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Incentives and co-evolution: Steering linear

dynamical systems with noncooperative agents
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Abstract

Modern socio-technical systems typically consist of many interconnected users and competing

service providers, where notions like market equilibrium are tightly connected to the “evolution” of the

network of users. In this paper, we model the users’ dynamics as a linear dynamical system, and the

service providers as agents taking part to a generalized Nash game, whose outcome coincides with the

input of the users’ dynamics. We thus characterize the notion of co-evolution of the market and the

network dynamics and derive dissipativity-based conditions leading to a pertinent notion of equilibrium.

We then focus on the control design and adopt the light-touch policy to incentivize or penalize the

service providers as little as possible, while steering the networked system to a desirable outcome. We

also provide a dimensionality-reduction procedure, which offers network-size independent conditions.

Finally, we illustrate our novel notions and algorithms on a simulation setup stemming from digital

market regulations for influencers, a topic of growing interest.
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Fig. 1: Multi-level interactions for the application considered in this work (see also §V): N firms

paying m influencers, who in turn influence the dynamics of a population of nF followers.

I. INTRODUCTION

Modern cyber-physical and social systems, as smart grids, ride-hailing services, or digital

marketplaces, are typically composed of many interconnected users (or customers) and competing

service providers (or agents) that mutually influence each other. Building upon this tight connection,

we are interested in modeling, analyzing, and stabilizing the closed-loop system between the

competing providers who influence (and are influenced by) the users, and the users who “evolve”

accordingly. Specifically, we model the users’ dynamics as governed by a linear time-invariant

(LTI) dynamical system, and the service providers as decision-making agents taking part to a

generalized Nash game (hereinafter also called generalized Nash equilibrium problem (GNEP)

with a slight abuse), whose outcome coincides with the input of the users’ dynamics.

The study of multi-agent systems involving these type of heterogeneous interactions is receiving

growing attention in the last few years. Prominent examples can be found in digital platforms and

recommender systems [1]–[3], where the latter adapt their output to the reactions of the users who

are, in turn, affected by the recommended content, and closed-loop machine learning paradigms

[4], [5], which study long-term behaviours of deployed machine learning-based decision systems

by accounting for their potential future consequences through notions of fairness, equitability,

or other ethical concepts. Our work is indeed strongly motivated by digital marketplaces, in

particular the problem of regulating the advertising market involving competitive firms and

influencers in social networks, briefly introduced next and further elaborated in §V.
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A. Motivating example: market regulation on social networks

A leading role in advertising markets is nowadays personified by social influencers who post

videos and photos in social networks featuring sponsored contents and advertisements. The market

value is estimated at over 16B USD, with over 100M influencers of different “size”, and roughly

20% of companies investing half of their annual marketing budget to it, and it can not be left

unregulated especially for large influencers [6]–[8].

To fix the ideas, we will hence consider m influencers who recommend products to a population

of followers. The former are then directly “exploited” by N competitive firms, which aims at

selling a desirable quantity of products guaranteeing a certain degree of profit, and hence invest

their money yi to pay the influencers to advertise them. Social influencers, on their side, are

connected through, e.g., social networks, with a population of nF followers (i.e., the consumers),

and hence can steer the sale of those products throughout the network. The followers’ state xF

may indeed represent how much of a certain product people buy – see Fig. 1 for a pictorial

representation.

Mathematically speaking, we assume each company participates in a generalized Nash game,

whose outcome is their optimal investment y∗i (xF ), a function of the current state of the customers

xF . Such investment is used to steer (by paying influencers) the consumers to buy their products.

On the other hand, we model the consumers’ purchasing evolving as an LTI system, whose input

is the advertisement strength they receive and their dynamics is affected by their peers via social

bonds (exemplified by a network in Fig. 1). The state evolution of xF to x+
F determines another

optimal investment strategy y∗i (x
+
F ) and so on. Customers and companies are then coupled through

a closed-loop system and thereby co-evolving. We are interested here in characterizing a pertinent

notion of equilibrium of such system, and designing control laws, i.e., taxation and regulation

schemes to shape y∗i (xF ), to steer the underlying dynamics to co-evolve towards a desirable

equilibrium, satisfying all the main actors involved in the networked system. Our taxation (or,

in some cases, incentives) are directly applied by the government to the influencers revenues,

thereby reducing the leverage companies have on them, thus curtailing the influencers’ effect on

the customers.
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Besides the motivating example described above and revisited later in §V, we stress that the

way we will model the overall co-evolutionary problem, perform the resulting analysis and control

design is fairly general and covers also different scenarios, as for instance the intrinsic competition

and bi-level interactions arising in energy flexibility markets [9], [10]. As such, we are interested

in market incentives and regulations, whereby firms compete each other to influence users to

buy certain products, and the users evolve following a suitably defined dynamics incorporating

network effects and external inputs.

B. Related work and summary of contribution

Our work investigates the joint evolution of a set of agents taking part to a GNEP, whose

outcome influence (and it is influenced by) a LTI dynamics underlying interconnected agents.

Unlike available results in algorithmic game theory [11]–[14], however, we do not propose any

generalized Nash equilibrium (GNE) seeking scheme, since we are interested in the analysis and

control of the interconnected system as a whole, thereby aiming at reaching a co-evolutionary

equilibrium (§II). In this sense, our work also differs from recent papers proposing MPC-inspired

game-theoretic schemes, such as [15]–[17]. In our framework, in fact, noncooperative agents and

LTI system are treated as separate, yet mutually coupled, entities, which shall be driven towards

some operational condition that is desirable for the overall networked system.

The technical results developed in the paper (§III, IV) borrow tools from standard dissipativity

theory and, specifically, from [18], [19]. Similar techniques have also recently been employed

in a purely game-theoretic context, for example to establish asymptotic stability of the set of

Nash equilibria for deterministic population games, combining payoff and evolutionary dynamics

models [20], or to analyze the convergence properties of (typically, continuous-time) GNE seeking

procedures [21].

Bearing in mind the case study involving firms, influencers and potential costumers presented

in §V, we note that the proposed control methodology (§IV) can be thought of as an incen-

tive/charging design paradigm, especially the part based on the light-touch principle. Suitable

examples can be found, for instance, in [22]–[25]. While in [22], [23] the design of personalized
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incentives enabled for the distributed computation of a GNE, [24] proposed a Pareto-based

incentive mechanism under sustainable budget constraint to improve the social welfare of the

agents taking part to a game, where a central coordinator redistributes collected taxes among the

population in order to remodel agents’ dynamical decision-making. A social welfare improvement

was also considered in [25], where intra-group incentives were designed to stabilize dynamical

agents to the group Nash equilibrium in a hierarchical framework.

Closer in the spirit to the problem considered in this paper are those works concerning

recommender systems [1]–[3], and those falling within the social network and dynamic opinion

formation literature, as [26]–[29], also possibly accompanied by some form of control, influence,

or nudging [30], [31]. Compared to the aforementioned works, however, a crucial difference is

represented by the proposed modeling paradigm, and subsequent analysis and control synthesis,

which includes the notion of agents competing to influence some LTI dynamics, and an external

entity regulating the overall market.

In summary, our paper makes the following contributions:

• We model the networked system made by a set of selfish agents taking part to a GNEP

whose outcome affects (and is affected by) the evolution of some LTI system, and we

introduce a novel notion of equilibrium for it;

• Focusing on the stability analysis of the networked system, we establish easy-to-check suffi-

cient conditions based on (LMI) guaranteeing asymptotic convergence to a co-evolutionary

equilibrium;

• We develop (BMIs) for the control synthesis, which can be solved efficiently via a proposed

bisection-like method if one relies on the newly investigated light-touch principle for the

control design;

• To alleviate the computational burden for LTI systems with many states, we provide a

dimension-reduction procedure offering network-size independent conditions. Even if such a

procedure is developed on our case study with light-touch policy, it is general and can be

applied to design a variety of controllers meeting the required conditions;

• As a case study, we develop a novel model involving the digital market regulation for
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influencers paid by companies to advertise their products in order to attract customers.

