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Abstract

Using the well-known trigonometric six-vertex solution of the Yang-Baxter equa-
tion we derive an integrable pairing Hamiltonian with anyonic degrees of freedom.
The exact algebraic Bethe ansatz solution is obtained using standard techniques.
From this model we obtain several limiting models, including the pairing Hamilto-
nian with p + ip-wave symmetry. An in-depth study of the p + ip model is then
undertaken, including a mean-field analysis, analytic and numerical solution of the
Bethe ansatz equations, and an investigation of the topological properties of the
ground-state wavefunction. Our main result is that the ground-state phase diagram
of the p+ ip model consists of three phases. There is the known boundary line with
gapless excitations that occurs for vanishing chemical potential, separating the topo-
logically trivial strong pairing phase and the topologically non-trivial weak pairing
phase. We argue that a second boundary line exists separating the weak pairing
phase from a topologically trivial weak coupling BCS phase, which includes the
Fermi sea in the limit of zero coupling. The ground state on this second boundary
line is the Moore-Read state.
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1 Introduction

Exactly solvable many-body models have played a very important role in various branches
of physics, especially in statistical mechanics and condensed matter. They have been
fundamental in the understanding of phase transitions and non-perturbative phenomena
in low-dimensional and strongly correlated systems. Prominent examples are provided
by the 2D Ising model, the 1D anisotropic Heisenberg model, the interacting 1D Bose
gas, and the 1D Hubbard model [8, 41]. The solvability and integrability of these and
related models emerges from a common algebraic structure, due to the quantum Yang-
Baxter equation satisfied by the so called R-matrix. The R-matrix is the basic object
of the Quantum Inverse Scattering Method (QISM) [41]. It allows for the construction
of a one parameter family of commuting transfer matrices whose expansion, in powers
of the spectral parameter, generates an infinite set of conserved quantities including the
Hamiltonian of the system. For the anisotropic Heisenberg model, also known as the XXZ
model, the R-matrix is the six-vertex trigonometric solution of the Yang-Baxter equation
and it depends on a spectral parameter u and the quantum parameter q related to the
anisotropy as ∆ = (q2 + q−2)/2.

A closely related family of exactly solvable models are the Richardson-Gaudin models,
where the most prominent examples are the Richardson model of BCS superconductivity
[9, 46, 54, 62, 69] and the Gaudin spin models [23] (for a review see [14]). The common
algebraic structure of this family is the classical Yang-Baxter equation satisfied by the
classical r-matrix. This latter equation is obtained from the quasi-classical limit of the
quantum Yang-Baxter equation through R(u) ∼ 1 + ~r(u). A feature of these models,
unlike the anisotropic Heisenberg model, is the dependence of the Hamiltonian on a large
number of parameters. In the Richardson model, they are the energies of the single
particle levels and the BCS coupling constant, while in the Gaudin model they are the
position of the spins. This abundance of parameters has its origin in the transfer matrix
which is the product of R-matrices with shifted spectral parameters. This is called an
inhomogeneous transfer matrix. This situation must be compared with the anisotropic
Heisenberg model whose transfer matrix is homogeneous, which is the reason why the
Hamiltonian of this model only depends on q.

Thus the majority of models constructed so far are based either on a homogeneous
transfer matrix (e.g. anisotropic Heisenberg model), or in the quasi-classical limit of
an inhomogeneous transfer matrix (Richardson-Gaudin models). It is also of interest
to construct physical models from an inhomogenous transfer matrix before one takes
the quasi-classical limit. The first result of this paper is to construct such a model
starting from the trigonometric six-vertex R-matrix discussed above. This model describes
the pairing interaction of anyonic particles with braiding statistics in momentum space
parameterized by q, and for that reason it can be termed an anyonic pairing model. These
anyons should be distinguished from the real space anyons which satisfy braiding statistics
in 1D [6] or in 2D [44, 64].

The one-body version of the anyonic pairing Hamiltonian we obtain coincides with
the quantum mechanical Hamiltonian proposed by Glazek and Wilson in 2002, which
furnishes a simple example of a renormalization group with limit cycles [24, 25]. The
latter work inspired the construction of a BCS model with s-wave symmetry and time
reversal symmetry-breaking where the renormalization group also has limit cycles [45].
The mean-field gap equation of this BCS model has an infinite number of solutions related
by discrete scale invariance, which explains its name: Russian doll BCS model. This model
was shown in reference [16] to be exactly solvable by the QISM using a rational R matrix.
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Figure 1: Web of integrable pairing models.

The relation between the mean-field and the exact solution of this model was established
in reference [4]. It then comes as no surprise that the Russian doll BCS model can be
obtained from the anyonic pairing model in the limit where the trigonometric R-matrix
becomes rational. However, if the quasi-classical limit of the anyonic pairing model is
taken before the rational limit a BCS model with p + ip-wave symmetry is obtained, as
has been reported in [33]. Taking a rational limit of the latter model or a quasi-classical
limit of the Russian doll model one arrives to the well known s-wave BCS model of
Richardson [54]. Finally, one can take the limit where the BCS coupling constant, of both
the s- wave and p + ip-wave models, goes to infinity obtaining two Gaudin models. The
web of relations between all these models is shown in Fig. (1).

