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Abstract

Failure processes in Laminated Fiber-Reinforced Composites (LFRCs) entail the development and pro-
gression of different physical mechanisms and, in particular, the interaction between inter-laminar and
intra-laminar cracking. Reliable modeling of such complex scenarios can be achieved by developing robust
numerical predictive tools that allow for the interaction of both failure modes. In this study, a novel Multi
Phase-Field (MPF) model relying on the Puck theory of failure for intra-laminar failure at ply level is cou-
pled with a Cohesive Zone Model (CZM) for inter-laminar cracking. The current computational method
is numerically implemented as a system of non-linear partially coupled equations using the finite element
method via user-defined UMAT and UEL subroutines in ABAQUS. The computational tool is applied to quali-
tatively predict delamination migration in long laminated fiber-reinforced polymers composites comprising
44 cross-ply laminates. The reliability of the current approach is examined via the correlation with experi-
mental results. Finally, the present study is complemented with additional representative examples with the
aim of providing further insight into the potential role of different aspects of the system in the delamination
migration, including (i) the variation of the ply angle in the migration zone, (ii) the load application point,
and (iii) initial crack length.

Keywords: A. Fiber Reinforced Composites; B. Fracture Mechanics; C. Finite Element Method (FEM);
D. Phase-Field Fracture; E. Cohesive Zone Model

1. Introduction

The widespread use of Laminated Fiber Reinforced Composites (LFRCs) due to their high strength
to weight ratios has paved their way into many practical applications in different industrial sectors, with
remarkable impact in aerospace and aeronautics, and more recently in the automotive sector [1, 2], to quote
a few of them. In the presence of ever-increasing demands of new technological advancements, load-bearing
capabilities and failure modes of these materials are not yet fully understood, posing notable restrictions on
their use and leading to the introduction of high safety factors.

Within this context, delamination failure can be conceived as one of the most critical failure mechanisms
in Laminated Fiber Reinforced Composites (LFRCs). Such cracking events are generally associated with low
through-thickness stiffness in layered disposals and can emerge from manufacturing defects, the occurrence
of post-buckling phenomena [3, 4], among many others. From a modeling standpoint, delamination events in
layered composites structures have been analyzed using linear elastic fracture mechanics (LEFM), enforcing
initiation and growth along the ply interface with the use of strain energy-based methods to define the
corresponding fracture toughness [5, 6]. Delamination can be found in low-velocity impact [7], skin debonding
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[8], defects from notches [9], [10], among many other practical cases. These phenomena have been extensively
investigated based on cohesive-like cracking methods in pre-notched coupon configurations. An ad-hoc inter-
laminar failure model can be inserted into the most critical locations of the specimen for triggering such
cracking events [11, 12, 13, 14]. From a mechanical perspective, delamination can be seen as a result of the
coalescence of micro-cracks at the ply interface, perpendicular to the tensile stress [15], [16], [17].

However, for some specific loading cases and configurations, it has been reported that mostly due to the
sign of the change of shearing stresses, a pre-existing crack along the ply interface can kink out from such
location, propagating into the adjacent ply. Matrix-cracking induced by delamination can further progress
through the ply thickness and then ”propagates out” at another interface as reported in [15, 18, 19], leading
to the so-called ”delamination migration” failure mode. Thus, following the terminologies used in [20], the
turning of delamination crack front into one of the adjacent plies is referred to as ”kinking,” whereas, when a
crack propagates across the thickness of plies and propagates out in adjacent interface is called ”migration”
[21]. The main causes of such phenomena can be motivated by the analysis of the stress field around the
interface crack tip, see the experimental studies conducted in [15, 22, 19] for a 0◦/90◦ interface and [16] for
a 0◦/θ◦ interface.

In the last decade, the advent of new numerical capabilities and modeling techniques has promoted the
thorough analysis of the potential reasons for the driving mechanisms that provoke delamination migration
failures [23]. Note also that the migration phenomenon is also observed in the models without the presence of
pre-existing cracks [22]. Numerical methods such a eXtended FEM (XFEM) [24], augmented finite element
methods [25], floating node methods [26], cohesive-crack element methods [27] have been widely applied to
study delamination migration. Moreover, delamination migration can be explained using micro-mechanics
as reported by Arteiro and coauthors [28].

Concerning the different modeling methods for triggering intra-laminar failure in LFRCs, the use of
continuum damage mechanics (CDM)-based methods have been of notable importance; see the phenomeno-
logical models proposed in [29, 30] and the references given therein. Notwithstanding, the local versions of
CDM models generally suffer from mesh pathological issues that can be remedied using alternative method-
ologies. Nonlocal damage models [31, 32] have been used extensively, which also share as part of phase-field
formalism while providing a detailed description of the damage behavior. On the other hand, theories such
as crack band theory have been extensively used in the literature to mitigate spurious mesh sensitivity
in the modeling location. In this direction, substantial contributions from Bažant are noteworthy. See
[33, 34, 35, 36, 37] and the reference therein. Within this context, Phase-field methods, originally proposed
by Francfort and Marigo [38] and subsequently developed in [39], have become plausible nonlocal modeling
alternatives that prevent most of the main limitations of alternative modeling tools for fracture in solids.
With strong foundations on Griffith’s approach to Fracture Mechanics, PF methods exploit a multi-field
variational formalism, whereby fracture is accounted for via diffusive representation within a particular
region of the domain characterized by the length-scale l. The Phase-field method for fracture integrates
classical damage mechanics and Griffith’s theory of failure. This generalized formalism can handle topo-
logically complex fractures such as initiation, branching of the crack, intersection of crack, coalescence of
damage, etc., or combining them in two and three-dimensional settings without any ad-hoc. This approach
encompasses an energy minimization of the potential energy of the body (split into bulk and fracture coun-
terparts, respectively), resulting in a multi-field FE formulation. Therefore, complex cracking phenomena
can be naturally captured due to the implicit consideration of the corresponding crack phase-field variables’
evolution equation. Posterior developments of PF techniques for fracture have been oriented towards the
analysis of alternative formulations [40, 41], shells [30], ductile fracture [42, 43, 44], composite materials
[45, 46, 47, 48, 49, 50, 51], heterogeneous media [48], hydrogen assisted cracking [52], among many others,
and from a numerical point of view striving for different solution strategies [53]. The authors have re-
cently proposed incorporating phenomenological failure criteria for composite materials widening the range
of applicability of PF methods for different composite materials [54].