The proofs of theoretical results are all deferred to Appendix.

Notation

N, R, and R≥0 denote the set of natural, real, and nonnegative real numbers, respectively.

N0 := N ∪ {0}. Sn is the space of n × n symmetric matrices and Sn
≻0 (Sn

≽0) is the cone of

positive (semi)definite matrices. The transpose of a matrix A ∈ Rn×n is A⊤, Λ(A) the set of its

eigenvalues {λ1, . . . , λn} with λmax := maxi=1,...,n {λi}, and [A]ij its (i, j)-th entry. A⊗B is the

Kronecker product between matrices A and B. A ≻ 0 (≽ 0) stands for a positive (semi)definite

matrix. Given a vector v ∈ Rn and a matrix A ∈ Sn, we denote with ∥v∥ the standard Euclidean

norm, while with ∥ · ∥A the A–induced norm such that ∥v∥A :=
√
v⊤Av =

√
⟨Av, v⟩, where

⟨·, ·⟩ : Rn × Rn → R stands for the standard inner product. Bθ := {x ∈ Rn | ∥x∥ ≤ θ}. In, 1n,

0n denote the n×n identity matrix, the vector of all 1 and 0, respectively (we omit the dimension

n whenever clear from the context). The uniform distribution on the closed interval [a, b] is

denoted by U(a, b). The operator col(·) (resp., diag(·)) stacks its arguments in column vectors

or matrices (block-diagonal matrix) of compatible dimensions. To indicate the state evolution of

discrete-time LTI systems, we use xk+1, k ∈ N0, as opposed to x+, to make the time dependence

explicit whenever necessary.

For ease of visualization, we highlight in blue font the decision variables in the matrix

inequalities developed throughout.

1) Operator-theoretic definitions ([32]): Given a nonempty and convex set X ⊆ Rn, T : X ⇒

Rn is monotone if ⟨T (x) − T (y), x − y⟩ ≥ 0 for all x, y ∈ X , and it is µ-strongly monotone,

µ > 0, if ⟨T (x)− T (y), x− y⟩ ≥ µ∥x− y∥2, for all x, y ∈ X .

2) Variational inequality ([33]): A variational inequality (VI) is defined by a feasible set

X ⊆ Rn, and a mapping F : X → Rn. We denote by VI(X , F ) the problem of finding some
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vector x∗ ∈ X such that (y − x∗)⊤F (x∗) ≥ 0, for all y ∈ X . Such an x∗ is therefore called a

solution to VI(X , F ), and the associated set of solutions is denoted as S ⊆ X .

3) Graph theory ([34]): Let G = (V , E) be an undirected graph connecting a set of vertices

V = {1, . . . , V } through a set of edges E ⊆ V × V , with |E| = E and (i, j) ∈ E only

if there is a link connecting nodes i and j. The set of neighbours of node i is defined as

Ni = {j ∈ V | (i, j) ∈ E}. The graph G is connected if there exists a sequence of distinct nodes

such that any two subsequent nodes form an edge between any two vertices of G. To define

the incidence matrix D ∈ RE×V associated to G, we label the edges el ∈ E for l = {1, . . . , E}

considering an arbitrary orientation, yielding [D]li = −1 if i is the output vertex of el, [D]li = 1

if i is the input vertex of el, [D]li = 0 otherwise. By construction, D1V = 0E , and if G is

connected, Dx = 0E if and only if x ∈ {α1V | α ∈ R}. We denote by L ∈ RV×V the Laplacian

matrix of the graph G, with [L]ij = |Ni| if i = j, [L]ij = −1 if (i, j) ∈ E , [L]ij = 0 otherwise.

Additionally, it holds that L = D⊤D.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

We start by introducing the mathematical model considered and related technical discussion,

which will be instrumental for its analysis and subsequent controller(s) synthesis.

A. Mathematical formulation

We investigate the dynamical evolution and closed-loop properties of the system obtained by

interconnecting a population of agents taking part to a generalized Nash equilibrium problem

(GNEP) whose outcome is affected by the state variables of a certain discrete-time linear

time-invariant (LTI) system.

Specifically, we consider a noncooperative game involving N agents, indexed by the set

I := {1, . . . , N}, each one taking (locally constrained) decisions yi ∈ Yi ⊆ Rpi to minimize

some local cost function while sharing, and therefore competing for, limited resources with
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the other agents. Unlike traditional GNEPs, however, we assume that both the cost function of

each agent and the coupling constraints depend not only on the decisions of the other agents

y−i := col((yj)j∈I\{i}) ∈ Rp−pi , p :=
∑

i∈I pi, but also on some external variable x ∈ Rn that

can be likewise influenced by the collective decision vector y := col((yi)i∈I) = (yi,y−i) ∈ Rp

through some control input u ∈ Rm. If we hence let x being governed by a LTI dynamics through

some pair of system matrices A ∈ Rn×n and B ∈ Rn×m, we now describe the GNEP with

external influence Γ := (I, (Ji)i∈I , (Yi)i∈I , (A,B)) at hand by means of the following collection

of optimization problems:

∀i ∈ I :


min
yi∈Yi

Ji(yi,y−i, x)

s.t. (yi,y−i) ∈ Ω(x),

(1)

where Ji : Rp × Rn → R denotes the local cost function of each agent, Ω : Rn → 2R
l the set

of state-dependent constraints coupling the decisions of the N agents, while the variable x is

constrained to some X ⊆ Rn and evolves as follows:

x+ = Ax+Bu. (2)

Given that the state variable x appears both in the cost function and constraints in (1), we note

that each local decision (and hence also the collective one y) is actually a function of x itself,

i.e., yi = yi(x) – we will make this dependency explicit or omit it according to the context. In

the remainder we assume the agents are competing with each other for controlling the dynamical

system (2), and in particular the state x. Specifically, each agent taking part to the GNEP has a

desired set point x̄i ∈ X for (2) and has available some “resources”, which without restriction

may coincide with yi itself, to influence (2) through u. This notion will be formalized later in

§III.

After introducing sets Y :=
∏

i∈I Yi ⊆ Rp, Yi(y−i, x) :=
{
z ∈ Yi

∣∣ (z,y−i) ∈ Ω(x)
}

, in the

considered framework we are then interested in the following notion of equilibrium:

Definition 2.1. (Co-evolutionary equilibrium) A pair (x∗,y∗(x∗)) ∈ X ×Rp is a co-evolutionary

equilibrium for the GNEP Γ in (1) and discrete-time LTI system in (2) if i) Bu∗ = (I − A)x∗

for some u∗ ∈ Rm, and ii) we have

Ji(y
∗
i ,y

∗
−i, x

∗) ≤ inf
ξi∈Yi(y∗

−i,x
∗)
Ji(ξi,y

∗
−i, x

∗), (3)
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x
<latexit sha1_base64="ldgiF3zN62Qce/xo68+zMYTZNSE="></latexit>

x+ = Ax+B(x,y)
<latexit sha1_base64="sdxazK3ZrSOJMywjkhXWpX1brPQ="></latexit>

y
<latexit sha1_base64="xr2BVUN+nYntpr+xVWJdApKmBuQ="></latexit>8i 2 I :

(
min
yi2Yi

Ji(yi,y�i, x)

s.t. (yi,y�i) 2 ⌦(x)
<latexit sha1_base64="4idUl6pH30EYhdVoYqOwWtPkgLc="></latexit>

Fig. 2: Networked system consisting of a population of agents involved in a GNEP, whose

outcome is affected by the evolution of a discrete-time LTI system.

for all i ∈ I. □

Our goal is hence to find a suitable control law κ : Rn ×Rp → Rm, possibly dependent (either

directly or implicitly) on both the state x of the system (2) and the collective profile y, so that

u = κ(x,y(x)) asymptotically drives the closed-loop networked system to a co-evolutionary

equilibrium, while satisfying both state and state-dependent constraints Ω(·). See Fig. 2 for a

pictorial representation of the whole system.

