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A B S T R A C T

We consider the ferromagnetic 𝑞-state Potts model on a finite grid graph with non-zero external
field and periodic boundary conditions. The system evolves according to Glauber-type dynamics
described by the Metropolis algorithm, and we focus on the low temperature asymptotic
regime. We analyze the case of positive external magnetic field associated to one spin value.
In this energy landscape there is one stable configuration and 𝑞 − 1 metastable states. We
study the asymptotic behavior of the first hitting time from any metastable state to the stable
configuration as 𝛽 → ∞ in probability, in expectation, and in distribution. We also identify the
exponent of the mixing time and find an upper and a lower bound for the spectral gap. Finally,
we identify all the minimal gates and the tube of typical trajectories for the transition from any
metastable state to the unique stable configuration by giving a geometric characterization.

1. Introduction

Metastability is a phenomenon that is observed when a physical system is close to a first order phase transition. More precisely,
this phenomenon takes place when the physical system, for some specific values of the parameters, is imprisoned for a long time in
a state which is different from the equilibrium state. The former is known as the metastable state, the latter is the stable state. After a
long (random) time, the system may exhibit the so-called metastable behavior and this happens when the system performs a sudden
transition from the metastable state to the stable state. On the other hand, when the system lies on the phase coexistence line, it is
of interest to understand precisely the transition between two (or more) stable states. This is the so-called tunneling behavior.

The phenomenon of metastability occurs in several physical situations, such as supercooled liquids, supersaturated gases,
ferromagnets in the hysteresis loop and wireless networks. For this reason, many models for the metastable behavior have been
developed throughout the years. In these models a suitable stochastic dynamics is chosen and typically three main issues are
investigated. The first is the study of the first hitting time at which the process starting from a metastable state visits some stable
states. The second issue is the study of the so-called set of critical configurations, which are those configurations that the process visits
during the transition from the metastable state to some stable states. The third issue is the study of the tube of typical paths, i.e., the
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set of the typical trajectories followed by the process during the transition from the metastable state to some stable states. On the
other hand, when a system exhibits tunneling behavior the same three issues above are investigated for the transition between any
two stable states.

In this paper we study the metastable behavior of the 𝑞-state Potts model with non-zero external magnetic field on a finite
two-dimensional discrete torus 𝛬. We will refer to 𝛬 as a grid-graph. The 𝑞-state Potts model is an extension of the classical Ising
model from 𝑞 = 2 to an arbitrary number 𝑞 of spins with 𝑞 > 2. The state space  is given by all possible configurations 𝜎 such that at
ach site 𝑖 of 𝛬 lies a spin with value 𝜎(𝑖) ∈ {1,… , 𝑞}. To each configuration 𝜎 ∈  we associate an energy 𝐻(𝜎) that depends on the

local ferromagnetic interaction, 𝐽 = 1, between nearest-neighbor spins, and on the external magnetic field ℎ related only to a specific
spin value. Without loss of generality, we choose this spin equal to the spin 1. We study the 𝑞-state ferromagnetic Potts model with
Hamiltonian 𝐻(𝜎) in the limit of large inverse temperature 𝛽 → ∞. The stochastic evolution is described by a Glauber-type dynamics,
that is a Markov chain on the finite state space  with transition probabilities that allow single spin-flip updates and that is given by
the Metropolis algorithm. This dynamics is reversible with respect to the stationary distribution that is the Gibbs measure 𝜇𝛽 , see (2.3).

Our analysis focuses on the model to which we will refer as 𝑞-Potts model with positive external magnetic field. In this energy
landscape there are 𝑞 − 1 degenerate-metastable states and only one stable state. Here, we use the term ‘degenerate’ to point out
that we focus on a energy landscape which is different from the one of the typical Ising model, in which the uniqueness of the stable
and metastable configuration is guaranteed. In the metastable configurations all spins are equal to some 𝑚, for 𝑚 ∈ {2,… , 𝑞}, while
the stable state is the configuration in which all spins are equal to 1. In this case, we focus our attention on the transition from one
of the metastable states to the stable configuration.

The goal of this paper is to investigate all the three issues of metastability for the metastable behavior of the 𝑞-Potts model with
positive external magnetic field. More precisely, we investigate the asymptotic behavior of the transition time, and identify the set
of critical configurations and the tube of typical trajectories for the transition from a metastable state to the unique stable state.
Furthermore, we also identify the union of all the critical configurations for the transition from a metastable configuration to the
other metastable states.

Let us now briefly describe the strategy that we adopt. First we show that the metastable set contains the 𝑞 − 1 configurations
where all spins are equal to some 𝑚 ∈ {2,… , 𝑞}. We give asymptotic bounds in probability for the first hitting time from any
metastable state to the stable configuration and we identify the order of magnitude of the expected hitting time. Moreover, we
characterize the behavior of the mixing time in the low-temperature regime and give a lower and an upper bound of the spectral
gap. Finally, we find the set of all minimal gates for the transition from a metastable state to the stable configuration. For any
𝑚 ∈ {2,… , 𝑞}, if the starting configuration is the one with all spins equal to 𝑚, we prove that the minimal gate contains those
configurations in which all spins are 𝑚 except those, which are 1, in a quasi-square with a unit protuberance on one of the longest
sides. Furthermore, we prove that during the metastable transition the process almost surely does not visit any metastable state
different from the initial one, and we exploit this result to identify the union of all minimal gates for the transition from a metastable
state to the other metastable configurations. Finally, we identify geometrically those configurations that belong to the tube of typical
paths for the transition from any metastable state to the stable state.

The Potts model is one of the most studied statistical physics models, as the vast literature on the subject attests, both on the
mathematics side and the physics side. The study of the equilibrium properties of the Potts model and their dependence on 𝑞, have
been investigated on the square lattice Z𝑑 in [12,13], on the triangular lattice in [14,49] and on the Bethe lattice in [3,42,46]. The
mean-field version of the Potts model has been studied in [40,47,48,52,70]. More recently, the Potts model has been further studied
in different settings: in [17] it has been studied taking into account general coupling constants, in [39] the analysis has been carried
out on random regular graphs an in [1] by considering asymmetrical external field. Furthermore, the tunneling behavior for the
Potts model with zero external magnetic field has been studied in [18,57,62]. In this energy landscape there are 𝑞 stable states and
there is not any relevant metastable state. In [62], the authors derive the asymptotic behavior of the first hitting time for the transition
between stable configurations, and give results in probability, in expectation and in distribution. They also characterize the behavior
of the mixing time and give a lower and an upper bound for the spectral gap. In [18], the authors study the tunneling from a stable
state to the other stable configurations and between two stable states. In both cases, they geometrically identify the union of all
minimal gates and the tube of typical trajectories. Finally, in [57], the authors study the model in two and three dimensions. In
both cases, they give a description of gateway configurations that is suitable to allow them to prove sharp estimate for the tunneling
time by computing the so-called prefactor. These gateway configurations are quite different from the states belonging to the minimal
gates identified by [18]. The 𝑞-Potts model with non-zero external magnetic field has been studied in [19], where the authors study
the energy landscape defined by a Hamiltonian function with negative external magnetic field. In this scenario there are a unique
metastable configuration and 𝑞−1 stable states, and the authors answer to all the three issues of the metastability introduced above
for the transition from the metastable state to the set of the stable states and also to any fixed stable state. Furthermore, they give
sharp estimates on the expected transition time by computing the prefactor.

State of the art. In this paper we adopt the framework known as pathwise approach, that was initiated in 1984 by Cassandro,
Galves, Olivieri, Vares in [27] and it was further developed in [66–68] and independtly in [28]. The pathwise approach is based on
a detailed knowledge of the energy landscape and, thanks to ad hoc large deviations estimates it gives a quantitative answer to the
three issues of metastability which we described above. This approach was further developed in [33,34,50,51,59,63] to distinguish
the study of the transition time and of the critical configurations from the study of the third issue. This is achieved by proving
the recurrence property and identifying the communication height between the metastable and the stable state that are the only
two model-dependent inputs need for the results concerning the first issue of metastability. In particular, in [33,34,50,51,59,63]
2
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model dependent inputs necessary to study the metastable and tunneling behaviour, and to consider situations in which the energy
landscapes has multiple stable and/or metastable states. For this reason, the pathwise approach has been used to study metastability
in statistical mechanics lattice models. The pathwise approach has been also applied in [5,6,31,38,58,60,64,65,68] with the aim of
answering the three issues for Ising-like models with Glauber dynamics. Moreover, it was also applied in [4,7–10,30,43,54,55,63,71]
to study the transition time and the gates for Ising-like and hard-core models with Kawasaki and Glauber dynamics. Furthermore,
this method was applied to probabilistic cellular automata (parallel dynamics) in [32,35,36,41,69]. See also [29] for a recent review.

The pathwise approach is not the only method which is applied to study the physical systems that approximate a phenomenon
f metastability. For instance, the so-called potential–theoretical approach exploits a suitable Dirichlet form and spectral properties

of the transition matrix to investigate the sharp asymptotic of the hitting time. An interesting aspect of this method is that it
allows to estimate the expected value of the transition time including the so-called prefactor, i.e., the coefficient that multiplies the
leading-order exponential factor. To find these results, it is necessary to prove the recurrence property, the communication height
between the metastable and the stable state and a detailed knowledge of the critical configurations as well of those configurations
connected with them by one step of the dynamics, see [22–24,37]. In particular, the potential–theoretical approach was applied
to find the prefactor for Ising-like models and the hard-core model in [11,25,26,37,44,45,56] for Glauber and Kawasaki dynamics
and in [20,61] for parallel dynamics. Recently, other approaches have been formulated in [15,16,53] and in [21] and they are
particularly adapted to estimate the pre-factor when dealing with the tunneling between two or more stable states.

Outline. The outline of the paper is as follows. In Section 2 we define the ferromagnetic 𝑞-state Potts model and the Hamiltonian
that we associate to each Potts configuration. In Section 3 we give a list of both model-independent and model dependent definitions
that are required to state our main results in Section 4. In Section 5 we analyze the energy landscape and give the explicit proofs of
the main results stated in Sections 4.1 and 4.2. Section 6.2 is devoted to the study on the transition from a metastable state to the
other metastable configurations. In Sections 6.3 and 6.4 we give the explicit proofs of the main results on the critical configurations
and on the tube of typical paths, respectively.

2. Model description

In the 𝑞-state Potts model each spin lies on a vertex of a finite two-dimensional rectangular lattice 𝛬 = (𝑉 ,𝐸), where
𝑉 = {0,… , 𝐾 − 1} × {0,… , 𝐿− 1} is the vertex set and 𝐸 is the edge set, namely the set of the pairs of vertices whose spins interact
with each other. We consider periodic boundary conditions. More precisely, we identify each pair of vertices lying on opposite sides
of the rectangular lattice, so that we obtain a two-dimensional torus. Two vertices 𝑣,𝑤 ∈ 𝑉 are said to be nearest-neighbors when
hey share an edge of 𝛬. We denote by 𝑆 the set of spin values, i.e., 𝑆 ∶= {1,… , 𝑞} and assume 𝑞 > 2. Each vertex 𝑣 ∈ 𝑉 is associated

to a spin value 𝜎(𝑣) ∈ 𝑆, and  ∶= 𝑆𝑉 denotes the set of spin configurations. We denote by 𝟏,… ,𝐪 ∈  those configurations in
which all the vertices have spin value 1,… , 𝑞, respectively.

To each configuration 𝜎 ∈  we associate the energy 𝐻(𝜎) given by

𝐻(𝜎) ∶= −𝐽
∑

(𝑣,𝑤)∈𝐸
1{𝜎(𝑣)=𝜎(𝑤)} − ℎ

∑

𝑢∈𝑉
1{𝜎(𝑢)=1}, 𝜎 ∈  , (2.1)

where 𝐽 is the coupling or integration constant and ℎ is the external magnetic field. The function 𝐻 ∶  → R is called Hamiltonian
or energy function. The Potts model is said to be ferromagnetic when 𝐽 > 0, and antiferromagnetic otherwise. In this paper we set
𝐽 = 1 without loss of generality and, we focus on the ferromagnetic 𝑞-state Potts model with non-zero external magnetic field.

ore precisely, we study the model with positive external magnetic field, i.e., we rewrite (2.1) by considering the magnetic field
pos ∶= ℎ,

𝐻pos(𝜎) ∶= −
∑

(𝑣,𝑤)∈𝐸
1{𝜎(𝑣)=𝜎(𝑤)} − ℎpos

∑

𝑢∈𝑉
1{𝜎(𝑢)=1} = −

∑

(𝑣,𝑤)∈𝐸
1{𝜎(𝑣)=𝜎(𝑤)} − ℎ

∑

𝑢∈𝑉
1{𝜎(𝑢)=1}. (2.2)

The Gibbs measure for the 𝑞-state Potts model on 𝛬 is a probability distribution on the state space  given by

𝜇𝛽 (𝜎) ∶=
𝑒−𝛽𝐻pos(𝜎)

𝑍
, (2.3)

here 𝛽 > 0 is the inverse temperature and where 𝑍 ∶=
∑

𝜎′∈ 𝑒−𝛽𝐻pos(𝜎′).
The spin system evolves according to a Glauber-type dynamics. This dynamics is described by a single-spin update Markov chain

𝑋𝛽
𝑡 }𝑡∈N on the state space  with the following transition probabilities: for 𝜎, 𝜎′ ∈  ,

𝑃𝛽 (𝜎, 𝜎′) ∶=

{

𝑄(𝜎, 𝜎′)𝑒−𝛽[𝐻pos(𝜎′)−𝐻pos(𝜎)]+ , if 𝜎 ≠ 𝜎′,
1 −

∑

𝜂≠𝜎 𝑃𝛽 (𝜎, 𝜂), if 𝜎 = 𝜎′,
(2.4)

where [𝑛] ∶= max{0, 𝑛} is the positive part of 𝑛 and

𝑄(𝜎, 𝜎′) ∶=

{ 1
𝑞|𝑉 |

, if |{𝑣 ∈ 𝑉 ∶ 𝜎(𝑣) ≠ 𝜎′(𝑣)}| = 1,

0, if |{𝑣 ∈ 𝑉 ∶ 𝜎(𝑣) ≠ 𝜎′(𝑣)}| > 1,
(2.5)

or any 𝜎, 𝜎′ ∈  . 𝑄 is the so-called connectivity matrix and it is symmetric and irreducible, i.e., for all 𝜎, 𝜎′ ∈  , there exists a finite
sequence of configurations 𝜔1,… , 𝜔𝑛 ∈  such that 𝜔1 = 𝜎, 𝜔𝑛 = 𝜎′ and 𝑄(𝜔𝑖, 𝜔𝑖+1) > 0 for 𝑖 = 1,… , 𝑛 − 1. Hence, the resulting
stochastic dynamics defined by (2.4) is reversible with respect to the Gibbs measure (2.3). The triplet ( ,𝐻pos, 𝑄) is the so-called
3
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The dynamics defined above belongs to the class of Metropolis dynamics. Given a configuration 𝜎 in  , at each step

1. a vertex 𝑣 ∈ 𝑉 and a spin value 𝑠 ∈ 𝑆 are selected independently and uniformly at random;
2. the spin at 𝑣 is updated to spin 𝑠 with probability

{

1, if 𝐻pos(𝜎𝑣,𝑠) −𝐻pos(𝜎) ≤ 0,
𝑒−𝛽[𝐻pos(𝜎𝑣,𝑠)−𝐻pos(𝜎)], if 𝐻pos(𝜎𝑣,𝑠) −𝐻pos(𝜎) > 0,

(2.6)

where 𝜎𝑣,𝑠 is the configuration obtained from 𝜎 by updating the spin in the vertex 𝑣 to 𝑠, i.e.,

𝜎𝑣,𝑠(𝑤) ∶=

{

𝜎(𝑤) if 𝑤 ≠ 𝑣,
𝑠 if 𝑤 = 𝑣.

(2.7)

Hence, at each step the update of vertex 𝑣 depends on the neighboring spins of 𝑣 and on the energy difference

𝐻pos(𝜎𝑣,𝑠) −𝐻pos(𝜎) =

⎧

⎪

⎨

⎪

⎩

∑

𝑤∼𝑣(1{𝜎(𝑣)=𝜎(𝑤)} − 1{𝜎(𝑤)=𝑠}) + ℎ, if 𝜎(𝑣) = 1, 𝑠 ≠ 1,
∑

𝑤∼𝑣(1{𝜎(𝑣)=𝜎(𝑤)} − 1{𝜎(𝑤)=𝑠}), if 𝜎(𝑣) ≠ 1, 𝑠 ≠ 1,
∑

𝑤∼𝑣(1{𝜎(𝑣)=𝜎(𝑤)} − 1{𝜎(𝑤)=𝑠}) − ℎ, if 𝜎(𝑣) ≠ 1, 𝑠 = 1.
(2.8)

. Definitions and notations

In order to state our main results, we need to give some definitions and notations which are used throughout the next sections.

.1. Model-independent definitions and notations

We now give a list of model-independent definitions and notations that will be useful in formulating our main results.

- We call path a finite sequence 𝜔 of configurations 𝜔0,… , 𝜔𝑛 ∈  , 𝑛 ∈ N, such that 𝑄(𝜔𝑖, 𝜔𝑖+1) > 0 for 𝑖 = 0,… , 𝑛 − 1. Given
𝜎, 𝜎′ ∈  , if 𝜔1 = 𝜎 and 𝜔𝑛 = 𝜎′, we denote a path from 𝜎 to 𝜎′ as 𝜔 ∶ 𝜎 → 𝜎′. Let 𝛺𝜎,𝜎′ be the set of all paths between 𝜎 and
𝜎′.

- For any path 𝜔 = (𝜔0,… , 𝜔𝑛), we define the height of 𝜔 as

𝛷𝜔 ∶= max
𝑖=0,…,𝑛

𝐻(𝜔𝑖). (3.1)

- A path 𝜔 = (𝜔0,… , 𝜔𝑛) is said to be downhill (strictly downhill) if 𝐻(𝜔𝑖+1) ≤ 𝐻(𝜔𝑖) (𝐻(𝜔𝑖+1) < 𝐻(𝜔𝑖)) for 𝑖 = 0,… , 𝑛 − 1.
- For any pair 𝜎, 𝜎′ ∈  , the communication height or communication energy 𝛷(𝜎, 𝜎′) between 𝜎 and 𝜎′ is the minimal energy

across all paths 𝜔 ∶ 𝜎 → 𝜎′, i.e.,

𝛷(𝜎, 𝜎′) ∶= min
𝜔∶𝜎→𝜎′

𝛷𝜔 = min
𝜔∶𝜎→𝜎′

max
𝜂∈𝜔

𝐻(𝜂). (3.2)

More generally, the communication energy between any pair of non-empty disjoint subsets , ⊂  is 𝛷(,) ∶=
min𝜎∈, 𝜎′∈ 𝛷(𝜎, 𝜎′).

- We define optimal paths those paths that realize the min–max in (3.2) between 𝜎 and 𝜎′. Formally, we define the set of optimal
paths between 𝜎, 𝜎′ ∈  as

𝛺𝑜𝑝𝑡
𝜎,𝜎′ ∶= {𝜔 ∈ 𝛺𝜎,𝜎′ ∶ max

𝜂∈𝜔
𝐻(𝜂) = 𝛷(𝜎, 𝜎′)}. (3.3)

- For any 𝜎 ∈  , let 𝜎 ∶= {𝜂 ∈  ∶ 𝐻(𝜂) < 𝐻(𝜎)} be the set of states with energy strictly smaller than 𝐻(𝜎). We define stability
level of 𝜎 the energy barrier

𝑉𝜎 ∶= 𝛷(𝜎,𝜎 ) −𝐻(𝜎). (3.4)

If 𝜎 = ∅, we set 𝑉𝜎 ∶= ∞.
- The bottom ℱ () of a non-empty set  ⊂  is the set of the global minima of 𝐻 in , i.e.,

ℱ () ∶= {𝜂 ∈  ∶ 𝐻(𝜂) = min
𝜎∈

𝐻(𝜎)}. (3.5)

In particular, 𝑠 ∶= ℱ () is the set of the stable states.
- For any 𝜎 ∈  and any  ⊂  ,  ≠ ∅, we set

𝛤 (𝜎,) ∶= 𝛷(𝜎,) −𝐻(𝜎). (3.6)

- We define the set of metastable states as

𝑚 ∶= {𝜂 ∈  ∶ 𝑉𝜂 = max
𝜎∈∖𝑠

𝑉𝜎}. (3.7)

We denote by 𝛤𝑚 the stability level of a metastable state.
4
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- We define metastable set at level 𝑉 the set of all the configurations with stability level larger than 𝑉 , i.e.,

𝑉 ∶= {𝜎 ∈  ∶ 𝑉𝜎 > 𝑉 }. (3.8)

- The set of minimal saddles between 𝜎, 𝜎′ ∈  is defined as

(𝜎, 𝜎′) ∶= {𝜉 ∈  ∶ ∃𝜔 ∈ 𝛺𝑜𝑝𝑡
𝜎,𝜎′ , 𝜉 ∈ 𝜔 ∶ max

𝜂∈𝜔
𝐻(𝜂) = 𝐻(𝜉)}. (3.9)

- We say that 𝜂 ∈ (𝜎, 𝜎′) is an essential saddle if there exists 𝜔 ∈ 𝛺𝑜𝑝𝑡
𝜎,𝜎′ such that either

– {arg max𝜔𝐻} = {𝜂} or
– {arg max𝜔𝐻} ⊃ {𝜂} and {arg max𝜔′𝐻} ⊈ {arg max𝜔𝐻}∖{𝜂} for all 𝜔′ ∈ 𝛺𝑜𝑝𝑡

𝜎,𝜎′ .

- A saddle 𝜂 ∈ (𝜎, 𝜎′) that is not essential is said to be unessential.
- Given 𝜎, 𝜎′ ∈  , we say that (𝜎, 𝜎′) is a gate for the transition from 𝜎 to 𝜎′ if (𝜎, 𝜎′) ⊆ (𝜎, 𝜎′) and 𝜔 ∩(𝜎, 𝜎′) ≠ ∅ for all
𝜔 ∈ 𝛺𝑜𝑝𝑡

𝜎,𝜎′ .
- We say that (𝜎, 𝜎′) is a minimal gate for the transition from 𝜎 to 𝜎′ if it is a minimal (by inclusion) subset of (𝜎, 𝜎′) that is

visited by all optimal paths. More in detail, it is a gate and for any  ′ ⊂ (𝜎, 𝜎′) there exists 𝜔′ ∈ 𝛺𝑜𝑝𝑡
𝜎,𝜎′ such that 𝜔′∩ ′ = ∅.

We denote by  = (𝜎, 𝜎′) the union of all minimal gates for the transition 𝜎 → 𝜎′.
- Given a non-empty subset  ⊆  , it is said to be connected if for any 𝜎, 𝜂 ∈  there exists a path 𝜔 ∶ 𝜎 → 𝜂 totally contained

in . Moreover, we define 𝜕𝐴 as the external boundary of , i.e., the set

𝜕 ∶= {𝜂 ∉  ∶ 𝑃 (𝜎, 𝜂) > 0 for some 𝜎 ∈ }. (3.10)

- A non-empty subset  ⊂  is called cycle if it is either a singleton or a connected set such that

max
𝜎∈

𝐻(𝜎) < 𝐻(ℱ (𝜕)). (3.11)

When  is a singleton, it is said to be a trivial cycle. Let 𝒞 () be the set of cycles of  .
- The depth of a cycle  is given by

𝛤 () ∶= 𝐻(ℱ (𝜕)) −𝐻(ℱ ()). (3.12)

If  is a trivial cycle we set 𝛤 () = 0.
- Given a non-empty set  ⊂  , we denote by () the collection of maximal cycles , i.e.,

() ∶= { ∈ 𝒞 ()|  maximal by inclusion under constraint  ⊆ }.

- For any 𝜎 ∈  , if  is a non-empty target set, we define the initial cycle for the transition from 𝜎 to  as

𝜎
(𝛤 ) ∶= {𝜎} ∪ {𝜂 ∈  ∶ 𝛷(𝜎, 𝜂) −𝐻(𝜎) < 𝛤 = 𝛷(𝜎,) −𝐻(𝜎)}. (3.13)

If 𝜎 ∈ , then 𝜎
(𝛤 ) = {𝜎} and it is a trivial cycle. Otherwise, 𝜎

(𝛤 ) is either a trivial cycle (when 𝛷(𝜎,) = 𝐻(𝜎)) or a
non-trivial cycle containing 𝜎 (when 𝛷(𝜎,) > 𝐻(𝜎)). In any case, if 𝜎 ∉ , then 𝐶𝜎

(𝛤 ) ∩ = ∅. Note that (3.13) coincides
with [63, Equation (2.25)].

3.2. Model-dependent definitions and notations

In this section we give some further model-dependent notations, which hold for any fixed 𝑞-Potts configuration 𝜎 ∈  .

- For any 𝑣,𝑤 ∈ 𝑉 , we write 𝑤 ∼ 𝑣 (and, equivalently, 𝑣 ∼ 𝑤) if there exists an edge 𝑒 ∈ 𝐸 that links the vertices 𝑣 and 𝑤.
- We denote the edge that links the vertices 𝑣 and 𝑤 as (𝑣,𝑤) ∈ 𝐸. Each 𝑣 ∈ 𝑉 is identified by its coordinates (𝑖, 𝑗), where 𝑖 and
𝑗 denote respectively the number of the row and of the column where 𝑣 lies. Moreover, the collection of vertices with first
coordinate equal to 𝑖 = 0,… , 𝐾 − 1 is denoted as 𝑟𝑖, which is the 𝑖th row of 𝛬. The collection of those vertices with second
coordinate equal to 𝑗 = 0,… , 𝐿 − 1 is denoted as 𝑐𝑗 , which is the 𝑗th column of 𝛬.

- We define the set 𝐶𝑠(𝜎) ⊆ R2 as the union of unit closed squares centered at the vertices 𝑣 ∈ 𝑉 such that 𝜎(𝑣) = 𝑠. We define
𝑠-clusters the maximal connected components 𝐶𝑠

1 ,… , 𝐶𝑠
𝑛 , 𝑛 ∈ N, of 𝐶𝑠(𝜎).

- For any 𝑠 ∈ 𝑆, we say that a configuration 𝜎 ∈  has an 𝑠-rectangle if it has a rectangular cluster (possibly wrapping around
the grid-graph 𝛬 in view of the periodic boundary conditions) in which all the vertices have spin 𝑠.

- Let 𝑅1 an 𝑟-rectangle and 𝑅2 an 𝑠-rectangle. They are said to be interacting if either they intersect (when 𝑟 = 𝑠) or are disjoint
but there exists a site 𝑣 ∉ 𝑅1 ∪ 𝑅2 such that 𝜎(𝑣) ≠ 𝑟, 𝑠 and 𝑣 has two nearest-neighbor 𝑤, 𝑢 lying inside 𝑅1, 𝑅2 respectively.
Furthermore, we say that 𝑅1 and 𝑅2 are adjacent when they are at lattice distance one from each other.

- We set 𝑅(𝐶𝑠(𝜎)) as the smallest rectangle containing 𝐶𝑠(𝜎).
- Let 𝑅𝓁1×𝓁2 be a rectangle in R2 with sides of length 𝓁1 and 𝓁2.
- Let 𝑠 ∈ 𝑆. If 𝜎 has a cluster of spins 𝑠 which is a rectangle that wraps around 𝛬, we say that 𝜎 has an 𝑠-strip. For any 𝑟, 𝑠 ∈ 𝑆,
5

we say that an 𝑠-strip is adjacent to an 𝑟-strip if they are at lattice distance one from each other.
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Fig. 1. Examples of configurations which belong to 𝑅̄3,6(𝑟, 𝑠) (a), 𝐵̄4
2,6(𝑟, 𝑠) (b). We color white the vertices whose spin is 𝑟 and we color gray the vertices whose

spin is 𝑠.

- 𝑅̄𝑎,𝑏(𝑟, 𝑠) denotes the set of those configurations in which all the vertices have spins equal to 𝑟, except those, which have spins
𝑠, in a rectangle 𝑎 × 𝑏, see Fig. 1(a). Note that when either 𝑎 = 𝐿 or 𝑏 = 𝐾, 𝑅̄𝑎,𝑏(𝑟, 𝑠) contains those configurations which have
an 𝑟-strip and an 𝑠-strip.