In this investigation, the two phase-field fracture model proposed by the authors in [55]) is combined with
a cohesive zone model following a bi-linear traction separation law to predict the development of such failure
events in LFRCs. Consequently, at the intra-ply level, the driving force for each of the failure mechanisms
within the PF technique, i.e., fiber failure and inter-fiber failure, is exploited independently. Moreover,
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this fracture model is readily applied to capture the kinking and migration events along with delamination.
The proposed model is examined against experimental data available in the related literature to validate
the current simulation technique’s predictive capabilities. In addition to the previous aspects, the present
study also encompasses the analysis of the variation of design parameters for which physical solution favors
delamination-migration, such as load application point, angle of the ply at the interfaces, and initial crack
length. Such effects are studied to understand each of the variation’s load-bearing capacity and show the
applicability of the proposed model to predict complex failure phenomena.

The manuscript is organized as follows. In Section 2, the Multi Phase-Field-Cohesive Zone (MPF-CZ)
formulation based on the Puck failure theory is introduced. In Section 3, the model’s variational formulation,
along with the strong form, is outlined with a special focus on each failure mechanism’s construction partic-
ular contribution. In Section 4, the finite element implementation of the model is derived. The assessment of
the proposed framework for its validation is discussed in Section 5 in conjunction with a further investigation
concerning the system’s variation of numerous design parameters. Finally, Section 6 summarizes the main
conclusions of the present study.

2. Multi Phase-Field-Cohesive Zone (MPF-CZ) formulation based on the Puck failure theory

In this section, the computational framework herein proposed for capturing delamination migration in
layered composite structures is outlined. The current method relies on the combination of multiple phase-
fields. Each phase-field based on different physically motivated failure mechanisms such as Puck failure
criterion [55] driving the crack propagation in long fiber reinforced polymer composites along with the
cohesive zone model.

Following the standard Phase-field formulation, consider an arbitrary body in the general ndim Euclidean
space, occupying the placement B ∈ Rndim , with its external delimiting boundary ∂B ∈ Rndim−1, see Figure
1. For any material point, the position vector is denoted by x ∈ B. The displacement field is identified by the
vector u : B → Rndim , with infinitesimal stain tensor ε := ∇su for ε : B → Rndim×ndim . The displacement
boundary conditions are prescribed as u = u on ∂Bu and traction conditions are given by t = σ · n on ∂Bt
such that, kinematic and static boundary conditions satisfy: ∂Bt ∪ ∂Bu = ∂B and ∂Bt ∩ ∂Bu = 0, where n
is outward normal vector and σ is the Cauchy stress tensor.

Figure 1: Body under consideration: (a) sharp crack representation and (b) Regularized crack topology.

In addition to the previous definitions, let Γ be a crack set incorporating interface cracks Γi arising
from the cohesive interface and cracks in the bulk Γdt

from the multi phase-field such that, Γi ∪ Γdt
= Γ

and Γi ∩ Γdt
= ∅ for each discrete t ∈ [0, T ] with Γt ⊆ Γt+1. The displacement jumps along the interface
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as the relative displacement between two homogeneous points at the flanks are denoted by g = u+
i − u−i ,

representing the difference between kinematic field along the interface Γ+
i and Γ−i in line with [56, 57]. On

the other hand, Γdt
is defined as the set of discontinuous points x, where u has one sided approximate limits

u+
d 6= u−d with respect to a suitable direction vu normal to Γdt

inline with [58, 59].
To account for multiple energies in the system, the total free energy functional describing the mechanics

of body B, is given as the sum total of internal and external energies acting on the system as follows:

Π(u,Γ) = Πint(u,Γ) + Πext(u). (1)

Phase-field approximation of the fracture works on the idea that the fracture propagates due to com-
petition between elastic energy stemming from the state function of strain tensor ε and fracture energy
(surface energy) stemming from scalar internal damage like variable d [55]. The consistent generalization
of the isotropic damage formulation for the consideration of different failure mechanisms can be postulated
by the additive decomposition of total internal energy into multiple contributions, in which each of them is
associated with a certain failure mechanism. In such a postulation, a scalar damage variable di (i = 1, ..., n)
is associated with each one of the n failure mechanisms, such that di = 0 for intact material state and di = 1
for fully broken state and so that di ∈ [0, 1] for each i = 1, ..., n. Moreover, to account for non-local damage
evolution, the respective gradients ∇xdi are incorporated in the formulation. This additive decomposition
postulation for intralaminar failure was successfully applied in [29] and later extended to incorporate failure
criteria such as Puck failure theory so as to distinguish between the fiber and matrix dominated damage
mechanisms in LFRPs [55, 30]. However, the consideration of dissipative energies stemming from debonding
along the interface Γi, and crack propagation in the bulk Γdt is still a matter of investigation. The prediction
of such crack topology becomes increasingly complex due to branching and coalescence phenomenons, as well
as the interaction with diffusive cracks, which may induce the debonding process along the existing inter-
face Γi. One possibility to achieve this is by employing a phase-field model incorporating multiple diffusive
crack fields within the bulk and interface elements relying on cohesive zone methodologies at a prescribed
interface inline with [57]. Hence, the total internal energy is now an amalgamation of (i) total elastic energy
constituting from bulk (fiber and inter-fiber) energy, (ii) surface energy (crack energy) stemming from bulk
(fiber and inter-fiber) failure, and (iii) cohesive interface energy obeying a bi-linear traction-separation law:

Πint(u,Γ) = Πint,b(u,Γdi
) + Πint,c(Γi), (2)

where Πint,b(u,Γ) is the internal energy stemming from the bulk (fiber and inter-fiber) and Πint,C(Γi) is
the dissipative energy associated with cohesive debonding which are addressed in detail in the sequel. The
bulk energy Πint,b(u,Γ) is further decomposed into:

Πint,b(u,Γdi) = Πint,FF (u,ΓdFF
) + Πint,IFF (u,ΓdIFF

), (3)

where Πint,FF (u,ΓdFF
) and Πint,IFF (u,ΓdIFF

) correspond to the energies associated with fiber failure and
inter-fiber failure, respectively.

With such decomposition at hand, the scheme herein used recalls that the dissipated energy arising
from each of the individual failure mechanisms only affects their corresponding counterparts in the elasticity
tensor, therefore precluding the coupling between fiber inter-fiber failures and each of these failures with
respect to the cohesive debonding. Note that, due to this preclusion of interaction between the energies, the
elastic energy is strongly coupled with the surface energies stemming from fiber, inter-fiber, and cohesive
debonding. In contrast, surface energies among themselves are only weakly coupled.

The effective Helmholtz free energy function Ψ̂ is defined as:

Ψ̂(ε,A) =
1

2
ε : Ce : ε, (4)

where Ce is the undamaged elastic constitutive tensor defined as:

Ce := ∂εεΨ̂ = λ1⊗ 1 + 2µT I + α(1⊗A + A⊗ 1) + 2(µL − µT )IA + βA⊗A, (5)
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where 1 is the second order identity tensor, IA,ijkl = AimIjmkl+AjmImikl represents the fourth-order identity
matrix, and λ, α, β, µT and µL are to the elastic constants taking the form:

λ = E22 (ν23 + ν31ν13) /D, (6)

α = E22 [ν31 (1 + ν32 − ν13)− ν32] /D, (7)

β = E11 (1− ν32ν23) /D − E22 [1− ν21 (ν12 + 2(1 + ν23))] /D − 4G12, (8)

µL = G12; µT = G23, (9)

with D = 1− ν2
32− 2ν13ν31− 2ν32ν13ν31. The material direction is denoted by a and A := a⊗ a is so called

structural tensor.
Here, 1-direction corresponds to the fiber orientation, 2-direction is transverse in-plane orientation with

respect to the fiber direction, and 3-direction stands for transverse out-of-plane orientation.

2.1. Bulk energies

In the light of previous developments, the total energy of the fiber can be established as the sum total
of the elastic energy and fracture energy associated with the fiber:

Πint,FF (u,ΓdFF
) ≈ Πint,FF (u, dFF ) =

∫
B

(1− dFF )2Ψ̂FF (ε,A)dΩ

+

∫
B
Gc,FF

[
1

2lFF
d2
FF +

lFF
2
|∇dFF |2

]
dΩ,

(10)

where Ψ̂FF is the elastic contribution associated with the fiber: Ψ̂FF = 1
2ε : CeFF : ε, where:

CeFF =


Ce11 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (11)

and Gc,FF is the fracture energy, and lFF is the material characteristic length associated with fiber failure
in phase-field related to the apparent material strength [60] as:

lFF =
27

256

E11Gc,FF
σ2
s,FF

, (12)

where σs,FF is the apparent material strength associated with fiber failure.
Similarly, the inter-fiber contribution to the total internal energy can be expressed as:

Πint,IFF (u,ΓdFF
) ≈ Πint,IFF (u, dIFF ) =

∫
B

(1− dIFF )2Ψ̂IFF (ε,A)dΩ

+

∫
B
Gc,IFF

[
1

2lIFF
d2
IFF +

lIFF
2
|∇dIFF |2

]
dΩ,

(13)

where Ψ̂IFF = 1
2ε : CeIFF : ε is the elastic contribution associated with the inter-fiber failure, and:

CeIFF =


0 Ce12 Ce13 0 0 0

Ce21 Ce22 Ce23 0 0 0
Ce31 Ce32 Ce33 0 0 0
0 0 0 Ce44 0 0
0 0 0 0 Ce55 0
0 0 0 0 0 Ce66,

 . (14)
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where Gc,IFF and lIFF are the fracture energy and corresponding length scale associated with inter-fiber
failure, respectively. Similarly, the length scale parameter is estimated for the apparent material strength
σs,IFF of inter-fiber failure as:

lIFF =
27

256

E22Gc,IFF
σ2
s,IFF

. (15)

Note that with these definitions at hand, the damaged constitutive matrix C renders:

C(dFF , dIFF ) = (1− dFF )2CeFF + (1− dIFF )2CeIFF , (16)

C(dFF , dIFF ) =


P1Ce11 P2Ce12 P2Ce13 0 0 0
P2Ce21 P2Ce22 P2Ce23 0 0 0
P2Ce31 P2Ce32 P2Ce33 0 0 0

0 0 0 P12Ce44 0 0
0 0 0 0 P12Ce55 0
0 0 0 0 0 P2Ce66

 , (17)

where P1 = (1− dFF )2, P2 = (1− dIFF )2, and P12 = min (P1,P2). Notice that P12 is not differentiable
due to the existence of ”min”. Hence, we first take the minima so that, any minimum of P12 (i.e P1 or P2

) is differentiable.