With this regard, the first condition stated in Definition 2.1 shall be satisfied with some u∗ =

κ(x∗,y∗(x∗)), thus turning into Bκ(x∗,y∗(x∗)) = (I−A)x∗, namely the pair (κ(x∗,y∗(x∗)), x∗)

identifies a valid steady-state solution for the dynamics in (2). Specifically, this requires one to

find a feasible collective vector of strategies y∗(x∗) that leads the system in (2) to an equilibrium

x∗ ∈ X and fits the standard notion of generalized Nash equilibrium (GNE) when x = x∗ in (1).

Meeting both conditions simultaneously is crucial. In fact, given a certain y∗(x̄) ∈ Ω(x̄) satisfying

(3) for some x̄ ∈ X , in case this latter does not allow to make Bκ(x̄,y∗(x̄)) = (I − A)x̄ true,

then the LTI system (2) evolves to a different point, thus possibly invalidating the current GNE

y∗(x̄). If there exists, instead, a feasible collective strategy ȳ(x∗) leading to some x∗ ∈ X so that

Bκ(x∗, ȳ(x∗)) = (I − A)x∗ is verified though (3) is not, then some of the agents can improve

their cost by deviating from ȳ(x∗), which hence results in an inefficient strategy profile.
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B. Technical preliminaries

First, we make some assumptions that will hold throughout:

Standing Assumption 2.2. The following conditions hold true:

(i) For each i ∈ I, Ji(·,y−i, x) is a C1, convex function, for fixed y−i ∈ Y−i and x ∈ X ;

(ii) For each i ∈ I, Yi is a nonempty, compact, and convex set. For every x ∈ X , the set Ω(x)

is nonempty and Ω(x) ∩ Y satisfies the Slater’s constraint qualification. □

The conditions stated in Standing Assumption 2.2 typically guarantee the existence of at

least a GNE for the GNEP in (1) with fixed x – see, e.g., [35, Ch. 12]. Moreover, by referring

to (1) for a fixed state x, agents typically compute a so-called variational generalized Nash

equilibrium (v-GNE). Remarkably, such problem is equivalent to solve VI(Ω(x) ∩ Y , F (·, x))

[36] where, in view of Standing Assumption 2.2.(i), F : Rp × Rn → Rp is a continuously

differentiable single-valued mapping defined as F (y, x) := col((∇yiJi(yi,y−i, x))i∈I). In this

way, since Ω(x) ∩ Y is assumed nonempty for any x ∈ X , the set of v-GNE is nonempty as

well and coincides with the set-valued mapping S : Rn ⇒ Rp defined as

S(x) :=
{
y ∈ Ω(x) ∩ Y

∣∣ (z − y)⊤F (y, x) ≥ 0, for all z ∈ Ω(x) ∩ Y
}
. (4)

We next assume additional properties on the mapping F (·, x) that will allow us to claim

uniqueness of the v-GNE for any fixed x, i.e., S(x) turns out to be a singleton [35, Ch. 12]:

Standing Assumption 2.3. The pseudo-gradient mapping F : Rp × Rn → Rp satisfies the

following conditions:

(i) For any fixed x ∈ X , F (·, x) is η-strongly monotone and ℓ-Lipschitz continuous, for η,

ℓ > 0;

(ii) For any fixed y ∈ Y , F (y, ·) is differentiable, and supx∈X ,y∈Υ ∥∇xF (y, x)∥ ≤ θ, for θ > 0.
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□

Note that the strong monotonicity assumption is quite standard in algorithmic game theory

[11], [13], [37]. In view of the postulated conditions, our problem therefore reduces to finding a

feedback law κ(x,y) that allows us to meet the following set of steady-state and equilibrium

conditions: 
Bκ(x∗,y∗(x∗)) = (I − A)x∗,

x∗ ∈ X ,

y∗(x∗) ∈ S(x∗).

We derive next a technical result characterizing S(·) and y(·):

Lemma 2.4. The following statements hold true:

(i) For all x ∈ X , S(x) is a singleton;

(ii) For all x, x′ ∈ X , ∥y∗(x)− y∗(x′)∥ ≤ θ
η
∥x− x′∥. □

We stress that the nonmonotonicity of F due to the coupling between y and x, the current

generic structure of the controller κ, along with the presence of state constraints X acting on

the LTI dynamics in (2), complicate the analysis of the networked system, which hence requires

tailored tools and control solutions to govern the resulting joint evolution. These are the main

topics covered within the next two sections.

III. CLOSED-LOOP ANALYSIS OF THE NETWORKED SYSTEM

A. Preliminary discussion

We start our analysis imposing further assumptions on the structure of the control action κ

and cost functions in (1). As common in control theory, we thus require the controller κ to be
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linear in the agents’ collective strategy, which on the other hand implicitly depends on the state

variable x, thus resulting into a nonlinear controller for the system in (2):

κ(x,y) =
∑
i∈I

Kiyi(x) = Ky(x), (5)

with suitable gains Ki ∈ Rm×pi to be designed, K := [K1 K2 · · · KN ] ∈ Rm×p. In addition, we

consider each cost function in (1) to be taken in the following form:

Ji(yi,y−i;x) :=
1

2
∥Ax+BKy − x̄i∥2Qi

+ fi(yi,y−i), (6)

for Qi ≻ 0 and fi : Rp → R chosen so that Standing Assumption 2.2 is met, for all i ∈

I. In particular, the presence of each x̄i ∈ X in the cost, and more generally of the term

∥Ax+BKy − x̄i∥2Qi
, reflects the willingness of each agent taking part to the GNEP to steer the

LTI system in (2) to some desired set point, for which it invests available “resources” yi, which

therefore appear linearly in the control action κ in (5).

Thus, the problem we want to solve translates into finding some (possibly constrained) controller

gain matrix K such that the coupled generalized Nash game with LTI system:

∀i ∈ I :


min
yi∈Yi

1

2
∥Ax+BKy − x̄i∥2Qi

+ fi(yi,y−i)

s.t. (yi,y−i) ∈ Ω(x),

x+ = Ax+BKy,

reaches a co-evolutionary equilibrium in the sense of Definition 2.1. In other words, we want to

design suitable incentives Ky to drive the LTI system to an equilibrium that is compatible with

the selfish agents desires x̄i, while co-evolving with it.