- 𝐵̄𝑙
𝑎,𝑏(𝑟, 𝑠) denotes the set of those configurations in which all the vertices have spins 𝑟, except those, which have spins 𝑠, in a

rectangle 𝑎 × 𝑏 with a bar 1 × 𝑙 adjacent to one of the sides of length 𝑏, with 1 ≤ 𝑙 ≤ 𝑏 − 1, see Fig. 1(b).
- We define

𝓁∗ ∶=
⌈ 2
ℎ

⌉

(3.14)

as the critical length.

. Main results on the 𝒒-state Potts model with positive external magnetic field

This section is devoted to the statement of our main results on the 𝑞-state Potts model with positive external magnetic field. Note
hat we give the proof of the main results by considering the condition 𝐿 ≥ 𝐾 ≥ 3𝓁∗, where 𝓁∗ is defined in (3.14). It is possible to

extend the results to the case 𝐾 > 𝐿 by interchanging the role of rows and columns in the proof.
In this scenario related to the Hamiltonian 𝐻pos, we add either a subscript or a superscript ‘‘pos’’ to the notation of the model-

independent quantities (defined in general in Section 3.1) in order to remind the reader that these quantities are computed in the
case of positive external magnetic field.

We assume the following conditions.

Assumption 4.1. We assume that the following conditions are verified:

(i) the magnetic field ℎpos ∶= ℎ is such that 0 < ℎ < 1
2 ;

(ii) 2∕ℎ is not an integer.

.1. Energy landscape

Using the definition (2.2) and by simple algebraic calculations, in the following proposition we identificate the set of the global
inima of 𝐻pos.

roposition 4.2 (Identification of the Stable Configuration). Consider the 𝑞-state Potts model on a 𝐾 × 𝐿 grid 𝛬, with periodic boundary
onditions and with positive external magnetic field. Then, the set of global minima of the Hamiltonian (2.2) is given by 𝑠

𝑝𝑜𝑠 ∶= {𝟏}.

In the next theorem we define the configurations that belong to 𝑚
pos and give an estimate of the stability level 𝛤𝑚

pos. We refer to
ig. 2 for a pictorial representation of the 4-state Potts model related to the Hamiltonian 𝐻pos.

Theorem 4.3 (Identification of the Metastable States). Consider the 𝑞-state Potts model on a 𝐾×𝐿 grid 𝛬, with periodic boundary conditions
nd with positive external magnetic field. Then, 𝑚

𝑝𝑜𝑠 = {𝟐,… ,𝐪} and, for any 𝐦 ∈ 𝑚
𝑝𝑜𝑠,

𝛤𝑚
𝑝𝑜𝑠 = 𝛤𝑝𝑜𝑠(𝐦,𝑠

𝑝𝑜𝑠) = 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1). (4.1)

roof. The theorem follows by [33, Theorem 2.4] since the first assumption follows by Propositions 5.7 and 5.8 and the second
ssumption is satisfied thanks to Proposition 4.5. □

For any  ⊂  , we define the maximum depth of  as the maximum depth of a cycle contained in , i.e.,

𝛤 () ∶= max
∈()

𝛤 (). (4.2)

ote that in [63, Lemma 3.6] the authors give an alternative characterization of (4.2) as 𝛤 () = max𝜂∈ 𝛤 (𝜂,∖).
6

Using (4.1), in Section 5.3 we prove the following corollary.
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Fig. 2. On the left, energy landscape in the case of 4-state Potts model with positive external magnetic field around the unique stable state 𝟏 cutting the
configurations with the energy bigger than 𝛷pos(𝐦, 𝟏), 𝐦 ∈ 𝑚

pos = {𝟐, 𝟑, 𝟒}. This picture is simplified since there are not represented the cycles (valleys) that
contain configurations with stability level smaller than or equal to 4

ℎ
(see Proposition 4.5). On the right, viewpoint from above of the same energy landscape.

For every 𝐦 ∈ 𝑚
pos, the cycle whose bottom is the stable state 𝟏 is deeper than the initial cycles 𝐦

𝑠
pos
(𝛤𝑚

pos). These last cycles are depicted with circles whose
iameter is smaller than the one related to the stable state 𝟏.

orollary 4.4 (Maximum Depth of a Cycle in ∖𝑠
pos). Consider the 𝑞-state Potts model on a 𝐾 × 𝐿 grid 𝛬, with periodic boundary

onditions and with positive external magnetic field. Then,

𝛤𝑝𝑜𝑠(∖𝑠
𝑝𝑜𝑠) = 𝛤𝑚

𝑝𝑜𝑠. (4.3)

In the following proposition, that we prove in Section 5.2, we investigate on the stability level of any configuration 𝜂 ∈
∖{𝟐,… ,𝐪}.

roposition 4.5 (Estimate on the Stability Level). If the external magnetic field is positive, then for any 𝜂 ∈ ∖{𝟏,… ,𝐪} and 𝐦 ∈ {𝟐,… ,𝐪},
𝑉 𝑝𝑜𝑠
𝜂 ≤ 𝛤𝑝𝑜𝑠(𝐦,𝑠

𝑝𝑜𝑠).

Exploiting the estimate of the stability level given in Proposition 4.5, we prove the following result on a recurrence property
to set of the metastable and stable configurations, i.e., {𝟏,… ,𝐪}. Given a non-empty subset  ⊂  and a configuration 𝜎 ∈  , we
define

𝜏𝜎 ∶= inf{𝑡 > 0 ∶ 𝑋𝛽
𝑡 ∈ } (4.4)

as the first hitting time of the subset  for the Markov chain {𝑋𝛽
𝑡 }𝑡∈N starting from 𝜎 at time 𝑡 = 0. Moreover, we recall that a function

𝛽 → 𝑓 (𝛽) is said to be super-exponentially small (SES) if

lim
𝛽→∞

1
𝛽
log 𝑓 (𝛽) = −∞. (4.5)

heorem 4.6 (Recurrence Property). Consider the 𝑞-state Potts model on a 𝐾 × 𝐿 grid 𝛬, with periodic boundary conditions and with
ositive external magnetic field. Let 𝑉 ∗ = 4

ℎ . Then, for any 𝜎 ∈  and any 𝜖 > 0, there exists 𝑘 > 0 such that for 𝛽 sufficiently large

P(𝜏𝜎{𝟏,…,𝐪} > 𝑒𝛽(𝑉
∗+𝜖)) ≤ 𝑒−𝑒

𝑘𝛽
= 𝑆𝐸𝑆. (4.6)

roof. Apply [59, Theorem 3.1] with 𝑉 = 4
ℎ and use (3.8) and Proposition 4.5 to get 𝑉 ∗ = {𝟏,… ,𝐪} = 𝑚

pos ∪ 𝑠
pos, where the last

equality follows by Proposition 4.2 and Theorem 4.3. □

4.2. Asymptotic behavior of the first hitting time to the stable state and mixing time

Let {𝑋𝛽
𝑡 }𝑡∈N be the Markov chain with transition probabilities (2.4) and stationary distribution (2.3). For every 𝜖 ∈ (0, 1), we

define the mixing time 𝑡mix
𝛽 (𝜖) by

𝑡mix
𝛽 (𝜖) ∶= min{𝑛 ≥ 0 ∶ max

𝜎∈
‖𝑃 𝑛

𝛽 (𝜎, ⋅) − 𝜇𝛽 (⋅)‖TV ≤ 𝜖}, (4.7)

where the total variance distance is defined by ‖𝜈 − 𝜈′‖TV ∶= 1
2
∑

𝜎∈ |𝜈(𝜎) − 𝜈′(𝜎)| for every two probability distribution 𝜈, 𝜈′ on  .
urthermore, we define spectral gap as

𝜌𝛽 ∶= 1 − 𝜆(2)𝛽 , (4.8)

here 1 = 𝜆(1)𝛽 > 𝜆(2)𝛽 ≥ ⋯ ≥ 𝜆(||)
𝛽 ≥ −1 are the eigenvalues of the matrix 𝑃𝛽 (𝜎, 𝜂)𝜎,𝜂∈ .

In the following theorem we give asymptotic bounds in probability and identify the order of magnitude of the expected value of
𝐦
𝑠

pos
(see (4.4)). Moreover, we identify the exponent at which the mixing time of the Markov chain {𝑋𝛽

𝑡 }𝑡∈N asymptotically grows
s 𝛽 and give an upper and a lower bound for the spectral gap, see (4.7) and (4.8).
7
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Theorem 4.7 (Asymptotic Behavior of 𝜏𝐦𝑠
pos

and Mixing Time). Consider the 𝑞-state Potts model on a 𝐾 ×𝐿 grid 𝛬, with periodic boundary
conditions and with positive external magnetic field. Then, for any 𝐦 ∈ 𝑚

𝑝𝑜𝑠, the following statements hold:

(a) for every 𝜖 > 0, lim𝛽→∞ P(𝑒𝛽(𝛤
𝑚
𝑝𝑜𝑠−𝜖) < 𝜏𝐦𝑠

𝑝𝑜𝑠
< 𝑒𝛽(𝛤

𝑚
𝑝𝑜𝑠+𝜖)) = 1;

(b) lim𝛽→∞
1
𝛽 logE[𝜏𝐦𝑠

𝑝𝑜𝑠
] = 𝛤𝑚

𝑝𝑜𝑠;

(c) for every 𝜖 ∈ (0, 1), lim𝛽→∞
1
𝛽 log 𝑡mix

𝛽 (𝜖) = 𝛤𝑚
𝑝𝑜𝑠 and there exist two constants 0 < 𝑐1 ≤ 𝑐2 < ∞ independent of 𝛽 such that, for any

𝛽 > 0, 𝑐1𝑒
−𝛽𝛤𝑚

𝑝𝑜𝑠 ≤ 𝜌𝛽 ≤ 𝑐2𝑒
−𝛽𝛤𝑚

𝑝𝑜𝑠 .

Proof. Items (a) and (b) follow by [59, Theorem 4.1] and by [59, Theorem 4.9], respectively, with 𝜂0 = 𝐦 and 𝛤 = 𝛤𝑚
pos (using

Theorem 4.3). Item (c) follows by Corollary 4.4 and by [63, Proposition 3.24]. □

In the literature there exist some model-independent results on the asymptotic rescaled distribution of the first hitting time from
some 𝜂 ∈  to a certain target 𝐺 ⊂  , see for instance [59, Theorem 4.15], [50, Theorem 2.3], [63, Theorem 3.19]. Unfortunately
none of these results are suitable for our scenario when 𝜂 ∈ 𝑚

pos and 𝐺 = 𝑠
pos. This fact follows by the presence of multiple

egenerate metastable states that implies the presence of other deep wells in  different from the initial cycle 𝐦
𝑠

pos
(𝛤𝑚

pos). Hence,
e consider a different target and we investigate the asymptotic rescaled distribution of the first hitting time from a metastable

tate to the subset 𝐺 ⊂  setting

𝐺 = ∖𝐦
𝑠

pos
(𝛤𝑚

pos). (4.9)

e defer to Section 5.3 for the proof of the following theorem.

heorem 4.8. Consider the 𝑞-state Potts model on a 𝐾 ×𝐿 grid 𝛬, with periodic boundary conditions and with positive external magnetic
ield. Let 𝐦 ∈ 𝑚

𝑝𝑜𝑠 and let 𝐺 as defined in (4.9). Then,

𝜏𝐦𝐺
E[𝜏𝐦𝐺 ]

𝑑
→ 𝐸𝑥𝑝(1), 𝑎𝑠 𝛽 → ∞. (4.10)

Note that by definition (4.9), by Proposition 4.2 and by Theorem 4.3, we have ℱ (𝐺) = 𝑠
pos and that the maximal stability level

s 𝑉 (𝐺) = 𝛤𝑚
pos.

.3. Minimal gates for the metastable transition

A further goal is to identify the union of all minimal gates for the transition from any metastable state to the unique stable state
𝑠
pos = {𝟏}. In order to do this, for any 𝑚 ∈ 𝑆∖{1}, let us define

pos(𝐦,𝑠
pos) ∶= 𝐵̄1

𝓁∗−1,𝓁∗ (𝑚, 1) and  ′
pos(𝐦,𝑠

pos) ∶= 𝐵̄1
𝓁∗ ,𝓁∗−1(𝑚, 1). (4.11)

e refer to Fig. 15(b)–(c) for an example of configurations belonging respectively to  ′
pos(𝐦,𝑠

pos) and to pos(𝐦,𝑠
pos). These sets

re investigated in Section 6.1. In particular, in Proposition 6.3 we show that pos(𝐦,𝑠
pos) is a gate for the transition from any

∈ 𝑋𝑚
pos to 𝑠

pos.
Furthermore, in Section 6.3 we prove the following result.

heorem 4.9 (Minimal Gates for the Transition from 𝐦 ∈ 𝑚
pos to 𝑠

pos). Consider the 𝑞-state Potts model on a 𝐾 ×𝐿 grid 𝛬, with periodic
oundary conditions and with positive external magnetic field. Then, 𝑝𝑜𝑠(𝐦,𝑠

𝑝𝑜𝑠) is a minimal gate for the transition from any metastable
tate 𝐦 ∈ 𝑚

𝑝𝑜𝑠 to 𝑠
𝑝𝑜𝑠 = {𝟏}. Moreover,

𝑝𝑜𝑠(𝐦,𝑠
𝑝𝑜𝑠) = 𝑝𝑜𝑠(𝐦,𝑠

𝑝𝑜𝑠). (4.12)

We remark that in [19, Theorems 4.5 and 4.6] the authors identify the union of all minimal gates for the metastable transitions
or the 𝑞-Potts model with negative external magnetic fields. These minimal gates have the same geometric definition of those of our
cenario, the main difference is that in the negative case there are 𝑞 − 1 possible ‘‘colors’’ for the vertices inside the quasi-square
ith a unit protuberance.

In the next corollary we show that the process typically intersects pos(𝐦,𝑠
pos) during the transition 𝐦 ∈ 𝑚

pos → 𝑠
pos.

orollary 4.10. Consider the 𝑞-state Potts model on a 𝐾×𝐿 grid 𝛬, with periodic boundary conditions and with positive external magnetic
ield. Then, for any 𝐦 ∈ 𝑚

𝑝𝑜𝑠

lim
𝛽→∞

P(𝜏𝐦𝑝𝑜𝑠(𝐦,𝑠
𝑝𝑜𝑠)

< 𝜏𝐦𝑠
𝑝𝑜𝑠
) = 1. (4.13)
8

roof. The corollary follows from Proposition 6.3 and from [59, Theorem 5.4]. □
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4.4. Minimal gates for the transition from a metastable state to the other metastable configurations

In Section 6.2 we study the transition from a metastable state to the set of the other metastable states. We prove that during the
ransition from any 𝐦 ∈ 𝑚

pos to 𝑠
pos almost surely the process does not intersect 𝑚

pos∖{𝐦}, and we exploit this result to identificate
he union of all minimal gates for this type of transition.

heorem 4.11 (Minimal Gates for the Transition from 𝐦 to 𝑚
pos∖{𝐦}). Let 𝐦 ∈ 𝑚

𝑝𝑜𝑠. If the external magnetic field is positive, then the
ollowing sets are minimal gates for the transition from 𝐦 to 𝑚

𝑝𝑜𝑠∖{𝐦}

(a) 𝑝𝑜𝑠(𝐦,𝑠
𝑝𝑜𝑠), (4.14)

(b)
⋃

𝐳∈𝑚
𝑝𝑜𝑠∖{𝐦}

𝑝𝑜𝑠(𝐳,𝑠
𝑝𝑜𝑠). (4.15)

urthermore,

𝑝𝑜𝑠(𝐦,𝑚
𝑝𝑜𝑠∖{𝐦}) =

⋃

𝐳∈𝑚
𝑝𝑜𝑠

𝑝𝑜𝑠(𝐳,𝑠
𝑝𝑜𝑠). (4.16)

We defer the proof of the above theorem in Section 6.3. Note that in the negative scenario [19] the theorem corresponding to
heorem 4.11 is not present since there is only one metastable state.

orollary 4.12. If the external magnetic field is positive, then for any 𝐦 ∈ 𝑚
𝑝𝑜𝑠,

(a) lim𝛽→∞ P(𝜏𝐦𝑝𝑜𝑠(𝐦,𝑠
𝑝𝑜𝑠)

< 𝜏𝐦𝑚
𝑝𝑜𝑠∖{𝐦}) = 1,

(b) lim𝛽→∞ P(𝜏𝐦⋃
𝐳∈𝑚

𝑝𝑜𝑠∖{𝐦} 𝑝𝑜𝑠(𝐳,𝑠
𝑝𝑜𝑠)

) < 𝜏𝐦𝑚
𝑝𝑜𝑠∖{𝐦} = 1.

roof. The corollary follows from Propositions 6.7 and 6.10 and from [59, Theorem 5.4]. □

.5. Tube of typical trajectories of the metastable transition

.5.1. Further model-independent and model-dependent definitions
In addition to the list of Section 3.1, in order state the main result concerning the tube of the typical trajectories we give some

urther definitions that are taken from [34,63,68].

- We call cycle-path a finite sequence (1,… ,𝑚) of trivial or non-trivial cycles 1,… ,𝑚 ∈ 𝒞 (), such that 𝑖 ∩ 𝑖+1 =
∅ and 𝜕𝑖 ∩ 𝑖+1 ≠ ∅, for every 𝑖 = 1,… , 𝑚 − 1.

- A cycle-path (1,… ,𝑚) is said to be downhill (strictly downhill) if the cycles 1,… ,𝑚 are pairwise connected with decreasing
height, i.e., when 𝐻(ℱ (𝜕𝑖)) ≥ 𝐻(ℱ (𝜕𝑖+1)) (𝐻(ℱ (𝜕𝑖)) > 𝐻(ℱ (𝜕𝑖+1))) for any 𝑖 = 0,… , 𝑚 − 1.

- For any  ∈ 𝒞 (), we define as

() ∶=

{

ℱ (𝜕) if  is a non-trivial cycle,
{𝜂 ∈ 𝜕 ∶ 𝐻(𝜂) < 𝐻(𝜎)} if  = {𝜎} is a trivial cycle,

(4.17)

the principal boundary of . Furthermore, let 𝜕𝑛𝑝 be the non-principal boundary of , i.e., 𝜕𝑛𝑝 ∶= 𝜕∖().
- The relevant cycle +

(𝜎) is

+
(𝜎) ∶= {𝜂 ∈  ∶ 𝛷(𝜎, 𝜂) < 𝛷(𝜎,) + 𝛿∕2}, (4.18)

where 𝛿 is the minimum energy gap between any optimal and any non-optimal path from 𝜎 to .
- We denote the set of cycle-paths that lead from 𝜎 to  and consist of maximal cycles in ∖ as

𝜎, ∶= {cycle-path (1,… ,𝑚) ∶ 1,… ,𝑚 ∈ (+
(𝜎)∖𝐴), 𝜎 ∈ 1, 𝜕𝑚 ∩ ≠ ∅}.

- Given a non-empty set  ⊂  and 𝜎 ∈  , we constructively define a mapping 𝐺 ∶ 𝛺𝜎,𝐴 → 𝜎, in the following way. Given
𝜔 = (𝜔1,… , 𝜔𝑛) ∈ 𝛺𝜎,𝐴, we set 𝑚0 = 1, 1 = (𝜎) and define recursively 𝑚𝑖 ∶= min{𝑘 > 𝑚𝑖−1 ∶ 𝜔𝑘 ∉ 𝑖} and 𝑖+1 ∶= (𝜔𝑚𝑖

).
We note that 𝜔 is a finite sequence and 𝜔𝑛 ∈ , so there exists an index 𝑛(𝜔) ∈ N such that 𝜔𝑚𝑛(𝜔)

= 𝜔𝑛 ∈  and there the
procedure stops. By (1,… ,𝑚𝑛(𝜔)

) is a cycle-path with 1,… ,𝑚𝑛(𝜔)
⊂ (∖). Moreover, the fact that 𝜔 ∈ 𝛺𝜎,𝐴 implies that

𝜎 ∈ 1 and that 𝜕𝑛(𝜔) ∩ ≠ ∅, hence 𝐺(𝜔) ∈ 𝜎, and the mapping is well-defined.
- We say that a cycle-path (1,… ,𝑚) is connected via typical jumps to  ⊂  or simply 𝑣𝑡𝑗−connected to  if

(𝑖) ∩ 𝑖+1 ≠ ∅, ∀𝑖 = 1,… , 𝑚 − 1, and (𝑚) ∩ ≠ ∅. (4.19)
9

Let 𝐽, be the collection of all cycle-paths (1,… ,𝑚) that are vtj-connected to  and such that 1 = .
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- Given a non-empty set  and 𝜎 ∈  , we define 𝜔 ∈ 𝛺𝜎,𝐴 as a typical path from 𝜎 to  if its corresponding cycle-path 𝐺(𝜔) is
vtj-connected to  and we denote by 𝛺vtj

𝜎,𝐴 the collection of all typical paths from 𝜎 to , i.e.,

𝛺vtj
𝜎,𝐴 ∶= {𝜔 ∈ 𝛺𝜎,𝐴 ∶ 𝐺(𝜔) ∈ 𝐽(𝜎),}. (4.20)

- We define the tube of typical paths 𝑇(𝜎) from 𝜎 to  as the subset of states 𝜂 ∈  that can be reached from 𝜎 by means of a
typical path which does not enter  before visiting 𝜂, i.e.,

𝑇(𝜎) ∶= {𝜂 ∈  ∶ ∃𝜔 ∈ 𝛺vtj
𝜎,𝐴 ∶ 𝜂 ∈ 𝜔}. (4.21)

Moreover, we define T(𝜎) as the set of all maximal cycles that belong to at least one vtj-connected path from 𝜎
(𝛤 ) to ,

i.e.,

T(𝜎) ∶= { ∈ (+
(𝜎)∖) ∶ ∃(1,… ,𝑛) ∈ 𝐽𝜎(𝛤 ), and∃𝑗 ∈ {1,… , 𝑛} ∶ 𝑗 = }. (4.22)

Note that

T(𝜎) = (𝑇(𝜎)∖) (4.23)

and that the boundary of 𝑇(𝜎) consists of states either in  or in the non-principal part of the boundary of some  ∈ T(𝜎):

𝜕𝑇(𝜎)∖ ⊆
⋃

∈T(𝜎)
(𝜕∖()) =∶ 𝜕𝑛𝑝T(𝜎). (4.24)

For the sake of simplicity, we will also refer to T(𝜎) as tube of typical paths from 𝜎 to .

Furthermore, in addition to the list given in Section 3.2, we give some further model-dependent definitions.

- For any 𝑚, 𝑠 ∈ 𝑆,𝑚 ≠ 𝑠, we define (𝑚, 𝑠) = {𝜎 ∈  ∶ 𝜎(𝑣) ∈ {𝑚, 𝑠} for any 𝑣 ∈ 𝑉 }.
- For any 𝑚 ∈ 𝑆∖{1}, we define

𝒮 𝑣
pos(𝑚, 1) ∶= {𝜎 ∈ (𝑚, 1) ∶ 𝜎 has a vertical 1-strip of thickness at least 𝓁∗ with

possibly a bar of length 𝑙 = 1,… , 𝐾 on one of the two vertical edges}, (4.25)
𝒮 ℎ

pos(𝑚, 1) ∶= {𝜎 ∈ (𝑚, 1) ∶ 𝜎 has a horizontal 1-strip of thickness at least 𝓁∗ with

possibly a bar of length 𝑙 = 1,… , 𝐿 on one of the two horizontal edges}. (4.26)

4.5.2. Main results on the tube of typical trajectories
In this subsection we give our main result concerning the tube of the typical trajectories for the transition 𝐦 → 𝑠

pos for any
fixed 𝐦 ∈ 𝑚

pos. The tube of typical paths for this transition turns out to be

T𝑠
pos

(𝐦) ∶=
𝓁∗−1
⋃

𝓁=1
𝑅̄𝓁−1,𝓁(𝑚, 1) ∪

𝓁∗
⋃

𝓁=1
𝑅̄𝓁−1,𝓁−1(𝑚, 1) ∪

𝓁∗−1
⋃

𝓁=1

𝓁−1
⋃

𝑙=1
𝐵̄𝑙
𝓁−1,𝓁(𝑚, 1)

∪
𝓁∗
⋃

𝓁=1

𝓁−2
⋃

𝑙=1
𝐵̄𝑙
𝓁−1,𝓁−1(𝑚, 1) ∪ 𝐵̄1

𝓁∗−1,𝓁∗ (𝑚, 1) ∪
𝐾−1
⋃

𝓁1=𝓁∗

𝐾−1
⋃

𝓁2=𝓁∗
𝑅̄𝓁1 ,𝓁2 (𝑚, 1) ∪

𝐾−1
⋃

𝓁1=𝓁∗

𝐾−1
⋃

𝓁2=𝓁∗

𝓁2−1
⋃

𝑙=1
𝐵̄𝑙
𝓁1 ,𝓁2

(𝑚, 1)

∪
𝐿−1
⋃

𝓁1=𝓁∗

𝐿−1
⋃

𝓁2=𝓁∗
𝑅̄𝓁1 ,𝓁2 (𝑚, 1) ∪

𝐿−1
⋃

𝓁1=𝓁∗

𝐿−1
⋃

𝓁2=𝓁∗

𝓁2−1
⋃

𝑙=1
𝐵̄𝑙
𝓁1 ,𝓁2

(𝑚, 1) ∪ 𝒮 𝑣
pos(𝑚, 1) ∪ 𝒮 ℎ

pos(𝑚, 1). (4.27)

As illustrated in the next result, which we prove in Section 6.4, T𝑠
pos

(𝐦) includes those configurations with a positive probability
of being visited by the Markov chain {𝑋𝑡}

𝛽
𝑡∈N started in 𝐦 before hitting 𝑠

pos in the limit 𝛽 → ∞. Note that the relation between
𝑇𝑠

pos
(𝐦) and T𝑠

pos
(𝐦) is given by (4.23).

Theorem 4.13. If the external magnetic field is positive, then for any 𝐦 ∈ 𝑚
𝑝𝑜𝑠 the tube of typical trajectories for the transition 𝐦 → 𝑠

𝑝𝑜𝑠
is (4.27) and there exists 𝑘 > 0 such that for 𝛽 sufficiently large

P𝛽 (𝜏𝐦𝜕𝑛𝑝T𝑠
𝑝𝑜𝑠

(𝐦) ≤ 𝜏𝐦𝑠
𝑝𝑜𝑠
) ≤ 𝑒−𝑘𝛽 . (4.28)

5. Energy landscape analysis and asymptotic behavior

In this section we analyze the energy landscape of the 𝑞-state Potts model with positive external magnetic field. First we recall
some useful definitions and lemmas from [62].
10
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𝑠

5

=

Fig. 3. Example of configurations on a 8 × 11 grid graph displaying a vertical 𝑠-bridge (a), a horizontal 𝑠-bridge (b) and a 𝑠-cross (c). We color black the spins
.

.1. Known local geometric properties

In the following list we introduce the notions of disagreeing edges, bridges and crosses of a Potts configuration on a grid-graph 𝛬.