2.2. Interface energies

The energy stemming from the interface is governed by a bi-linear traction separation law which consti-
tutes of a linear elastic stage characterized by an initial stiffness of Kn, Kt1 and Kt2 corresponding to the
normal and shear components, respectively, followed by a linear softening as in Figure 2. The irreversibility
is accounted by introducing a damage variable dc depending on the relative kinematic critical normal and
tangential openings, gfn and gftj (j=1 for 2D and j=1,2 for 3D), respectively [12, 13].

damage onset

Mode-I

Mode-II

Ic

IIc

mixed mode

traction

c

Figure 2: Schematic representation of the bi-linear cohesive zone model traction-separation law for mixed mode
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The corresponding interface laws governing the normal and tangential tractions σn and τ tj , respectively,
take the form:

σn =


kngn if gn ≤ g0

n

(1− dc)kngn if g0
n < gn < gfn

0 Otherwise

, (18)

τ tj =


ktjgtj if gtj ≤ g0

tj

(1− dc)ktjgtj if g0
tj < gtj < gftj

0 Otherwise

, (19)

for each j = 1, 2 to account for the tangential traction, whereas gn and gtj are the relative normal and
tangential displacements, respectively. The Mixed-mode fracture energy of the interface reads:

GiC = GIC + (GIIC − GIC)

(
GII + GIII

GI + GII + GIII

)η
, (20)

where GIC , GIIC , and GIIIC represent the corresponding fracture toughness associated with normal (Mode
I) and shear (Mode II and III), respectively, and computed as the area under the traction separation curve,
η identifies an experimental fitting parameter elucidating the effects of fracture mode mixities [4]. Finally,
GI, GII, and GIII are energy release rate associated with Mode I, Mode II, and III, respectively. Damage
is initiated using the quadratic interaction function of nominal stress ratios. The damage is evolved using
Benzeggagh-Kenane (BK) failure criterion based on cumulative energy such that mixed fracture toughness
GiC reaches the critical energy.

Based on the energy considerations, the evolution of the damage variable dc is estimated based on the
effective displacement of the cohesive element, where dc is evolving linearly with:

dc =
gfm(gmax

m − g0
m)

gmax
m (gfm − g0

m)
, (21)

where g0
m is effective displacement at initiation and gfm =

2GiC
T 0
eff

is the effective displacement at fail-

ure. Here, T 0
eff is the effective traction at damage initiation estimated using effective tractions Teff =√

(σn)2 + (τ t1)2 + (τ t2)2, as T 0
eff = min {Teff (dc > 0)}. And gmax

m refers to the maximum value of effective

displacement during loading history estimated using gmax
m = max[0,T ] gm, where gm :=

√
〈g2
n〉+ (gt1)2 + (gt2)2.

Finally, with this at hand, the corresponding total energy generated by the cohesive interface takes the form:

Πint,c(Γi) ≈ Πint,c(dc) =

∫
Γi

Gic(g, dc)dS =

∫
Γi

gTT dS, (22)

with g = [gn, gt1 ] and T = [σn, τ t1 ].

2.3. Fundamentals of Puck failure criterion

Damage evolution in bulk relies on Puck failure theory [61] whose corresponding failure criterion accounts
for the independent assessment of fiber and inter-fiber failure surfaces. For the fiber failure, with usual
notations, that is ‖ (subscript 1), ⊥ (subscript 2 and subscript 3) representing fiber direction, normal to the
fiber direction in-plane and, normal to the fiber direction out-of-plane, respectively, for the ply co-ordinates
in a local setting 0− e1 − e2 − e3 as in Figure 3.

According to the Puck theory, fiber failure is triggered based on energetic considerations that, the
exposure factor (denoted fE,FF+, for tensile only) reaches the value 1, where fE,FF+ is given by:

fE,FF+ =
1

Rt‖

[
σ11 −

(
ν⊥‖ −

E‖

E‖f
ν⊥‖f

)
(σ22 + σ33)P2

]
, (23)
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Mode B

Mode B
Mode C

0°

54°

Figure 3: Puck failure theory: (a) definition of acting stresses on the fracture plane by θfp angle and (b) the exposure factor
fE , where fE,(fr) is the exposure factor at the failure point.

where Rt‖ stands for the tensile longitudinal strength in fiber direction. ν⊥‖ and ν⊥‖f identify the major
Poisson’s ratios of the ply and the fibers, respectively, and E‖f is the elastic modulus of the fibers. FF+
denotes the fiber failure in tension, whereas the compression is omitted for the sake of brevity but can
easily be incorporated as in [55]. The incorporation of P2 is to scale the influence of the transverse stress
components on the longitudinal stress (lateral contraction) with respect to the state of matrix damage. It
is assumed that the contraction in the longitudinal direction due to transverse stress will vanish in a case
P2 → 1, i.e., matrix rupture parallel to the fibers. In the case of compressive longitudinal stress, reduced
compressive longitudinal fracture resistance of the plies is assumed in the case of increasing shear stress.

Puck theory also distinguishes the inter-fiber failure by introducing the so-called action plane [62, 61],
which corresponds to identifying the potential fracture plane derived from the maximum stress states
{σ̄n(Θ), τ̄nt(Θ), τ̄n1(Θ)}, where σ̄n(Θ), τ̄nt(Θ), and τ̄n1(Θ) are the normal stress component, shear stress
component transverse to the fiber, and the shear stress component plane parallel to the fiber, respectively,
each on the action plane. The determination of the fracture plane is usually performed via the assessment of
the most critical stress state in terms of the local components by calculating the value of inter-fiber exposure
factor FE,IFF for all angles Θ within the interval of −90◦ ≤ Θ ≤ +90◦, using an increment of one degree.
The transformation from the local ply setting to the action plane system yields:

σn(Θ)
τnt(Θ)
τn1(Θ)

 =

 cos2 Θ sin2 Θ 2 cos Θ sin Θ 0 0
− cos Θ sin Θ cos Θ sin Θ cos2 Θ− sin2 Θ 0 0

0 0 0 sin Θ cos Θ



σ22

σ33

σ23

σ13

σ12

 . (24)

In particular, the expression for inter-fiber failure under tensile conditions on the action plane takes the
form:
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fE,IFF+(Θ) =


√√√√[( 1

RAt⊥
−
pt⊥ψ
RA⊥ψ

)
σn(Θ)

]2

+

(
τnt(Θ)

RA⊥⊥

)2

+

(
τn1(Θ)

RA‖⊥

)2

+
pt⊥ψ
RA⊥ψ

σn(Θ)


1

ηw
for σn(Θ) ≥ 0,

(25)

where RAt⊥ and RA⊥⊥ are transverse tensile strength and fracture strength respectively, whereas RA⊥ψ is the
transverse tensile strength at any ply angle ψ, with fE,IFF+ representing the exposure factor and the failure
is triggered when fE,IFF+ reaches the value 1.

