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Abstract

Fueled by the recent and controversial brain-wide association studies in humans, the animal neuroimaging
community has also begun questioning whether using larger sample sizes is necessary for ethical and
effective scientific progress. In this opinion piece, we illustrate two opposing views on sample size ex-
tremes in MRI-based animal neuroimaging.
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Picture this. You are a senior PhD candidate delivering the concluding statements of your
talk. The audience is a diverse group of neuroimagers who have assembled from across
the globe to share their science. Some work in human neuroimaging, while others work
with animals. You are in the latter group which makes up the minority of the attendees. As
such, you have spent precious minutes during your presentation outlining the culmination
of years spent in the lab painstakingly troubleshooting your experimental design before
moving on to a summary of your findings. A few short slides, that fail to do the amount of
work and perseverance justice. Your talk ends, the audience applauds, and now, it is time
for questions. Inevitably, someone asks: “I noticed that you only have 20 animals in your
experiment (10 per group). Given what we now know about small “N” – don't you need a
lot more data?” Your heart sinks because as of this moment, the conversation is no longer
about your thesis, it is now about one of the looming elephants in the room—“what N is
N-ough for MRI-based animal neuroimaging?”—and there is no “correct” answer.
Now, picture themoment (before you answer) frozen in time. Let us imagine a symbolic an-

gel and devil appear on your shoulders—only, there is no “right” and “wrong” side—just two
differing perspectives. On your left, Joanes appears ready to argue for large (N=1,000)
sample sizes inMRI-based animal neuroimaging. On your right, Francesca appears prepared
to counter these arguments and defend smaller N studies. What follows is a lively debate.

Joanes’ summary: Effects in biology are rarely large. This is true for human neuroimaging stud-
ies, but also for animal-based research. We need to adapt our study designs to properly inves-
tigate the medium and small effects that are relevant to biomedical and neuroimaging sciences.

Large N Is Becoming the Norm for MRI-Based Human
Neuroimaging
The “Why Most Published Research Findings Are False” essay is a dire constatation for

modern biomedical science (Ioannidis, 2005). The notion that we are wasting our
resources (funding, person-power, time, and attention) on studies that will not replicate
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or simply add to the scientific background noise is unbearable. The ethics of it is far worse
when considering the number of animals used in biomedical research. We must maximize
the utility of every animal used, yet I think we are failing in that regard. The “N=1,000
participants’ recommendation for brain-wide association studies in humans position
paper” was announced with fracas and divided the human MRI community (Marek et
al., 2022). The authors argued that most brain-wide associations found in large neuroim-
aging datasets have medium to small effects and, therefore, that future studies on the
topic should consider plausible effect sizes when estimating their required group size
and adapt accordingly. The risks of ignoring this cautionary warning are underpowered
studies prone to false positives and negatives that contribute to the scientific background
noise if little else.

Are the Considerations for Large N Different for Animal Studies?
I think not. The median estimated effect size in animal behavior studies (of N=479

studies surveyed) is Hedge's g∼0.5, corresponding to a medium effect according to
Cohen's 1998 interpretation guidelines (Bonapersona et al., 2021). This implies that
50% of the studies in that pool would need sample sizes of >100 per group and >1,000
for the bottom 25% of the animal behavioral studies with the smallest effect sizes. This
is a far cry from the median sample size N = ∼ 10 that we traditionally use. These results
support the notion that sample sizes in animal research do not match the effect sizes un-
der investigation.
But surely transgenic rodents have larger effects? On the surface, this argument seems

plausible. Compared with studies in humans where genetic differences between individ-
uals are slight (yet numerous), we use isogenic animals with large differences (knock-in or
knock-out) in one or a few genes. This should amplify the biological signal while mitigating
noise from the uncontrolled environment and genetic makeup. In practice, this argument is
more nuanced. We can learn from the (very) few studies that perform meta-analyses on
animal data, the gold standard in evidence-based research. For instance, the SERT−/−

rodent model of depression/anxiety with a knock-out for the serotonin reuptake trans-
porter has an aggregated large effect size for defensive/anxiety-related behavior relative
to wild-type controls (g∼ 0.88 and 95% confidence interval [0.65, 1.1], based on 13
studies; Mohammad et al., 2016). However, when accounting for publication biases, for
which there was evidence, the effect size was corrected to a medium effect (g∼0.57
[0.29, 0.86]). Hence, we cannot exclude that knock-out animals, and transgenics in
general, may havemore modest effects than originally thought and that publication biases
currently skew these effects.