- We call 𝑒 = (𝑣,𝑤) ∈ 𝐸 a disagreeing edge if it connects two vertices with different spin values, i.e., 𝜎(𝑣) ≠ 𝜎(𝑤).
- For any 𝑖 = 0,… , 𝐾 − 1, let

𝑑𝑟𝑖 (𝜎) ∶=
∑

(𝑣,𝑤)∈𝑟𝑖

1{𝜎(𝑣)≠𝜎(𝑤)} (5.1)

be the total number of disagreeing edges that 𝜎 has on row 𝑟𝑖. Furthermore, for any 𝑗 = 0,… , 𝐿 − 1 let

𝑑𝑐𝑗 (𝜎) ∶=
∑

(𝑣,𝑤)∈𝑐𝑗

1{𝜎(𝑣)≠𝜎(𝑤)}, (5.2)

be the total number of disagreeing edges that 𝜎 has on column 𝑐𝑗 .
- We define 𝑑ℎ(𝜎) as the total number of disagreeing horizontal edges and 𝑑𝑣(𝜎) as the total number of disagreeing vertical

edges, i.e.,

𝑑ℎ(𝜎) ∶=
𝐾−1
∑

𝑖=0
𝑑𝑟𝑖 (𝜎), and 𝑑𝑣(𝜎) ∶=

𝐿−1
∑

𝑗=0
𝑑𝑐𝑗 (𝜎). (5.3)

Since we may partition the edge set 𝐸 in the two subsets of horizontal edges 𝐸ℎ and of vertical edges 𝐸𝑣, such that 𝐸ℎ∩𝐸𝑣 = ∅,
the total number of disagreeing edges is given by

∑

(𝑣,𝑤)∈𝐸
1{𝜎(𝑣)≠𝜎(𝑤)} =

∑

(𝑣,𝑤)∈𝐸𝑣

1{𝜎(𝑣)≠𝜎(𝑤)} +
∑

(𝑣,𝑤)∈𝐸ℎ

1{𝜎(𝑣)≠𝜎(𝑤)} = 𝑑𝑣(𝜎) + 𝑑ℎ(𝜎). (5.4)

- We say that 𝜎 has a horizontal bridge on row 𝑟 if 𝜎(𝑣) = 𝜎(𝑤), for all 𝑣,𝑤 ∈ 𝑟.
- We say that 𝜎 has a vertical bridge on column 𝑐 if 𝜎(𝑣) = 𝜎(𝑤), for all 𝑣,𝑤 ∈ 𝑐.
- We say that 𝜎 ∈  has a cross if it has at least one vertical and one horizontal bridge.

For sake of simplicity, if 𝜎 has a bridge of spins 𝑠 ∈ 𝑆, then we say that 𝜎 has an 𝑠-bridge. Similarly, if 𝜎 has a cross of spins 𝑠, we
say that 𝜎 has an 𝑠-cross (see Fig. 3).

- For any 𝑠 ∈ 𝑆, the total number of 𝑠-bridges of the configuration 𝜎 is denoted by 𝐵𝑠(𝜎).

Note that if a configuration 𝜎 ∈  has an 𝑠-cross, then 𝐵𝑠(𝜎) is at least 2 since the presence of an 𝑠-cross implies the presence of
two 𝑠-bridges, i.e., of a horizontal 𝑠-bridge and of a vertical 𝑠-bridge.

We conclude this section by recalling the following three useful lemmas from [62]. These results give us some geometric
properties for the 𝑞-state Potts model on a grid-graph and they are verified regardless of the definition of the external magnetic
field.

Lemma 5.1 ([62, Lemma 2.2]). A Potts configuration on a grid-graph 𝛬 does not have simultaneously a horizontal bridge and a vertical
bridge of different spins.

Lemma 5.2 ([62, Lemma 2.6]). Let 𝜎, 𝜎′ ∈  be two Potts configurations which differ by a single-spin update, that is |{𝑣 ∈ 𝑉 ∶ 𝜎(𝑣) ≠ 𝜎′(𝑣)}|
1. Then for every 𝑠 ∈ 𝑆 we have that

(i) 𝐵𝑠(𝜎′) − 𝐵𝑠(𝜎) ∈ {−2,−1, 0, 1, 2},
(ii) 𝐵 (𝜎′) − 𝐵 (𝜎) = 2 if and only if 𝜎′ has an 𝑠-cross that 𝜎 does not have.
11
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Lemma 5.3 ([62, Lemma 2.3]). The following properties hold for every Potts configuration 𝜎 ∈  on a grid graph 𝛬 with periodic boundary
conditions:

(i) 𝑑𝑟(𝜎)=0 if and only if 𝜎 has a horizontal bridge on row 𝑟;
(ii) 𝑑𝑐 (𝜎)=0 if and only if 𝜎 has a vertical bridge on column 𝑐;

(iii) if 𝜎 has no horizontal bridge on row 𝑟, then 𝑑𝑟(𝜎) ≥ 2;
(iv) if 𝜎 has no vertical bridge on column 𝑐, then 𝑑𝑐 (𝜎) ≥ 2.

5.2. Metastable states and stability level of the metastable configurations

By Proposition 4.2, 𝐻pos has only one global minimum, 𝑠
pos = {𝟏}. Furthermore, the configurations 𝟐,… ,𝐪 are such that

pos(𝟐) = ⋯ = 𝐻pos(𝐪). In this subsection, our aim is to prove that the metastable set 𝑚
pos is the union of these configurations.

e are going to prove this claim by steps. We begin by obtaining an upper bound for the stability level of the states 𝟐,… ,𝐪.
Given 𝐦 ∈ {𝟐,… ,𝐪}, let us compute the following energy gap between any 𝜎 ∈  and 𝐦,

𝐻pos(𝜎) −𝐻pos(𝐦) =
∑

(𝑣,𝑤)∈𝐸
1{𝜎(𝑣)≠𝜎(𝑤)} − ℎ

∑

𝑢∈𝑉
1{𝜎(𝑢)=1}

= 𝑑𝑣(𝜎) + 𝑑ℎ(𝜎) − ℎ
∑

𝑢∈𝑉
1{𝜎(𝑢)=1}, (5.5)

here in the last equality we used (5.4).
We say that a path 𝜔 ∈ 𝛺𝜎,𝜎′ is the concatenation of the 𝐿 paths 𝜔(𝑖) = (𝜔(𝑖)

0 ,… , 𝜔(𝑖)
𝑛𝑖 ), for some 𝑛𝑖 ∈ N, 𝑖 = 1,… , 𝐿 if

= (𝜔(1)
0 = 𝜎,… , 𝜔(1)

𝑛1 , 𝜔
(2)
0 ,… , 𝜔(2)

𝑛2 ,… , 𝜔(𝐿)
0 ,… , 𝜔(𝐿)

𝑛𝐿 = 𝜎′).

efinition 5.4. For any 𝐦 ∈ 𝑚
pos, we define a reference path 𝜔̃ ∶ 𝐦 → 𝟏, 𝜔̃ = (𝜔̃0,… , 𝜔̃𝐾𝐿) as the concatenation of the two paths

̃ (1) ∶= (𝟏 = 𝜔̃0,… , 𝜔̃(𝐾−1)2 ) and 𝜔̃(2) ∶= (𝜔̃(𝐾−1)2 ,… , 𝐦 = 𝜔̃𝐾𝐿). The paths 𝜔̃(1) and 𝜔̃(2) are obtained by replacing 𝟏 with 𝐦 and 𝐬
ith 𝟏 in the paths 𝜔̂(1) and 𝜔̂(2) of [19, Definition 5.1]. See Appendix A.1.1 for the explicit definition.

For any fixed 𝐦 ∈ 𝑚
pos, let us focus on the transition from 𝐦 to 𝑠

pos = {𝟏}. Given 𝑚 ∈ 𝑆, let

𝑁𝑚(𝜎) ∶= |{𝑣 ∈ 𝑉 ∶ 𝜎(𝑣) = 𝑚}| (5.6)

e the number of vertices with spin 𝑚 in 𝜎 ∈  .

emma 5.5. Let 𝐦 ∈ 𝑚
𝑝𝑜𝑠. For any 𝜎 ∈ 𝑅̄𝓁∗−1,𝓁∗ (𝑚, 1) there exists a path 𝛾 ∶ 𝜎 → 𝐦 such that the maximum energy along 𝛾 is bounded

s

max
𝜉∈𝛾

𝐻𝑝𝑜𝑠(𝜉) < 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) +𝐻𝑝𝑜𝑠(𝐦). (5.7)

roof. The proof proceeds analogously to the proof of [19, Lemma 5.4] by replacing 𝟏 with 𝐦, 𝐬 with 𝟏 and 𝜔̂ with 𝜔̃. See
ppendix A.1.2 for the explicit proof. □

In the next lemma we show that for any 𝐦 ∈ 𝑚
pos, 𝐵̄

2
𝓁∗−1,𝓁∗ (𝑚, 1) is connected to the stable set 𝑠

pos by a path that does not
vercome the energy value 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) +𝐻pos(𝐦).

emma 5.6. Let 𝐦 ∈ 𝑚
𝑝𝑜𝑠. For any 𝜎 ∈ 𝐵̄2

𝓁∗−1,𝓁∗ (𝑚, 1) there exists a path 𝛾 ∶ 𝜎 → 𝐦 such that the maximum energy along 𝛾 is bounded
s

max
𝜉∈𝛾

𝐻𝑝𝑜𝑠(𝜉) < 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) +𝐻𝑝𝑜𝑠(𝐦). (5.8)

roof. The proof proceeds analogously to the proof of [19, Lemma 5.5] by replacing 𝟏 with 𝐦, 𝐬 with 𝟏 and 𝜔̂ with 𝜔̃. See
ppendix A.1.3 for the explicit proof. □

We are now able to prove the following propositions, in which we give an upper bound and a lower bound for 𝛤pos(𝐦,𝑠
pos) ∶=

pos(𝐦,𝑠
pos) −𝐻pos(𝐦), for any 𝐦 ∈ 𝑚

pos.

roposition 5.7 (Upper Bound for the Communication Height). For every 𝐦 ∈ 𝑚
𝑝𝑜𝑠,

𝛷pos(𝐦,𝑠
pos) −𝐻pos(𝐦) ≤ 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1). (5.9)

roof. The upper bound (5.9) follows by the proof of Lemma 5.6, where we proved that max𝜉∈𝜔̃ 𝐻pos(𝜉) = 𝐻pos(𝜔̃𝑘∗ ) = 4𝓁∗−ℎ(𝓁∗(𝓁∗−
) + 1) +𝐻 (𝐦). □
12

pos
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Fig. 4. Stable tiles centered in any 𝑣 ∈ 𝑉 for a 𝑞-Potts configuration on 𝛬 for any 𝑚, 𝑟, 𝑠, 𝑡 ∈ 𝑆∖{1} different from each other. The tiles are depicted up to a
otation of 𝛼 𝜋

2
, 𝛼 ∈ Z.

Proposition 5.8 (Lower Bound for the Communication Height). For every 𝐦 ∈ 𝑚
pos,

𝛷pos(𝐦,𝑠
pos) −𝐻pos(𝐦) ≥ 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1). (5.10)

Proof. The proof proceeds analogously to the proof of [19, Proposition 5.2] by replacing 𝟏 with 𝐦, 𝐬 with 𝟏 and 𝜔̂ with 𝜔̃. See
Appendix A.1.4 for the explicit proof. □

The above Propositions 5.7 and 5.8 are used to prove (4.1) in Theorem 4.3. Note that (4.1) is the min–max energy value reached
by any optimal path 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑠
pos

for every 𝐦 ∈ 𝑚
pos.

Lemma 5.9. Any 𝜔 ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑠

𝑝𝑜𝑠
is such that 𝜔 ∩ 𝑅̄𝓁∗−1,𝓁∗ (𝑚, 1) ≠ ∅.

Proof. The proof proceeds analogously to the proof of [19, Lemma 5.6] by replacing 𝟏 with 𝐦, 𝐬 with 𝟏 and 𝜔̂ with 𝜔̃. See
Appendix A.1.5 for the explicit proof. □

Let 𝜎 ∈  and let 𝑣 ∈ 𝑉 . We define the tile centered in 𝑣, denoted by 𝑣-tile, as the set of five sites consisting of 𝑣 and its four
nearest neighbors. See for instance Fig. 4. A 𝑣-tile is said to be stable for 𝜎 if by flipping the spin on vertex 𝑣 from 𝜎(𝑣) to any 𝑠 ∈ 𝑆
he energy difference 𝐻pos(𝜎𝑣,𝑠) − 𝐻pos(𝜎) is greater than or equal to zero. In Lemma 5.10 we define the set of all possible stable
iles induced by the Hamiltonian (2.2). For any 𝜎 ∈  , 𝑣 ∈ 𝑉 and 𝑠 ∈ 𝑆, we define 𝑛𝑠(𝑣) as the number of nearest neighbors to 𝑣
ith spin 𝑠 in 𝜎, i.e., 𝑛𝑠(𝑣) ∶= |{𝑤 ∈ 𝑉 ∶ 𝑤 ∼ 𝑣, 𝜎(𝑤) = 𝑠}|.

emma 5.10 (Characterization of Stable 𝑣-Tiles in a Configuration 𝜎). Let 𝜎 ∈  and let 𝑣 ∈ 𝑉 . The tile centered in 𝑣 is stable for 𝜎 if
nd only if it satisfies one of the following conditions.

(1) For any 𝑚 ∈ 𝑆, 𝑚 ≠ 1, if 𝜎(𝑣) = 𝑚, 𝑣 has either at least three nearest neighbors with spin 𝑚 or two nearest neighbors with spin 𝑚 and
two nearest neighbors with spin 𝑟, 𝑡 ∈ 𝑆∖{𝑚} such that they may be not both equal to 1, see Fig. 4(a),(c),(d),(f)–(m), or one nearest
neighbor 𝑚 and three nearest neighbors with spin 𝑟, 𝑠, 𝑡 ∈ 𝑆∖{1} different from each other, see Fig. 4(r).

(2) If 𝜎(𝑣) = 1, 𝑣 has either at least two nearest neighbors with spin 1, see Fig. 4(b),(e),(n)–(q) or it has one nearest neighbor 1 and three
nearest neighbors with spin 𝑟, 𝑠, 𝑡 ∈ 𝑆∖{1} different from each other, see Fig. 4(s).

n particular, if 𝜎(𝑣) = 𝑚, then

𝐻𝑝𝑜𝑠(𝜎𝑣,𝑟) −𝐻𝑝𝑜𝑠(𝜎) = 𝑛𝑚(𝑣) − 𝑛𝑟(𝑣) + ℎ1{𝑚=1} − ℎ1{𝑟=1}. (5.11)

roof. Let 𝜎 ∈  and let 𝑣 ∈ 𝑉 . To find if a 𝑣-tile is stable for 𝜎 we reduce ourselves to flip the spin on vertex 𝑣 from 𝜎(𝑣) = 𝑚
o a spin 𝑟 such that 𝑛𝑟(𝑣) > 1. Indeed, otherwise the energy difference (2.8) is for sure strictly positive. Let us divide the proof in
everal cases.
ase 1. Assume that 𝑛𝑚(𝑣) = 0 in 𝜎. Then the corresponding 𝑣-tile is not stable for 𝜎. Indeed, for any 𝑚 ∈ 𝑆 and 𝑟 ∉ {1, 𝑚}, by

lipping the spin on vertex 𝑣 from 𝑚 to 𝑟 we get

𝐻pos(𝜎𝑣,𝑟) −𝐻pos(𝜎) = −𝑛𝑟(𝑣) + ℎ1{𝑚=1}. (5.12)

oreover, by flipping the spin on vertex 𝑣 from 𝑚 ≠ 1 to 1 we have

𝐻pos(𝜎𝑣,1) −𝐻pos(𝜎) = −𝑛1(𝑣) − ℎ. (5.13)

ence, for any 𝑚 ∈ 𝑆, if 𝑣 has spin 𝑚 and it has four nearest neighbors with spins different from 𝑚, then the tile centered in 𝑣 is
ot stable for 𝜎 since the energy difference (2.8) is always strictly negative.
ase 2. Assume that 𝑣 ∈ 𝑉 has three nearest neighbors with spin value different from 𝑚 in 𝜎, i.e., 𝑛𝑚(𝑣) = 1. Then, in view of the
nergy difference (2.8), for any 𝑚 ∈ 𝑆 and 𝑟 ∉ {1, 𝑚}, by flipping the spin on vertex 𝑣 from 𝑚 to 𝑟 we have

𝑣,𝑟
13

𝐻pos(𝜎 ) −𝐻pos(𝜎) = 1 − 𝑛𝑟(𝑣) + ℎ1{𝑚=1}. (5.14)
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Furthermore, for any 𝑚 ≠ 1, if 𝑟 = 1 by flipping the spin on vertex 𝑣 from 𝑚 to 1 we have

𝐻pos(𝜎𝑣,1) −𝐻pos(𝜎) = 1 − 𝑛1(𝑣) − ℎ. (5.15)

Hence, for any 𝑚 ∈ 𝑆, 𝑚 ≠ 1, if 𝑣 has only one nearest neighbor with spin 𝑚, a tile centered in 𝑣 is stable for 𝜎 only if 𝑣 has nearest
neighbors with spins different from each other and from 1, see Fig. 4(r). While, if 𝑚 = 1, if 𝑣 has only one nearest neighbor with
spin 1, a tile centered in 𝑣 is stable for 𝜎 only if 𝑣 has nearest neighbors with spins different from each other, see Fig. 4(s).
Case 3. Assume that 𝑣 ∈ 𝑉 has two nearest neighbors with spin 𝑚 in 𝜎, i.e., 𝑛𝑚(𝑣) = 2. Then, in view of the energy difference (2.8),
for any 𝑚 ∈ 𝑆 and 𝑟 ∉ {1, 𝑚}, by flipping the spin on vertex 𝑣 from 𝑚 to 𝑟 we have

𝐻pos(𝜎𝑣,𝑟) −𝐻pos(𝜎) = 2 − 𝑛𝑟(𝑣) + ℎ1{𝑚=1}. (5.16)

Furthermore, by flipping the spin on vertex 𝑣 from 𝑚 ≠ 1 to 1 we get

𝐻pos(𝜎𝑣,1) −𝐻pos(𝜎) = 2 − 𝑛1(𝑣) − ℎ. (5.17)

Hence, for any 𝑚 ∈ 𝑆, if 𝑣 has two nearest neighbors with spin 𝑚 and two nearest neighbors with spin 1, then the corresponding
𝑣-tile is not stable. In all the other cases, for any 𝑚 ∈ 𝑆, if 𝑣 has two nearest neighbors with spin 𝑚, the corresponding 𝑣-tile is stable
for 𝜎, see Fig. 4(f)–(q).
Case 4. Assume that 𝑣 ∈ 𝑉 has three nearest neighbors with spin 𝑚 and one nearest neighbor 𝑟 in 𝜎, i.e., 𝑛𝑚(𝑣) = 3 and 𝑛𝑟(𝑣) = 1.
Then, for any 𝑚 ∈ 𝑆 and 𝑟 ∉ {1, 𝑚}, by flipping the spin on vertex 𝑣 from 𝑚 to 𝑟 we have

𝐻pos(𝜎𝑣,𝑟) −𝐻pos(𝜎) = 2 + ℎ1{𝑚=1}. (5.18)

Moreover, by flipping the spin on vertex 𝑣 from 𝑚 ≠ 1 to 1 we get

𝐻pos(𝜎𝑣,1) −𝐻pos(𝜎) = 2 − ℎ. (5.19)

Case 5. Assume that 𝑣 ∈ 𝑉 has four nearest neighbors with spin 𝑚, i.e., 𝑛𝑚(𝑣) = 4 in 𝜎. Then, we have 𝑛𝑟(𝑣) = 0 and

𝐻pos(𝜎𝑣,𝑟) −𝐻pos(𝜎) = 4 + ℎ1{𝑚=1}. (5.20)

Furthermore, by flipping the spin on vertex 𝑣 from 𝑚 ≠ 1 to 1 we get

𝐻pos(𝜎𝑣,1) −𝐻pos(𝜎) = 4 − ℎ. (5.21)

rom Case 4 and Case 5, for any 𝑚 ∈ 𝑆, we get that a 𝑣-tile is always stable for 𝜎 if 𝑣 has at least three nearest neighbors with spin
𝑚, see Fig. 4(a)–(e). In particular, in all the cases 1 − 5 we verify that (5.11) is satisfied by (5.12)–(5.21). □

Let ℳpos be the set of the local minima of the Hamiltonian 𝐻pos, that is

ℳpos ∶= {𝜎 ∈  ∶ 𝐻pos(𝜎) < 𝐻pos(𝜂) for any 𝜂 ∈ ∖{𝜎} such that 𝑃𝛽 (𝜎, 𝜂) > 0}. (5.22)

subset 𝐷 ⊂  is said to be a plateau if it is a maximal connected set of equal energy configurations and it is said to be stable if
pos(ℱ (𝜕𝐷)) > 𝐻pos(𝐷). Let ̄ℳpos ∶=

⋃

𝐷 stable plateau 𝐷 be the set the stable plateaux of 𝐻pos.

emark 5.11. Note that a configuration 𝜎 ∈  is a local minimum for 𝐻pos, respectively a stable plateau, when for any 𝑣 ∈ 𝑉 and
∈ 𝑆 the energy difference (2.8) is strictly positive, respectively null. Then if 𝜎 has at least one unstable 𝑣-tile, for some 𝑣 ∈ 𝑉 , it
oes not belong to ℳpos ∪ ℳ̄pos.

emma 5.12 (Characterization of the 1-Clusters in Local Minima and Stable Plateaux). Let 𝜎 ∈ ℳpos ∪ ℳ̄pos. Any 1-cluster of 𝜎 is a
ectangle.

roof. Let 𝐶1(𝜎) be a 1-cluster of 𝜎 and let 𝜕𝐶1(𝜎) = {𝑣 ∈ 𝑉 ∶ 𝑣 ∉ 𝐶1(𝜎) and ∃𝑢 ∈ 𝐶1(𝜎) s.t. {𝑢, 𝑣} ∈ 𝐸} be the boundary of 𝐶1(𝜎).
ssume by contradiction that 𝐶1(𝜎) is not a rectangle. This means that there exist at least a 𝑣 ∉ 𝐶1(𝜎) and two 𝑢1, 𝑢2 ∈ 𝐶1(𝜎) such

hat the edges {𝑣, 𝑢1} and {𝑣, 𝑢2} form an internal angle of 3
2𝜋 on the border of 𝐶1(𝜎). Since 𝜎(𝑣) ≠ 1 and 𝜎(𝑢1) = 𝜎(𝑢2) = 1, by

emma 5.10 the tile centered at vertex 𝑣 is not stable and this is a contradiction in view of Remark 5.11. □

We are now able to prove Proposition 4.5.

roof of Proposition 4.5. In order to estimate the stability level of any 𝜎 ∈ ∖{𝟏,… ,𝐪} it is enough to focus on 𝜎 ∈
pos ∪ ℳ̄pos∖{𝟏,… ,𝐪}. Our goal is to prove that for any 𝜎 ∈ ℳpos ∪ ℳ̄pos∖{𝟏,… ,𝐪}, 𝑉 pos

𝜎 < 𝑉 ∗ ∶= 4
ℎ . Indeed, given 𝛿 ∈ (0, 1)

such that 𝓁∗ = ⌈

2
ℎ ⌉ =

2
ℎ + 𝛿,

𝑉 ∗ − 𝛤pos(𝐦,𝑠
pos) ≤

4
ℎ
− 4𝓁∗ + ℎ(𝓁∗)2 − ℎ𝓁∗ + ℎ

= 4
ℎ
− 4

( 2
ℎ
+ 𝛿

)

+ ℎ
(

4
ℎ2

+ 4
ℎ
𝛿 + 𝛿2

)

− ℎ
( 2
ℎ
+ 𝛿

)

+ ℎ
14

= ℎ − 2 + ℎ𝛿(𝛿 − 1) < 0, (5.23)
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Fig. 5. Pictorial illustrations of the proof of Proposition 4.5. We color white the 1-cluster and with a color different from white each 𝑚-cluster for any 𝑚 ∈ 𝑆,
𝑚 ≠ 1. Notice that, in (d) we assume 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 ≥ 1 for 𝑖 = 1, 2; indeed, if (at least) one of them is zero, then we would retrieve a configuration for which a
roof based on a similar construction of the one given for the case depicted in (c) applies.

here we used 0 < ℎ, 𝛿 < 1. We divide the proof into three cases depending on the geometry of the configuration 𝜂 ∈  ⧵ {𝟏,… ,𝐪},
as follows. In the first case, we focus on those configurations in which there is a super-critical 1-rectangle. This part of the proof
is independent from what surrounds such a rectangle. In the second case, we consider those configurations in which there is a
sub-critical 1-rectangle and we divide the proof into five sub-cases, depending on the spin configuration in the external perimeter
of the 1-rectangle. Finally, in the third case we consider those configurations in which there are no 1-rectangles, and analyze them
differently depending on the geometry of their perimeter. First, we take into account the case in which the configurations are
characterized by clusters with only angles of 𝜋; second, we consider those configurations composed by clusters with only angles of
𝜋 or 𝜋

2 ; finally, we study the scenario in which a configuration has at least one cluster with angles of 3
2𝜋. We further subdivide the

analysis of this last class of configurations in three cases, depending on the spin configuration in the external perimeter, similarly
as in the second case above. We encourage the reader to refer to the figures throughout the proof.

Case 1. Assume that 𝜎 has a 1-cluster, i.e., a 1-rectangle in view of Lemma 5.12. Let 𝑎, 𝑏 ∈ N be the side lengths of this 1-rectangle
and assume 𝑎 = max{𝑎, 𝑏} ≥ 𝓁∗. We construct a path 𝜔 = (𝜔0,… , 𝜔𝑎), where 𝜔0 = 𝜎 and 𝜔𝑎 = 𝜎̄, that flips to 1 consecutively those
spins adjacent to a side of length 𝑎 of the 1-rectangle. Using (2.8), we have

𝐻pos(𝜔1) −𝐻pos(𝜎) ≤ 2 − ℎ and 𝐻pos(𝜔𝑖) −𝐻pos(𝜔𝑖−1) ≤ −ℎ, for 𝑖 = 2,… , 𝑎. (5.24)

From (3.14) and (5.24), if 𝑎 > 𝓁∗, then 𝐻pos(𝜎̄) −𝐻pos(𝜎) ≤ 2 − ℎ𝑎 < 2 − ℎ𝓁∗ < 0. Since the maximum energy is reached at the
first step, we conclude 𝑉 pos

𝜎 = 2 − ℎ < 𝑉 ∗.
Otherwise, if 𝜎 has only 1-rectangles 𝓁∗ × 𝓁∗, then 𝜎̄ has a 1-rectangle 𝓁∗ × (𝓁∗ + 1), say 𝑅̄. Either 𝑅̄ does not interact with the

other 1-rectangles of 𝜎̄, or 𝑅̄ interacts with another 1-rectangle 𝑅̂. In the former case, it is enough to repeat the above construction
along the side of length 𝓁∗ +1 > 𝓁∗. In the latter case, there exists in 𝜎̄ a vertex 𝑤 that is connected to both 𝑅̄ and 𝑅̂. This vertex 𝑤
has at least two nearest neighbors with spin 1 inside the 1-rectangles 𝑅̄ and 𝑅̂, respectively. Hence, set 𝜎̂ ∶= 𝜎̄(𝑤,1) and using (2.8),
we get 𝐻pos(𝜎̂) −𝐻pos(𝜎̄) ≤ −ℎ < 0. Using (5.24), it follows that along the path (𝜎, 𝜔1,… , 𝜔𝓁−2, 𝜎̄, 𝜎̂) the maximum energy is reached
at the first step. Thus, we conclude that 𝑉 pos

𝜎 = 2 − ℎ < 𝑉 ∗.

Case 2. Now assume that in 𝜎 each 1-rectangle has sides of lengths 𝑎, 𝑏 < 𝓁∗, 𝑎, 𝑏 ∈ N.
Case 2.1 Assume that along a side of the boundary of 1-rectangle there are three adjacent vertices that have a spin value different

from each other, see Fig. 5(a). Flipping to 1 the spin on the central vertex 𝑣, the energy decreases by at least −ℎ. Hence, 𝑉 pos
𝜎 = 0.

Case 2.2 Assume that along a side, say of length 𝑎, of the boundary of 1-rectangle there are 2 ≤ 𝑛 ≤ 𝑎 adjacent vertices having
the same spin value 𝑚 ∈ 𝑆, 𝑚 ≠ 1, see Fig. 5(b). Note that we assume 𝜎(𝑢), 𝜎(𝑣) ≠ 𝑚, 1. We construct a path 𝜔 = (𝜔0 = 𝜎,… , 𝜔𝑛) that
starting from the vertex 𝑤 flips to 1 the 𝑛 spins 𝑚. We have

𝐻pos(𝜔𝑖) −𝐻pos(𝜔𝑖−1) ≤
⎧

⎪

⎨

⎪

⎩

1 − ℎ, if 𝑖 = 1,
−ℎ, if 𝑖 = 2,… , 𝑛 − 1,
−1 − ℎ, if 𝑖 = 𝑛.