In the previous expression, cos2 ψ and sin2 ψ are:

cos2 ψ =
τ2
nt

τ2
nt + τ2

n1

and sin2 ψ =
τ2
n1

τ2
nt + τ2

n1

. (26)

Finally, the definition of the inclination parameters pt⊥ψ and pc⊥ψ for any angle ψ renders:

pi⊥ψ
RA⊥ψ

=
pi⊥⊥
RA⊥⊥

cos2 ψ +
pi⊥‖

RA⊥‖
sin2 ψ, i = t, c; (27)

with:

RA⊥ψ =

(cosψ

RA⊥⊥

)2

+

(
sinψ

RA⊥‖

)2
 . (28)

Due to the modelling assumptions herein made, the proposed model requires the following fracture energy
values: (i) Gc,FF fiber fracture energy, (ii) Gc,IFF matrix dominated fracture energy, and (iii) Gc inter-laminar
fracture energy. These properties can be determined via experimental procedures, see [63, 28, 64, 65] and
the references therein.

3. Variational formulation and strong forms

Relying on the considerations given in Section 2, the total energy functional of the solid body B, along
with the cracks Γi and Γdi

at any arbitrary instance t ∈ [0, T ] takes the form:

Π(u,Γ) ≈ Π(u, di, dc) = Πint(u, di, dc) + Πext(u), (29)

where the internal and external contribution to the energy functional Π(u, di, dc) read, respectively:

Πint(u, di, dc) =

∫
B

(1− dFF )2Ψ̂FF (ε,A) + (1− dIFF )2Ψ̂IFF (ε,A)dΩ

+

∫
B
PFFGc,FF

[
1

2lFF
d2
FF +

lFF
2
|∇dFF |2

]
+ PIFFGc,IFF

[
1

2lIFF
d2
IFF +

lIFF
2
|∇dIFF |2

]
dΩ

+

∫
Γi

gTT dS,

(30)

Πext(u) = −
∫
B
fvdΩ−

∫
∂Bt

t̄d∂Ω, (31)

where fv is the deformation-independent volume-specific loads.
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In the above expression, Eqn.(30), PFF and PIFF are the activation flags, which are activated when the
corresponding pucks failure criterion is met. The approximate solution of the stated problem with MPF-CZ
can be obtained as a quadruplet of the solution of the following minimization problem:

(u∗, d∗FF , d
∗
IFF , g

∗) = argmin
S

Π(u, di, dc). (32)

where, S = { ˙dFF , ˙dIFF ≥ 0 for all x ∈ B�Γi, ḋc ≥ 0 for all x ∈ Γi} enforcing irreversibility of the
evolution parameters. One may also argue that g∗ should be replaced by the dc in the minimization problem,
however, it is easy to see that the minimum value of g∗ also leads to a minimum value of dc from Eqn. (21).

The quadruplet set (u∗, d∗FF , d
∗
IFF , g

∗) in Eqn.(32) is solved by taking a variational form of the total
internal energy functional (Gateaux derivative) assuming enough regularity of the terms involved. In the
infinitesimal setting, considering the irriversibility of the damage variables set S for any admissible test
function (δu, δdFF , δ dIFF , δg) in the appropriate space of distribution, a strong form of the field equations
can be reduced to the following:

div
[
(1− dFF )2CeFF : ε+ (1− dIFF )CeIFF : ε

]
+ fv = 0 in B�Γi, and σ · n = 0 on ∂Bt, (33)

2(1− dFF )PFFHFF (x, t) = Gc,FF δdFF
γ(dFF ,∇xdFF ) in B�Γi and ∇xdFF · n = 0 in ∂B, (34)

2(1−dIFF )PIFFHIFF (x, t) = Gc,IFF δdIFF
γ(dIFF ,∇xdIFF ) in B�Γi and ∇xdIFF ·n = 0 in ∂B, (35)

divg [σn(dc) + τn(dc)] = 0 in Γi, (36)

wherein the previous expressions divg[•] represents the divergence operator taken with respect to g. The
terms HFF and HIFF are the crack driving forces related to fiber and inter-fiber failure, respectively. In
accordance with the Pucks failure criteria, the crack driving force of each j = FF, IFF are given by:

Hj(x, t) = ξj

〈 max
τ∈[0,t]

Ψ̂j(x, τ)

Ψ̂j,init

− 1〉+

 , (37)

where ξj is a dimensionless fitting parameter that characterizes the damage activation and post peak

behaviours from experimental results. Ψ̂j,init is the effective elastic energy for damage initiation in each of
j = FF, IFF .

The unilateral stationary condition of the total internal energy functional implies that δΠint = 0 for
all (δu, δdFF , δ dIFF , δg) > 0 and δΠint > 0 for (δu, δdFF , δ dIFF , δg) = 0 along with the irriversibility
and boundedness of dFF , dIFF , dc leads to the first-order optimality (KKT) conditions for the quasi-static
evolution [39] [66]. Γ− convergence of the multi phase-field problem in the absence of the interface can be
easily derived following the results obtained in [67].