In the considered setting, i.e., with cost functions as in (6), the pseudo-gradient mapping hence

reads as

F (y, x) = col((∇yifi(yi,y−i) +

K⊤
i B

⊤Qi(Ax+BKy − x̄i))i∈I)

∇xF = diag((Ki)i∈I)
⊤(B⊤ ⊗ IN)col((Qi)i∈I)A ∈ Rp×n.
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Algorithm 1: Two-timescale procedure

Initialization: x0 ∈ X

Iteration (k ∈ N0):

yk = GNE(xk) (GNE computation)

xk+1 = Axk +BKyk(xk) (Control deployment)

Furthermore, we note that θ = θ(K) ≤ ∥col((Qi)i∈I)A∥∥(B ⊗ IN)diag((Ki)i∈I)∥, while the

strong monotonicity and Lipschitz constant coefficients η and ℓ characterizing F also depend

on the choice of fi(·). Thus, given some equilibrium x∗ ∈ X for (2), in view of Lemma 2.4.(ii)

for any x ∈ X we have ∥y∗(x)− y∗(x∗)∥ ≤ θ
η
∥x− x∗∥, which directly leads to the following

dissipative-like condition:y∗(x)− y∗(x∗)

x− x∗

⊤ −I 0

0 (θ/η)2I

y∗(x)− y∗(x∗)

x− x∗

 ≥ 0. (7)

Let us now consider the sequence of instructions summarized in Algorithm 1. For a given state

of the LTI system xk, at the first step the agents compute the (unique, in view of Lemma 2.4.(i))

GNE y∗(xk) through any GNE seeking procedure available in the literature. Examples of

fully distributed algorithms can be found, for instance, in [13], [14], [37], which are here

generically represented by the mapping GNE : Rn → Rp returning the unique point in S(·), i.e.,

GNE(x) = S(x). Once computed y∗(xk), the (linear, in the agents’ decisions) controller in (5)

is then implemented on the LTI system. We thus investigate the co-evolution and the equilibrium

of the following interconnected dynamics:

xk+1 = Axk +BKy∗(xk), with y∗(xk) = GNE(xk). (8)

Remark 3.1. The implementation of Algorithm 1 requires a setting consisting of a fast dynamics

for the agents taking part to the GNEP in (1), and a slow dynamics for the LTI system in (2).

Note that this is the case if, e.g., (2) characterizes a certain dynamics over a (possibly large)

graph where the information exchange among nodes is dictated by social or physical interactions.

In the case study described in §V, for instance, this two time-scale condition is met, since the

computation of an equilibrium yk = yk(xk) (i.e., the investment of the firms) to implement the
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control action through Kyk requires less time than the actual market reaction in terms of product

sales (i.e., the followers’ state evolution xk+1 = Axk +BKyk(xk)). The energy flexibility market

application mentioned in §I-A is another example fitting this requirement. In that case, residential

prosumers owning and operating a diverse distributed energy resource portfolio should react to a

specific energy request made by some local aggregator. The physical quantity of interest, in that

case, is the energy accumulated by the aggregator itself that is monitored on a slower time-scale

compared to the time required by the agents to find some equilibrium yk(xk) [9], [10]. □

Remark 3.2. For given controller gains in (5), in view of the linear dynamics in (2) we note that

state constraints can be equivalently recast as coupling constraints affecting the agents’ strategies,

and thus included into Ω(·) directly. In fact, for a given x ∈ X , we shall additionally impose

(Ax + BKiyi + B
∑

j∈I\{i}Kjyj) ∈ X , which amount to linear constraints in the collective

vector of strategies (provided that X is). □

B. Certificates

By making use of the quadratic constraint in (7) and performing an algorithmic stability

analysis [18], [19], we now derive sufficient conditions certifying that some controller K is able

to drive the closed-loop dynamics in (8), directly following from Algorithm 1, to a co-evolutionary

equilibrium:

Theorem 3.3. Let Λ(A) ⊂ B1, and let the controller gains Ki ∈ Rm×pi in (5) be fixed, for all

i ∈ I. If there exist a matrix X ∈ Sn
≻0 and coefficients λ ≥ 0, ρ ∈ [0, 1) so thatA⊤XA− ρ2X A⊤XBK

(XBK)⊤A (BK)⊤XBK

+ λ

(θ/η)2I 0

0 −I

 ≼ 0 (9)

holds true, then the sequence {(xk,yk(xk))}k∈N generated by Algorithm 1 satisfies (xk,yk) ∈

X ×{Ω(xk)∩Y}, for all k ∈ N, and converges exponentially fast to a co-evolutionary equilibrium

of the GNEP Γ in (1) and LTI system in (2). Specifically, lim
k→∞

(xk,yk(xk)) = ((I−A)−1BKy∗,y∗).

□

Remark 3.4. Depending on the problem at hand, requiring that Λ(A) ⊂ B1 may not be too

restrictive – see the case study in §V. Under some reachability assumption on (2), however, one
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can always find some gain matrix H ∈ Rm×n so that (A+BH) =: Ā is Schur. In this case, the

controller (5) reads as κ(x,y) = Hx+Ky(x) and the analysis above can be adapted with Ā

in place of the matrix A. □

In case the controller κ is chosen as in (5) for fixed control gains Ki, i ∈ I, meeting the

condition in (9) implies exponential convergence of the sequence generated by Algorithm 1

to a co-evolutionary equilibrium. Specifically, for a closed-loop system characterized by some

quadratic constraint as in (7), satisfying (9) allows us to construct a quadratic function V (x) :=

(x− x∗)⊤X(x− x∗), serving as Lyapunov function for the autonomous, nonlinear system (8),

for which can be proven that V (xk) ≤ ρ2kV (x0). The coefficient ρ then plays the role of the

contraction rate of the closed-loop system.

C. Discussion on the conditions in Theorem 3.3

Besides providing a mean to certify offline the stability and performance of the interconnected

system at hand, the matrix inequality in (9) however poses few practical challenges.

We note that, in fact, even for a fixed K, the condition in (9) is nonlinear in the decision

variables X , λ and ρ, and it is therefore nontrivial to find a solution (if one does exist) in a

computationally efficient way. This issue however can be mitigated by selecting a pertinent

ρ ∈ [0, 1) beforehand, and then certifying the existence of a ρ-contracting, Lyapunov-like function

via the following (LMI):A⊤XA− ρ2X A⊤XBK

(XBK)⊤A (BK)⊤XBK

+ λ

(θ/η)2I 0

0 −I

 ≼ 0. (10)

For given matrices Ki, one could thus check immediately whether the underlying controller

is stabilizing for (8) by solving (10) with a value of ρ close to 1 (or even equal to 1 in case

marginal stability is a consideration), and then refine it to find the “best” contraction rate via,

e.g., a bisection method.
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Remark 3.5. Both in (9) and (10), we could fix λ = 1 without loss of generality, since the

conditions remain valid for any positive scalar multiplication. This is also true for some of the

conditions given later on, even if not explicitly mentioned. □

How to choose linear gains Ki is however still unclear. The next section thus aims at shedding

light on this crucial point.

IV. ON THE CONTROLLER DESIGN

Once established sufficient conditions to guarantee that certain controller gains Ki, i ∈ I,

stabilize the closed-loop system in (8), we now move on the computational aspect, i.e., we want

to find Ki, i ∈ I, so that (9), or (10), is satisfied.

For simplicity, in the remainder we set pi = m, i ∈ I, although a generalization including

tailored 0-blocks is possible – see, for instance, the discussion on the case study in §V.

A. The “light-touch” principle for the controller synthesis

We note first that, in view of Λ(A) ⊂ B1, the two matrix inequalities above can be satisfied

with K = 0m×mN , although one could experience issues related to state constraint satisfaction,

i.e., xk ∈ X may not be guaranteed for all k ∈ N.

Moreover, the choice K = 0m×mN is also not recommended since the different agents will

have no incentives to participate in the resulting competitive game, if at the end their control

action is totally nullified. Selecting K = 0m×mN amounts to a maximal-intervention choice,

whereby we decide to take total control of the competition market and effectively shut it down.

On the other side, we could have the no-intervention policy of Ki = Im, when we decide that

the market will self-regulate with no external intervention. This choice is known in the economic

literature as the Adam Smith’s invisible hand [38].
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Thus, the choice ∥Ki∥ ≤ C, with Ki as close as possible to Im, is getting more credit and

explored as a middle ground, introducing a possible regulation to an otherwise free market. This

type of methodology amounts to the so-called light-touch policy. Here C is the maximal amount

of incentives that can be given to the participating companies. When C < 1, the incentives can

be effectively seen as taxes that reduce the influence of companies on the state x.

The light-touch policy yields the following control problem:
min
K

∥K − (Im ⊗ 1⊤
N)∥

s.t. ∥Ki∥ ≤ C, [Ki]hk ≥ 0, ∀i ∈ I.