(5.25)

From (5.25), we conclude that 𝐻pos(𝜔𝑛) − 𝐻pos(𝜎) = −ℎ𝑛 < 0 and 𝑉 pos
𝜎 = 1 − ℎ < 𝑉 ∗. Note that the proof of this case and of the

previous one holds also for the case in which the 1-rectangle is a 1-strip that is an admissible case in view of the stable tile as in
Fig. 4(o) and (q).

Case 2.3 Assume that the 1-rectangle is surrounded by four different blocks as in Fig. 5(c). We assume that 𝑠, 𝑚, 𝑟, 𝑡 are such that
𝑟, 𝑡 ∈ 𝑆∖{𝑚, 𝑠} but the cases 𝑠 = 𝑚 and/or 𝑟 = 𝑡 are admissible. Conversely to the previous case, we are now allowing to have along
each side of length 𝑎, 𝑏 of the 1-rectangle a sequence of at least either 𝑎+ 1 or 𝑏+ 1, respectively, spins of the same value such that
this sequence starts from the vertex above to a corner of the 1-rectangle and ends beyond the opposite corner of the same side. Note
that on each corner of the 1-rectangle there is a 𝑣-tile as in Fig. 4(p) and also that we are imposing the above conditions along all
the four sides of the 1-rectangle. Otherwise, if there is at least a side as in Fig. 5(a)–(b), we retrieve the proof of Case 2.1 and Case
2.2.

First assume that 𝑎 + 𝑏 ≥ 𝓁∗. We construct a path 𝜔 ∶ 𝜎 → 𝜎̄ that first updates to 1 the spins on the vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4, see
15

Fig. 6(a), then flips to 1 the remaining spins different from 1 on the external boundary of the 1-rectangle. It starts from 𝑤 and follows
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Fig. 6. Pictorial illustration of the first part of the proof of Case 2.3 of Proposition 4.5 when 𝑎 + 𝑎 ≥ 𝓁∗.

Fig. 7. Pictorial illustration of the proof of Case 2.3 of Proposition 4.5 when 𝑎 + 𝑏 ≤ 𝓁∗ − 1.

clockwise order, see Fig. 6(b). Using (2.8), the assumption 𝑎 + 𝑏 > 𝓁∗ and 𝓁∗ = ⌈

2
ℎ ⌉ >

2
ℎ ,

𝐻pos(𝜎̄) −𝐻pos(𝜎) ≤ 4(1 − ℎ) − ℎ𝑎 − ℎ𝑏 − ℎ𝑎 − ℎ𝑏

= −2ℎ(𝑎 + 𝑏) − 4ℎ + 4 ≤ −2ℎ𝓁∗ − 4ℎ + 4 < −4ℎ < 0. (5.26)

The maximum of the energy along 𝜔 is reached at the fourth step, so 𝑉 pos
𝜎 ≤ 𝛷𝜔 ≤ 4 − 4ℎ and 4 − 4ℎ < 𝑉 ∗ from 0 < ℎ < 1

2 .
Next assume 𝑎+ 𝑏 ≤ 𝓁∗ − 1. Without loss of generality, let 𝑏 ≤ 𝓁∗−1

2 . Otherwise it is enough to replace the role of spin 𝑠 with the
ne of spin 𝑚 in the following, see Fig. 5(c). We define a path 𝜔 as the concatenation of 𝑏 paths 𝜔(𝑖) for 𝑖 = 1,… , 𝑏. Let 𝜎0 = 𝜎 and,
or 𝑖 = 1,… , 𝑏− 1, let 𝜔(𝑖) ∶ 𝜎𝑖−1 → 𝜎𝑖 be the path that flips to 𝑠 the spins 1 from vertex 𝑢𝑖 to vertex 𝑤𝑖, see Fig. 7(a). Hence, for any
= 1,… , 𝑏 − 1, we have

𝐻pos(𝜎𝑖) −𝐻pos(𝜎𝑖−1) = 1 + ℎ + ℎ(𝑎 − 2) = ℎ(𝑎 − 1) + 1. (5.27)

inally, the path 𝜔(𝑏) flips to 𝑠 the spins 1 first from 𝑣̄1 to 𝑣̄𝑎−1 and then from 𝑣̂1 to 𝑣̂𝑏, see Fig. 7(b). Now we have

𝐻pos(𝜎𝑏) −𝐻pos(𝜎𝑏−1) = ℎ + (−1 + ℎ)(𝑎 − 2) + (−1 + ℎ)(𝑏 − 1) − 2 + ℎ

= 1 − ℎ − 𝑎(1 − ℎ) − 𝑏(1 − ℎ). (5.28)

hus,

𝐻pos(𝜎𝑏) −𝐻pos(𝜎) = ℎ𝑎𝑏 − 𝑎 ≤
⎧

⎪

⎨

⎪

⎩

𝑎(2ℎ − 1), if 𝑏 = 2,

𝑎
(

ℎ 𝓁∗−1
2 − 1

)

, if 𝑏 > 2,
(5.29)

and in both cases the two quantities are strictly lower than 0 since 0 < ℎ < 1
2 and 𝓁∗ = ⌈

2
ℎ ⌉ implies ℎ(𝓁∗ − 1) < 2.

The maximum along 𝜔 is reached at the first step of 𝜔(𝑏), i.e.,

𝑉 pos
𝜎 ≤ 𝛷𝜔 = (ℎ𝑎 + 1 − ℎ)(𝑏 − 1) + ℎ = ℎ𝑎(𝑏 − 1) + 𝑏 − 1 + 2ℎ − ℎ𝑏

< 𝑏 − 1 + ℎ𝑎(𝑏 − 1) ≤ 𝓁∗ − 1
2

+ ℎ
(𝓁∗ − 1)2

2

< 1
2

( 2
ℎ
+ 1 − 1

)

+ ℎ
2

( 2
ℎ
+ 1 − 1

)2
= 3

ℎ
. (5.30)

here we used ℎ(2 − 𝑏) < 0 since 𝑏 ≥ 2 in view of Lemma 5.10 and 𝓁∗ = ⌈

2
ℎ ⌉ <

2
ℎ + 1. Since 3

ℎ < 𝑉 ∗, we conclude.
Note that the proof of this case holds for all those scenarios in which at least a side of the 1-rectangle satisfies the above conditions.
Case 2.4 Assume that the 1-rectangle is surrounded by four different blocks as in Fig. 5(d). In this case 𝑟, 𝑠 ∈ 𝑆∖{𝑚, 𝑡} and it is

dmissible that 𝑟 = 𝑠 and/or 𝑚 = 𝑡. Let 𝑎1 + 𝑎2 = 𝑐1 + 𝑐2 = 𝑎 and 𝑏1 + 𝑏2 = 𝑑1 + 𝑑2 = 𝑏. In order to complete the enumeration of all
possible cases we require that 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 ≥ 1 for 𝑖 = 1, 2. Indeed, note that if at least one among them is 0, then we retrieve the case
of Fig. 5(c) on that side. Note that here the novelty is that we allow to have each corner of the 1-rectangle surrounded by the same
pin value, i.e., to have on each external corner three spins that form an angle of 3

2𝜋 and that have the same spin value among them
but different from the one on the opposite external corner on the same side. The case in which at least a side of the 1-rectangle is
16
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Fig. 8. Illustrations of the configurations visited by the path defined in the proof of Case 2.4 under the condition 𝑎 + 𝑏 ≥ 𝓁∗.

Fig. 9. Configurations visited by the path 𝜔 defined in the case 𝑎 + 𝑏 < 𝓁∗ of Case 2.4.

completely surrounded by the same spin value is considered in the next Case 2.5. Once again we impose these conditions on each
side of the 1-rectangle in order to not retrieve the Cases 2.1, 2.2, 2.3.

First assume that 𝑎 + 𝑏 ≥ 𝓁∗. We refer to Figs. 5(d) and 8 for a pictorial illustration of the proof. We define a path 𝜔 as the
concatenation of the subpaths 𝜔(𝑖) for 𝑖 = 1,… , 5 that are constructed as follows. The path 𝜔(1) ∶ 𝜎 → 𝜎1 flips to 1 the spins on the
vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4. Hence, 𝐻pos(𝜎1) −𝐻pos(𝜎) = 4 − 4ℎ.

The path 𝜔(2) ∶ 𝜎1 → 𝜎2 flips to 1 the spins 𝑠 first from the vertex 𝑢1 to the vertex 𝑢𝑎1 , then from 𝑤1 to 𝑤𝑑2+1. Thus,

𝐻pos(𝜎2) −𝐻pos(𝜎1) = −ℎ𝑎1 − ℎ𝑑2. (5.31)

For 𝑖 = 2, 3, 4, the path 𝜔(𝑖) ∶ 𝜎𝑖 → 𝜎𝑖+1 is defined in the same way on one of the other three corners of the 1-rectangle. Thus,

𝐻pos(𝜎3) −𝐻pos(𝜎2) = −ℎ𝑑1 − ℎ𝑐2, (5.32)

𝐻pos(𝜎4) −𝐻pos(𝜎3) = −ℎ𝑐1 − ℎ𝑏2, (5.33)

𝐻pos(𝜎5) −𝐻pos(𝜎4) = −ℎ𝑏1 − ℎ𝑎2. (5.34)

Then, given 𝛿 ∈ (0, 1) such that 𝓁∗ = 2
ℎ + 𝛿, note that

𝐻pos(𝜎5) −𝐻pos(𝜎) = −2ℎ(𝑎 + 𝑏) − 4ℎ + 4 ≤ −2ℎ𝓁∗ − 4ℎ + 4

= −2ℎ
( 2
ℎ
+ 𝛿

)

− 4ℎ + 4 = −2ℎ𝛿 − 4ℎ < 0. (5.35)

he maximum of the energy along 𝜔 is reached at the fourth step, i.e., 𝑉 pos
𝜎 ≤ 𝛷pos

𝜔 = 4 − 4ℎ, and 4 − 4ℎ < 𝑉 ∗ from 0 < ℎ < 1
2 .

Next assume 𝑎 + 𝑏 < 𝓁∗. If 𝑏 = min{𝑎, 𝑏} = 2, then we flip to 𝑚 and to 𝑟 the spins 1 adjacent to the left side of length 2 of the
1-rectangle, see Fig. 5(d). Let 𝜎̄ be the configuration that we obtain from 𝜎 after these flips. Note that the first spin-update increases
the energy by ℎ, the second one decreases it by −1 + ℎ. Hence, 𝐻pos(𝜎̄) −𝐻pos(𝜎) = 2ℎ − 1 < 0 since 0 < ℎ < 1

2 and 𝑉 pos
𝜎 = ℎ < 𝑉 ∗

Let now assume that 𝑎, 𝑏 > 2. We refer to Figs. 5(d) and 9 for a pictorial illustration of the proof. We define a path 𝜔 as the
concatenation of the subpaths 𝜔(𝑖) for 𝑖 = 1,… , 5 that are constructed as follows. The path 𝜔(1) ∶ 𝜎 → 𝜎1 flips to 𝑠 the spins 1 first
from the vertex 𝑢1 to the vertex 𝑢𝑎1 , then from 𝑤1 to 𝑤𝑑2−1. Thus,

𝐻pos(𝜎1) −𝐻pos(𝜎) = ℎ𝑎1 + ℎ(𝑑2 − 1). (5.36)

imilarly we define the path 𝜔(𝑖) ∶ 𝜎𝑖 → 𝜎𝑖+1 for 𝑖 = 2, 3, 4 on one of the other three internal corners of the 1-rectangle. In particular,

𝐻pos(𝜎2) −𝐻pos(𝜎1) = ℎ(𝑑1 − 1) + ℎ(𝑐2 − 1), (5.37)

𝐻pos(𝜎3) −𝐻pos(𝜎2) = ℎ(𝑐1 − 1) + ℎ(𝑏2 − 1), (5.38)

𝐻pos(𝜎4) −𝐻pos(𝜎3) = ℎ(𝑏1 − 1) + ℎ(𝑎2 − 2). (5.39)

inally the path 𝜔(5) ∶ 𝜎4 → 𝜎5 flips to 𝑠, 𝑚, 𝑡, 𝑟 the spins on the vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4. Hence,

𝐻pos(𝜎5) −𝐻pos(𝜎4) = −4 + 4ℎ. (5.40)

Then, since 𝓁∗ = ⌈

2
ℎ ⌉ <

2
ℎ + 1,

∗

17

𝐻pos(𝜎5) −𝐻pos(𝜎) = 2ℎ(𝑎 + 𝑏) − 4 − 4ℎ ≤ 2ℎ(𝓁 − 1) − 4ℎ − 4 < 4 − 4ℎ − 4 = −4ℎ < 0.
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The maximum of the energy along 𝜔 is reached at the end of the subpath 𝜔(4), i.e., 𝑉 pos
𝜎 ≤ 𝛷pos

𝜔 = 2ℎ(𝑎+𝑏)−8ℎ ≤ 2ℎ(𝓁∗−1)−8ℎ <
− 8ℎ where we used 𝓁∗ = ⌈

2
ℎ ⌉ <

2
ℎ + 1. Note that 4 − 8ℎ < 𝑉 ∗ in view of the condition 0 < ℎ < 1

2 .
Case 2.5 Assume that the 1-rectangle is surrounded by spins of the same value. We define a path 𝜔 = (𝜔0,… , 𝜔𝑎) that flips

consecutively, from 1 to 𝑚, those spins next to a side of length 𝑎 < 𝓁∗. According to (2.8), we have

𝐻pos(𝜔𝑖) −𝐻pos(𝜔𝑖−1) =

{

ℎ, for 𝑖 = 1,… , 𝑎 − 1;
−(2 − ℎ), for 𝑖 = 𝑎.

(5.41)

hus, the maximum energy along 𝜔 is reached at the step 𝑎−1 and, 𝑉 pos
𝜎 = ℎ(𝑎−1). To conclude note that 𝑎 < 𝓁∗ and 𝓁∗ = ⌈

2
ℎ ⌉ <

2
ℎ+1

imply ℎ(𝑎 − 1) < ℎ(𝓁∗ − 1) < 2 < 𝑉 ∗.

Case 3. Finally, assume that 𝜎 does not have an 1-cluster. We divide the proof in three cases.
First, consider the scenario in which for any 𝑚 ∈ 𝑆, 𝑚 ≠ 1, the boundary of an 𝑚-cluster has only angles of 𝜋. This means that

each 𝑚-cluster is a strip. Without loss of generality let 𝜎 have an 𝑚-strip 𝑎 × 𝐾 adjacent to an 𝑟-strip 𝑏 × 𝐾 with 𝑎, 𝑏 ∈ Z, 𝑎, 𝑏 ≥ 1.
Let 𝜎̄ be the configuration obtained from 𝜎 by flipping all the spins 𝑚 belonging to the 𝑚-strip from 𝑚 to 𝑟. Let 𝜎0 = 𝜎 and let 𝜎𝑖
e the configuration in which the initial 𝑚-strip is reduced to a strip (𝑎 − 𝑖) × 𝐾 and the 𝑟-strip to a strip (𝑏 + 𝑖) × 𝐾. We define a
ath 𝜔 ∶ 𝜎 → 𝜎̄ as the concatenation of 𝑎 paths 𝜔(1),… , 𝜔(𝑎) such that 𝜔(𝑖) ∶= (𝜔(𝑖)

0 = 𝜎𝑖−1, 𝜔
(𝑖)
1 ,… , 𝜔(𝑖)

𝐾 = 𝜎𝑖) is the path 𝜔(𝑖) flips
consecutively from 𝑚 to 𝑟 those spins 𝑚 belonging to the column next to the 𝑟-strip. Thus, using (2.8), we have

𝐻pos(𝜔
(𝑖)
𝑗 ) −𝐻pos(𝜔

(𝑖)
𝑗−1) =

⎧

⎪

⎨

⎪

⎩

2, if 𝑗 = 1,
0, if 𝑗 = 2,… , 𝐾 − 1,
−2, if 𝑗 = 𝐾.

(5.42)

Hence, for any 𝑖 = 1,… , 𝑎 − 1, the maximum energy value along 𝜔(𝑖) is reached at the first step. Finally, we construct a path
𝜔(𝑎) ∶= (𝜔(𝑎)

0 = 𝜎𝑎−1,… , 𝜔(𝑎)
𝐾 = 𝜎̄) that flips consecutively from 𝑚 to 𝑟 the spins 𝑚 of the remaining column of the initial 𝑚-strip in 𝜎.

Note that for the energy difference there are two possible values depending on whether the strips next to the initial 𝑚 strip 𝑎 × 𝐾
have the same value 𝑟 or one has value 𝑟 and the other 𝑠 ≠ 𝑟, 𝑚. Hence, using (2.8), we have

𝐻pos(𝜔
(𝑎)
1 ) −𝐻pos(𝜎𝑎−1) ≤ 1, and 𝐻pos(𝜔

(𝑎)
𝑖 ) −𝐻pos(𝜔

(𝑎)
𝑖−1) ≤ −2 for 𝑖 = 2,… , 𝐾. (5.43)

In view of 5.12–(5.43), we get 𝐻pos(𝜎) > 𝐻pos(𝜎̄). Furthermore, since the maximum energy value is reached at the first step, we get
𝑉 pos
𝜎 ≤ 2 < 𝑉 ∗.

Second, we consider the case in which for any 𝑚 ∈ 𝑆, 𝑚 ≠ 1, each 𝑚-cluster is 𝜎 has angles of either 𝜋
2 or 𝜋. This means that

each 𝑚-cluster is a rectangle. Without loss of generality let 𝜎 contain an 𝑚-rectangle 𝑅̄ ∶= 𝑅𝑎×𝑏 and an 𝑟-rectangle 𝑅̃ ∶= 𝑅𝑐×𝑑 such
that the 𝑚-rectangle 𝑅̄ has a side of length 𝑎 adjacent to a side of the 𝑟-rectangle 𝑅̃ of length 𝑐 ≥ 𝑎. The case 𝑐 < 𝑎 may be studied
y interchanging the role of the spins 𝑚 and 𝑟. Given 𝜎̄ the configuration obtained from 𝜎 by flipping from 𝑚 to 𝑟 all the spins 𝑚
elonging to 𝑅̄, we construct a path 𝜔 ∶ 𝜎 → 𝜎̄ as the concatenation of 𝑏 paths 𝜔(1),… , 𝜔(𝑏). Let 𝜎0 ≡ 𝜎 and for any 𝑖 = 1,… , 𝑏 let
𝑖 be the configuration in which the initial 𝑟-rectangle 𝑅̃ is reduced to a rectangle 𝑐 × 𝑑 with a protuberance 𝑎 × 𝑖 and the initial
-rectangle 𝑅̄ is reduced to a rectangle 𝑎×(𝑏−𝑖). We define 𝜔(𝑖) ∶= (𝜔(𝑖)

0 = 𝜎𝑖−1, 𝜔
(𝑖)
1 ,… , 𝜔(𝑖)

𝑎 = 𝜎𝑖) as the path which flips consecutively
to 𝑟 those spins 𝑚 adjacent to the side of length 𝑎 of the 𝑚-rectangle 𝑎 × (𝑏 − 𝑖). Thus, using (2.8),

𝐻pos(𝜔
(𝑖)
𝑗 ) −𝐻pos(𝜔

(𝑖)
𝑗−1) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑗 = 1,
0, if 𝑗 = 2,… , 𝑎 − 1,
−1, if 𝑗 = 𝑎.

(5.44)

hen, for any 𝑖 = 1,… , 𝑏 − 1, the maximum energy value along 𝜔(𝑖) is reached at the first step. Finally, we define a path
(𝑏) ∶= (𝜔(𝑏)

0 = 𝜎𝑏−1,… , 𝜔(𝑏)
𝓁 = 𝜎̄) that flips consecutively from 𝑚 to 𝑟 the spins 𝑚 belonging to the remaining 𝑚-rectangle 𝑎 × 1.

In particular, using (2.8), we get

𝐻pos(𝜔
(𝑏)
1 ) −𝐻pos(𝜎𝑏−1) ≤ −1, and 𝐻pos(𝜔

(𝑏)
𝑖 ) −𝐻pos(𝜔

(𝑏)
𝑖−1) ≤ −2. (5.45)

Thanks to 5.12–(5.45), we get 𝐻pos(𝜎) > 𝐻pos(𝜎̄). Moreover, since the maximum along 𝜔 is reached at the first step, by 5.12 we get
𝑉 pos
𝜎 = 1 < 𝑉 ∗.

Finally, assume that for some 𝑚 ∈ 𝑆, 𝑚 ≠ 1, 𝜎 has an 𝑚-cluster with an angle of 3
2𝜋 and none of the previous cases are applicable.

hen the only admissible stable 𝑣-tiles appearing in 𝜎 are the ones depicted in Fig. 4(a), (c), (f), and (h). First, let us focus on the
table 𝑣-tiles (a), (c) and (f). Upon fixing a spin value, say 𝑟, such that there exists at least an 𝑟-cluster having an angle of 3

2𝜋, we
prove that there exists a procedure defined on the plateaux of configurations where 𝜎 belongs and that leads either to decrease
the energy or to a configuration where the 𝑟-clusters are only rectangles. We often refer to Fig. 10 for a pictorial illustration of the
proof.

First we focus on a stable 𝑣-tile as the one depicted in Fig. 4(f) where 𝑚 ∈ 𝑆, 𝑚 ≠ 1, 𝑟. Flipping from 𝑚 to 𝑟 the spin on the central
ertex leads to a configuration having the same energy of 𝜎, see Fig. 10(a). This spin flip changes four other tiles. We focus our
ttention solely on the tile centered in 𝑣̂, which corresponds to the unit square highlighted by a thick border in Fig. 10(a), as the
thers are treated similarly. If in 𝜎 the stable 𝑣̂-tile is as the one depicted in Fig. 4(f), then we flip from 𝑚 to 𝑟 its spin central 𝑚 and
e conclude since the energy decreases by 2, see Fig. 10(b). Otherwise, if in 𝜎 the stable 𝑣̂-tile is as the one depicted in Fig. 4(c),

hen in the new configuration it is the center of a stable tile as depicted in Fig. 4(f), see Fig. 10(c). Finally, if in 𝜎 the stable 𝑣̂-tile is
18
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Fig. 10. Pictorial illustration of the final part of the proof of 4.5.

Fig. 11. Pictorial illustration of the four possible external boundaries of a side of the 𝑟-rectangle 𝑅̄ studied in the final part of Case 3 of the proof of Proposition 4.5.
Notice that to avoid considering redundant cases, in (b) and (c), we assume 𝓁1 ,𝓁2 < 𝓁 and 𝑘 < 𝓁, respectively.

s the one depicted in Fig. 4(a), then in the new configuration it is the center of a stable tile as depicted in Fig. 4(f), see Fig. 10(d).
terating this procedure, since the volume of 𝛬 is finite, we end up either decreasing the energy by 2 or removing all the stable
-tiles as depicted in Fig. 4(f). In the former case, we conclude the proof. In the latter case, we obtain a configuration where each
-cluster does not have angles of 3

2𝜋. In other words, each 𝑟-cluster is either a rectangle or a strip. Notice that the same proof holds
hen considering the vertex above the center of the tile depicted in Fig. 10(a). Let us now focus on one of these 𝑟-rectangles, say 𝑅̄.

We argue similarly as in Case 2 by considering the possible external boundaries of 𝑅̄ constructed by the stable tiles as in Fig. 4(a),
(c), (f), and (h). We will often refer to Fig. 11.

Case 3.1 Assume that 𝑅̄ has at least a side, say of length 𝓁, which is fully surrounded by the same spin value 𝑚 ∈ 𝑆, 𝑚 ≠ 1, 𝑟,
see Fig. 11(a). In this setting, starting from one corner and flipping from 𝑟 to 𝑚 the spins 𝑟 on the vertices defining that side, the
first 𝓁 − 1 spin-updates preserve the energy, while after the last one it decreases by 2 and we conclude.

Case 3.2 Assume now that each side of 𝑅̄ is surrounded by clusters of two different spins, see Fig. 11(b). Notice that with
‘surrounded’ we mean that the stable tiles on the corner of that side of 𝑅̄ are of the type represented in Fig. 4(f). We further refer
to Fig. 12 to aid the understanding of the proof. Flipping from 𝑟 to 𝑚 all the spins on those vertices which are the center of stable
tiles as in Fig. 4(f) leads us to a configuration, say 𝜂, in which the 𝑅̄ is now as in Fig. 12(b) and whose energy is the same as the
initial configuration. Consider now 𝜂. Flipping from 𝑟 to 𝑧 all the spins on the first 𝓁 − 1 vertices adjacent to the 𝑧-cluster, which
are the center of stable tiles of the type depicted in Fig. 4(f), leads to a configuration 𝜂̄ in which the 𝑟-cluster is now as in Fig. 12(c)
and such that 𝐻pos(𝜂) = 𝐻pos(𝜂̄). Finally, flipping from 𝑟 to 𝑧 the spin on the last vertex, see Fig. 12(d), decreases the energy by 1
and it is enough to conclude.

Case 3.3 Consider now the case depicted in Fig. 11(c). If there exists at least a side of 𝑅̄ for which there exists an 𝑠-cluster, for
some 𝑠 ∈ 𝑆, 𝑠 ≠ 1, 𝑟, with a side, say of length 𝑘, fully adjacent to it, then we proceed as follows. When we have one of the situations
(or of a their possible generalization) depicted in Fig. 13 (c1) and (c2), then starting from one corner of the side of the 𝑠-cluster
adjacent to 𝑅̄ and flipping from 𝑠 to 𝑟 all the following 𝑘 spins leads to increase the energy by 1 after the first spin-update, to
preserve the energy after the following 𝑘−2 spin-updates and to decrease it by 1 after the last spin-update. Iterating this procedure,
so flipping from 𝑠 to 𝑟 the 𝑘 or less spins 𝑠 on the row immediately above, at a certain point the opposite horizontal side is reached
and the second spin 𝑠 which is updated to 𝑟 on this last row leads to decrease the energy by at least 1. Notice that the opposite side
could be adjacent to the opposite horizontal side of 𝑅̄ in view of the periodic boundary conditions and also that the same arguments
hold also for a generic geometric shape of the 𝑠-cluster, the only fundamental request is the existence of at least one of its sides fully
adjacent to a side of 𝑅̄. Otherwise, if we are in one of the cases depicted in Fig. 13 (c ) and (c ), where the 𝑠-cluster enlarges, we
19
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Fig. 12. Pictorial illustration of the Case 3.2 of the proof of Proposition 4.5.

Fig. 13. Pictorial illustration of the cases considered in Case 3.3 of the proof of Proposition 4.5.

rgue as follows. First, we proceed as above flipping from 𝑠 to 𝑟 those spins 𝑠 in the portion of the 𝑠-cluster of width 𝑘 (or lower).
long this path, the maximum energy increase is 1 and the energy difference between the final and the initial configuration is 0.
econd, we flip from 𝑚 to 𝑟 those spins 𝑚 on the vertical side adjacent to the new protuberance of 𝑅̄. More precisely, first we flip

from 𝑚 to 𝑟 the spin 𝑚 on the lowest corner, second we flip the spin 𝑚 on the vertex on the row immediately above and so on until
we still find stable tiles as in Fig. 4(f). Finally, we find a spin 𝑚 which has two nearest neighbors with spin 𝑟 (the one on the left and
the one below if we consider the cases depicted in Fig. 13 (c3) and (c4)), one nearest neighbor with spin 𝑠 and one nearest neighbor
with spin 𝑚. Flipping from 𝑚 to 𝑟 that spin leads to decrease the energy by 1 and we conclude.

Case 3.4 Let us now assume that 𝑅̄ has at least a side completely adjacent to an 𝑠-cluster, for some 𝑠 ∈ 𝑆, 𝑠 ≠ 1, 𝑟. In this case
we apply a similar procedure to the one described above: proceeding from a corner to another corner and row by row and flipping
from 𝑟 to 𝑠 all the spins inside 𝑅̄, when the opposite side of length 𝓁 of 𝑅̄ is reached the energy decreases by at least 1. In general,
note that following this procedure and flipping from 𝑟 to 𝑠 all the spins 𝑟 inside 𝑅̄, leads to construct a path whose height is 1 and
such that the energy difference between the final and the initial configuration is 𝓁, i.e., the overall number of disagreeing edges
which are removed once the two opposite sides of 𝑅̄ end to coincide. □

5.3. Energy landscape and asymptotic behavior: proof of the main results

We are now able to prove Corollary 4.4 and Theorem 4.8.