It is worth noting that the irreversible character of the phase-fields and cohesive zone can be reduced to
S, this is fulfilled by the history variable embedded by the history variable Eqn.(37). The boundedness of
the phase-field variables dFF , dIFF ∈ [0, 1] is ensured due to the choice of degradation function (1− dj)

2 as
in [68]. Also, it is important to note that, we have assumed ∇xdj = 0 due to the compactness property and
δu = 0 on ∂Ωt and δdj = 0 on ∂Ω, from the variational form which are reflected in the choice of approximate
spaces of test functions as in Section 4, see [58, 59].

4. Finite element implementation

In this section, details of the finite element implementation of the proposed model are outlined. A
staggered solution scheme is used to solve the system of coupled Partial Differential Equations (PDEs) using
an alternating minimization scheme [69]. Consider the discritization of the domain defined as B → Be,

10



Γi → Γei such that the functions ue ∈ Uh, dej ∈ Ud(dj) for j = FF, IFF are well defined along with the
space of approximate functions:

Uh(u) =

{
u ∈ H1(B)

∣∣∣∣∣∇u ∈ L2(B); u = ud on ∂Bd

}
, (38a)

Ud(dj) =

{
dj ∈ H1(B)

∣∣∣∣∣dj(x) ∈ [0, 1], ḋj ≥ 0 ,∀x ∈ B

}
. (38b)

Similarly, the approximate space for the test functions (distrubutional spaces) for δue ∈ Vh, δde ∈ Uδd(dj)
for j = FF, IFF takes the form:

Vh(δu) =

{
δu ∈ H1(B)

∣∣∣∣∣∇δu ∈ L2(B); δu = 0 on ∂Bd

}
, (39a)

Uδd(δdj) =

{
δdj ∈ H1(B)

∣∣∣∣∣δdj ≥ 0 ,∀x ∈ B

}
. (39b)

(39c)

At each element level, in the isoparametric space settings, the triplet of field variables {ue, deFF , deIFF }
as well as their variations {δue, δdeFF , δdeIFF } are approximated using linear first order Lagrangian triplet
of shape functions

{
Nu
i ,N

d
i ,N

d
i

}
at ith node of each element satisfying partition of unity is defined as:

ue =

Nnode∑
i=1

Nu
i u

e
i , dej =

Nnode∑
i=1

Nd
i d
e
j,i, (40)

δue =

Nnode∑
i=1

Nu
i δu

e
i , δdej =

Nnode∑
i=1

Nd
i δd

e
j,i, for each j = FF, IFF. (41)

The triplet of spatial derivatives {∇ue,∇deFF ,∇deIFF } are approximated using the gradients of the shape
functions

{
Bu
i ,B

d
i ,B

d
i

}
at ith node of each element takes the form:

εe =

Nnode∑
i=1

Bu
i u

e
i , ∇dej =

Nnode∑
i=1

Bd
i d
e
j,i,

δεe =

Nnode∑
i=1

Bu
i δu

e
i , ∇δdej =

Nnode∑
i=1

Bd
i δd

e
j,i, for each j = FF, IFF.

Complying with the formulation of interface cohesive element, the displacement jump vector g is rep-
resented in terms of local frames across the interface Γi [57]. Hence, the jump g and its variation δg is
approximated using the kinematic jump-displacement operator Bg = RNgL as:

ge = BgueL, δge = BgδueL, (42)

where L matrix estimates the difference between the displacement of the upper and lower interface points
and R is a rotation matrix that converts integration points from global to the local frame, and Ng represents
the standard cohesive shape function, see [13].

The discrete elemental residual vectors for the quadruplet {ue, deFF , deIFF , ge} can be reduced to the
following system of equations:
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Ru
e =

∫
Be

[
(1− dFF )2(Bu)T σ̄FF + (1− dIFF )2(Bu)T σ̄IFF

]
dB −

∫
Be

(Nu)T fvdB −
∫
∂Be

u

(Nu)Tud∂B+Rg
e ,

(43)

RdFF
e =

∫
Be

{[
Gc,FF
lFF

dFF − 2(1− dFF )PFFHFF (x, t)

]
(Nd)T + Gc,FF lFF (Bd)T∇dFF

}
dB, (44)

RdIFF
e =

∫
Be

{[
Gc,IFF
lIFF

dIFF − 2(1− dIFF )PIFFHIFF (x, t)

]
(Nd)T + Gc,IFF lIFF (Bd)T∇dIFF

}
dB. (45)

where:

Rg
e =

∫
Γe
i

(RBg)TT (g, dc)dS, (46)

is the residual vector associated with the cohesive interface. It is clear that the displacement field u is
strongly coupled with the phase-fields dFF , dIFF and the displacement jump g. Whereas, the phase-fields
are among themselves and with jump g are decoupled which are evident from Eq. (34), (35), (36) and from
the assumption that Γi ∩ Γdt

= ∅. Due to the existence of multiple phase-field and interface, the system of
equations describing the fracture is non-linear. Hence, an iterative Newton-Raphson solver is used until the
convergence in the sense of cauchy sequence [(ut+1

n − utn)] is reached. Here, utn is the tth iteration at nth

step. The corresponding Newton-Raphson iteration to estimate (n+ 1) time step tales the form: u
dFF
dIFF


n+1

=

 u
dFF
dIFF


n

−

 Kuu +Kgg 0 0
0 KdFF dFF 0
0 0 KdIFF dIFF

−1

n+1

 Ru

RdFF

RdIFF


n

. (47)

where the corresponding element stiffness matrices read:

Kuu
e :=

∂Ru
e

∂ue
=

∫
Be

(Bu)TCepdBudΩ, (48)

Kgg
e :=

∂Rg
e

∂ue
=

∫
Γe
i

(Bg)T∂gτB
gdS,

KdFF dFF
e :=

∂RdFF
e

∂deFF
=

∫
Be

[
Gc,FF
lFF

+ 2PFFHIFF
]
Nd(Nd)T + Gc,FF lFF (Bd)TBddΩ, (49)