However, introducing these additional requirements and naïvely solving (9) (or (10)) also for

K leads to additional nonlinearities, as well as θ is a function of K itself. Motivated by the

considerations above, we define θ̄ as the parameter characterizing Standing Assumption 2.3.(ii)

when each ∥Ki∥ ≤ C, which hence satisfies θ̄ ≤ ∥col((Qi)i∈I)A∥∥B∥C and enables us to rewrite

the quadratic constraint in (7) so that the resulting inequality is immune from the value that K

takes. Thus, the following optimization problem generates stabilizing gains Ki:

min
K,X,λ

∥K − (Im ⊗ 1⊤
N)∥

s.t.

A⊤XA− ρ2X A⊤XBK

(XBK)⊤A (BK)⊤XBK

+ λ

(θ̄/η)2I 0

0 −I

 ≼ 0,

X ∈ Sn
≻0, λ ≥ 0, ∥Ki∥ ≤ C, [Ki]hk ≥ 0, ∀i ∈ I.

(11)

By making use of standard continuity arguments one can immediately claim the existence of

some small enough gain K so that (11) enjoys a solution. However, how to derive conditions (or

even a convex reformulation of (11)) under which such a problem can be solved efficiently is

not straightforward.
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B. Scalar regulation

A possible simplification leading to a more tractable program that can be handled by available

solvers requires one to scale the action of different agents by the same scalar amount 1, say

ω ∈ [0, 1], so that the controller in (5) happens to coincide with κ(x,y(x)) = ω
∑

i∈I yi(x) =

ω (Im ⊗ 1⊤
N)y(x), i.e., setting Ki = ωIm for all i ∈ I. Looking at the case study detailed in

§V, this approach is meant to reflect a so-called light-touch regulation dictated for instance by

anti-trust reasons or protecting competition. We have the following result:

Proposition 4.1. Let κ(x,y) = ω
∑

i∈I yi(x) and ρ ∈ [0, 1). Then, by defining B̄ := B ⊗ 1⊤
N ,

and θ̂ ≤ ∥col((Qi)i∈I)A∥∥B∥, (11) reduces to the following (BMI):

min
ω,X,λ

− ω

s.t.


−ρ2X + λ(θ̂/η)2ω2I 0 A⊤X

0 −λI ωB̄⊤X

XA ωXB̄ −X

 ≼ 0,

ω ∈ [0, 1], λ ≥ 0, X ∈ Sn
≻0.

(12)

□

In case solvers to compute a solution to (12) are not available, one could also devise a

bisection-like procedure, as the one in Algorithm 2, to find a suitable matrix X by fixing ρ and

ω iteratively so that the BMI in (12) actually reduces to an LMI.

Bearing in mind that a desirable solution seeks for a scaling factor ω guaranteeing the least

intervention possible (i.e., ω close to one) with the best closed-loop performance (i.e., the smallest

ρ possible), Algorithm 2 requires one to initialize ρ with some small ε > 0 and ω = 1, and

then solve the LMI described in (13), resulting from (12). In case this latter has no solution,

the scaling factor ω is then reduced by some predefined quantity ς ∈ (0, 1), while keeping ρ

fixed. This latter is increased by, e.g., the same ς , only if a solution to (13) is not found with

a large enough value of ω (e.g., the same ε or a higher value). In this way, Algorithm 2 stops

1Here we let C = 1 for simplicity, otherwise we can also pick ω ∈ [0, C].
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Algorithm 2: Bisection-like approach to solve (12)

Initialization: Choose ε > 0, ς ∈ (0, 1), set t = 0, ρ0 = ε, ω0 = 1, flag = 0

while flag = 0 do
Solve LMI: 


−ρ2tX + λ(θ̂/η)2ωt

2I 0 A⊤X

0 −λI ωtB̄
⊤X

XA ωtXB̄ −X

 ≼ 0

X ∈ Sn
≻0, λ ≥ 0

(13)

if (13) infeasible then

if ωt ≤ ε then
Update ωt+1 = 1, ρt+1 = min{ρt + ς, 1}

else
Update ωt+1 = max{ωt − ς, ε}, ρt+1 = ρt

else
flag = 1

Set t = t+ 1

when a solution to (13) exists with the “largest” value of ω and the “smallest” of ρ. If (13) has

no solution with ω = ε and ρ = 1, however, according to Theorem 3.3 the nonlinear controller

κ(x,y(x)) = ω (Im ⊗ 1⊤
N)y(x) is not theoretically guaranteed to stabilize the co-evolution in

(8), though it could still behave well in practice as condition (9) is only sufficient.

Finally, while via Algorithm 2 one can select one “optimal” pair (ω, ρ), nobody prevents us to

look for all the pairs (ω, ρ) for which (13) is verified. This leads to explicit trade-offs between

regulation and reactivity of the competitive market.

V. CASE STUDY: ADVERTISING THROUGH INFLUENCERS WITH DIGITAL REGULATION

We now elaborate on the motivating example introduced in §I-A and how it fits the proposed

framework. We first characterize some technical properties of the model adopted, then devise a
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dimension-reduction procedure to make the resulting BMIs verification computationally appealing,

and finally conduct numerical simulations to corroborate our results.

A. Revising the problem and mathematical model

Refer to Fig. 1 and consider N firms, m influencers, and nF followers/customers. We assume

each firm i ∈ I = {1, . . . , N} wants to solve an inter-dependent optimization problem as:

∀i ∈ I :


min
yi∈Yi

1

2

(
∥AFxF +BFu(y)− x̄i

F∥2Qi
+ ∥yi∥2Ri

)
s.t. Ciyi +

∑
j∈I\{i}Cjyj ≤ d,

(14)

which models the selfish interests of N firms, which in our framework coincide with the agents

taking part to the Nash game in (1). These latter, indeed, aim at selling a desirable quantity

of products x̄i
F ≥ 0 guaranteeing a certain degree of profit, and hence invest their money

yi ∈ Yi ⊂ Rm to pay m influencers in order to advertise them (each Yi limits the available

budget). Social influencers, on their side, are connected through, e.g., social networks, with the

population of consumers via matrices (AF , BF ), and hence can steer the sale of those products

throughout the network. The shared constraints with Ci ∈ Rl×pi and d ∈ Rl may reflect possible

income limitations the social influencers have to deal with, while X may represent production

limitations, shortages or third party restrictions. Here Qi, Ri are positive definite weight matrices,

and as before y := col((yi)i∈I).

Note that (14) captures the selfish nature of each firm. The cost function combines the

willingness of companies to achieve their selling goal (first term), while trying to pay influencers

as little as possible (second term). Notably, the first term is coupled with the customers’ dynamics,

for which u represents the control input and is a function of the resources y.

We will now look at the system matrices AF , BF and see how to model them in our case. The

system consisting of influencers and potential consumers (i.e., their followers) can be abstracted

as a static network of M agents in total that locally exchange information according to a

connected and undirected graph G := (M, E , w) with known topology, M := {1, . . . ,M} and

E := {(i, j) | i, j ∈ M, i ̸= j }. Set M indexes the agents, which for simplicity are assumed
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to be associated with a scalar variable xi ∈ R (the extension to a vector is straightforward), E

denotes the information flow links dictated by the social network, and w ∈ R|E|
≥0 the weights on

the edges reflecting the actual influence for the considered social network. Then, we consider an

instance where the population of consumers follows a weighted agreement protocol that is also

affected by external inputs u ∈ Rm injected at m specific nodes represented by the influencers.