Are Effects Larger in MRI-Based Animal Neuroimaging than
Behavioral Studies?
MRI-based animal studies are also performed with relatively small sample sizes (median

N = ∼ 15 for rat studies; Mandino et al., 2019). I would be surprised if effect sizes, on av-
erage, were any larger than those described for behavioral studies, especially for func-
tional parameters at the detection limit and prone to measurement artifacts.
Neuroimaging studies, however, usually estimate more parameters (e.g., functional con-
nectivity matrices with 100× 100 parameters) than behavioral studies. This leads to mul-
tiple hypothesis testing and adds extra requirements for multiple test corrections, which
further reduces statistical power relative to behavioral studies. Moreover, neuroimaging
studies have greater analytical flexibility, which makes them more vulnerable to post
hoc selective analyses and indirectly amplifies effect size via publication biases (Carp,
2012). All these factors contribute to making animal neuroimaging prone to effect size
overestimation.
The advent of standardized acquisition protocols and processing software for animal

neuroimaging promises to mitigate some of these issues (Grandjean et al., 2023). They
can limit analytical flexibility by providing default processing parameters (Desrosiers-
Gregoire et al., 2022). At the same time, standardized acquisition promises to ease
meta-analyses by reducing differences between centers and studies. The current proto-
cols and pipelines we designed are also amenable to being scaled up, a prerequisite for
big N datasets. Yet, until these measures pick up in our community, the dire reality is
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that many of our animal neuroimaging studies are likely underpowered and prone to
spurious outcomes.

Small Effects Are Not Bad. It Is Our Study Designs That Are
Inadequate
There is building evidence from both human and animal research that the effects in biology

are more modest than initially reported. This is not inherently bad. Antidepressants have a
small effect (d∼0.3 for classical antidepressant vs placebo; Cipriani et al., 2018), and so
do antiamyloid therapies (d∼0.23 for antiamyloid interventions vs placebo; Mintun et al.,
2021; Goldberg et al., 2023). This does not undermine their clinical utilities as the first line
of defense against depression and a new hope for patients with Alzheimer's disease,
respectively. I think it is time to accept that we are facing challenges in biomedical
research that the traditional ways of doing our experiments cannot handle. We have the
means to pool our resources, either via the collection of large datasets within single
centers, as the Allen Institute for Brain Science is doing (Lein et al., 2007; Oh et al.,
2014), or smaller datasets amassed from multiple centers as the International Brain
Laboratory (International Brain Laboratory, 2017) and our multicenter rodent neuroimag-
ing studies are doing (Grandjean et al., 2023, 2020). It is time to face the biological realities
and acquire data that can make a true scientific difference.

Francesca’s summary: For animal neuroimaging, increasing N by a factor of one hundred is
an intractably expensive option – ethically and otherwise – given how we fund and conduct
our research. It also assumes that what seems to be necessary for human research is also
necessary for animal research – but these are fundamentally different…animals. Animal
neuroimaging is a much nimbler field with better alternatives than the heavy-handed strategy
of a blanket increase in the number of subjects. Increasing N to address challenges in animal
neuroimaging fails to play to the strengths of the field and to recognize the differences
between the realities of animal and human neuroimaging research.

What Are We Trying to Accomplish?
The goal of both human and MRI-based animal neuroimaging is to understand the

human brain and/or devise new methods and treatments relevant to humans. In the
scenario where we are successful, understanding the brain means we can turn measure-
ment into action at the level of the individual. This is the holy grail of personalizedmedicine.
If we need 1,000 measurements to have the sensitivity to detect an effect, perhaps we
need to consider improving our measurements (rather than simply making more of
them). This is easier to accomplish, first, in animal research where we have much greater
control and flexibility.

