstra. Constructivism in Mathe-
matics. An Introduction I, volume 121 of Studies in Logic and the
Foundations of Mathematics. Elsevier, 1988.

L.C. Verbrugge. Verzamelingen-Veltman frames en modellen
(set Veltman frames and models). Unpublished manuscript, Am-
sterdam, 1992.

Rineke (L.C.) Verbrugge. Provability Logic. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, fall 2017 edition, 2017.

215

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://github.com/UniMath/UniMath
http://www.iep.utm.edu/modal-lo
http://www.iep.utm.edu/modal-lo

[Vis88]

[Vis90]

[VMA21]

[Voell]

[VP18]

[Vuk99]

[VW51]

[VZ19]

[Wil92]

[XN20]

[Zac19]

[Zam92]

Albert Visser. Preliminary notes on interpretability logic. Logic
group preprint series, 29, 1988.

Albert Visser. Interpretability logic. In Mathematical logic,
pages 175-209. Springer, 1990.

Andrea Vezzosi, Anders Mortberg, and Andreas Abel. Cubical
Agda: A dependently typed programming language with uni-
valence and higher inductive types. Journal of Functional Pro-
gramming, 31, 2021.

Vladimir Voevodsky. Resizing rules-their use and semantic
justification. Slides from a talk at TYPES, Bergen, 2011.

Jan von Plato. The Development of Proof Theory. In Ed-
ward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, Winter 2018
edition, 2018.

Mladen Vukovi¢. The principles of interpretability. Notre
Dame Journal of Formal Logic, 40(2):227-235, 1999.

Georg Henrik von Wright. Deontic logic. Mind, 60(237):1-15,
1951.

Albert Visser and Jetze Zoethout. Provability logic and the
completeness principle. Annals of Pure and Applied Logic,
170(6):718-753, 2019.

Timothy Williamson. On intuitionistic modal epistemic logic.
Journal of Philosophical Logic, 21.1:63-89, 1992.

Yiming Xu and Michael Norrish. Mechanised modal model
theory. In Nicolas Peltier and Viorica Sofronie-Stokkermans,
editors, Automated Reasoning, pages 518-533, Cham, 2020.
Springer International Publishing.

Richard Zach. Hilbert’s Program. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research
Lab, Stanford University, Fall 2019 edition, 2019.

Domenico Zambella. On the proofs of arithmetical complete-
ness for interpretability logic. Notre Dame journal of formal logic,
33(4):542-551, 1992.

216

	Prologue
	General introduction
	Preliminary material
	Normal modal logics
	Elementary syntax
	Axiomatic calculi
	Relational semantics
	Canonical models, finite models, bisimulations

	Gödel-Löb provability logic
	Axiomatisation and relational semantics
	Arithmetical realisation

	Sequent calculi for non-classical logics
	G3cp sequent calculus
	Formal relational semantics

	Natural deduction for propositional logic
	Basic natural deduction systems
	Normalisation
	Analyticity
	Perspectives from mathematical philosophy

	Type theory
	Proofs as programs
	Computational trinitarianism

	I Structural Proof Theory
	Introduction to Part I
	Natural deduction for intuitionistic belief
	Axiomatic calculus for intuitionistic belief
	System IEL-
	Kripke semantics for IEL-

	Natural deduction for intuitionistic belief
	System IEL-
	Normalisation

	Analyticity and other properties
	Proof of the subformula property
	Further properties of intuitionistic belief

	Proof-theoretic semantics for IEL-
	Some functors on monoidal categories
	Categorical interpretation

	Related work

	Natural deduction for intuitionistic knowledge
	Axiomatic calculus for intuitionistic knowledge
	System IEL
	Kripke semantics for IEL

	Natural deduction for intuitionistic knowledge
	System IEL
	Normalisation

	Analyticity and other properties
	Proof of the subformula property
	Further properties of intuitionistic knowledge

	Related work

	Natural deduction for intuitionistic strong Löb logic
	Axiomatic calculus for intuitionistic strong Löb logic
	System ISL
	Kripke Semantics for ISL

	Natural deduction for intuitionistic strong Löb logic
	System ISL
	Normalisation
	On analyticity of normal ISL-deductions

	Related work

	Modular sequent calculi for interpretability logics
	Axiomatic calculi
	Axiomatic extensions

	Semantics for interpretability logics
	Veltman semantics
	Generalised Veltman semantics

	Design of the labelled sequent calculi
	Core system
	Extensions

	Structural properties
	General initial sequents, weakening, contraction, invertibility
	Cut-elimination theorem

	Completeness
	Syntactic completeness
	Soundness
	On termination

	Related work

	II Automated Reasoning
	Introduction to Part II
	A theorem prover and countermodel constructor for provability logic in HOL Light
	Basics of modal logic
	Language and semantics defined
	Frames for GL

	Axiomatizing GL
	GL-lemmas
	Soundness lemma

	Modal completeness
	Maximal consistent lists
	Maximal extensions
	Truth lemma and completeness
	Generalizing via bisimulation

	Implementing G3KGL
	The calculus G3KGL
	Design of the proof search
	Some examples

	Related work

	Universal algebra in UniMath
	Surveying the code
	Signatures and algebras
	Terms and free algebras
	Induction on terms
	Terms with variables and free algebras
	Equations and equational algebras
	Categorical structures

	Some successful experiments
	List algebras
	Equational algebras of monoids
	Algebra of booleans and Tarski's semantics

	Related work

	Appendices
	HOL Light logical engine
	Univalent type theory and UniMath

	Bibliography