We can thus split the set M = MF ∪MI into followers (MF , nF := |MF |) and influencer

nodes (MI , |MI | = m) so that the dynamics for each i ∈ MF reads as:

x+
i = αixi + τ

∑
j∈Ni∩MF

wi,j(xj − xi) + τ
∑

h∈Ni∩MI

wi,h(xh − xi), (15)

where each αi ∈ (0, 1] denotes a susceptibility to persuasion-like term, reflecting standard

Friedkin-Johnsen models [39]. Given their specific role, the influencer nodes hence affect the

followers’ dynamics through “directed edges” in the sense that they do no not follow any

local, agreement-like protocol whose control contribution is assigned through weights wi,h. In

accordance with the splitting of the nodes M = MF ∪ MI , the weighted incidence matrix

D ∈ Rn×|E| characterizing G can also be partitioned as D = col(DF , DI), with DF ∈ RnF×|E|

and DI ∈ Rm×|E|, thus leading to the following LTI dynamics characterizing the followers’ states

xF := col((xi)i∈MF
) [34]

x+
F = AFxF +BFu, (16)

where AF := AF (w) = diag((αi)i∈MF
) − τDFWD⊤

F , BF := BF (w) = −τDFWD⊤
I , u :=

col((xi)i∈MI
) and W := diag(w) ∈ R|E|×|E|, and sampling time τ > 0 to be suitably determined

according to the following result:

Proposition 5.1. Let G be a connected and undirected graph, W ≻ 0 and αi ∈ (0, 1], for

all i ∈ MF . Then, AF is a symmetric matrix and if τ ∈ (0,mini∈MF
{1 + αi}/λmax(LF )),

Λ(AF ) ⊂ B1, where LF := DFWD⊤
F . □

Then, choosing a small enough sampling time τ for the LTI dynamics in (16), interconnected

with the GNEP in (14), allows one to meet the condition in Theorem 3.3, thus making the

problem suitable to be analysed with the tools developed.

The remuneration process involving companies and influencers, however, can not be arbitrary.

Some works, indeed, have recently investigated how to regulate such digital markets from a
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legislation perspective [40]–[43]. Therefore, since influencers have to declare their revenues and

conflict of interests, it seems reasonable to assume that a government or some third party is

allowed to charge (or eventually incentivize in case it wants to steer the public opinion as well)

influencers and/or advertisements through the gain matrices Ki, i ∈ I, according to choice of

the control input u(·) made in (5).

B. A dimension-reduction approach

We now develop a dimension-reduction procedure for the resulting control design problem.

While the BMI (12) could be applied directly here to devise a light-touch regulation ω, matrices

(AF , BF ) may be of very high dimension (in case of thousands, or even millions of followers).

This intrinsically hinders the practical solvability of (12). We can however circumvent this issue at

the expense of introducing some conservatism, and deriving a condition whose size is independent

on the number of followers nF , influencers m, and companies N . To do that, we will make use

of a standard full-block S-procedure, as well as tools from [44], [45].

Consider the dynamical system (16). In view of the light-touch principle and resulting controller

structure described in §IV, which will also be adopted here to steer the behavior of the population

of consumers, we define B̄F := BF ⊗ 1⊤
N so that the nonlinear control law will amount to

u = ωy(xF ) ∈ RmN .

Remark 5.2. Even though we focus on the controller structure derived in §IV, the mathematical

developments given next also hold true for more general controllers as in (5). □

From now on, we thus focus on the dynamics:

x+
F = AFxF + B̄Fu, (17)

and we will assume that αi = α for all i ∈ MF . This latter assumption could be extended by

considering, e.g., [44].
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In addition, it is reasonable to assume here that m ≪ nF , and hence without loss of generality

we can augment the column space of BF to be of the same dimension nF of the state xF by

adding nF −m virtual influencer nodes with wi,h = 0 in (15). This yields B̄F ∈ RnF×nFN , as

well as u ∈ RnFN .

Thus, the introduction of two additional signals γ ∈ R2nF and ζ ∈ Rn′ , n′ := nF (N + 1),

allows us to rewrite (17) as

x+
F = InF

xF + [InF
InF

]γ =: AxF + Bγ,

ζ = [InF
0nF×nFN ]

⊤xF + [0nFN×nF
InFN ]

⊤u =: CxF +Du,

γ =

−τDFWD⊤
F 0nF×nFN

0nF×nF
B̄F

 ζ ==: ∆ζ,

(18)

with topology-dependent, dense matrices τLF and B̄F .

Putting temporarily aside the controller synthesis, i.e., the tuning of the scaling factor ω ∈ [0, 1],

set equal to one for the moment, we discuss next the closed-loop stability of the dynamical

system (18) with u = y(xF ). In what follows we indicate with ⋆ the matrix that post-multiply

the square one in the middle, e.g., (⋆)⊤AFV = V ⊤AFV , for some V ∈ RnF×r.

Theorem 5.3. Let τ ∈ (0, (1+α)/λmax(LF )). If there exist matrices X ∈ SnF
≻0 , R ∈ Sn′

, T ∈ S2nF ,

S ∈ Rn′×2nF , and coefficients λ ≥ 0, ρ ∈ [0, 1) so that

(⋆)⊤

 R S

S⊤ T

In′

∆

 ≻ 0, and (19)

(⋆)⊤


X 0

0 −X
0

0
R S

S⊤ T




A B 0

ρInF
0 0

C 0 D

0 I2nF
0

+ λ


(θ̄/η)2InF

0 0

0 0 0

0 0 −InFN

 ≼ 0, (20)

hold true, then the sequence {(xF,k,yk(xF,k))}k∈N generated by Algorithm 1 satisfies (xF,k,yk) ∈

X × {Ω(xF,k) ∩ Y}, for all k ∈ N, and converges at an exponential rate to a co-evolutionary

equilibrium of the GNEP Γ in (14) and LTI system in (17), i.e., lim
k→∞

(xF,k,yk(xF,k)) = ((I −

AF )
−1B̄Fy

∗,y∗). □
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To obtain the desired dimensionality reduction from the stability conditions just derived,

we consider now only scalar (or reduced dimension) decision variables and multipliers, as

well as we set S = 0n′×2nF
. This is a common practice for dimensionality reduction, which

however introduces some degree of conservatism. In particular, we will consider X = χInF
,

R = diag(r1, r2IN)⊗ InF
, T = diag(t1, t2)⊗ InF

, with χ > 0, rj, tj ∈ R, j = 1, 2. We have the

following result:

Theorem 5.4. Let δmax,1 be the maximum singular value of −τDFWD⊤
F , and δmax,2 that of B̄F , let

τ ∈ (0, (1+α)/λmax(LF )). By setting X = χInF
, R = diag(r1, r2IN)⊗InF

, T = diag(t1, t2)⊗InF
,

and S = 0n′×2nF
, the statement in Theorem 5.3 holds true in case there exist scalars χ > 0,

λ ≥ 0, ri > 0, j = 1, 2, and ρ ∈ [0, 1) so that:

(⋆)⊤

rj 0

0 tj

 1

δmax,j

 > 0, j = 1, 2, and (21)

(⋆)⊤


χ 0

0 −χ
0

0
r 0

0 t




α 1⊤

2 0

ρ 0 0

[1 0]⊤ 0 [0 1]⊤

0 I2 0

+ λ


(θ̂/η)2 0 0

0 0 0

0 0 −1

 ≼ 0, (22)

where r := diag(r1, r2) and t := diag(t1, t2). □

Specializing (19)–(20), the conditions reported in Theorem 5.4 allow one to handle a potentially

large number of followers, as they characterize the co-evolution of the GNEP Γ in (14) and LTI

system in (17). In addition, we note that the presented dimension-reduction framework enables

us to consider also time-varying weights W , links set E , or uncertainties affecting the followers’

dynamics. As long as we are able to compute the maximal singular value of ∆ (or estimates an

its upper bound), indeed, conditions (21)–(22) can still be verified and, albeit more conservative,

they allow one to cover relevant extensions to the case study described here.