The Unparalleled Power (and Dimensionality) of Animal Research
In some ways, using animals is a (big and necessary) compromise (their brains are an

evolutionarily simplified version of our own). Yet, research on animals gives us unprece-
dented neurobiological access, tight control of genetic and environmental factors, as
well as the ability to study the lifespan on a tractable timescale (e.g., mice live for
∼24 months). We can also target specific aspects of a pathology at first, and then build
on this knowledge base (in effect titrating the complexity of what we are studying).
Consider Alzheimer's disease as an example. There are a variety of animal models that
mimic various phenotypes of the disease (e.g., APP/PS1 mice model overt β-amyloid pla-
que accumulation, whereas 3xTgAD mice model both plaque accumulation and tauopa-
thy; Oddo et al., 2003; Jullienne et al., 2022; Mandino et al., 2022;Yokoyama et al., 2022).
Many of the dimensions in animal research have no counterpart in humans. These are
immensely powerful abilities, but they also increase the number of possible experiments.
With more options and fewer researchers, we are only just scratching the surface of what
can be accomplished using animal neuroimaging. Better ways of harmonizing how we ac-
quire and process these data are also only just emerging and evolving at a fast pace.
It would be constraining the diversity of animal experimentation at this early stage just
to boost N. Obtaining large numbers of homogenized data necessitates reducing the
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complexity (and creativity) of the experiment (Williams, 2010). At this early juncture, I think
we stand to gain more from animal research if we continue to invest in expanding the
breadth of what we can do.

Humans Are Similar, Mice Are (Almost) Identical: Do We Really
Understand the Sources of Heterogeneity in Our Neuroimaging
Data?
Humans, although they share 99.6% of their DNA, are extremely different from one

another (Maxwell et al., 2019). They also live under highly variable conditions (e.g., from
noisy suburban scenes to peaceful countryside) and experience a human lifetime's worth
of exposure to change (e.g., global warming). Research animals, for example the classic
C57BL6 mice, are carefully engineered to be as identical as possible (although variations
will always be present, e.g., at the epigenetic level) and live under tightly controlled condi-
tions (same light/dark cycles, same humidity, every day, every year). Yet, lab animals still de-
velop diverse behaviors (Freund et al., 2013). In the face of this persistent heterogeneity
(despite our best efforts), we should be humbled by how exponentially different “non-
identical human beings living in very non-identical environments across the globe” truly are.

Increasing N Is Not Our Only Option for Improving Our Science
Demanding a larger number of animals to address the problem of publication bias is an

appalling suggestion. The lives of the animals we work with should not be forfeited to fix
our problems with publishing. Funding and resources for experimental work are precious
and finite. Publishing null or negative results has (almost) no cost and contributes to scien-
tific progress (as much as—if not more, in the current climate—as positive results). The
ethical course of action is to work on changing our cultural publication biases—not
increasing the number of animals to compensate for our egos. We should accept null or
negative results, and pure replication studies, as equal contributors to the scientific dis-
course before we consider scaling up our numbers. Rigorous statistical analyses, correc-
tions for multiple comparisons, and better reporting practices must also come first.

What If the Effect Size Is Too Small to Detect with a Small N? Is
N=1,000 Ethical in Animal Research?
No. Working with animals is a privilege. If the biological question necessitatesN=1,000

to detect an effect, then either the question is not properly framed or the means of inves-
tigation being used are not sufficiently developed. In human research, we work with imag-
ing modalities that are noninvasive and easily tolerated. Participants give consent and are
offered compensation (e.g., monetary payment). They then continue with their lives.
In other words, the best interests and comfort of our participants are the priority. This
makes the “ethical cost” of conducting N=1,000 imaging sessions in humans negligible.
The landscape in animal research is completely different.
Animals are not capable of giving consent. In the pursuit of answering any research

question, the life of every animal used is forfeited. This fact leads to an ethical obligation
to minimize the number of animals used for research. This ethos is captured well by the
“Three Rs principle”: Replacement, Refinement, and Reduction (Russell, 1995;
Hooijmans et al., 2010). (1) Explore alternatives to animals (e.g., in silico options). (2)
Develop experimental procedures that minimize suffering and maximize the utility of
each animal. (3) Use every means available to minimize the number of animals needed
to answer a scientific question. The proposition that N=1,000 is necessary to make the
lives of those animals “well spent” is an ill-positioned argument. Instead, we need to
ask what replacements and refinements will make N=10 sufficient.