KdIFF dIFF
e :=

∂RdIFF
e

∂deIFF
=

∫
Be

[
Gc,IFF
lIFF

+ 2PIFFHIFF
]
Nd(Nd)T + Gc,IFF lIFF (Bd)TBddΩ. (50)

In the Eqn (48), Cepd represents the material consistent tangent estimated using the finite difference
method as

Cepd =
dσij

dεkl
≈ σij(ε̂kl)− σij(ε̂)

∆ε
(51)

with (ε̂kl) = ε+
∆ε

2
(ek ⊗ el + el ⊗ ek) = ε+ ∆εkl. Here ek and el are the kth and lth unit vectors, ∆εkl

is the strain perturbation with respect to the components kl and ∆ε is the scalar perturbation parameter.
Moreover, σ is estimated from Eqn (17) as σ = C : ε.

The previous non-linear system of equations has been implemented in the finite element software ABAQUS.
For this purpose, a user-defined UMAT to define the material behaviour is written for the solution of equi-
librium equations associated with the displacement field. Whereas, UEL is utilized to create residual and
stiffness matrix for each of the two phase-fields using the material behaviour from UMAT for solving the
fracture-associated problem.
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5. Representative examples

In this section, modeling application to delamination migration is presented. A comprehensive numerical
analysis is presented to validate the model against experimental results. In the sequel, a holistic sensitivity
analysis is carried out utilizing the variation of the loading application point, ply angle, and initial pre-crack
length to understand their effects on delamination migration.

5.1. Description of the numerical model: general aspects

Figure 4 depicts the baseline configuration under investigation herein. The corresponding numerical
model consists of 44 cross-ply IM7/8552 laminates with the layup sequence

[90◦4/0
◦
3/(90◦/0◦)2s/0

◦
3/CL/90◦4/CL/0

◦/0◦/(90◦/0◦)2s/0
◦/0◦/90◦3/0

◦/90◦], where CL refers to a cohesive
layer. Each ply has a thickness of 0.125mm. Compared with the experimental sequence as in [15], a PTFE
(Polytetrafluoroethylene) layer is replaced by a cohesive layer and in addition, another cohesive layer is
added at the interface between the 90◦4 and 0◦ sequence in order to account for delamination migration.

Loading
Clamped

12.7 mm 49 mm 53 mm 12.7 mm

Clamped

Pre-existing delamination
Interface

1

2

CZM

CZM

[0 ]

[0 ]
3

[90 ]
o

o

o

4

5
.5

 m
m

Figure 4: Schematic representation of the delamination migration model.

It is evident from the experimental results reported in [16] that, when shear stresses in the model change
sign, migration/kinking occurs, and the crack propagates to the 90◦4 layers facilitating the inter-fiber failure.

For each of the numerical simulations conducted in the sequel, a 2D analysis is carried with an out-of-
plane thickness of 8.37mm. Since, in order to resolve the gradient of the phase field, the mesh size h̄ is
restricted to h̄ ≈ l/4. Hence, the domain is discretized by employing 960000 4-node quadrilateral plane
stress elements with an average element size of 0.04mm. Each layer of the cross-ply contains at least four
elements across its thickness.

The material properties of IM7/8552 ply are shown in Table 1 consistent with the experimental results in
[15]. The fracture energy and length scale parameters for the phase-fields chosen according to the material
fracture properties are shown in Table 2. The properties of the cohesive layer following [27] are listed in
Table 3.

E11 (GPa) E22 (GPa) G12 (GPa) ν12 ν23

161.0 11.38 5.17 0.03 0.43

Table 1: IM7/8552: Elastic properties.
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Gc,FF (N/mm) Gc,IFF (N/mm) lFF (mm) lIFF (mm)
81.5 0.2774 0.237 0.07

Table 2: IM7/8552: intra-laminar fracture properties and phase-field parameters.

Nominal stress Nominal stress Nominal fracture Fracture energy Power (BK law)
(MPa) in shear (MPa) energy (N/mm) in shear (N/mm)

15 15 0.5 0.65 2.17

Table 3: Cohesive layer properties.

5.2. Numerical-experimental validation

The global failure response for the specimen under consideration is investigated for the load case L =
a0 = 49mm. The numerical-experimental correlation corresponding to the load-displacement curve is given
in Figure 5. As shown in this figure, the failure response can reasonably be divided into three main zones:
(i) delamination of the cohesive zone, (ii) kinking followed by migration, and (iii) delamination of the top
cohesive zone. Overall, a satisfactory agreement between the numerical and the experimental data can be
observed.

starting of

delamination

migration

Post migration

delamination

of the top

interface

starting of

delamination

of the bottom

interface

starting of

delamination of

the top interface

Figure 5: Numerical-experimental correlation corresponding to the load-displacement curve for L = a0=49mm

As was previously discussed, based on postulations made in [15, 16] and the corresponding thorough
discussion, delamination migration occurs due to a change of sign in the shear stress components. Negative
shearing stresses promote delamination growth at the 0◦/90◦ interface, and positive shearing stresses promote
migration/kinking into 90◦ plies. The kinking happens at multiple sites across the specimen. Due to the
diffusive nature of the bulk cracks, the shearing stress change can easily be noticed by the inter-fiber
phase-field initiation as depicted in Figure 6. Notice that, due to the negative sign initially, delamination
propagates until a certain point until shearing stresses are positive. Meanwhile, inter-fiber failure is already
initiated, but from the opposite direction, i.e., 90◦/0◦ interface, but is not nucleated. Whereas, when the
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body configuration at displacement of 0.96mm body configuration at displacement of 1.225mm 

Figure 6: Numerical-experimental correlation corresponding to the load-displacement curve for L = a0=49mm

shear stresses become positive in the adjacent increments, the migration starts developing, with a crack
front now migrating into the 90◦/0◦ interface.