The design of a light-touch controller ω ∈ [0, 1] in the spirit of §IV can now be done by

August 30, 2023 DRAFT



25

TABLE I: Comparison between original and dimension-reduction approach – varying the number

of followers

Control design
nF = 50 nF = 100 nF = 200 nF = 1000

CPU time ω ρ CPU time ω ρ CPU time ω ρ CPU time ω ρ

(12) 12.5 [s] 0.96 0.87 681.8 [s] 0.92 0.88 > 3600 [s] * * * * *

(21) + (23) 0.25 [s] 0.92 0.86 0.13 [s] 0.92 0.82 0.14 [s] 0.92 0.83 3.24 [s] 0.91 0.83

TABLE II: Comparison between original and dimension-reduction approach – varying the number

of influencers

Control design
m = 1 m = 5 m = 10 m = 20

CPU time ω ρ CPU time ω ρ CPU time ω ρ CPU time ω ρ

(12) 209.4 [s] 0.95 0.9 665.2 [s] 0.95 0.89 1430 [s] 0.95 0.88 3254.6 [s] 0.96 0.93

(21) + (23) 0.37 [s] 0.92 0.88 0.12 [s] 0.92 0.93 0.12 [s] 0.93 0.85 0.11 [s] 0.92 0.80

considering ωD instead of just D, and slightly modifying the condition in (22) to obtain:
(α2 − ρ2)χ+ r1 + λ(θ̂/η)2ω2 αχ1⊤

2 0

αχ12 χI2 + t 0

0 0 ω2r2 − λ

 ≼ 0. (23)

Together with (21), this latter relation can then be solved directly by bisection on ω2, thus

applying exactly the same reasoning of §IV and resulting Algorithm 2.

C. Numerical results

We now implement the closed-loop dynamics in (8) with light-touch controller designed in

§IV by solving (12) numerically according to the method presented in Algorithm 2.

All simulations are run in MATLAB on a laptop with an Apple M2 chip featuring an 8-core

CPU and 16 Gb RAM. The obtained matrix inequalities are solved with SeDuMi [46].
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Fig. 3: Followers’ dynamics xF,k in (16) and companies’ collective decision vector yk in (14)

co-evolution.

Specifically, given nF followers and m influencers, for the noncooperative game among N

companies we set Ri ∼ U(1, 2)Im, Qi ∼ U(0.001, 0.1)InF
, while each x̄i

F = (pi/nF )1nF
is

chosen according to the production power pi ∼ U(50, 500)nF of each company. Local constraints

Yi limit the budget each firm may spend to get its goods advertised by influencers. In particular,

an upper bound on the total budget is defined as the product of three quantities: the production

power pi, the price per unit υi ∼ U(1.8, 2.25), and the percentage of the proceeds that goes to

the influencers ϱi ∼ U(0.02, 0.08). In our case study, we have assumed four types of influencers

in accordance to the number of followers they have connection with: small (nF/10), regular

(nF/5), rising (nF/2) and macro (nF ), with corresponding weights wi,h on the dynamics (15)

of 1.2, 2.5, 7.5 and 12, respectively. On the other hand, we assume the followers have identical

mutual influence to each other, i.e., wi,j = 1. In addition, each influencer type yields coupling

constraints among companies according to the different income limitations the influencers

incur on. Specifically, we impose that, for each j ∈ MI ,
∑

i∈N yji ≤ ιj , where yji is the j-th

component of decision vector yi and ιj represents the income limitation of influencer j, with

ιj ∼ U(400, 2000). Finally, we impose an upper bound on the state x̄F so that xF,k ∈ [0nF
, x̄F ],

with x̄F = (
∑

i∈N x̄i,1
F )1nF

, to account for shortages of production (x̄i,1
F is the first element of

x̄i
F ).
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Fig. 4: Linear convergence to an equilibrium of the co-evolution dynamics driven by Algorithm 1.

Figures 3 and 4 illustrates the (very fast) co-evolution originating from the GNEP in (14)

and dynamics (16) for a random instance with N = 10, m = 5, nF = 100 and |E| = 582. The

edges underlying the followers’ dynamics are randomly generated so that the resulting graph is

connected to meet the conditions in Proposition 5.1. In addition, we have chosen a susceptibility

to persuasion α = 0.75 and a sampling time τ = 1.75/λmax(LF ). In particular, from Fig. 4 we

appreciate the linear convergence following from Theorem 3.3 with light-touch controller ω = 1

and ρ = 0.65 obtained by solving (12) through Algorithm 2 with ε = ζ = 0.01. The mapping

GNE(·) required to implement Algorithm 1 coincides with the extragradient method presented in

[47].

We finally compare the original approach to design light-touch controllers presented in §IV

with the dimension-reduction one of §V-B, both solved through the bisection-like method in

Algorithm 2. Specifically, Tables I and II contrast them in terms of CPU time required to find a

solution (in seconds) and control performance, i.e., reporting the obtained values for ω and ρ,

averaged over 10 numerical instances for each case.

In particular, Table I considers several values for nF , while we use |E| = 4nF , m = 10

influencers and N = 10 companies for each example. As expected, the control approach based
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on the solution to (12) is not viable as the dimension of the considered graph grows, while the

dimension-reduction procedure obtained by combining (21) and (23) still makes possible the

design of an light-touch controller with far less offline computation. In fact, the columns referring

to the original procedure (12) show that we can obtain a solution in less than 3600 [s] only for

nF ≤ 100, while for nF = 200 simulation was aborted after one hour. When nF = 1000, instead,

the solver even crashes.

On the other hand, Table II fixes the number of followers nF to 100 and considers several

values for m. The values for N and |E|, instead, remain the same as for Table I. Overall, from

our numerical experience on this case study, it seems that the dimension-reduction procedure

only produce a minor performance degradation, while requiring significantly less computational

costs to find a feasible control solution.

VI. CONCLUSION

Motivated by a relevant contemporary application in digital market regulation, we have analyzed

the co-evolution arising when the decisions of a population of selfish agents are tightly coupled

with an external dynamics. After providing stability results for the closed-loop system, we have

established suitable, matrix inequality-based, procedures to design stabilizing controllers, here

interpreted as light-touch incentives to steer such an external dynamics while maintaining a

certain flavour of tractability in solving the resulting optimization problems. Once developed

a mathematical model for an advertising-through-influencers problem with digital regulation,

we have additionally devised a dimension-reduction approach to reduce the computational costs

required by our procedure.

APPENDIX

Proof of Lemma 2.4: Both results follow from available ones. Specifically, uniqueness of the

solution to VI(Ω(x) ∩ Y , F (·, x)), for fixed x ∈ X , stems from [48, Ch. 3], while the Lipschitz

condition is derived from the Dini’s theorem [49]. ■
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Proof of Theorem 3.3: The feasibility of each iterate in Algorithm 1 follows immediately by

including the state constraints X into Ω(·), as specified in Remark 3.2. The convergence of the

sequence {(xk,yk(xk))}k∈N, instead, is a direct consequence of [19, Th. 4] after noting that

the dissipative inequality in (7) amounts to a pointwise quadratic constraint, parametric in the

controller gains Ki, i ∈ I, characterizing the feedback interconnection described in Fig. 2, for

which closed-loop stability can be claimed if A is Schur and (9) is verified for some matrix

X ≻ 0 and coefficients λ ≥ 0, ρ ∈ [0, 1). This latter condition on the parameter ρ ensures an

exponential convergence rate, as (9) implies ∥xk − x∗∥ ≤
√

cond(X)ρk∥x0 − x∗∥ for all k ∈ N,

where x∗ denotes some equilibrium point for the closed-loop system. Specifically, the obtained

co-evolutionary equilibrium ((I−A)−1BKy∗,y∗) stems from the standard equilibrium condition

with nonlinear controller κ in (5) with invertible (I − A) as Λ(A) ⊂ B1. ■

Proof of Proposition 4.1: By imposing Ki = ωIm for all i ∈ I, from (11) we obtain:

min
ω,X,λ

− ω

s.t.