Proof of Corollary 4.4. By [63, Lemma 3.6] we have that 𝛤pos(∖𝑠
pos) is the maximum energy that the process started in 𝜂 ∈ ∖𝑠

pos
has to overcome in order to arrive in 𝑠

pos = {𝟏}, i.e.,

𝛤pos(∖𝑠
pos) = max

𝜂∈∖𝑠
pos

𝛤pos(𝜂,𝑠
pos). (5.46)

Hence, let us proceed to estimate 𝛤pos(𝜂,𝑠
pos) for any 𝜂 ∈ ∖𝑠

pos. Let 𝐦 ∈ 𝑚
pos. Note that for any 𝜂 ∈ ∖(𝑠

pos ∪ 𝑚
pos) there are

ot initial cycles 𝜂
𝑠

pos
(𝛤pos(𝜂,𝑠

pos)) deeper that 𝐦
𝑠

pos
(𝛤𝑚

pos). While for any 𝐳 ∈ 𝑚
pos∖{𝐦}, the initial cycles 𝐳

𝑠
pos

(𝛤𝑚
pos) are as deep as

𝐦
𝑠

pos
(𝛤𝑚

pos). By this fact, that holds since we are in the metastability scenario as in [63, Subsection 3.5, Example 1], we get that for
ny 𝐦 ∈ 𝑚

pos

𝛤pos(𝜂,𝑠
pos) = 𝛷pos(𝜂,𝑠

pos) −𝐻pos(𝜂) ≤ 𝛷pos(𝐦,𝑠
pos) −𝐻pos(𝐦) = 𝛤pos(𝐦,𝑠

pos), (5.47)

where the last equality follows by Theorem 4.3. Thus, we conclude that (4.3) is verified since, using (4.1), we have 𝛤pos(𝐦,𝑠
pos) =

𝛤𝑚
pos. □

Proof of Theorem 4.8. The theorem follows by [50, Theorem 2.3]. In order to apply this result it is enough to show that the pair
(𝐦, 𝐺) verifies the assumption

sup
𝜂∈

P
(

𝜏𝜂{𝐦,𝐺} > 𝑅
)

≤ 𝛿, (5.48)

𝐦

20

with 𝑅 < E(𝜏𝐺 ) and 𝛿 sufficiently small. To prove (5.48), let us distinguish two cases.
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Fig. 14. Illustration of three examples of 𝜎 ∈ 𝒟𝑚
pos when 𝓁∗ = 5. We color black the vertices with spin 𝑚. In (a) the 𝓁∗(𝓁∗ − 1) + 1 = 21 spins different from

𝑚 have not all the same spin value and they belong to more clusters. In (b) these spins different from 𝑚 have the same spin value and they belong to three
different clusters. In (c) the spins different from 𝑚 have the same spin value and they belong to a single cluster.

Case 1. Let 𝜂 ∈ 𝐦
𝑠

pos
(𝛤𝑚

pos). By Equation (2.20) of [59, Theorem 2.17] applied to the cycle 𝐦
𝑠

pos
(𝛤𝑚

pos) we get that almost surely
the process visits 𝐦 before exiting from the cycle 𝐦

𝑠
pos

(𝛤𝑚
pos). More precisely, we have that there exists 𝑘1 > 0 such that for any 𝛽

sufficiently large

P(𝜏𝜂𝐦 > 𝜏𝜂𝜕𝐦
𝑠

pos
(𝛤𝑚

pos)
) ≤ 𝑒−𝑘1𝛽 . (5.49)

Since 𝜏𝜂𝐺 > 𝜏𝜂𝜕𝐦
𝑠

pos
(𝛤𝑚

pos)
, it follows that the process almost surely visits 𝐦 before hitting 𝐺. Furthermore, since {𝟏,… ,𝐪}∖{𝐦} ⊂ 𝐺, we

obtain that almost surely the process starting from 𝜂 visits 𝐦 before hitting {𝟏,… ,𝐪}∖{𝐦}, i.e., 𝜏𝜂𝐦 = 𝜏𝜂{𝟏,…,𝐪}. Using the recurrence
property given in Theorem 4.6, we conclude that (5.48) is satisfied by choosing 𝑅 = 𝑒𝛽(2+𝜖) with 2 + 𝜖 < 𝛤𝑚

pos and 𝛿 = 𝑒−𝑒𝑘2𝛽 with
2 > 0.
ase 2. Let 𝜂 ∈ ∖𝐦

𝑠
pos

(𝛤𝑚
pos). In this case (5.48) is trivially verified for any 𝑅 and 𝛿 sufficiently small since 𝜂 belongs to the

arget. □

. Minimal gates and tube of typical trajectories

In this section we investigate on the minimal gates and the tube of typical paths for the transition from any 𝐦 ∈ 𝑚
pos to 𝑠

pos = {𝟏}.
e further identify the union of all minimal gates also for the transition from a metastable state to the other metastable states.

.1. Identification of critical configurations for the transition from a metastable to the stable state

The goal of this subsection is to investigate the set of critical configurations for the transition from any 𝐦 ∈ 𝑚
pos to 𝑠

pos = {𝟏}.
he idea of the proof of the following lemmas and proposition generalizes the proof of similar results given in [33, Section 6] for
he Blume Capel model.

First we need to give some further definitions. For any 𝑚 ∈ 𝑆∖{1} we define 𝒟𝑚
pos ⊂  as the set of those configurations with

𝛬| − (𝓁∗(𝓁∗ − 1) + 1) spins equal to 𝑚

𝒟𝑚
pos ∶= {𝜎 ∈  ∶ 𝑁𝑚(𝜎) = |𝛬| − (𝓁∗(𝓁∗ − 1) + 1)}. (6.1)

urthermore, we define

𝒟𝑚,+
pos ∶= {𝜎 ∈  ∶ 𝑁𝑚(𝜎) > |𝛬| − (𝓁∗(𝓁∗ − 1) + 1)}, (6.2)

ote that 𝐦 ∈ 𝒟𝑚,+
pos , and

𝒟𝑚,−
pos ∶= {𝜎 ∈  ∶ 𝑁𝑚(𝜎) < |𝛬| − (𝓁∗(𝓁∗ − 1) + 1)}. (6.3)

or any 𝜎 ∈ 𝒟𝑚
pos, we remark that 𝜎 has 𝓁∗(𝓁∗ − 1) + 1 spins different from 𝑚 and they may have not the same spin value and

ay belong to one or more clusters, see Fig. 14. A two dimensional polyomino on Z2 is a finite union of unit squares. The area of
polyomino is the number of its unit squares, while its perimeter is the cardinality of its boundary, namely, the number of unit

dges of the dual lattice which intersect only one of the unit squares of the polyomino itself. Thus, the perimeter is the number of
nterfaces on Z2 between the sites inside the polyomino and those outside. The polyominoes with minimal perimeter among those
ith the same area are said to be minimal polyominoes.

emma 6.1. For any 𝑚 ∈ {2,… , 𝑞} the minimum of the energy in 𝒟𝑚
𝑝𝑜𝑠 is achieved by those configurations in which the 𝓁∗(𝓁∗ − 1) + 1

pins different from 𝑚 are 1 and they belong to a unique cluster of perimeter 4𝓁∗. More precisely,

ℱ (𝒟𝑚
𝑝𝑜𝑠) = {𝜎 ∈ 𝒟𝑚

𝑝𝑜𝑠 ∶ 𝜎 has all spins 𝑚 except those in a unique cluster 𝐶1(𝜎) of spins

1 of perimeter 4𝓁∗}. (6.4)

oreover,
𝑚 𝑠 𝑠
21

𝐻pos(ℱ (𝒟𝑝𝑜𝑠)) = 𝐻𝑝𝑜𝑠(𝐦) + 𝛤𝑝𝑜𝑠(𝐦,𝑝𝑜𝑠) = 𝛷𝑝𝑜𝑠(𝐦,𝑝𝑜𝑠). (6.5)
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Fig. 15. Examples of 𝜎 ∈ 𝒟𝑚
pos (a) and of 𝜎 ∈ 𝒟𝑚

pos (b) and (c) when 𝓁∗ = 5. We associate the color black to the spin 𝑚, the color white to the spin 1. The
otted rectangle represents 𝑅(𝐶1(𝜎)). Figure (d) is an example of configuration that does not belong to 𝒟𝑚

pos.

roof. Let 𝑚 ∈ {2,… , 𝑞}. From the definition of the Hamiltonian 𝐻pos, (2.2), we get that the presence of disagreeing edges increases
he energy, thus in order to identify the bottom of 𝒟𝑚

pos we have to consider those configurations 𝜎 ∈ 𝒟𝑚
pos in which the 𝓁∗(𝓁∗−1)+1

pins different from 𝑚 belong to a single cluster. Moreover, given the number of the disagreeing edges, the presence of each spin
decreases the energy by ℎ compared of the presence with other spins. Hence, the single cluster is full of spins 1, say 𝐶1(𝜎), and

t is inside a homogeneous sea of spins 𝑚. Arguing like in the second part of the proof of Proposition 5.8, we have that 4𝓁∗ is
he minimal perimeter of a polyomino of area 𝓁∗(𝓁∗ − 1) + 1. Thus, for any 𝜎 ∈ ℱ (𝒟𝑚

pos), 𝐶1(𝜎) must have perimeter 4𝓁∗. Hence,
ll the characteristics given in (6.4) are verified. Let us now prove (6.5). By (4.11) we get that pos(𝐦,𝑠

pos) ⊂ ℱ (𝒟𝑚
pos), that is

pos(ℱ (𝒟𝑚
pos)) = 𝐻pos(pos(𝐦,𝑠

pos)). Thus, (6.5) is satisfied since for any 𝜂 ∈ pos(𝐦,𝑠
pos),

𝐻pos(𝜂) −𝐻pos(𝐦) = 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) = 𝛤pos(𝐦,𝑠
pos). □ (6.6)

In the next corollary we show that every optimal path from 𝐦 ∈ 𝑚
pos to 𝑠

pos = {𝟏} visits at least once ℱ (𝒟𝑚
pos), i.e., we prove

hat ℱ (𝒟𝑚
pos) is a gate for the transition from 𝐦 to 𝑠

pos.

orollary 6.2. Let 𝐦 ∈ 𝑚
𝑝𝑜𝑠. For any 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑠
𝑝𝑜𝑠

we have 𝜔 ∩ℱ (𝒟𝑚
𝑝𝑜𝑠) ≠ ∅. Hence, ℱ (𝒟𝑚

𝑝𝑜𝑠) is a gate for the transition 𝐦 → 𝑠
𝑝𝑜𝑠.

roof. Every path from 𝐦 ∈ 𝑚
pos to the stable configuration 𝟏 has to pass through the set 𝑚

𝑘 ∶= {𝜎 ∈  ∶ 𝑁𝑚(𝜎) = 𝑘} for any
= |𝑉 |,… , 0. In particular, given 𝑘∗ ∶= 𝓁∗(𝓁∗ − 1) + 1, any 𝜔 = (𝜔0,… , 𝜔𝑛) ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑠
pos

visits at least once the set 𝑚
|𝛬|−𝑘∗ ≡ 𝒟𝑚

pos.
ence, there exists 𝑖 ∈ {0,… 𝑛} such that 𝜔𝑖 ∈ 𝒟𝑚

pos. Since from (6.5) we have that the energy value of any configuration belonging
o ℱ (𝒟𝑚

pos) is equal to the min–max reached by any optimal path from 𝐦 to 𝑠
pos, we conclude that 𝜔𝑖 ∈ ℱ (𝒟𝑚

pos). □

In the last result of this subsection, we prove that, for any 𝐦 ∈ 𝑚
pos, every optimal path 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑠
pos

is such that 𝜔∩pos(𝐦,𝑠
pos) ≠

. Hence, we show that pos(𝐦,𝑠
pos) is a gate for the transition 𝐦 → 𝑠

pos.

roposition 6.3. Let 𝐦 ∈ 𝑚
𝑝𝑜𝑠. Then, any 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑠
𝑝𝑜𝑠

visits 𝑝𝑜𝑠(𝐦,𝑠
𝑝𝑜𝑠). Hence, 𝑝𝑜𝑠(𝐦,𝑠

𝑝𝑜𝑠) is a gate for the transition 𝐦 → 𝑠
𝑝𝑜𝑠.

roof. For any 𝑚 ∈ 𝑆, 𝑚 ≠ 1, let 𝒟𝑚
pos and 𝒟𝑚

pos be the subsets of ℱ (𝒟𝑚
pos) defined as follows. 𝒟𝑚

pos is the set of those configurations
f ℱ (𝒟𝑚

pos) in which the boundary of the polyomino 𝐶1(𝜎) intersects each side of the boundary of its smallest surrounding rectangle
(𝐶1(𝜎)) on a set of the dual lattice Z2 + (1∕2, 1∕2) made by at least two consecutive unit segments, see Fig. 15(a). On the other
and, 𝒟𝑚

pos is the set of those configurations of ℱ (𝒟𝑚
pos) in which the boundary of the polyomino 𝐶1(𝜎) intersects at least one side

f the boundary of 𝑅(𝐶1(𝜎)) in a single unit segment, see Fig. 15(b) and (c).
In particular note that ℱ (𝒟𝑚

pos) = 𝒟𝑚
pos ∪𝒟𝑚

pos. The proof proceeds in five steps.
Step 1. Our first aim is to prove that

𝒟𝑚
pos = pos(𝐦,𝑠

pos) ∪ ′
pos(𝐦,𝑠

pos). (6.7)

rom (4.11) we have pos(𝐦,𝑠
pos) ∪  ′

pos(𝐦,𝑠
pos) ⊆ 𝒟𝑚

pos. Thus we reduce our proof to show that 𝜎 ∈ 𝒟𝑚
pos implies 𝜎 ∈

pos(𝐦,𝑠
pos)∪

′
pos(𝐦,𝑠

pos). Note that this implication is not straightforward, since given 𝜎 ∈ 𝒟𝑚
pos, the boundary of the polyomino

1(𝜎) could intersect the other three sides of the boundary of its smallest surrounding rectangle 𝑅(𝐶1(𝜎)) in a proper subsets of the
ides itself, see Fig. 15(d) for an illustration of this hypothetical case. Hence, consider 𝜎 ∈ 𝒟𝑚

pos and let 𝑅(𝐶1(𝜎)) = 𝑅(𝓁∗+𝑎)×(𝓁∗+𝑏)
ith 𝑎, 𝑏 ∈ Z. In view of the proof of Lemma 6.1 we have that 𝐶1(𝜎) is a minimal polyomino and by [33, Lemma 6.16] it is also

onvex and monotone, i.e., its perimeter of value 4𝓁∗ is equal to the one of 𝑅(𝐶1(𝜎)). Hence, the following equality holds

4𝓁∗ = 4𝓁∗ + 2(𝑎 + 𝑏). (6.8)

n particular, (6.8) is satisfied only by 𝑎 = −𝑏. Now, let 𝑅̃ be the smallest rectangle surrounding the polyomino, say 𝐶̃1(𝜎), obtained
y removing the unit protuberance from 𝐶1(𝜎). If 𝐶1(𝜎) has the unit protuberance adjacent to a side of length 𝓁∗ + 𝑎, then 𝑅̃ is a
ectangle (𝓁∗+𝑎)× (𝓁∗−𝑎−1). Note that 𝑅̃ must have an area larger than or equal to the number of spins 1 of the polyomino 𝐶̃1(𝜎),
hat is 𝓁∗(𝓁∗ − 1). Thus, we have

̃ ∗ ∗ ∗ ∗ 2 ∗ ∗ 2
22

Area(𝑅) = (𝓁 + 𝑎)(𝓁 − 𝑎 − 1) = 𝓁 (𝓁 − 1) − 𝑎 − 𝑎 ≥ 𝓁 (𝓁 − 1) ⟺ −𝑎 − 𝑎 ≥ 0. (6.9)



Stochastic Processes and their Applications 172 (2024) 104343G. Bet et al.

I

W
i
w
𝜔
f
𝜔
i

t
c

I

w
w

U
c
f
H

w

s
t
a
l
r
M

S
𝐻
i
t

B
t

Since 𝑎 ∈ Z, −𝑎2 − 𝑎 ≥ 0 is satisfied only if either 𝑎 = 0 or 𝑎 = −1. Otherwise, if 𝐶1(𝜎) has the unit protuberance adjacent to a side
of length 𝓁∗ − 𝑎, then 𝑅̃ is a rectangle (𝓁∗ + 𝑎 − 1) × (𝓁∗ − 𝑎) and

Area(𝑅̃) = (𝓁∗ + 𝑎 − 1)(𝓁∗ − 𝑎) = 𝓁∗(𝓁∗ − 1) − 𝑎2 + 𝑎 ≥ 𝓁∗(𝓁∗ − 1) ⟺ −𝑎2 + 𝑎 ≥ 0. (6.10)

Since 𝑎 ∈ Z, −𝑎2 + 𝑎 ≥ 0 is satisfied only if either 𝑎 = 0 or 𝑎 = 1. In both cases we get that 𝑅̃ is a rectangle of side lengths 𝓁∗ and
𝓁∗ − 1. Thus, if the protuberance is attached to one of the longest sides of 𝑅̃, then 𝜎 ∈ pos(𝐦,𝑠

pos), otherwise 𝜎 ∈  ′
pos(𝐦,𝑠

pos).
n any case we conclude that (6.7) is satisfied.

Step 2. For any 𝐦 ∈ 𝑚
pos and for any path 𝜔 = (𝜔0,… , 𝜔𝑛) ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑠
pos

, let

𝑔𝑚(𝜔) ∶= {𝑖 ∈ N ∶ 𝜔𝑖 ∈ ℱ (𝒟𝑚
pos), 𝑁1(𝜔𝑖−1) = 𝓁∗(𝓁∗ − 1), 𝑁𝑚(𝜔𝑖−1) = |𝛬| − 𝓁∗(𝓁∗ − 1)}. (6.11)

e claim that 𝑔𝑚(𝜔) ≠ ∅. Let 𝜔 = (𝜔0,… , 𝜔𝑛) ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑠

pos
and let 𝑗∗ ≤ 𝑛 be the smallest integer such that after 𝑗∗ the path leaves 𝒟𝑚,+

pos ,
.e., (𝜔𝑗∗ ,… , 𝜔𝑛)∩𝒟

𝑚,+
pos = ∅. Since 𝜔𝑗∗−1 is the last configuration in 𝒟𝑚,+

pos , it follows that 𝜔𝑗∗ ∈ 𝒟𝑚
pos and, by the proof of Corollary 6.2,

e have that 𝜔𝑗∗ ∈ ℱ (𝒟𝑚
pos). Moreover, since 𝜔𝑗∗−1 is the last configuration in 𝒟𝑚,+

pos , we have that 𝑁𝑚(𝜔𝑗∗−1) = |𝛬|− 𝓁∗(𝓁∗ − 1) and
𝑗∗ is obtained by 𝜔𝑗∗−1 by flipping a spin 𝑚 from 𝑚 to 𝑠 ≠ 𝑚. Note that 𝑁𝑚(𝜔𝑗∗−1) = |𝛬|− 𝓁∗(𝓁∗ − 1) implies 𝑁𝑠(𝜔𝑗∗−1) ≤ 𝓁∗(𝓁∗ − 1)

or any 𝑠 ∈ 𝑆∖{𝑚}. By Lemma 6.1, 𝜔𝑗∗ ∈ ℱ (𝒟𝑚
pos) implies 𝑁1(𝜔𝑗∗ ) = 𝓁∗(𝓁∗ − 1) + 1, thus 𝑁1(𝜔𝑗∗−1) < 𝓁∗(𝓁∗ − 1) is not feasible since

𝑗∗ and 𝜔𝑗∗−1 differ by a single spin update which increases the number of spins 1 of at most one. Then, 𝑗∗ ∈ 𝑔𝑚(𝜔) and the claim
s proved.

Step 3. We claim that for any path 𝜔 ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑠

pos
one has 𝜔𝑖 ∈ 𝒟𝑚

pos for any 𝑖 ∈ 𝑔𝑚(𝜔). We argue by contradiction. Assume that

here exists 𝑖 ∈ 𝑔𝑚(𝜔) such that 𝜔𝑖 ∉ 𝒟𝑚
pos and 𝜔𝑖 ∈ 𝒟𝑚

pos. Since 𝜔𝑖−1 is obtained from 𝜔𝑖 by flipping a spin 1 to 𝑚 and since any
onfiguration belonging to 𝒟𝑚

pos has all the spins 1 with at least two nearest neighbors with spin 1, using (2.8) we have

𝐻pos(𝜔𝑖−1) −𝐻pos(𝜔𝑖) ≥ (2 − 2) + ℎ = ℎ > 0. (6.12)

n particular, from (6.12) we get a contradiction. Indeed,

𝛷pos
𝜔 ≥ 𝐻pos(𝜔𝑖−1) > 𝐻pos(𝜔𝑖) = 𝐻pos(𝐦) + 𝛤pos(𝐦,𝑠

pos) = 𝛷pos(𝐦,𝑠
pos), (6.13)

here the first equality follows by (6.5). Thus by (6.13) 𝜔 is not an optimal path, which is a contradiction, the claim is proved and
e conclude the proof of Step 3.

Step 4. Now we claim that for any 𝐦 ∈ 𝑚
pos and for any path 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑠
pos

,

𝜔𝑖 ∈ ℱ (𝒟𝑚
pos) ⟹ 𝜔𝑖−1, 𝜔𝑖+1 ∉ 𝒟𝑚

pos. (6.14)

sing Corollary 6.2, for any 𝐦 ∈ 𝑚
pos and any path 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑠
pos

there exists an integer 𝑖 such that 𝜔𝑖 ∈ ℱ (𝒟𝑚
pos). Assume by

ontradiction that 𝜔𝑖+1 ∈ 𝒟𝑚
pos. In particular, since 𝜔𝑖 and 𝜔𝑖+1 have the same number of spins 𝑚, note that 𝜔𝑖+1 is obtained by

lipping a spin 1 from 1 to 𝑡 ≠ 1. Since 𝜔𝑖(𝑣) ≠ 𝑡 for every 𝑣 ∈ 𝑉 , the above flip increases the energy, i.e., 𝐻pos(𝜔𝑖+1) > 𝐻pos(𝜔𝑖).
ence, using this inequality and (6.5), we have

𝛷pos
𝜔 ≥ 𝐻pos(𝜔𝑖+1) > 𝐻pos(𝜔𝑖) = 𝐻pos(𝐦) + 𝛤pos(𝐦,𝑠

pos) = 𝛷pos(𝐦,𝑠
pos), (6.15)

hich implies the contradiction because 𝜔 is not optimal. Thus 𝜔𝑖+1 ∉ 𝒟𝑚
pos and similarly we show that also 𝜔𝑖−1 ∉ 𝒟𝑚

pos.
Step 5. In this last step of the proof we claim that for any 𝐦 ∈ 𝑚

pos and for any path 𝜔 ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑠

pos
there exists a positive integer 𝑖

uch that 𝜔𝑖 ∈ pos(𝐦,𝑠
pos). Arguing by contradiction, assume that there exists 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑠
pos

such that 𝜔∩pos(𝐦,𝑠
pos) = ∅. Thanks

o Corollary 6.2, we know that 𝜔 visits ℱ (𝒟𝑚
pos) and thanks to Step 4 we have that the configurations along 𝜔 belonging to ℱ (𝒟𝑚

pos)
re not consecutive. More precisely, they are linked by a sub-path that belongs either to 𝒟𝑚,+

pos or 𝒟𝑚,−
pos . If 𝑛 is the length of 𝜔, then

et 𝑗 ≤ 𝑛 be the smallest integer such that 𝜔𝑗 ∈ ℱ (𝒟𝑚
pos) and such that (𝜔𝑗 ,… , 𝜔𝑛) ∩𝒟𝑚,+

pos = ∅, thus, 𝑗 ∈ 𝑔𝑚(𝜔) since 𝑗 plays the same
ole of 𝑗∗ in the proof of Step 2. Using (6.7), Step 3 and the assumption 𝜔 ∩pos(𝐦,𝑠

pos) = ∅, it follows that 𝜔𝑗 ∈  ′
pos(𝐦,𝑠

pos).
oreover, starting from 𝜔𝑗 ∈ ℱ (𝒟𝑚

pos) the energy along the path decreases only by either

(i) flipping the spin in the unit protuberance from 1 to 𝑚, or
(ii) flipping a spin, with two nearest neighbors with spin 1, from 𝑚 to 1.

ince by the definition of 𝑗 we have that 𝜔𝑗−1 is the last that visits 𝒟𝑚,+
pos , 𝜔𝑗+1 ∉ 𝒟𝑚,+

pos , (i) is not feasible. Considering (ii), we have
pos(𝜔𝑗+1) = 𝐻pos(𝐦) + 𝛤pos(𝐦,𝑠

pos) − ℎ. Starting from 𝜔𝑗+1 we consider only moves which imply either a decrease of energy or an
ncrease by at most ℎ. Since 𝐶1(𝜔𝑗+1) is a polyomino 𝓁∗ × (𝓁∗ − 1) with a bar made of two adjacent unit squares on a shortest side,
he only feasible moves are

(iii) flipping a spin, with two nearest neighbors with spin 𝑚, from 𝑚 to 1,
(iv) flipping a spin, with two nearest neighbors with spin 1, from 1 to 𝑚.

y means of the moves (iii) and (iv), the process reaches a configuration 𝜎 in which all the spins are equal to 𝑚 except those,
1 1
23

hat are 1, in a connected polyomino 𝐶 (𝜎) that is convex and such that 𝑅(𝐶 (𝜎)) = 𝑅(𝓁∗+1)×(𝓁∗−1). We cannot repeat the move
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(iv) otherwise we get a configuration that does not belong to 𝒟𝑚
pos. While applying one time (iv) and iteratively (iii), until we fill

he rectangle 𝑅(𝓁∗+1)×(𝓁∗−1) with spins 1, we get a set of configurations in which the one with the smallest energy is 𝜎 such that
1(𝜎) ≡ 𝑅(𝐶1(𝜎)). Moreover, from any configuration in this set, a possible move is reached by flipping from 𝑚 to 1 a spin 𝑚 with

hree nearest neighbors with spin 𝑚 that implies to enlarge the circumscribed rectangle. This spin-flip increases the energy by 2−ℎ.
hus, we obtain

𝛷pos
𝜔 ≥ 4𝓁∗ − ℎ(𝓁∗ + 1)(𝓁∗ − 1) + 2 − ℎ +𝐻pos(𝐦)

= 4𝓁∗ − ℎ(𝓁∗)2 + 2 +𝐻pos(𝐦)

> 𝛤pos(𝐦,𝑠
pos) +𝐻pos(𝐦) = 𝛷pos(𝐦,𝑠

pos), (6.16)

hich is a contradiction by the definition of an optimal path. Note that the last inequality follows by 2 > ℎ(𝓁∗ − 1) since 0 < ℎ < 1
2 ,

see Assumption 4.1. It follows that it is not possible to have 𝜔 ∩pos(𝐦,𝑠
pos) = ∅ for any 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑠
pos

, namely pos(𝐦,𝑠
pos) is a

ate for this type of transition. □

.2. Minimal gates for the transition from a metastable state to the other metastable states

This subsection is devoted to the study of the transition from a metastable state to the set of the other metastable configurations.
n Propositions 6.7 and 6.10 we identify geometrically two gates for this type of transition and in Theorem 4.11 we show that the
nion of these sets gives the union of all the minimal gates for the same transition. Furthermore, in this subsection we also give
ome more details for the transition from any metastable state to the stable configuration 𝟏. More precisely, in Proposition 6.9 we
rove that for any 𝐦 ∈ 𝑚

pos almost surely any optimal path 𝜔 ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑠

pos
does not visit any metastable state different from the initial

ne during the transition. Let us begin by proving the following useful lemma.

emma 6.4. For any 𝑚 ∈ {2,… , 𝑞}, let 𝜂 ∈ 𝐵̄1
𝓁∗−1,𝓁∗ (𝑚, 1) and let 𝜂̄ ∈  a configuration which communicates with 𝜂 by one step of the

dynamics. Then, either 𝐻pos(𝜂) < 𝐻pos(𝜂̄) or 𝐻pos(𝜂) > 𝐻pos(𝜂̄).