How Animal Neuroimaging Data Are Obtained Matters
Neuroimaging data from humans is typically collected by technicians who are perma-

nent staff. The protocols that are followed are highly standardized (especially when they
are part of large N studies) and generally very easy to implement. Conversely, most
neuroimaging data from animals are collected by trainees (students, or postdoctoral
fellows) and junior researchers at critical points on their career paths. In part, this is
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because acquiring neuroimaging data from animals is far from trivial or standardized. The
necessary skills easily encompass basic-to-complex animal care (e.g., breeding and gen-
otyping), surgical manipulations (and post-op recovery), delivery of anesthesia, intubation/
extubation and ventilation, animal training (e.g., for imaging awake subjects), maintaining
animal physiology during imaging (e.g., body temperature, heart and breath rate, blood
oxygen, or expired carbon dioxide), and more. Acquiring proficiency in these skills takes
years of training and practice—most of which occurs within a small number of specialized
research labs.
As the introduction tried to illustrate—this is an underappreciated bottleneck on the

road to scaling general access to animal neuroimaging data and data volume. It is chal-
lenging to argue that it is in the best interest of those collecting the data to devote such
substantial time and energy even for small N studies. There are very real and practical
reasons why animal neuroimaging data is a scarce and valuable resource. These need
to be part of the conversation when we talk about scaling our operations.
This argument only becomes more relevant when we consider the newest contributions

being made by animal neuroimaging (e.g., multimodal methods like optogenetics,
DREADDs, or WF-Ca2+ in combination with functional magnetic resonance imaging,
e.g., Lake et al., 2020; Mandino et al., 2022; Rocchi et al., 2022). Pushing these frontiers
demands even more expertise and time from an even more limited pool of scientists.
Having one person perform the same procedure on 100 times the number of animals or
a handful of experimenters (if you can find them) is impractical for the most promising
and creative work being done. It is only tractable for the most basic experiments. It would
be foolish to sacrifice this high level of quality for simple quantity.

Are We Able/Ready to Handle Big Datasets?
Given the experimental flexibility, unique challenges, and a (relatively) small community

of animal neuroimagers, it is unsurprising that our data acquisition methods and prepro-
cessing strategies are far from standardized (Mandino et al., 2019, 2024; Grandjean et al.,
2023, 2020). This reflects both some of the weaknesses and strengths of animal neuroim-
aging but also its newness. It is simply too early to push for N=1,000 from an acquisition
standpoint—or (arguably) a data infrastructure standpoint. Large N studies are only useful
if there are resources that support equitable, safe, and smooth data storage and usage.
Immense effort has gone into establishing these resources for human neuroimaging
data (Van Essen et al., 2012, 2013). From this example, much has been learned about
how best to do the same for animal neuroimaging (Gorgolewski et al., 2016; Buckser,
2021; Markiewicz et al., 2021; Desrosiers-Gregoire et al., 2022). However, there are
some notable differences between these endeavors which will require more work (and
investment) before substantial scaling can take off. One of the foremost challenges is
adequately crediting the individuals who collect animal neuroimaging data (see preceding
section). Further challenges lie in properly cataloging these incredibly diverse data (e.g.,
collating multiple modalities). Granted—these are not insurmountable—however, we are
not there yet, and getting there will take a large shift in how we think about shared data
and how we invest in supporting the development and maintenance of this infrastructure.

What Should We Focus on, Instead?
When it comes to the future,webenefitmostwhenwearemindful of our present landscape.

Large N data is only one of many possibilities for our field, and it is a remarkably expensive
one. In animal neuroimaging, there is a big push toward multimodal, cross-disciplinary, and
cross-species approaches, especially in studying complex pathologies like Alzheimer's dis-
ease. In my opinion, we stand to gain more from leveraging the flexibility and controllability
of studies on animals than boosting their number. We should invest in our strengths and con-
tinue to collect rich data usingmultiple complementarymodalities. Promoting better scientific
practices (e.g., publishing negative results) will accelerate our progress. Yet, our focus should
beonuncovering themeans to create newandmore refinedmeasurements (not on increasing
the number of measurements that we know to be poor). An improved understanding of, and
ability toworkwith, our datadoesnot automatically come fromhavinga lot of it. It ismore likely
to come from a better understanding of the neurobiological phenomena that they report on.
Success should never be N=1,000. It should be N=1.
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End Debate—Scene Unfreezes—Time to Answer the Question
Spurred by recent brain-wide association studies in humans (Marek et al., 2022), the