 A⊤XA− ρ2X ωA⊤X(B ⊗ 1⊤
N)

ω(X(B ⊗ 1⊤
N))

⊤A ω2(B ⊗ 1⊤
N)

⊤X(B ⊗ 1⊤
N)

+ λ

(θ̄/η)2I 0

0 −I

 ≼ 0,

ω ∈ [0, 1], λ ≥ 0, X ∈ Sn
≻0,

where the constraint ω ∈ [0, 1] follows directly from ∥Ki∥ = ∥ωIm∥ = |ω| ≤ 1 and [Ki]hk = ω ≥

0 for all i ∈ I , while the cost becomes ∥K−(Im⊗1⊤
N)∥ = ∥(ω−1)(Im⊗1⊤

N)∥ = |ω−1| ∥Im⊗1⊤
N∥

which takes its minimum when ω approaches its upper bound. The BMI reformulation in (12)

now follows by defining B̄ := B ⊗ 1⊤
N , rearranging the matrix inequality above (especially the

quadratic terms), and direct application of the Schur’s complement. ■

Proof of Proposition 5.1: The weighted Laplacian matrix associated with the graph G, i.e.,

L := DWD⊤, is known to be symmetric, and so is the scaled matrix αIn − τL, α ∈ (0, 1]: in

fact, reverting the sign of the weighted Laplacian matrix, scaling by any τ and summing it with

a scaled identity matrix are all operations that do not alter the symmetry. The symmetry of AF

thus follows by repeating precisely the same reasoning after noting that the weighted Laplacian

matrix associated with the subgraph consisting of follower nodes, LF := DFWD⊤
F , can also be

obtained as LF = P⊤
F LPF , where PF ∈ Rn×nF is constructed by eliminating the columns of the

scaled identity matrix αIn that correspond to the influencer nodes.
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We now rely on the eigenvalue properties of the sum of Hermitian matrices to claim the result.

Specifically, from [50, Cor. 4.3.15] we note that each eigenvalue belonging to the spectrum of

the matrix AF , Λ(AF ), is bounded as:

λi(AF ) ∈
[

min
i∈MF

{αi} − τλmax(LF ), max
i∈MF

{αi} − τλmin(LF )

]
,

for all i ∈ MF . Since G is connected and W ≻ 0, from [34, Lemma 10.36] we know that

LF ≻ 0, and therefore to ensure that Λ(AF ) ⊂ B1 with τ > 0, it suffices to verify |λi(AF )| < 1

for all i ∈ MF , that is mini∈MF
{αi} − τλmax(LF ) > −1 and maxi∈MF

{αi} − τλmin(LF ) < 1.

While this latter relation is directly implied by the conditions αi ≤ 1, τ > 0 and LF ≻ 0, the

former requires one to impose τ ∈ (0,mini∈MF
{1+αi}/λmax(LF )), from which the thesis holds

true. ■

Proof of Theorem 5.3: Consider any co-evolutionary equilibrium of the GNEP Γ in (14) and

LTI system in (17), (x∗
F ,y

∗). This latter reflects onto the augmented dynamics (18) as:
x∗
F = Ax∗

F + Bγ∗,

ζ∗ = Cx∗
F +Du∗ = Cx∗

F +Dy(x∗
F ),

γ∗ = ∆ζ∗,

where we have implicitly recalled that u = y(x∗
F ). Let us then consider the expression in (20).

After pre- and post-multiplying that matrix inequality with vector col(eF , γ − γ∗, u− u∗), where

eF := xF − x∗
F , using the first relation above, we directly obtain:

(e+F )
⊤Xe+F ≤ ρ2(eF )

⊤XeF + λ(∥u− u∗∥2 − (θ̂/η)2∥eF∥2)− (⋆)⊤

 R S

S⊤ T

ζ − ζ∗

γ − γ∗

 ,

where e+F = AxF + Bγ − x∗
F . Thus, in view of the quadratic constraint (7) and the fact that

λ ≥ 0, the term λ(∥u− u∗∥2 − (θ̂/η)2∥eF∥2) is non-positive and therefore it can be neglected.

For the last term, by substituting γ = ∆ζ from (18), we obtain:

−(⋆)⊤

 R S

S⊤ T

ζ − ζ∗

γ − γ∗

 = −(⋆)⊤

 R S

S⊤ T

I2nF

∆

[
ζ − ζ∗

]
which is required to be negative by (19), and hence it can be neglected as well, yielding the

contraction (e+F )
⊤Xe+F ≤ ρ2(eF )

⊤XeF since ρ ∈ [0, 1). This ensures closed-loop stability, and

specifically we have:

∥xF,k − x∗
F∥ ≤

√
cond(X)ρk∥xF,0 − x∗

F∥,
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i.e., the GNEP (14) and dynamics (17) co-evolve to some equilibrium ((I − AF )
−1B̄Fy

∗,y∗)

exponentially fast, where (I − AF ) is invertible since τ ∈ (0, (1 + α)/λmax(LF )) guarantees that

Λ(AF ) ⊂ B1 in view of Proposition 5.1. The feasibility of each iterate in Algorithm 1 follows

by adopting the same arguments as in the proof of Theorem 3.3. ■

Proof of Theorem 5.4: The derivation of the condition in (22) follows directly from the properties

of the Kronecker product once plugged in (20) the expressions for the decision variables in the

statement of the theorem. In particular, by representing (20) as (⋆)⊤(M1 ⊗ InF
)(M2 ⊗ InF

) +

λM3 ⊗ InF
≼ 0, for appropriate block-matrices M1, M2 and M3, we obtain:

(⋆)⊤



χ 0

0 −χ
0

0

r1 0 0

0 r2IN 0

0 0 t





1 1⊤
2 0

ρ 0 0

1

0

0

0

0

IN

0 I2 0


+ λ


(θ̂/η)2 0 0

0 0 0

0 0 −IN

 ≼ 0. (24)

Now, developing the lowest diagonal block in (24), we obtain,

(⋆)⊤

 r2IN 0

0 t

 0 IN

I2 0

+ λ

0 0

0 −IN

 ≼ 0 ⇐⇒

 t 0

0 (r2 − λ)IN

 ≼ 0

⇐⇒

 t 0

0 r2 − λ

 ≼ 0 ⇐⇒ (⋆)⊤

 r2 0

0 t

 0 1

I2 0

+ λ

0 0

0 −1

 ≼ 0,

from which condition (22) follows. For what concern instead the condition in (21), we rewrite (19)

as

r1InF
+ t1τ

2L⊤
FLF ≻ 0 (25)

r2InFN + t2B̄
⊤
F B̄F ≻ 0.

Following the procedure described in [44, Th. 5], we perform a singular value decomposition for

both τLF = U⊤
1 Σ1V1 and B̄F = U⊤

2 Σ2V2, which yields the following relations (for τLF , though

identical calculations can be performed with B̄F ):

(25) ⇐⇒ r1InF
+ t1V

⊤
1 Σ2

1V1 ≻ 0,

∼= r1InF
+ t1Σ

2
1 ≻ 0,

⇐⇒ r1 + t1σ
2
i (τLF ) > 0, ∀i ∈ {1, . . . , nF}, (26)
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where, in this case, σi(·) denotes the i-th singular value of its argument. Then, since each

σ2
i (τLF ) ∈ [0, δmax,1], we obtain:

(26) ⇐⇒ r1 > 0, r1 + t1δ
2
max,1 > 0.

The claim follows after applying the same procedure to B̄F . ■
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