Proof. Since 𝜂 and 𝜂̄ differ by a single-spin update, let us define 𝜂̄ ∶= 𝜂𝑣,𝑡 for some 𝑣 ∈ 𝑉 and 𝑡 ∈ 𝑆, 𝑡 ≠ 𝜂(𝑣). Note that
∈ 𝐵̄1

𝓁∗−1,𝓁∗ (𝑚, 1) implies that 𝜂 is characterized by all spins 𝑚 except those that are 1 in a quasi-square (𝓁∗ − 1) × 𝓁∗ with a
unit protuberance on one of the longest sides. In particular, for any 𝑣 ∈ 𝑉 , either 𝜂(𝑣) = 𝑚 or 𝜂(𝑣) = 1. If 𝜂(𝑣) = 𝑚, then for any
∈ 𝑆∖{𝑚}, depending on the distance between the vertex 𝑣 and the 1-cluster, we have

𝐻pos(𝜂̄) −𝐻pos(𝜂) =

⎧

⎪

⎨

⎪

⎩

4 − ℎ1{𝑡=1}, if 𝑛𝑚(𝑣) = 4 ;
3 − 1{𝑡=1} − ℎ1{𝑡=1}, if 𝑛𝑚(𝑣) = 3, 𝑛1(𝑣) = 1;
2 − 21{𝑡=1} − ℎ1{𝑡=1}, if 𝑛𝑚(𝑣) = 2, 𝑛1(𝑣) = 2.

(6.17)

therwise, if 𝜂(𝑣) = 1, for any 𝑡 ∈ 𝑆∖{1}, depending on the distance between the vertex 𝑣 and the boundary of the 1-cluster, we get

𝐻pos(𝜂̄) −𝐻pos(𝜂) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4 + ℎ, if 𝑛1(𝑣) = 4;
3 − 1{𝑡=𝑚} + ℎ, if 𝑛𝑚(𝑣) = 1, 𝑛1(𝑣) = 3;
2 − 21{𝑡=𝑚} + ℎ, if 𝑛𝑚(𝑣) = 2, 𝑛1(𝑣) = 2;
1 − 31{𝑡=𝑚} + ℎ, if 𝑛𝑚(𝑣) = 3, 𝑛1(𝑣) = 1.

(6.18)

e conclude that 𝐻pos(𝜂) ≠ 𝐻pos(𝜂̄). □

In the next proposition we prove that the communication energy between metastable states is equal to the one between a
etastable state and the stable state 𝑠

pos = {𝟏}.

roposition 6.5. For any 𝐦 ∈ 𝑚
𝑝𝑜𝑠,

𝛷𝑝𝑜𝑠(𝐦,𝑚
𝑝𝑜𝑠∖{𝐦}) = 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) +𝐻𝑝𝑜𝑠(𝐦) = 𝛷𝑝𝑜𝑠(𝐦,𝑠

𝑝𝑜𝑠). (6.19)

Proof. Let us divide the proof in two steps. First we compute an upper bound of 𝛷pos(𝐦,𝑚
pos∖{𝐦}), second a lower bound.

Upper bound. For any 𝐳 ∈ 𝑚
pos∖{𝐦}, we use Definition 5.4 to construct two reference paths 𝜔̃(1) ∶ 𝐦 → 𝟏 and 𝜔̃(2) ∶ 𝐳 → 𝟏. Thus,

e define the reference path 𝜔∗ ∶ 𝐦 → 𝐳 as the concatenation of the reference path 𝜔̃(1) and the time reversal (𝜔̃(2))𝑇 ∶ 𝟏 → 𝐳. Thus,
∗ = (𝜔̃(1), (𝜔̃(2))𝑇 ). By this definition of 𝜔∗, we have max𝜉∈𝜔∗ 𝐻pos(𝜉) = max{max𝜉∈𝜔̃(1) 𝐻pos(𝜉),max𝜉∈(𝜔̃(2))𝑇 𝐻pos(𝜉)}. In the proof of
emma 5.6, using Eqs. (A.1)–(A.3) and (A.7), we get that

max
𝜉∈𝜔∗

𝐻pos(𝜉) = 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) +𝐻pos(𝐦). (6.20)

hus, applying the definition of the communication energy, we conclude that

𝛷pos(𝐦, 𝐳) = min max𝐻pos(𝜉) ≤ 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) +𝐻pos(𝐦). (6.21)
24

𝜔∶𝐦→𝐳 𝜉∈𝜔
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Lower bound. During the transition from 𝐦 to any 𝐳 ∈ 𝑚
pos∖{𝐦} the process has to intersect at least once the set 𝑚

𝑘 ∶= {𝜎 ∈  ∶
𝑚(𝜎) = 𝑘} for any 𝑘 = 𝐾𝐿,… , 0. In particular, given 𝑘∗ ∶= 𝓁∗(𝓁∗ −1)+1, the process has to visit at least once the set 𝑚

|𝛬|−𝑘∗ . Since
𝑚
|𝛬|−𝑘∗ ≡ 𝒟𝑚

pos, from Lemma 6.1, we have

𝐻pos(ℱ (𝑚
|𝛬|−𝑘∗ )) = 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) +𝐻pos(𝐦). (6.22)

t follows that the process visits at least once the set 𝑚
|𝛬|−𝑘∗ in a configuration with energy larger than or equal to the r.h.s. of

6.22), i.e., we obtain the following lower bound for the communication height between metastable states

𝛷pos(𝐦, 𝐳) ≥ 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) +𝐻pos(𝐦). (6.23)

hanks to (6.21) and (6.23), we conclude that (6.19) is satisfied. □

Exploiting the equality 𝛷pos(𝐦,𝑠
pos) = 𝛷pos(𝐦,𝑚

pos∖{𝐦}) for any 𝐦 ∈ 𝑚
pos, we are now able to state the following corollary and

roposition.

orollary 6.6. Let 𝐦 ∈ 𝑚
𝑝𝑜𝑠 and let 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑚
𝑝𝑜𝑠∖{𝐦}. Then, 𝜔∩ℱ (𝒟𝑚

𝑝𝑜𝑠) ≠ ∅. Hence, ℱ (𝒟𝑚
𝑝𝑜𝑠) is a gate for the transition 𝐦 → 𝑚

𝑝𝑜𝑠∖{𝐦}.

roof. Thanks to (6.19) the proof is analogous to the one of Corollary 6.2. We refer to Appendix A.2.1 for the explicit proof. □

roposition 6.7. For any 𝐦 ∈ 𝑚
𝑝𝑜𝑠, 𝑝𝑜𝑠(𝐦,𝑠

𝑝𝑜𝑠) is a gate for the transition 𝐦 → 𝑚
𝑝𝑜𝑠∖{𝐦}.

roof. Thanks to (6.19) the proof is analogous to the one of Proposition 6.3. See Appendix A.2.2 for the detailed proof. □

Given 𝐦 ∈ 𝑚
pos, the reader may be surprised that pos(𝐦,𝑠

pos) is a minimal gate for both the transitions 𝐦 → 𝑠
pos and

→ 𝑚
pos∖{𝐦}. Intuitively, the set 𝛺𝐦,𝑚

pos∖{𝐦} is partitioned in two non-empty subsets, i.e., the set containing those paths
∈ 𝛺𝐦,𝑚

pos∖{𝐦} such that 𝜔 ∩ 𝟏
𝑚

pos
(𝛤𝑚

pos(𝟏,
𝑚
pos)) ≠ ∅ and the set containing those paths that do not enter this cycle. Corollary 4.12

oints out that the 𝛺𝑜𝑝𝑡
𝐦,𝑚

pos∖{𝐦} is a subset of the first set, i.e.,

𝛺𝑜𝑝𝑡
𝐦,𝑚

pos∖{𝐦} ⊆ {𝜔 ∈ 𝛺𝐦,𝑚
pos∖{𝐦} ∶ 𝜔 ∩ 𝟏

𝑚
pos

(𝛤𝑚
pos(𝟏,

𝑚
pos)) ≠ ∅}. (6.24)

ore precisely, in Proposition 6.9 we show that almost surely the process started in 𝐦 ∈ 𝑚
pos does not visit any other metastable

tates before hitting the stable configuration 𝑠
pos = {𝟏}. In order to prove this result, first we need to introduce the following habitat

nd to show that almost surely during the transition from a metastable to the stable state the process does not exit from it. For any
∈ 𝑚

pos, let

pos ∶= {𝜎 ∈  ∶ 𝐻pos(𝜎) < 𝐻pos(𝐦) + 𝛤pos(𝐦,𝑠
pos) + 𝛿∕2}, (6.25)

here 𝛿 is the minimum energy gap between an optimal and a non-optimal path from 𝐦 to 𝑠
pos. Note that pos is a cycle and that

he choice to give some results on the dynamics from a metastable to the stable state inside pos is justified by the following result.

roposition 6.8. Let 𝑝𝑜𝑠 be the habitat defined in (6.25). Then, ℱ (𝑝𝑜𝑠) = 𝑠
𝑝𝑜𝑠 and 𝑉 (𝑝𝑜𝑠) = 𝛤𝑚

pos. Moreover, for any 𝜔 ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑠

pos
,

uring the transition from any 𝐦 ∈ 𝑚
𝑝𝑜𝑠 to 𝑠

𝑝𝑜𝑠 the process does not exit almost surely from 𝑝𝑜𝑠, i.e.,

lim
𝛽→∞

P(𝜏𝐦𝑠
𝑝𝑜𝑠

< 𝜏𝐦𝜕𝑝𝑜𝑠
) = 1. (6.26)

roof. By Proposition 4.2 we have 𝑠
pos = {𝟏} and by the definition (6.25) we have 𝟏 ∈ pos. Hence, ℱ (pos) = 𝑠

pos = {𝟏}.
urthermore, by (6.25) we also get that 𝑚

pos ⊂ pos. Hence, using Theorem 4.3 we have that 𝑉 (pos) = 𝛤𝑚
pos. Finally, (6.26) is

erified thanks to Equation (2.20) of [59, Theorem 2.17] applied to the cycle pos. □

We are now able to prove the following result.

roposition 6.9 (Study of the Transition from any 𝐦 ∈ 𝑚
pos to 𝑠

pos). For any 𝐦 ∈ 𝑚
𝑝𝑜𝑠 every optimal path from 𝐦 to 𝑠

𝑝𝑜𝑠 almost surely
oes not intersect other metastable states. More precisely,

lim
𝛽→∞

P(𝜏𝐦𝑚
𝑝𝑜𝑠∖{𝐦} > 𝜏𝐦𝑠

𝑝𝑜𝑠
) = 1. (6.27)

roof. Let 𝜔 = (𝜔0 = 𝐦,… , 𝜔𝑛) ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑠

pos
and, for some 𝑗 < 𝑛, let 𝜔𝑗 ∈ pos(𝐦,𝑠

pos). By Corollary 4.10 and by Corollary 4.12 we
et that almost surely the process started in 𝐦 ∈ 𝑚

pos visits pos(𝐦,𝑠
pos) before hitting 𝑠

pos ∪ 𝑚
pos∖{𝐦}. Hence, almost surely we

ave
𝑠 𝑚
25

(𝜔0,… , 𝜔𝑗 ) ∩ (pos ∪ pos∖{𝐦}) = ∅. (6.28)



Stochastic Processes and their Applications 172 (2024) 104343G. Bet et al.

o

P

P

h
a
g

6

P

𝜂
a
o
a
t
n
w
𝐦
𝜂
h
b

Thus, our claim is to show that starting from 𝜔𝑗 , the process arrives in 𝑠
pos before visiting 𝑚

pos∖{𝐦}. By Lemma 6.4, we have
that 𝜔𝑗+1 does not have the same energy value of 𝜔𝑗 . Thus, starting from 𝜔𝑗 , the path passes to a configuration with energy strictly
lower or strictly higher than 𝐻pos(𝜔𝑗 ). More precisely, for some 𝑣 ∈ 𝑉 and some 𝑡 ∈ 𝑆, let 𝜔𝑗+1 ∶= 𝜔𝑣,𝑡

𝑗 . We have to consider the
following possibilities:

(a) 𝑣 is the vertex in the unit protuberance in the 1-cluster in 𝜔𝑗 and 𝑡 = 𝑚;
(b) 𝑣 is a vertex with spin 𝑚 with two nearest-neighbors with spin 𝑚 and two nearest-neighbors with spin 1 in 𝜔𝑗 and 𝑡 = 1;
(c) 𝑣 has spin 1 (respectively 𝑚), 𝑡 = 𝑚 (respectively 𝑡 = 1) and 𝑣 is not a vertex that follows in case (a) (respectively case (b));
(d) 𝑡 ∈ 𝑆∖{1, 𝑚}.

If 𝑣 and 𝑡 are as in case (a), then 𝜔𝑗+1 ∈ 𝐦
𝑠

pos
(𝛤𝑚

pos) and, starting from this configuration, almost surely the process comes back to
𝐦. Indeed, by Equation (2.20) of [59, Theorem 2.17] applied the cycle 𝐦

𝑠
pos

(𝛤𝑚
pos) we have that there exists 𝑘1 > 0 such that for

every 𝛽 sufficiently large

P(𝜏𝜔𝑗+1
𝐦 > 𝜏

𝜔𝑗+1
𝜕𝐦

𝑠
pos

(𝛤𝑚
pos)

) ≤ 𝑒−𝑘1𝛽 . (6.29)

Thus, we repeat the same arguments to reduce the proof again to the cases (a)–(d) above. If 𝑣 and 𝑡 are as in case (b), then
𝜔𝑗+1 ∈ 𝟏

𝑚
pos

(𝛤pos(𝟏,𝑚
pos)) and almost surely the process visits 𝑠

pos = {𝟏} before exiting from this cycle. Indeed, by Equation (2.20)
of [59, Theorem 2.17] applied to the cycle 𝟏

𝑚
pos

(𝛤pos(𝟏,𝑚
pos)) we have that there exists 𝑘2 > 0 such that for every 𝛽 sufficiently

large

P(𝜏𝜔𝑗+1
𝑠

pos
> 𝜏

𝜔𝑗+1

𝜕𝟏
𝑚

pos
(𝛤pos(𝟏,𝑚

pos))
) ≤ 𝑒−𝑘2𝛽 . (6.30)

Since almost surely (6.28) holds, we conclude that (6.27) is verified.
Finally, we consider 𝑣 and 𝑡 as in case (c) and (d) and our claim is to prove that almost surely 𝜔𝑗+1 as in these two cases does

not belong to any optimal path from 𝐦 to 𝑠
pos. Indeed, 𝐻pos(𝜔𝑗+1) > 𝐻pos(𝜔𝑗 ) and since the minimum increase of energy is ℎ, it

follows that

𝐻pos(𝜔𝑗+1) ≥ 𝐻pos(𝜔𝑗 ) + ℎ = 𝛷pos(𝐦,𝑠
pos) + ℎ, (6.31)

where the last equality follows by 𝜔𝑗 ∈ pos(𝐦,𝑠
pos). Hence, by (6.31) and by the definition of the habitat pos, we get that

𝜔𝑗+1 ∉ pos. However, by Proposition 6.8 we have that almost surely the process started in 𝐦 does not exit from pos before hitting
its bottom, and thus the cases (c) and (d) do not belong to any optimal path from 𝐦 to 𝑠

pos. □

Exploiting Proposition 6.9, we are now able to identify another gate for the transition from a metastable state to the set of the
ther metastable states.

roposition 6.10. ⋃

𝐳∈𝑚
𝑝𝑜𝑠∖{𝐦} 𝑝𝑜𝑠(𝐳,𝑠

𝑝𝑜𝑠) is a gate for the transition 𝐦 → 𝑚
𝑝𝑜𝑠∖{𝐦}.

roof. Using Proposition 6.9 we get that the process started in 𝐦 almost surely visits 𝑠
pos = {𝟏} earlier than 𝑚

pos∖{𝐦}. It follows
that almost surely 𝟏 ∈ 𝜔 for any 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑚
pos∖{𝐦}, and since it is necessary to complete the transition to 𝑚

pos∖{𝐦}, 𝜔 almost surely
as a subpath which goes from 𝟏 to some 𝑚

pos∖{𝐦}. Thus, exploiting the reversibility of the dynamics, Proposition 6.3 and since
ny optimal path 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑚
pos∖{𝐦} hits 𝑚

pos∖{𝐦} in any metastable state different from 𝐦 with the same probability, i.e., 1
𝑞−2 , we

et that ⋃𝐳∈𝑚
pos∖{𝐦} pos(𝐳,𝑠

pos) is a gate for the transition 𝟏 → 𝑚
pos∖{𝐦}. □

.3. Minimal gates: proof of the main results

We are now able to prove Theorems 4.9 and 4.11.

roof of Theorem 4.9. For any 𝐦 ∈ 𝑚
pos, by Proposition 6.3 we get that pos(𝐦,𝑠

pos) is a gate for the transition from 𝐦
to 𝑠

pos = {𝟏}. In order to prove that pos(𝐦,𝑠
pos) is a minimal gate, we exploit [59, Theorem 5.1] and we show that any

∈ pos(𝐦,𝑠
pos) is an essential saddle. To this end, in view of the definition of an essential saddle given in Section 3.1, for

ny 𝜂 ∈ pos(𝐦,𝑠
pos) we define an optimal path from 𝐦 to 𝑠

pos that passes through 𝜂 and such that it reaches its maximum energy
nly in this configuration. In particular, the optimal path is defined by modifying the reference path 𝜔̃ of Definition 5.4 in a such
way that 𝜔̃𝓁∗(𝓁∗−1)+1 = 𝜂 in which 𝐶1(𝜂) is a quasi-square 𝓁∗ × (𝓁∗ − 1) with a unit protuberance. This is possible by choosing

he initial vertex (𝑖, 𝑗) such that during the construction the cluster 𝐶1(𝜔̃𝓁∗(𝓁∗−1)) coincides with the quasi-square in 𝜂 and in the
ext step the unit protuberance is added in the site as in 𝜂. It follows that 𝜔̃ ∩pos(𝐦,𝑠

pos) = {𝜂} and by the proof of Lemma 5.6
e get arg max𝜔̃𝐻pos = {𝜂}. To conclude, we prove (4.12), i.e., that pos(𝐦,𝑠

pos) is the unique minimal gate for the transition
→ 𝑠

pos. Note that the above reference paths 𝜔̃ reach the energy 𝛷pos(𝐦,𝑠
pos) only in pos(𝐦,𝑠

pos). Thus, we get that for any
1 ∈ pos(𝐦,𝑠

pos), the set pos(𝐦,𝑠
pos)∖{𝜂1} is not a gate for the transition 𝐦 → 𝑠

pos since, in view of the above construction, we
ave that there exists an optimal path 𝜔̃ such that 𝜔̃∩pos(𝐦,𝑠

pos)∖{𝜂1} = ∅. Note that the uniqueness of the minimal gate follows
2 ∉ N, see Assumption 4.1(ii). □
26

y the condition ℎ
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Remark 6.11. A saddle 𝜂 ∈ (𝜎, 𝜎′) is unessential if for any 𝜔 ∈ 𝛺𝑜𝑝𝑡
𝜎,𝜎′ such that 𝜔 ∩ 𝜂 ≠ ∅ the following conditions are both

satisfied:

(i) {argmax𝜔𝐻}∖{𝜂} ≠ ∅,
(ii) there exists 𝜔′ ∈ 𝛺𝑜𝑝𝑡

𝜎,𝜎′ such that {argmax𝜔′𝐻} ⊆ {argmax𝜔𝐻}∖{𝜂}.

Proof of Theorem 4.11. By Proposition 6.7 we have that the set given in (a) is a gate for the transition 𝐦 → 𝑚
pos∖{𝐦}. Hence, our

im is to prove that pos(𝐦,𝑠
pos) is a minimal gate for the same transition. In order to show that this set satisfies the definition of

inimal gate given in Section 3.1, we show that for any 𝜂 ∈ pos(𝐦,𝑠
pos) there exists an optimal path 𝜔′ ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑚
pos∖{𝐦} such that

′ ∩ (pos(𝐦,𝑠
pos)∖{𝜂}) = ∅. We construct this optimal path 𝜔′ as the reference path 𝜔∗ defined in the proof of the upper bound

of Proposition 6.5 in such a way that at the step 𝑘∗ − 1 the rectangular 𝓁∗ × (𝓁∗ − 1) 𝑠-cluster is as in 𝜂 without the protuberance.
For 𝑘∗ ≤ 𝑘 ≤ 𝑘∗ + 𝓁∗ − 1, we proceed as follows. At step 𝑘∗ the unit protuberance is added in the same position as in 𝜂, and in
he following steps the same side is filled flipping consecutively to 𝑠 spins 1 that have two nearest neighbors with spin 𝑠. Thus,
′ ∩ pos(𝐦,𝑠

pos) = {𝜂} and the condition of minimality is satisfied. By Proposition 6.10 the set depicted in (b) is a gate for
he transition 𝐦 → 𝑚

pos∖{𝐦}. Thus, our aim is to prove that ⋃

𝐳∈𝑚
pos∖{𝐦} pos(𝐳,𝑠

pos) is a minimal gate for the same transition.
Similarly to the previous case we show that for any 𝜂 ∈

⋃

𝐳∈𝑚
pos∖{𝐦} pos(𝐳,𝑠

pos) there exists an optimal path 𝜔′ ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑚

pos∖{𝐦} such
that 𝜔′ ∩ (

⋃

𝐳∈𝑚
pos∖{𝐦} pos(𝐳,𝑠

pos)∖{𝜂}) = ∅. We define this optimal path 𝜔′ as the reference path 𝜔∗ constructed in the proof of
the upper bound of Proposition 6.5 in such a way that at the step 𝑘∗ −1 the rectangular 𝓁∗ × (𝓁∗ −1) 𝑠-cluster is as in 𝜂 without the
protuberance. For 𝑘∗ ≤ 𝑘 ≤ 𝑘∗ + 𝓁∗ − 1, we proceed as follows. At step 𝑘∗ the unit protuberance is added in the same position as in
𝜂, and in the following steps the same side is filled flipping consecutively to 𝑠 spins 1 that have two nearest neighbors with spin 𝑠.
Thus, 𝜔′∩

⋃

𝐳∈𝑚
pos∖{𝐦} pos(𝐳,𝑠

pos) = {𝜂} and the condition of minimality is verified. Thus ⋃𝐳∈𝑚
pos

pos(𝐳,𝑠
pos) ⊆ pos(𝐦,𝑚

pos∖{𝐦}),
and we conclude exploiting [59, Theorem 5.1] and showing that any

𝜂 ∈ pos(𝐦,𝑚
pos∖{𝐦})∖

⋃

𝐳∈𝑚
pos

pos(𝐳,𝑠
pos) (6.32)

is an unessential saddle for the transition 𝐦 → 𝑚
pos∖{𝐦}. To this end we prove that any 𝜂 as in (6.32) satisfies conditions

Remark 6.11(i) and (ii). Indeed, let 𝜔 ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑚

pos∖{𝐦} such that 𝜔 ∩ {𝜂} ≠ ∅. Note that condition (i) in Remark 6.11 is satisfied

since 𝜔 intersects at least once both pos(𝐦,𝑠
pos) and ⋃

𝐳∈𝑚
pos∖{𝐦} pos(𝐳,𝑠

pos). Next we define an optimal path 𝜔′ ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑚

pos∖{𝐦} in
order to prove that also condition (ii) in Remark 6.11 is satisfied. From Propositions 6.7 and 6.10, there exist 𝜂∗1 ∈ 𝜔∩pos(𝐦,𝑠

pos)
and 𝜂∗2 ∈ 𝜔 ∩

⋃

𝐳∈𝑚
pos∖{𝐦} pos(𝐳,𝑠

pos). Thus, we construct 𝜔′ as the reference path defined in the proof of the upper bound of
Proposition 6.5 in such a way that 𝜔′ ∩pos(𝐦,𝑠

pos) = {𝜂∗1}, 𝜔
′ ∩

⋃

𝐳∈𝑚
pos∖{𝐦} pos(𝐳,𝑠

pos) = {𝜂∗2} and {argmax𝜔′𝐻} = {𝜂∗1 , 𝜂
∗
2}. □

6.4. Tube of typical paths: proof of the main results

In order to give the proof of Theorem 4.13, first we prove the following lemmas.

Lemma 6.12. For any 𝑚 ∈ 𝑆∖{1}, consider the local minimum 𝜂 ∈ 𝑅̄𝓁,𝓁−1(𝑚, 1) with 𝓁 ≤ 𝓁∗ and 𝜁 ∈ 𝑅̄𝓁,𝓁(𝑚, 1) with 𝓁 ≤ 𝓁∗ − 1. Let
(𝜂) and (𝜁 ) be the non-trivial cycles whose bottom are 𝜂 and 𝜁 , respectively. Thus,

((𝜂)) = 𝐵̄1
𝓁−1,𝓁−1(𝑚, 1); (6.33)

((𝜁 )) = 𝐵̄1
𝓁−1,𝓁(𝑚, 1). (6.34)

Proof. For any 𝑚 ∈ 𝑆∖{1}, let 𝜂1 ∈ 𝑅̄𝓁,𝓁−1(𝑚, 1) with 𝓁 ≤ 𝓁∗. Using (4.17), our aim is to prove the following

𝐵̄1
𝓁−1,𝓁−1(𝑚, 1) = ℱ (𝜕(𝜂1)). (6.35)

In 𝜂1, for any 𝑣 ∈ 𝑉 the corresponding 𝑣-tile (see before Lemma 5.10 for the definition) is one among those depicted in Fig. 4(a),
(b), (d), (e) and (n) with 𝑟 = 𝑚. Starting from 𝜂1, the spin-flip to 𝑚 (resp. 1) the spin 1 (resp. 𝑚) on a vertex whose tile is one among
those depicted in Fig. 4(b), (e) (resp. (a), (d)), the process visits a configuration 𝜎1 such that

𝐻pos(𝜎1) −𝐻pos(𝜂1) ≥ 2 − ℎ. (6.36)

Thus, the smallest energy increase is given by ℎ by flipping to 𝑚 a spin 1 on a vertex 𝑣1 centered in a tile as in Fig. 4(n) with 𝑟 = 𝑚.
Let 𝜂2 ∶= 𝜂𝑣1 ,𝑚1 ∈ 𝐵̄𝓁−2

𝓁−1,𝓁−1(𝑚, 1). In 𝜂2, for any 𝑣 ∈ 𝑉 the corresponding 𝑣-tile is one among those depicted in Fig. 4(a), (b), (d), (e),
(n) and (l) with 𝑟 = 1. Since 𝐻pos(𝜂2) = 𝐻pos(𝜂1) + ℎ, the spin-flips on a vertex whose tile is one among those depicted in Fig. 4(a),
(b), (d), (e) lead to 𝐻pos(𝜎2) −𝐻pos(𝜂1) ≥ 2. Thus, as in the previous case, the smallest energy increase is given by flipping to 𝑚 a
spin 1 on a vertex 𝑣2 centered in a tile as Fig. 4(n). Note that starting from 𝜂2 the only spin-flip which decreases the energy leads
to the bottom of (𝜂1), namely in 𝜂1. Iterating the strategy, the same arguments hold as long as the uphill path towards ℱ (𝜕(𝜂1))
visits 𝜂𝓁−1 ∈ 𝐵̄1

𝓁−1,𝓁−1(𝑚, 1). Indeed, in this type of configuration for any 𝑣 ∈ 𝑉 the corresponding 𝑣-tile is one among those depicted
in Fig. 4(a), (b), (d), (e), (n) and unstable tile (s) with 𝑡 = 𝑟 = 𝑠 = 𝑚, and it is possible to decrease the energy by passing to a
27

configuration that does not belong to (𝜂1). More precisely, there exists a vertex 𝑤 such that its tile is as the one in Fig. 4(s) with
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𝑡 = 𝑟 = 𝑠 = 𝑚. By flipping to 𝑚 the spin 1 on 𝑤 the energy decreases by 2−ℎ, and the process enters a new cycle visiting its bottom,
i.e., a local minimum belonging to 𝑅̄𝓁−1,𝓁−1(𝑚, 1). Let us now note that

𝐻pos(𝜂𝓁−1) −𝐻pos(𝜂1) = ℎ(𝓁 − 2). (6.37)

ince 𝓁 ≤ 𝓁∗, comparing (6.36) with (6.37), we get that 𝜂𝓁−1 ∈ ℱ (𝜕(𝜂1)), and (6.35) is verified.
Let us now consider for any 𝑚 ∈ 𝑆∖{1} the local minimum 𝜁1 ∈ 𝑅̄𝓁,𝓁(𝑚, 1) ⊂ ℳpos with 𝓁 ≤ 𝓁∗ − 1. Arguing similarly to the

revious case, we verify (6.34) by proving that

𝐵̄1
𝓁−1,𝓁(𝑚, 1) = ℱ (𝜕(𝜁1)). □ (6.38)

emma 6.13. For any 𝑚 ∈ 𝑆∖{1}, consider the local minimum 𝜂 ∈ 𝑅̄𝓁1 ,𝓁2 (𝑚, 1) with min{𝓁1,𝓁2} ≥ 𝓁∗. Let (𝜂) be the non-trivial cycle
hose bottom is 𝜂. Thus,

((𝜂)) = 𝐵̄1
𝓁1 ,𝓁2

(𝑚, 1) ∪ 𝐵̄1
𝓁2 ,𝓁1

(𝑚, 1). (6.39)

roof. For any 𝑚 ∈ 𝑆∖{1}, let 𝜂1 ∈ 𝑅̄𝓁1 ,𝓁2 (𝑚, 1) with 𝓁∗ ≤ 𝓁1 ≤ 𝓁2. Using (4.17), our aim is to prove the following

𝐵̄1
𝓁1 ,𝓁2

(𝑚, 1) ∪ 𝐵̄1
𝓁2 ,𝓁1

(𝑚, 1) = ℱ (𝜕(𝜂1)). (6.40)

n 𝜂1, for any 𝑣 ∈ 𝑉 the corresponding 𝑣-tile is one among those depicted in Fig. 4(a), (b), (d), (e) and (n) with 𝑟 = 𝑚. Let 𝑣1 ∈ 𝑉
uch that the 𝑣1-tile is as the one depicted in Fig. 4(d), and let 𝜂2 ∶= 𝜂𝑣1 ,11 . Note that if 𝑣1 is adjacent to a side of length 𝓁2, then
2 ∈ 𝐵̄1

𝓁1 ,𝓁2
(𝑚, 1), otherwise 𝜂2 ∈ 𝐵̄1

𝓁2 ,𝓁1
(𝑚, 1). Without loss of generality, let us assume that 𝜂2 ∈ 𝐵̄1

𝓁1 ,𝓁2
(𝑚, 1). By simple algebraic

alculation we obtain that 𝐻pos(𝜂2) −𝐻pos(𝜂1) = 2 − ℎ. In 𝜂2 for any 𝑣 ∈ 𝑉 the corresponding 𝑣-tile is one among those depicted in
ig. 4(a), (b), (d), (e), (n) and (l) with 𝑟 = 1. By flipping to 1 a spin 𝑚 on a vertex 𝑤 whose tile is as the one depicted in Fig. 4(l)
ith 𝑟 = 1 the energy decreases by ℎ and the process enters a cycle different from the previous one that is either the cycle ̄ whose
ottom is a local minimum belonging to 𝑅̄𝓁1+1,𝓁2 (𝑚, 1), or a trivial cycle for which iterating this procedure the process enters ̄.
hus, 𝐵̄1

𝓁1 ,𝓁2
(𝑚, 1) ⊆ 𝜕(𝜂1). Similarly we prove that 𝐵̄1

𝓁2 ,𝓁1
(𝑚, 1) ⊆ 𝜕(𝜂1).