animal neuroimaging community has also begun reasoning on whether to use larger
samples. In general, sample size has been based on dogma and feasibility. Now, the
cost–benefit analysis of small versus large has taken on a more pragmatic and analytical di-
mension. From a statistical and interpretational standpoint, the advantages of large samples
are hard to debate. You can do more with more confidence when you have more data.
A “wide” database composed of a large number of empirical observations (i.e., brain

images) allows the robust investigation of a novel class of research questions of high
relevance to neuroscience. The results of these efforts are epitomized by prominent
human neuroimaging studies on interindividual variations across the lifespan (Bethlehem
et al., 2022), reproducibility of brain–behavior associations (Marek et al., 2022), functional
mapping of primary motor cortex (Gordon et al., 2023), and atypical functional connectivity
in neuropsychiatric disorders (Di Martino et al., 2014). Importantly, the advent of data-
sharing initiatives in rodents has recently allowed animal neuroimagers to compile sufficient
data resources to rigorously quantify the reproducibility of mouse functional connectivity
networks across labs (Grandjean et al., 2020) and develop a consensus protocol for rat neu-
roimaging (Grandjean et al., 2023). These are two pillars of rigor and reproducibility in animal
research. Analogously, multicenter neuroimaging studies of nonhuman primates ({PRIMatE
Data Exchange (PRIME-DE) Global Collaboration Workshop and Consortium, 2020) have
contributed maps of evolutionarily conserved brain hierarchies (Xu et al., 2020). These dis-
coveries were only possible because of the high statistical power of large-sample studies.
They are also relatively recent efforts. Now, at the outset of animal neuroimaging data-
sharing initiatives, the aggregation of high volumes of data stands to enable us to address
a range of scientific questions of high translational relevance (Zerbi et al., 2021). Fostering
the growth of these resources will be critical in the coming years. Although we can learn a
lot from how large human neuroimaging datasets have been amassed and are managed,
similar efforts in the animal neuroimaging field require some special considerations. For
example, we acquire a wider variety of data, the burden of doing so is substantially greater
and on the shoulders of trainees, or early career scientists.
Despite the clear benefits of large datasets, we must remember that for animal neuro-

imaging these come at a high cost. It is a privilege to work with animals; they enable us
to conduct investigations that would never be doable in humans. Yet, we cannot forget
that the lives of the animals we use are forfeited in our pursuit of knowledge. We have
an ethical obligation to limit their number through efforts to replace animals wherever
possible with alternatives and to refine our experiments such that fewer animals are
needed to answer our questions. We must observe the ethical guidelines laid out by the
3Rs principle.
As in large-scale human neuroimaging efforts, in animal neuroimaging, we are practi-

cally limited to aggregative initiatives. Although the community is equipped with compu-
tational methods to harmonize data acquired across sites, aggregative efforts (by
definition) are only practical for simple, mainstream, and longstanding paradigms. Not
the more creative and unique efforts that are arguably the true strength of animal neuro-
imaging efforts. Hence, using sample size as the sole metric by which we establish the
impact and validity of a study greatly limits the innovative power and pioneering spirit of
animal neuroimaging research. This is particularly valid for research questions aimed at
addressing mechanistic hypotheses, which is one of the most significant contributions
that animal neuroimaging stands to produce for science. To test these multiscale hypoth-
eses, “deep” datasets with multimodal sources andmanipulations (not available in human
research) have a much higher explanatory impact relative to “wide” (and shallow) datasets
composed of large numbers of subjects but use a single technique.
“What N is N-ough?” is an open question for animal neuroimaging with no

one-size-fits-all solution. Rather, sample size must be considered alongside the specific
research question being asked. Large and small datasets come with their respective
advantages and challenges. An equally meaningful (and more insightful) question is:
“How can we help the community to make more informed decisions on the number of
animals needed for an investigation?”. To this aim, immediate actions can be promptly
taken. Action item number one is publishing effect sizes together with p values. Like other
research fields, information on effect sizes is often missing in animal neuroimaging and is
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critical for calculating sample size. Action item number two is publishing null or negative
results and replication studies. Decisions on sample size are based on shared findings and
publication biases skew our ability to make these estimates. Both these items stand to
have a big impact on guiding our determination of adequate and responsible sample sizes
as we move forward.
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