For a phenomenology of embodiment, in the cohesive layers, once the failure criterion is met, the cohesive
layer starts delaminating. Similarly, when the Puck criterion is violated, the inter-fiber failure phase-field
is activated due to shearing stresses in the model. As long as the PIFF is active, the inter-fiber failure
phase-field crack dIFF grows and migrates into the 90◦ plies until the 90◦/0◦ interface. Simultaneously,
the top cohesive layer at the 90◦/0◦ interface starts to delaminate. When the migration crack front crosses
the 90◦/0◦ interface, the crack front is again propagating due to the negative shear stress leading to the
delamination of the top cohesive layer. Here onward, the residual stresses dominate crack propagation in the
model as in Figure 5. The discrepancies between the experimental and numerical results can be attributed to
quasi-static load conditions and smooth initiation and propagation of phase-field approximations. However,
a satisfactory agreement between the results can be observed.

5.3. Sensitivity analysis: role of different parameters

This section aims at proving a further understanding with regard to the potential role of different design
parameters that can favor delamination-migration events.

5.3.1. Effect of position of loading application

The first aspect under analysis concerns the variation of load application point along the specimen.
This parameter in the experimental setting might have a strong influence on the activation of migration
phenomena by simply inducing a different local stress field at critical locations. Moreover, from a global
standpoint, this can have notable effects on the load-displacement curve as the shear stresses acting on the
specimen are significantly different from one another. Keeping a0 = 49 mm, the variation of load L for
L = 0.7a0, 0.8a0, 0.9a0, 1.0a0, 1.1a0 are plotted in Fig. 7.

Based on the current results, it can be observed that for a0 > L, all the cases exhibit delamination
prior to migration and show a sudden drop in the load-carrying capacity when migration starts, see Figure
8. Whereas, for a0 < L, the shearing stress sign is favorable for migration at the beginning, and hence
there is smooth migration, with delamination spreading over the whole experiment, see Figure 8 which is
consistent with [16]. It is also to notice that after delamination migration is finished, the residual stiffness
for delamination converges to a single value for all the load variations.

5.3.2. Effect of the variation of ply angle

The second aspect understudy has an inherent local effect since it focused on investigating the delami-
nation migration at 0◦/θ◦4 interface. For this purpose, the original stacking sequence is replaced by a new
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Figure 7: Variation of load across the specimen for a0 = 49mm.

displacement=0.7878mm 

 L=0.7a 0
a) b)

displacement=1.9701mm 

 L=0.9a 0

 L=1.1a 0

c) d)

f)e)

displacement=0.6129mm displacement=1.401mm 

displacement=0.9192mm displacement=1.1535mm 

Figure 8: Inter-fiber crack field (SDV20) from 3 cases at L = 0.7a0, L = 0.9a0, L = 1.1a0
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layup sequence near the cohesive zones as 0◦3/CL/θ
◦
4/CL/0

◦/0◦. The fiber orientation, θ◦ of 30◦, 45◦, and
60◦ is studied along with 90◦, and the results are shown in Figure 9.

From this graph, it can be seen that the global pre-peak response is almost unaltered by the variation
of the local orientation of the adjacent layers to the 0◦/θ◦4 interface. However, this aspect has a notable
influence on the post-peak response, delaying the delamination initiation and the subsequent delamination
event of the top interface, according to the description given in Figure 6, but however, the cracking migration
is predicted to occur at almost the same loading level (along the post-peak evolution).

O

O

O

O

Figure 9: Variation of angle across the specimen for L = a0 = 49mm.

5.3.3. Effect of the variation of initial crack length

The last effect under consideration corresponds to the initial crack length. Focusing on very specific
cases, we vary initial crack size from a0 = 49 mm to a0 = 55 mm.

The global load-displacement evolution curves for such cases are shown in Figure 10. According to these
data, it can be stated that a simple variation of the initial crack length has a very remarkable role in the
specimen response. Thus, observing the pre-peak evolution, before any inelastic process commences, the
large the initial crack length is set, the higher the maximum load is achieved. Moreover, concerning the
post-peak evolution, it is observable that while the shorter initial crack-length case evidence similar evolution
with respect to those previously described, i.e., with the occurrence of delamination events and the posterior
cracking migration to the adjacent layer, the response of a0 = 55mm (and a0 > 55mm ) exhibited an entirely
different evolution with no evidence of cracking migration, see Figure10, and 11 where the matrix-failure
maps for both configurations are depicted. These differences in the response are directly associated with the
local stress state’s discrepancies at the crack tips at the interface and the intermediate layer. This is again
in line with previous studies as in [16, 15].

17



Figure 10: Variation of initial crack length across the specimen for L = a0.

 a =52mm 

 a =55mm 

 displacement=1.445mm 

displacement=1.08mm 

a)

b)

0

0

Figure 11: Inter-fiber crack field (SDV20) for initial crack length a0 = 52mm, a0 = 55mm with L = 1.0a0

6. Conclusion

A consistent multi-phase field-cohesive zone model relying on phenomenological failure criterion has been
proposed for matrix-dominated cracking in the presence of interfaces. Due to fiber failure, inter-fiber failure,
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and interface debonding, the failure mechanism is all accommodated in the model by considering a multi-
phase field, each characterized by their failure mechanism with corresponding fracture energy and internal
length scale, plus a cohesive zone model.

The computational framework has been carefully derived via multi-field variational formulation with
multiple dissipative mechanisms within the spirit of phase-field and cohesive zone models such that thermo-
dynamics consistency is preserved.

The model has been applied to the study of delamination migration in composite materials to illustrate
the capabilities of the model. The variation of the design parameters, such as the load application point,
the angle between the plies, and the initial crack length, have been presented to assess the model response’s
sensitivity to such design parameters.
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