Let us now note that starting from 𝜂1 the smallest energy increase is ℎ, and it is given by flipping to 𝑚 a spin 1 on a vertex whose
ile is as the one depicted in Fig. 4(n) with 𝑟 = 𝑚. Let us consider the uphill path 𝜔 started in 𝜂1 and constructed by flipping to

all the spins 1 along a side of the rectangular 𝓁1 × 𝓁2 1-cluster, say one of length 𝓁1. Using the discussion given in the proof of
emma 6.12 and the construction of 𝜔, we get that the process intersects 𝜕(𝜂) in a configuration 𝜎 belonging to 𝐵̄1

𝓁2−1,𝓁1
(𝑚, 1). By

imple algebraic computations, we obtain the following

𝐻pos(𝜎) −𝐻pos(𝜂1) = ℎ(𝓁2 − 1). (6.41)

ince 𝓁2 ≥ 𝓁∗, it follows that 𝐻pos(𝜎) > 𝐻pos(𝜂2). Since by flipping to 𝑚 (resp. 1) the vertex centered in a tile as depicted in Fig. 4(b),
e) (resp. (a)), the energy increase is largest than or equal to 2 + ℎ, it follows that (6.40) is satisfied. □

We are now able to prove Theorem 4.13.

roof of Theorem 4.13. Following the same approach as [68, Section 6.7], we geometrically characterize the tube of typical
rajectories for the transition using the so-called ‘‘standard cascades’’. See [68, Figure 6.3] for an example of these objects. We
escribe the standard cascades in terms of the paths that are started in 𝐦 and are vtj-connected to 𝑠

pos. See (4.20) for the formal
efinition and see [63, Lemma 3.12] for an equivalent characterization of these paths. We remark that any typical path from 𝐦 to
𝑠
pos is also an optimal path for the same transition. In order to describe these typical paths we proceed similarly to [68, Section
.4], where the authors apply the model-independent results given in [68, Section 6.7] to identify the tube of typical paths in the
ontext of the Ising model. Thus, we define a vtj-connected cycle-path that is the concatenation of both trivial and non-trivial cycles
hat satisfy (4.19). In Theorem 4.9 we give the geometric characterization of all the minimal gates for the transition 𝐦 → 𝑠

pos. Let
1 be a configuration belonging to one of these minimal gates. We begin by studying the first descent from 𝜂1 both to 𝐦 and to 𝑠

pos.
hen, we complete the description of T𝑠

pos
(𝐦) by joining the time reversal of the first descent from 𝜂1 to 𝐦 with the first descent

rom 𝜂1 to 𝑠
pos.

Let us begin by studying the standard cascades from 𝜂1 to 𝐦. Since a spin-flip from 1 to 𝑡 ∉ {1, 𝑚} implies an increase of the
nergy value equal to the increase of the number of the disagreeing edges, we consider only the spin-flips from 1 to 𝑚 on those
ertices belonging to the 1-cluster. Thus, starting from 𝜂1 and given 𝑣1 a vertex such that 𝜂1(𝑣1) = 1, since 𝐻pos(𝜂1) = 𝛷pos(𝐦,𝑠

pos),
e get

𝐻pos(𝜂
𝑣1 ,𝑚
1 ) = 𝛷pos(𝐦,𝑠

pos) + 𝑛1(𝑣1) − 𝑛𝑚(𝑣1) + ℎ. (6.42)

t follows that the only possibility in which the assumed optimality of the path is not contradicted is the one where 𝑛1(𝑣1) = 1 and
𝑚(𝑣1) = 3. Thus, along the first descent from 𝜂1 to 𝐦 the process visits 𝜂2 in which all the vertices have spin 𝑚 except those, which
re 1, in a rectangular cluster 𝓁∗ × (𝓁∗ − 1), i.e., 𝜂2 ∈ 𝑅̄𝓁∗−1,𝓁∗ (𝑚, 1). According to (4.19) we have to describe the non-trivial cycle
28

hose bottom is 𝜂2 and its principal boundary. Starting from 𝜂2, the next configuration along a typical path is defined by flipping
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to 𝑚 a spin 1 on a vertex 𝑣2 on one of the four corners of the rectangular 1-cluster. Indeed, since 𝐻pos(𝜂2) = 𝛷pos(𝐦,𝑠
pos) − 2 + ℎ,

e have

𝐻pos(𝜂
𝑣2 ,1
2 ) = 𝐻pos(𝜂2) + 𝑛1(𝑣2) − 𝑛𝑚(𝑣2) + ℎ = 𝛷pos(𝐦,𝑠

pos) − 2 + 2ℎ + 𝑛1(𝑣2) − 𝑛𝑚(𝑣2),

nd the only possibility in which the assumed optimality of the path is not contradicted is 𝑛1(𝑣2) = 2 and 𝑛𝑚(𝑣2) = 2. Then, a typical
ath towards 𝐦 proceeds by eroding the 𝓁∗ − 2 unit squares with spin 1 belonging to a side of length 𝓁∗ − 1 that are corners of
he 1-cluster and that belong to the same side of 𝑣2. Each of the first 𝓁∗ − 3 spin-flips increases the energy by ℎ, i.e., the smallest
nergy increase for any single step of the dynamics, and these uphill steps are necessary in order to exit from the cycle whose
ottom is the local minimum 𝜂2. After these 𝓁∗−3 steps, the process hits the bottom of the boundary of this cycle in a configuration
𝓁∗ ∈ 𝐵̄1

𝓁∗−1,𝓁∗−1(𝑚, 1), see Lemma 6.12. The last spin-update, that flips from 1 to 𝑚 the spin 1 on the unit protuberance of the
-cluster, decreases the energy by 2 − ℎ. Thus, the typical path arrives in a local minimum 𝜂𝓁∗+1 ∈ 𝑅̄𝓁∗−1,𝓁∗−1(𝑚, 1), i.e., it enters a
ew cycle whose bottom is a configuration in which all the vertices have spin 1, except those, which are 1, in a square (𝓁∗−1)×(𝓁∗−1)
-cluster. Summarizing the construction above, we have the following sequence of vtj-connected cycles

{𝜂1},
𝜂2
𝐦 (ℎ(𝓁∗ − 2)), {𝜂𝓁∗},

𝜂𝓁∗+1
𝐦 (ℎ(𝓁∗ − 2)). (6.43)

terating this argument, we obtain that the first descent from 𝜂1 ∈ pos(𝐦,𝑠
pos) to 𝐦 is characterized by the concatenation of those

tj-connected cycle-subpaths between the cycles whose bottom is a local minimum in which all the vertices have spin equal to 𝑚,
xcept those, which are 1, in either a quasi-square (𝓁 − 1) × 𝓁 or a square (𝓁 − 1) × (𝓁 − 1) for any 𝓁 = 𝓁∗,… , 1, and whose depth
s given by ℎ(𝓁 − 2). More precisely, from a quasi-square to a square, a typical path proceeds by flipping to 𝑚 those spins 1 on one
f the shortest sides of the 1-cluster. On the other hand, from a square to a quasi-square, it proceeds by flipping to 𝑚 those spins 1
elonging to one of the four sides of the square. Thus, a standard cascade from 𝜂1 to 𝐦 is characterized by the sequence of those
onfigurations that belong to

𝓁∗
⋃

𝓁=1

[𝓁−1
⋃

𝑙=1
𝐵̄𝑙
𝓁−1,𝓁(𝑚, 1) ∪ 𝑅̄𝓁−1,𝓁(𝑚, 1) ∪

𝓁−2
⋃

𝑙=1
𝐵̄𝑙
𝓁−1,𝓁−1(𝑚, 1) ∪ 𝑅̄𝓁−1,𝓁−1(𝑚, 1)

]

. (6.44)

et us now consider the first descent from 𝜂1 ∈ 𝐵̄1
𝓁∗−1,𝓁∗ (𝑚, 1) to 𝑠

pos = {𝟏}. In order to not contradict the definition of an optimal
ath, we have only to consider those steps which flip to 1 a spin 𝑚. Indeed, adding a spin different from 𝑚 and 1 leads to a
onfiguration with energy value strictly larger than 𝛷pos(𝐦,𝑠

pos). Thus, let 𝑤1 be a vertex such that 𝜂1(𝑤1) = 𝑚. Flipping the spin
on the vertex 𝑤1, we get

𝐻pos(𝜂
𝑤1 ,1
1 ) = 𝛷pos(𝐦,𝑠

pos) + 𝑛𝑚(𝑤1) − 𝑛1(𝑤1) − ℎ, (6.45)

nd the only feasible choice is 𝑛𝑚(𝑤1) = 2 and 𝑛1(𝑤1) = 2 in 𝜂1. Thus, 𝜂𝑤1 ,1
1 ∈ 𝐵̄2

𝓁∗−1,𝓁∗ (𝑚, 1), namely the bar is now of length two.
rguing similarly, we get that along the descent to 𝟏 a typical path proceeds by flipping from 𝑚 to 1 the spins 𝑚 with two nearest-
eighbors with spin 1 and two nearest-neighbors with spin 𝑚 belonging to the incomplete side of the 1-cluster. More precisely,
t proceeds downhill visiting 𝜂̄𝑖 ∈ 𝐵̄𝑖

𝓁∗−1,𝓁∗ (𝑚, 1) for any 𝑖 = 2,… ,𝓁∗ − 1 and 𝜂̄𝓁∗ ∈ 𝑅̄𝓁∗ ,𝓁∗ (𝑚, 1). In order to exit from the cycle
whose bottom is 𝜂̄𝓁∗ , the process crosses the bottom of its boundary by creating a unit protuberance of spin 1 adjacent to one of
the four edges of the 1-square, i.e., visits {𝜂̄𝓁∗+1} where 𝜂̄𝓁∗+1 ∈ 𝐵̄1

𝓁∗ ,𝓁∗ (𝑚, 1). Indeed, starting from 𝜂̄𝓁∗ ∈ 𝑅̄𝓁∗ ,𝓁∗ (𝑚, 1) the energy
minimum increase is obtained by flipping a spin 𝑚 with three nearest-neighbors with spin 1 and one nearest-neighbor with spin 𝑚.
Starting from {𝜂̄𝓁∗+1}, a typical path towards 𝟏 proceeds by enlarging the protuberance to a bar of length two to 𝓁∗−1, thus it visits
𝜂̄𝓁∗+𝑖 ∈ 𝐵̄𝑖

𝓁∗ ,𝓁∗ (𝑚, 1) for any 𝑖 = 2,… ,𝓁∗ − 1. Each of these steps decreases the energy by ℎ, and after them the descent arrives in the
ottom of the cycle, i.e., in the local minimum 𝜂̄2𝓁∗ ∈ 𝑅̄𝓁∗ ,𝓁∗+1(𝑚, 1). Then, the process exits from this cycle through the bottom of
ts boundary, i.e., by adding a unit protuberance of spin 1 on any one of the four edges of the rectangular 𝓁∗ × (𝓁∗ + 1) 1-cluster in
𝜂̄2𝓁∗ , see Lemma 6.13. Thus, it visits the trivial cycle {𝜂̄2𝓁∗+1}, where 𝜂̄2𝓁∗+1 ∈ 𝐵̄1

𝓁∗ ,𝓁∗+1(𝑚, 1) ∪ 𝐵̄1
𝓁∗+1,𝓁∗ (𝑚, 1). Note that the resulting

standard cascade is different from the one towards 𝐦. Thus, summarizing the construction above, we have defined the following
sequence of vtj-connected cycles

{𝜂1},
𝜂̄𝓁∗
𝟏 (ℎ(𝓁∗ − 1)), {𝜂̄𝓁∗+1},

𝜂̄2𝓁∗
𝟏 (ℎ(𝓁∗ − 1)), {𝜂̄2𝓁∗+1}. (6.46)

Note that if 𝜂̄2𝓁∗ ∈ 𝐵̄1
𝓁∗ ,𝓁∗+1(𝑚, 1), then the process enters the cycle whose bottom is a configuration belonging to 𝑅̄𝓁∗+1,𝓁∗+1(𝑚, 1).

On the other hand, if 𝜂̄2𝓁∗ ∈ 𝐵̄1
𝓁∗+1,𝓁∗ (𝑚, 1), then the standard cascade enters the cycle whose bottom is a configuration belonging to

𝑅̄𝓁∗ ,𝓁∗+2(𝑚, 1). In the first case the cycle has depth ℎ𝓁∗, in the second case the cycle has depth ℎ(𝓁∗ −1). Iterating this argument, we
get that the first descent from 𝜂1 to 𝑠

pos = {𝟏} is characterized by vtj-connected cycle-subpaths from 𝑅̄𝓁1 ,𝓁2 (𝑚, 1) to 𝑅̄𝓁1 ,𝓁2+1(𝑚, 1)
defined as the sequence of those configurations belonging to 𝐵̄𝑙

𝓁1 ,𝓁2
(𝑚, 1) for any 𝑙 = 1,… ,𝓁2−1. Enlarging the 1-cluster, at a certain

point, the process arrives in a configuration in which this cluster is either a vertical or a horizontal strip, i.e., it intersects one of
the two sets defined in (4.25)–(4.26). If the descent arrives in 𝒮 𝑣

pos(𝑚, 1), then it proceeds by enlarging the vertical strip column
by column. Otherwise, if it arrives in 𝒮 ℎ

pos(𝑚, 1), then it enlarges the horizontal strip row by row. In both cases, starting from a
configuration with an 1-strip, the path exits from its cycle by adding a unit protuberance with a spin 1 adjacent to one of the two
vertical (resp. horizontal) edges and increasing the energy by 2−ℎ. Starting from the trivial cycle given by this configuration with an
1-strip with a unit protuberance, the standard cascade enters a new cycle and it proceeds downhill by filling the column (resp. row)
with spins 1. More precisely, the standard cascade visits 𝐾 − 1 (resp. 𝐿− 1) configurations such that each of them is defined by the
29
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previous one flipping from 𝑚 to 1 a spin 𝑚 with two nearest-neighbors with spin 𝑚 and two nearest-neighbors with spin 1. Each of
hese spin-updates decreases the energy by ℎ. The process arrives in this way to the bottom of the cycle, i.e., in a configuration in
hich the thickness of the 1-strip has been enlarged by a column (resp. row). Starting from this state with the new 1-strip, we repeat

he same arguments above until the standard cascade arrives in the trivial cycle of a configuration 𝜎 with an 1-strip of thickness
− 2 (resp. 𝐾 − 2) and with a unit protuberance. Starting from {𝜎}, the process enters the cycle whose bottom is 𝟏 and it proceeds

ownhill either by flipping from 𝑚 to 1 those spins 𝑚 with two nearest-neighbors with spin 𝑚 and two nearest-neighbors with spin
, or by flipping to 1 all the spins 𝑚 with three nearest-neighbors with spin 1 and one nearest-neighbor with spin 𝑚. The last step
lips from 𝑚 to 1 the last spin 𝑚 with four nearest-neighbors with spin 1. Note that if the vtj-connected cycle path (1,… ,𝑛) is such
hat (1,… ,𝑛)∩𝒮 𝑣

pos(𝑚, 1) ≠ ∅ (resp. (1,… ,𝑛)∩𝒮 ℎ
pos(𝑚, 1) ≠ ∅), then (1,… ,𝑛)∩𝒮 ℎ

pos(𝑚, 1) = ∅ (resp. (1,… ,𝑛)∩𝒮 𝑣
pos(𝑚, 1) = ∅).

Thus, the first descent from 𝜂1 to 𝑠
pos is characterized by the sequence of those configurations that belong to

𝐾−1
⋃

𝓁1=𝓁∗

𝐾−1
⋃

𝓁2=𝓁∗
𝑅̄𝓁1 ,𝓁2 (𝑚, 1) ∪

𝐾−1
⋃

𝓁1=𝓁∗

𝐾−1
⋃

𝓁2=𝓁∗

𝓁2−1
⋃

𝑙=1
𝐵̄𝑙
𝓁1 ,𝓁2

(𝑚, 1) ∪
𝐿−1
⋃

𝓁1=𝓁∗

𝐿−1
⋃

𝓁2=𝓁∗
𝑅̄𝓁1 ,𝓁2 (𝑚, 1)

∪
𝐿−1
⋃

𝓁1=𝓁∗

𝐿−1
⋃

𝓁2=𝓁∗

𝓁2−1
⋃

𝑙=1
𝐵̄𝑙
𝓁1 ,𝓁2

(𝑚, 1) ∪ 𝒮 𝑣
pos(𝑚, 1) ∪ 𝒮 ℎ

pos(𝑚, 1). (6.47)

inally, the standard cascade from 𝐦 to 𝑠
pos is given by (6.44)–(6.47). Finally, (4.28) follows by [63, Lemma 3.13]. □

ppendix

.1. Additional material for Section 5.2

.1.1. Definition 5.4
For any 𝐦 ∈ 𝑚

pos, we define a reference path 𝜔̃ ∶ 𝐦 → 𝟏, 𝜔̃ = (𝜔∗
0 ,… , 𝜔∗

𝐾𝐿) as the concatenation of the two paths
̃ (1) ∶= (𝟏 = 𝜔̃0,… , 𝜔̃(𝐾−1)2 ) and 𝜔̃(2) ∶= (𝜔̃(𝐾−1)2 ,… , 𝐦 = 𝜔̃𝐾𝐿). The path 𝜔̃(1) is defined as follows. We set 𝜔̃0 ∶= 𝐦. Then, we
efine 𝜔̃1 ∶= 𝜔̃(𝑖,𝑗),1

0 , where (𝑖, 𝑗) denotes the vertex which belongs to the row 𝑟𝑖 and to the column 𝑐𝑗 of 𝛬, for some 𝑖 = 0,… , 𝐾 − 1
nd 𝑗 = 0,… , 𝐿 − 1. Sequentially, we flip clockwise from 𝑚 to 1 all the vertices that surround the vertex (𝑖, 𝑗) in order to depict a
× 3 square of spins 1. We iterate this construction until we get 𝜔̃(𝐾−1)2 ∈ 𝑅̄𝐾−1,𝐾−1(𝑚, 1). See [19, Figure 6(a)] for an illustration of

his procedure. This time the white squares denote those vertices with spin 𝑚, the black ones denote the vertices with spin 1. Note
hat by considering the periodic boundary conditions the definition of 𝜔̃ is general for any 𝑖 and 𝑗.

The path 𝜔̃(2) is defined as follows. Without loss of generality, assume that 𝜔̃(𝐾−1)2 ∈ 𝑅̄𝐾−1,𝐾−1(𝑚, 1) has the cluster of
pin 1 in the first 𝑐0,… , 𝑐𝐾−2 columns, see [19, Figure 6(b)]. Starting from this last configuration 𝜔̃(𝐾−1)2 of 𝜔̃(1), we define
̃ (𝐾−1)2+1,… , 𝜔̃(𝐾−1)2+𝐾−1 as a sequence of configurations in which the cluster of spin 1 grows gradually by flipping the spins 𝑚
n the vertices (𝐾 − 1, 𝑗), for 𝑗 = 0,… , 𝐾 − 2. Thus, 𝜔̃(𝐾−1)2+𝐾−1 ∈ 𝑅̄𝐾−1,𝐾 (𝑚, 1), as depicted in [19, Figure 6(c)]. Finally, we define
̃ (𝐾−1)2+𝐾 ,… , 𝜔̃𝐾𝐿 as a sequence of configurations in which the cluster of spin 𝑠 grows gradually column by column. More precisely,
tarting from 𝜔̃(𝐾−1)2+𝐾−1 ∈ 𝑅̄𝐾−1,𝐾 (𝑚, 1), 𝜔̃(2) passes through configurations in which the spins 𝑚 on columns 𝑐𝐾 ,… , 𝑐𝐿−1 become
1. The procedure ends with 𝜔̃𝐾𝐿 = 𝐦.

.1.2. Proof of Lemma 5.5
Consider the reference path of Definition 5.4 and note that for any 𝑖 = 0,… , 𝐾𝐿, 𝑁1(𝜔̃𝑖) = 𝑖. The reference path may be

constructed in such a way that 𝜔̃𝓁∗(𝓁∗−1) ∶= 𝜎. Let 𝛾 ∶= (𝜔̃𝓁∗(𝓁∗−1) = 𝜎, 𝜔̃𝓁∗(𝓁∗−1)−1,… , 𝜔̃0 = 𝐦) be the time reversal of the subpath
(𝜔̃0,… , 𝜔̃𝓁∗(𝓁∗−1)) of 𝜔̃. We claim that max𝜉∈𝛾 𝐻pos(𝜉) < 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) +𝐻pos(𝐦). Indeed, 𝜔̃𝓁∗(𝓁∗−1) = 𝜎, 𝜔̃𝓁∗(𝓁∗−1)−1,… , 𝜔̃1 is
a sequence of configurations in which all the spins are equal to 𝑚 except those, which are 1, in either a quasi-square 𝓁 × (𝓁 − 1) or
a square (𝓁 − 1) × (𝓁 − 1) possibly with one of the longest sides not completely filled. For any 𝓁 = 𝓁∗,… , 2, the path 𝛾 moves from
𝑅̄𝓁,𝓁−1(𝑚, 1) to 𝑅̄𝓁−1,𝓁−1(𝑚, 1) by flipping to 𝑚 the 𝓁 − 1 spins 1 on one of the shortest sides of the 1-cluster. In particular, 𝜔̃𝓁(𝓁−1)−1
is obtained by 𝜔̃𝓁(𝓁−1) ∈ 𝑅̄𝓁,𝓁−1(𝑚, 1) by flipping the spin on a corner of the quasi-square from 1 to 𝑚 and this increases the energy
by ℎ. The next 𝓁 − 3 steps are defined by flipping the spins on the incomplete shortest side from 1 to 𝑚, thus each step increases
the energy by ℎ. Finally, 𝜔̃(𝓁−1)2 ∈ 𝑅̄𝓁−1,𝓁−1(𝑚, 1) is defined by flipping the last spin 1 to 𝑚 and this decreases the energy by 2 − ℎ.
For any 𝓁 = 𝓁∗,… , 2, ℎ(𝓁 − 2) < 2 − ℎ. Indeed, from (3.14) and from Assumption 4.1, we have 2 − ℎ > ℎ(𝓁∗ − 2) ≥ ℎ(𝓁 − 2). Hence,
max𝜉∈𝛾 𝐻pos(𝜉) = 𝐻pos(𝜎) = 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) − (2 − ℎ) +𝐻pos(𝐦) and the claim is verified. □

A.1.3. Proof of Lemma 5.6
Let 𝐦 ∈ 𝑚

pos and let 𝜎 ∈ 𝐵̄2
𝓁∗−1,𝓁∗ (𝑚, 1). Consider the reference path of Definition 5.4 and assume that it is constructed in

such a way that 𝜔̃𝓁∗(𝓁∗−1)+2 ∶= 𝜎. Let 𝛾 ∶= (𝜔̃𝓁∗(𝓁∗−1)+2 = 𝜎, 𝜔̃𝓁∗(𝓁∗−1)+3,… , 𝜔̃𝐾𝐿−1, 𝟏). Our aim is to prove that max𝜉∈𝛾 𝐻pos(𝜉) <
4𝓁∗−ℎ(𝓁∗(𝓁∗−1)+1)+𝐻pos(𝐦). In particular, we prove this claim by showing that max𝜉∈𝜔̃ 𝐻pos(𝜉) = 4𝓁∗−ℎ(𝓁∗(𝓁∗−1)+1)+𝐻pos(𝐦)
and that 𝛾 does not visit the unique configuration in which this maximum is reached.

Consider 𝓁 ≤ 𝐾 − 2. We recall that 𝜔̃(1) is defined as a sequence of configurations in which all the spins are equal to 𝑚 except
those, which are 1, in either a square 𝓁 ×𝓁 or a quasi-square 𝓁 × (𝓁 −1) possibly with one of the longest sides not completely filled.
For some 𝓁 ≤ 𝐾 − 2, let 𝜔̃𝓁(𝓁−1) ∈ 𝑅̄𝓁−1,𝓁(𝑚, 1) and 𝜔̃𝓁2 ∈ 𝑅̄𝓁,𝓁(𝑚, 1), then

max 𝐻pos(𝜎) = 𝐻pos(𝜔̃𝓁(𝓁−1)+1) = 4𝓁 − ℎ𝓁2 + ℎ𝓁 − ℎ +𝐻pos(𝐦). (A.1)
30

𝜎∈{𝜔̃𝓁(𝓁−1) ,𝜔̃𝓁(𝓁−1)+1 ,…,𝜔̃𝓁2 }
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Fig. A.16. Qualitative illustration of the energy of the configurations belonging to 𝜔̃(2).

Otherwise, if 𝜔̃𝓁2 ∈ 𝑅̄𝓁,𝓁(𝑚, 1) and 𝜔̃𝓁(𝓁+1) ∈ 𝑅̄𝓁,𝓁+1(𝑚, 1), then

max
𝜎∈{𝜔̃𝓁2 ,𝜔̃𝓁2+1 ,…,𝜔̃𝓁(𝓁+1)}

𝐻pos(𝜎) = 𝐻pos(𝜔̃𝓁2+1) = 4𝓁 − ℎ𝓁2 + 2 − ℎ +𝐻pos(𝐦). (A.2)

Let 𝑘∗ ∶= 𝓁∗(𝓁∗ − 1) + 1. By recalling the condition 2
ℎ ∉ N of Assumption 4.1 and by studying the maxima of 𝐻pos as a function of

𝓁, we have

arg max𝜔̃(1)𝐻pos = {𝜔̃𝑘∗}. (A.3)

Note that if 2
ℎ belonged to N, then 𝜔̃𝑘∗ and 𝜔̃(𝓁∗)2+1 would have the same energy value.

Let us now study the maximum energy value reached along 𝜔̃(2). This path is constructed as a sequence of configurations whose
lusters of spins 1 wrap around 𝛬. Moreover, the maximum of the energy is reached at the first configuration of 𝜔̃(2), see Fig. A.16
or a qualitative representation of the energy of the configurations in 𝜔̃(2). Indeed,

𝐻pos(𝜔̃(𝐾−1)2+𝑗 ) −𝐻pos(𝜔̃(𝐾−1)2+𝑗−1) = −2 − ℎ, 𝑗 = 2,… , 𝐾 − 1,

𝐻pos(𝜔̃(𝐾−1)2+𝐾 ) −𝐻pos(𝜔̃(𝐾−1)2+𝐾−1) = 2 − ℎ,

𝐻pos(𝜔̃(𝐾−1)2+𝑗 ) −𝐻pos(𝜔̃(𝐾−1)2+𝑗−1) = −ℎ, 𝑗 = 𝐾 + 1,… , 2𝐾 − 1,

𝐻pos(𝜔̃(𝐾−1)2+2𝐾 ) −𝐻pos(𝜔̃(𝐾−1)2+2𝐾−1) = 2 − ℎ.

ote that

𝐻pos(𝜔̃(𝐾−1)2+1) −𝐻pos(𝜔̃(𝐾−1)2+𝐾 ) = 4𝐾 − 4 − ℎ(𝐾 − 1)2 − (2𝐾 − ℎ((𝐾 − 1)2 +𝐾))

= 2𝐾 − 4 + ℎ(𝐾 − 1) > 0, (A.4)

here the last inequality follows by 𝐾 ≥ 3𝓁∗. Moreover,

𝐻pos(𝜔̃(𝐾−1)2+𝐾 )−𝐻pos(𝜔̃(𝐾−1)2+2𝐾 )

= 2𝐾 + 2 − ℎ(𝐾 − 1)2 + 2𝐾 − 2𝐾 + 2 − ℎ((𝐾 − 1)2 +𝐾) = 𝐾 > 0. (A.5)

By iterating the analysis of the energy gap between two consecutive configurations along 𝜔̃(2), we conclude that

arg max𝜔̃(2)𝐻pos = {𝜔̃(𝐾−1)2+1}. (A.6)

n particular,

𝐻pos(𝜔̃(𝐾−1)2+1) < 𝐻pos(𝜔̃𝑘∗ ). (A.7)

his inequality is proved in [19, Appendix A.1]. Hence, arg max𝜔̃𝐻pos = {𝜔̃𝑘∗}. Since 𝛾 is constructed as the subpath of 𝜔̃ which
oes from 𝜔̃𝓁∗(𝓁∗−1)+2 = 𝜎 to 𝟏, 𝛾 does not visit the configuration 𝜔̃𝑘∗ . Hence, the claim is verified. □

.1.4. Proof of Proposition 5.8
For any 𝑘 = 1,… , |𝑉 |, let 1

𝑘 ∶= {𝜎 ∈  ∶ 𝑁1(𝜎) = 𝑘}. Every path 𝜔 from any 𝐦 ∈ {𝟐,… ,𝐪} to the stable configuration 𝟏 has to
ntersect the set 1

𝑘 for every 𝑘 = 1,… , |𝑉 |. In particular, it has to visit the set 1
𝑘∗ at least once, where 𝑘∗ = 𝓁∗(𝓁∗−1)+1. We prove

the lower bound given in (5.10) by showing that 𝐻pos(ℱ (1
𝑘∗ )) = 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1) + 𝐻pos(𝐦). Note that from (5.5), we get

hat the presence of disagreeing edges increases the energy. Thus, in order to describe the bottom ℱ (1
𝑘∗ ) we have to consider those

onfigurations in which the 𝓁∗(𝓁∗ − 1) + 1 spins 1 belong to a unique cluster inside a homogeneous sea of spin 𝑚 ∈ 𝑆∖{1}. Hence,
31
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consider 𝜔̃ be the reference path of Definition 5.4 whose configurations satisfy this characterization. Note that 𝜔̃∩1
𝑘∗ = {𝜔̃𝑘∗} with

̃ 𝑘∗ ∈ 𝐵̄1
𝓁∗−1,𝓁∗ (𝑚, 1). In particular,

𝐻pos(𝜔̃𝑘∗ ) −𝐻pos(𝐦) = 4𝓁∗ − ℎ(𝓁∗(𝓁∗ − 1) + 1), (A.8)

where 4𝓁∗ is the perimeter of the cluster of spins 1 in 𝜔̃𝑘∗ . We want to show that it is not possible to have a configuration with 𝑘∗

pins 1 in a cluster of perimeter smaller than 4𝓁∗. Since the perimeter is an even integer, we suppose that there exists a configuration
elonging to 1

𝑘∗ such that the 1-cluster has perimeter 4𝓁∗ − 2. Since 4𝓁∗ − 2 < 4
√

𝑘∗, where
√

𝑘∗ is the side-length of the square
√

𝑘∗ ×
√

𝑘∗ of minimal perimeter among those in R2 of area 𝑘∗, using that the square is the figure that minimizes the perimeter for
a given area, we conclude that there is no configuration with 𝑘∗ spins 1 in a cluster with perimeter strictly smaller than 4𝓁∗. Hence,
̃ 𝑘∗ ∈ ℱ (1

𝑘∗ ) and (5.10) is satisfied thanks to (A.8). □

.1.5. Proof of Lemma 5.9
Let 𝐦 ∈ 𝑚

pos. In the proof of Proposition 5.8 we noted that any path 𝜔 ∶ 𝐦 → 𝟏 has to visit 1
𝑘 at least once for every

𝑘 = 0,… , |𝑉 |. Consider 1
𝓁∗(𝓁∗−1). In [2, Theorem 2.6] the authors show that the unique configuration of minimal energy in 1

𝓁∗(𝓁∗−1)
is the one in which all spins are 𝑚 except those that are 1 in a quasi-square 𝓁∗ × (𝓁∗ − 1). In particular, this configuration has
energy 𝛷pos(𝐦,𝑠

pos) − (2 − ℎ) = 4𝓁∗ − 2 − ℎ𝓁∗(𝓁∗ − 1) + 𝐻pos(𝐦). Note that 4𝓁∗ − 2 is the perimeter of its 1-cluster. Since the
perimeter is an even integer, we have that the other configurations belonging to 1

𝓁∗(𝓁∗−1) have energy that is larger than or equal
to 4𝓁∗ − ℎ𝓁∗(𝓁∗ − 1) +𝐻pos(𝐦). Thus, they are not visited by any optimal path. Indeed, 4𝓁∗ − ℎ𝓁∗(𝓁∗ − 1) +𝐻pos(𝐦) > 𝛷pos(𝐦,𝑠

pos).
Thus, we conclude that any optimal path intersects 1

𝓁∗(𝓁∗−1) in a configuration belonging to 𝑅̄𝓁∗−1,𝓁∗ (𝑚, 1). □

A.2. Additional material for Section 6.2

A.2.1. Proof of Corollary 6.6
Every path from 𝐦 ∈ 𝑚

pos to the other metastable configurations in 𝑚
pos∖{𝐦} has to pass through the set 𝑚

𝑘 ∶= {𝜎 ∈  ∶
𝑁𝑚(𝜎) = 𝑘} for any 𝑘 = |𝑉 |,… , 0. In particular, given 𝑘∗ ∶= 𝓁∗(𝓁∗ − 1) + 1, any 𝜔 = (𝜔0,… , 𝜔𝑛) ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑚
pos∖{𝐦} visits at least once

the set 𝑚
|𝛬|−𝑘∗ ≡ 𝒟𝑚

pos. Hence, there exists 𝑖 ∈ {0,… 𝑛} such that 𝜔𝑖 ∈ 𝒟𝑚
pos. Thanks to (6.5) and to (6.19) we have that the energy

value of any configuration belonging to ℱ (𝒟𝑚
pos) is equal to the min–max reached by any optimal path from 𝐦 to 𝑚

pos∖{𝐦}. Thus,
we conclude that 𝜔𝑖 ∈ ℱ (𝒟𝑚

pos). □

A.2.2. Proof of Proposition 6.7
For any 𝑚 ∈ 𝑆, 𝑚 ≠ 1, let 𝒟𝑚

pos and 𝒟𝑚
pos be the subsets of ℱ (𝒟𝑚

pos) defined as follows. 𝒟𝑚
pos is the set of those configurations of

ℱ (𝒟𝑚
pos) in which the boundary of the polyomino 𝐶1(𝜎) intersects each side of the boundary of its smallest surrounding rectangle

𝑅(𝐶1(𝜎)) on a set of the dual lattice Z2 + (1∕2, 1∕2) made by at least two consecutive unit segments, see Fig. 15(a). On the other
hand, 𝒟𝑚

pos is the set of those configurations of ℱ (𝒟𝑚
pos) in which the boundary of the polyomino 𝐶1(𝜎) intersects at least one side of

the boundary of 𝑅(𝐶1(𝜎)) in a single unit segment, see Fig. 15(b) and (c). In particular note that ℱ (𝒟𝑚
pos) = 𝒟𝑚

pos ∪𝒟𝑚
pos. The proof

proceeds in five steps.
Step 1. Our first aim is to prove that

𝒟𝑚
pos = pos(𝐦,𝑠

pos) ∪ ′
pos(𝐦,𝑠

pos). (A.9)

From (4.11) we have pos(𝐦,𝑠
pos) ∪  ′

pos(𝐦,𝑠
pos) ⊆ 𝒟𝑚

pos. Thus we reduce our proof to show that 𝜎 ∈ 𝒟𝑚
pos implies 𝜎 ∈

pos(𝐦,𝑠
pos)∪

′
pos(𝐦,𝑠

pos). Note that this implication is not straightforward, since given 𝜎 ∈ 𝒟𝑚
pos, the boundary of the polyomino

𝐶1(𝜎) could intersect the other three sides of the boundary of its smallest surrounding rectangle 𝑅(𝐶1(𝜎)) in a proper subsets of the
sides itself, see Fig. 15(d) for an illustration of this hypothetical case. Hence, consider 𝜎 ∈ 𝒟𝑚

pos and let 𝑅(𝐶1(𝜎)) = 𝑅(𝓁∗+𝑎)×(𝓁∗+𝑏)
with 𝑎, 𝑏 ∈ Z. In view of the proof of Lemma 6.1 we have that 𝐶1(𝜎) is a minimal polyomino and by [33, Lemma 6.16] it is also
convex and monotone, i.e., its perimeter of value 4𝓁∗ is equal to the one of 𝑅(𝐶1(𝜎)). Hence, the following equality holds

4𝓁∗ = 4𝓁∗ + 2(𝑎 + 𝑏). (A.10)

In particular, (A.10) is satisfied only by 𝑎 = −𝑏. Now, let 𝑅̃ be the smallest rectangle surrounding the polyomino, say 𝐶̃1(𝜎), obtained
by removing the unit protuberance from 𝐶1(𝜎). If 𝐶1(𝜎) has the unit protuberance adjacent to a side of length 𝓁∗ + 𝑎, then 𝑅̃ is a
rectangle (𝓁∗+𝑎)× (𝓁∗−𝑎−1). Note that 𝑅̃ must have an area larger than or equal to the number of spins 1 of the polyomino 𝐶̃1(𝜎),
that is 𝓁∗(𝓁∗ − 1). Thus, we have

Area(𝑅̃) = (𝓁∗ + 𝑎)(𝓁∗ − 𝑎 − 1) = 𝓁∗(𝓁∗ − 1) − 𝑎2 − 𝑎 ≥ 𝓁∗(𝓁∗ − 1) ⟺ −𝑎2 − 𝑎 ≥ 0. (A.11)

Since 𝑎 ∈ Z, −𝑎2 − 𝑎 ≥ 0 is satisfied only if either 𝑎 = 0 or 𝑎 = −1. Otherwise, if 𝐶1(𝜎) has the unit protuberance adjacent to a side
of length 𝓁∗ − 𝑎, then 𝑅̃ is a rectangle (𝓁∗ + 𝑎 − 1) × (𝓁∗ − 𝑎) and

Area(𝑅̃) = (𝓁∗ + 𝑎 − 1)(𝓁∗ − 𝑎) = 𝓁∗(𝓁∗ − 1) − 𝑎2 + 𝑎 ≥ 𝓁∗(𝓁∗ − 1) ⟺ −𝑎2 + 𝑎 ≥ 0. (A.12)

Since 𝑎 ∈ Z, −𝑎2 + 𝑎 ≥ 0 is satisfied only if either 𝑎 = 0 or 𝑎 = 1. In both cases we get that 𝑅̃ is a rectangle of side lengths 𝓁∗ and
𝓁∗ − 1. Thus, if the protuberance is attached to one of the longest sides of 𝑅̃, then 𝜎 ∈ pos(𝐦,𝑠

pos), otherwise 𝜎 ∈  ′
pos(𝐦,𝑠

pos).
32

In any case we conclude that (A.9) is satisfied.
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Step 2. For any 𝐦 ∈ 𝑚
pos and for any path 𝜔 = (𝜔0,… , 𝜔𝑛) ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑚
pos∖{𝐦}, let

𝑔𝑚(𝜔) ∶= {𝑖 ∈ N ∶ 𝜔𝑖 ∈ ℱ (𝒟𝑚
pos), 𝑁1(𝜔𝑖−1) = 𝓁∗(𝓁∗ − 1), 𝑁𝑚(𝜔𝑖−1) = |𝛬| − 𝓁∗(𝓁∗ − 1)}. (A.13)

We claim that 𝑔𝑚(𝜔) ≠ ∅. Let 𝜔 = (𝜔0,… , 𝜔𝑛) ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑚

pos∖{𝐦} and let 𝑗∗ ≤ 𝑛 be the smallest integer such that after 𝑗∗ the path
eaves 𝒟𝑚,+

pos , i.e., (𝜔𝑗∗ ,… , 𝜔𝑛) ∩ 𝒟𝑚,+
pos = ∅. Since 𝜔𝑗∗−1 is the last configuration in 𝒟𝑚,+

pos , it follows that 𝜔𝑗∗ ∈ 𝒟𝑚
pos and, by

he proof of Corollary 6.6, we have that 𝜔𝑗∗ ∈ ℱ (𝒟𝑚
pos). Moreover, since 𝜔𝑗∗−1 is the last configuration in 𝒟𝑚,+

pos , we have that
𝑚(𝜔𝑗∗−1) = |𝛬|−𝓁∗(𝓁∗−1) and 𝜔𝑗∗ is obtained by 𝜔𝑗∗−1 by flipping a spin 𝑚 from 𝑚 to 𝑠 ≠ 𝑚. Note that 𝑁𝑚(𝜔𝑗∗−1) = |𝛬|−𝓁∗(𝓁∗−1)

mplies 𝑁𝑠(𝜔𝑗∗−1) ≤ 𝓁∗(𝓁∗ − 1) for any 𝑠 ∈ 𝑆∖{𝑚}. By Lemma 6.1, 𝜔𝑗∗ ∈ ℱ (𝒟𝑚
pos) implies 𝑁1(𝜔𝑗∗ ) = 𝓁∗(𝓁∗ − 1) + 1, thus

1(𝜔𝑗∗−1) < 𝓁∗(𝓁∗ − 1) is not feasible since 𝜔𝑗∗ and 𝜔𝑗∗−1 differ by a single spin update which increases the number of spins 1
f at most one. Then, 𝑗∗ ∈ 𝑔𝑚(𝜔) and the claim is proved.

tep 3. We claim that for any path 𝜔 ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑚

pos∖{𝐦} one has 𝜔𝑖 ∈ 𝒟𝑚
pos for any 𝑖 ∈ 𝑔𝑚(𝜔). We argue by contradiction. Assume that

here exists 𝑖 ∈ 𝑔𝑚(𝜔) such that 𝜔𝑖 ∉ 𝒟𝑚
pos and 𝜔𝑖 ∈ 𝒟𝑚

pos. Since 𝜔𝑖−1 is obtained from 𝜔𝑖 by flipping a spin 1 to 𝑚 and since any
onfiguration belonging to 𝒟𝑚

pos has all the spins 1 with at least two nearest neighbors with spin 1, using (2.8) we have

𝐻pos(𝜔𝑖−1) −𝐻pos(𝜔𝑖) ≥ (2 − 2) + ℎ = ℎ > 0. (A.14)

n particular, from (A.14) we get a contradiction. Indeed,

𝛷pos
𝜔 ≥ 𝐻pos(𝜔𝑖−1) > 𝐻pos(𝜔𝑖) = 𝐻pos(𝐦) + 𝛤pos(𝐦,𝑚

pos∖{𝐦}) = 𝛷pos(𝐦,𝑚
pos∖{𝐦}), (A.15)

here the equality follows by (6.5). Thus by (A.15) 𝜔 is not an optimal path, which is a contradiction, the claim is proved and we
onclude the proof of Step 3.

Step 4. Now we claim that for any 𝐦 ∈ 𝑚
pos∖{𝐦} and for any path 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑚
pos∖{𝐦},

𝜔𝑖 ∈ ℱ (𝒟𝑚
pos) ⟹ 𝜔𝑖−1, 𝜔𝑖+1 ∉ 𝒟𝑚

pos. (A.16)

sing Corollary 6.6, for any 𝐦 ∈ 𝑚
pos and any path 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑚
pos∖{𝐦} there exists an integer 𝑖 such that 𝜔𝑖 ∈ ℱ (𝒟𝑚

pos). Assume by
ontradiction that 𝜔𝑖+1 ∈ 𝒟𝑚

pos. In particular, since 𝜔𝑖 and 𝜔𝑖+1 have the same number of spins 𝑚, note that 𝜔𝑖+1 is obtained by
lipping a spin 1 from 1 to 𝑡 ≠ 1. Since 𝜔𝑖(𝑣) ≠ 𝑡 for every 𝑣 ∈ 𝑉 , the above flip increases the energy, i.e., 𝐻pos(𝜔𝑖+1) > 𝐻pos(𝜔𝑖).
ence, using this inequality and (6.5), we have

𝛷pos
𝜔 ≥ 𝐻pos(𝜔𝑖+1) > 𝐻pos(𝜔𝑖) = 𝐻pos(𝐦) + 𝛤pos(𝐦,𝑚

pos∖{𝐦}) = 𝛷pos(𝐦,𝑚
pos∖{𝐦}), (A.17)

hich implies the contradiction because 𝜔 is not optimal. Thus 𝜔𝑖+1 ∉ 𝒟𝑚
pos and similarly we show that also 𝜔𝑖−1 ∉ 𝒟𝑚

pos.
Step 5. In this last step of the proof we claim that for any 𝐦 ∈ 𝑚

pos and for any path 𝜔 ∈ 𝛺𝑜𝑝𝑡
𝐦,𝑚

pos∖{𝐦} there exists a positive integer

𝑖 such that 𝜔𝑖 ∈ pos(𝐦,𝑠
pos). Arguing by contradiction, assume that there exists 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑚
pos∖{𝐦} such that 𝜔 ∩pos(𝐦,𝑠

pos) = ∅.
Thanks to Corollary 6.6, we know that 𝜔 visits ℱ (𝒟𝑚

pos) and thanks to Step 4 we have that the configurations along 𝜔 belonging to
ℱ (𝒟𝑚

pos) are not consecutive. More precisely, they are linked by a sub-path that belongs either to 𝒟𝑚,+
pos or 𝒟𝑚,−

pos . If 𝑛 is the length
of 𝜔, then let 𝑗 ≤ 𝑛 be the smallest integer such that 𝜔𝑗 ∈ ℱ (𝒟𝑚

pos) and such that (𝜔𝑗 ,… , 𝜔𝑛) ∩ 𝒟𝑚,+
pos = ∅, thus, 𝑗 ∈ 𝑔𝑚(𝜔) since

𝑗 plays the same role of 𝑗∗ in the proof of Step 2. Using (A.9), Step 3 and the assumption 𝜔 ∩ pos(𝐦,𝑠
pos) = ∅, it follows that

𝜔𝑗 ∈  ′
pos(𝐦,𝑠

pos). Moreover, starting from 𝜔𝑗 ∈ ℱ (𝒟𝑚
pos) the energy along the path decreases only by either

(i) flipping the spin in the unit protuberance from 1 to 𝑚, or
(ii) flipping a spin, with two nearest neighbors with spin 1, from 𝑚 to 1.

Since by the definition of 𝑗 we have that 𝜔𝑗−1 is the last that visits 𝒟𝑚,+
pos , 𝜔𝑗+1 ∉ 𝒟𝑚,+

pos , (i) is not feasible. Considering (ii), we have
𝐻pos(𝜔𝑗+1) = 𝐻pos(𝐦) + 𝛤pos(𝐦,𝑚

pos∖{𝐦}) − ℎ. Starting from 𝜔𝑗+1 we consider only moves which imply either a decrease of energy
or an increase by at most ℎ. Since 𝐶1(𝜔𝑗+1) is a polyomino 𝓁∗ × (𝓁∗ − 1) with a bar made of two adjacent unit squares on a shortest
side, the only feasible moves are

(iii) flipping a spin, with two nearest neighbors with spin 𝑚, from 𝑚 to 1,
(iv) flipping a spin, with two nearest neighbors with spin 1, from 1 to 𝑚.

By means of the moves (iii) and (iv), the process reaches a configuration 𝜎 in which all the spins are equal to 𝑚 except those,
that are 1, in a connected polyomino 𝐶1(𝜎) that is convex and such that 𝑅(𝐶1(𝜎)) = 𝑅(𝓁∗+1)×(𝓁∗−1). We cannot repeat the move
(iv) otherwise we get a configuration that does not belong to 𝒟𝑚

pos. While applying one time (iv) and iteratively (iii), until we fill
the rectangle 𝑅(𝓁∗+1)×(𝓁∗−1) with spins 1, we get a set of configurations in which the one with the smallest energy is 𝜎 such that
𝐶1(𝜎) ≡ 𝑅(𝐶1(𝜎)). Moreover, from any configuration in this set, a possible move is reached by flipping from 𝑚 to 1 a spin 𝑚 with
33

three nearest neighbors with spin 𝑚 that implies to enlarge the circumscribed rectangle. This spin-flip increases the energy by 2−ℎ.
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Thus, we obtain

𝛷pos
𝜔 ≥ 4𝓁∗ − ℎ(𝓁∗ + 1)(𝓁∗ − 1) + 2 − ℎ +𝐻pos(𝐦)

> 𝛤pos(𝐦,𝑚
pos∖{𝐦}) +𝐻pos(𝐦) = 𝛷pos(𝐦,𝑚

pos∖{𝐦}), (A.18)

which is a contradiction by the definition of an optimal path. Note that the last inequality follows by 2 > ℎ(𝓁∗ − 1) since 0 < ℎ < 1
2 ,

see Assumption 4.1. It follows that it is not possible to have 𝜔 ∩pos(𝐦,𝑠
pos) = ∅ for any 𝜔 ∈ 𝛺𝑜𝑝𝑡

𝐦,𝑚
pos∖{𝐦}, namely pos(𝐦,𝑠

pos) is
a gate for this type of transition. □
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[58] R. Koteckỳ, E. Olivieri, Shapes of growing droplets—a model of escape from a metastable phase, J. Stat. Phys. 75 (3) (1994) 409–506.
[59] F. Manzo, F.R. Nardi, E. Olivieri, E. Scoppola, On the essential features of metastability: tunnelling time and critical configurations, J. Stat. Phys. 115

(1–2) (2004) 591–642.
[60] F.R. Nardi, E. Olivieri, Low temperature stochastic dynamics for an Ising model with alternating field, in: Markov Proc. Relat. Fields, 2, 1996, pp. 117–166.
[61] F. Nardi, C. Spitoni, Sharp asymptotics for stochastic dynamics with parallel updating rule, J. Stat. Phys. 146 (4) (2012) 701–718.
[62] F.R. Nardi, A. Zocca, Tunneling behavior of Ising and Potts models in the low-temperature regime, Stochastic Process. Appl. 129 (11) (2019) 4556–4575.
[63] F.R. Nardi, A. Zocca, S.C. Borst, Hitting time asymptotics for hard-core interactions on grids, J. Stat. Phys. 162 (2) (2016) 522–576.
[64] E.J. Neves, R.H. Schonmann, Critical droplets and metastability for a Glauber dynamics at very low temperatures, Comm. Math. Phys. 137 (2) (1991)

209–230.
[65] E.J. Neves, R.H. Schonmann, Behavior of droplets for a class of Glauber dynamics at very low temperature, Probab. Theory Related Fields 91 (3–4) (1992)

331–354.
[66] E. Olivieri, E. Scoppola, Markov chains with exponentially small transition probabilities: first exit problem from a general domain. The reversible case, J.

Stat. Phys. 79 (3) (1995) 613–647.
[67] E. Olivieri, E. Scoppola, Markov chains with exponentially small transition probabilities: first exit problem from a general domain. The general case, J.

Stat. Phys. 84 (5) (1996) 987–1041.
[68] E. Olivieri, M.E. Vares, Large Deviations and Metastability, Vol. 100, Cambridge University Press, 2005.
[69] A. Procacci, B. Scoppola, E. Scoppola, Probabilistic cellular automata for low-temperature 2-d Ising model, J. Stat. Phys. 165 (6) (2016) 991–1005.
[70] K. Wang, Solutions of the variational problem in the Curie-Weiss-Potts model, Stoch. Process. Their Appl. 50 (2) (1994) 245–252.
[71] A. Zocca, Tunneling of the hard-core model on finite triangular lattices, Random Struct. Algorithms 55 (1) (2019) 215–246.
35

http://refhub.elsevier.com/S0304-4149(24)00049-8/sb47
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb48
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb49
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb50
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb50
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb50
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb51
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb51
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb51
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb52
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb52
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb52
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb53
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb53
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb53
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb54
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb54
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb54
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb55
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb56
http://arxiv.org/abs/2102.05565
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb58
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb59
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb59
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb59
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb60
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb61
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb62
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb63
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb64
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb64
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb64
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb65
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb65
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb65
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb66
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb66
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb66
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb67
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb67
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb67
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb68
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb69
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb70
http://refhub.elsevier.com/S0304-4149(24)00049-8/sb71

	Metastability for the degenerate Potts Model with positive external magnetic field under Glauber dynamics
	Introduction
	Model description
	Definitions and notations
	Model-independent definitions and notations
	Model-dependent definitions and notations

	Main results on the q-state Potts model with positive external magnetic field
	Energy landscape
	Asymptotic behavior of the first hitting time to the stable state and mixing time
	Minimal gates for the metastable transition
	Minimal gates for the transition from a metastable state to the other metastable configurations
	Tube of typical trajectories of the metastable transition
	Further model-independent and model-dependent definitions
	Main results on the tube of typical trajectories


	Energy landscape analysis and asymptotic behavior
	Known local geometric properties
	Metastable states and stability level of the metastable configurations
	Energy landscape and asymptotic behavior: proof of the main results

	Minimal gates and tube of typical trajectories
	Identification of critical configurations for the transition from a metastable to the stable state
	Minimal gates for the transition from a metastable state to the other metastable states
	Minimal gates: proof of the main results
	Tube of typical paths: proof of the main results

	Appendix
	Additional material for Section 5.2 
	 Definition 5.4 
	Proof of Lemma 5.5 
	Proof of Lemma 5.6 
	Proof of Proposition 5.8 
	Proof of Lemma 5.9 

	Additional material for Section 6.2 
	Proof of Corollary 6.6 
	Proof of Proposition 6.7 


	References