The first part of this paper, Sect. 2, is devoted to the construction of the anyonic
pairing model using the QISM and the derivation of the eigenvalues of the transfer matrix.
In Sect. 3 the relationships of the models in Fig. 1 are shown, giving a unified picture of
the pairing models that can be obtained from the trigonometric R− matrix. In Appendix
A we collect the more technical computation of the wavefunction and scalar products of
the anyonic model, as well as its relation with the aforementioned Glazek-Wilson model.

The bulk of the paper, Sect. 4, is devoted to a detailed study of the exactly solvable
p + ip-wave model which was initiated in [33]. In recent years this model has received
considerable attention due to the existence of vortices with non-trivial braiding statistics
[53, 32, 60], with the potential for implementing topological quantum computation [50].
Furthermore, there are some experimental indications that Sr2RuO4 is such a chiral p-
wave superconductor [42], supporting topological vortices [12, 35]. In the realm of cold
atoms there are also possibilities to realize p + ip-wave paired phases [11, 29, 31, 43]
through experiments involving Feshbach resonaces [21, 22, 34, 51, 66, 67].

We begin our study of the p+ ip model using the BCS mean-field theory, to determine
the phase diagram in the plane (1/g, x), where 1/g is the inverse of the BCS coupling
constant and x is the fraction of occupied energy levels. This phase diagram is divided
into three regions denoted as weak coupling, weak pairing and strong pairing in the
terminology introduced by Read and Green [53]. The strong and weak pairing regions are
separated by a line in the (1/g, x) plane where the chemical potential vanishes, giving rise
to a second-order phase transition and a topological transition described by a winding
number in momentum space introduced by Volovik [60]. The latter two regions are related
by a strong-weak duality which connects two ground states having the same total energy,
and value of the gap, while the chemical potential differs in the sign. On the other hand,
the weak pairing and weak coupling regions are separated by another line in the (1/g, x)
plane which can be called the Moore-Read line because the projected BCS state coincides
precisely with the Moore-Read pfaffian state related to the Fractional Quantum Hall state
at filling fration 5/2. All the points of this line have zero total energy and are mapped,
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under the duality transformation, into the vaccum state. However the gap does not vanish
on this line and the nature of the transition is rather subtle since, as we show below, it
is associated to a discontinuity of the ground state energy, or in another words a zeroth
order phase transition. Volovik has discussed the existence of a Higgs like phase transition
for the p+ ip model, meaning a qualitative change in the dispersion relation of the quasi-
particles [61]. We find that this type of transition occurs on a line located in the weak
coupling region, which is close, but not identical, to the Moore-Read line. A peculiarity
of the Read-Green and the Moore-Read lines is that they are insensitive to the particular
choice of the energy levels, and in that sense they are topological. This feature is not
shared by the Volovik line whose position in the phase diagram depends on the energy
level distribution.

The analysis of Sect. 4 continues with the computation of the fidelity susceptibility
which confirms, as expected, the singular nature of the Read-Green line, while the Moore-
Read line does not show any special feature. Next we analyze the continuum limit of the
Bethe ansatz equations of the p + ip model using an electrostatic analogy which allows
us to uncover the complex structure of the arcs formed by the roots of the Bethe ansatz
equations. We also recover the mean-field gap and chemical potential equations as was
done in previous works for the BCS model with s-wave symmetry [23, 55, 56]. The
structure of the arcs, the values of the ground state energy, gaps, chemical potential and
occupation numbers are compared with the numerical results obtained by solving the
Bethe ansatz equations for systems with finite size, finding a resonable agreement. A
detailed analysis of the exact solution allow us to understand the weak-strong duality
in terms of a dressing operation that maps exact eigenstates between those two regions.
The physical picture that emerges is that the ground state of the weak pairing region is
formed by strongly localized pairs and by delocalized pairs with zero energy. We then
discuss the zeroth order phase transition and the winding number of the mean-field and
exact solutions. For the mean-field solution the winding number vanishes in the strong
pairing region while it does not in the weak pairing and weak coupling regions. However
in the exact solution the winding number only vanishes in the weak pairing region where
it counts the number of Bethe ansatz equation roots that are equal to zero. In this sense
the winding number plays the role of a topological order parameter for the weak pairing
region. Another qualitative distinction between the weak pairing and weak coupling
regions is derived by studying the structure of the vortex wavefunction by means of the
Bogolioubov-de Gennes equations. We find that the vortex wavefunction has an oscillatory
behaviour in the weak coupling region which does not appear in the weak pairing region.

Finally, in Appendices A and B we discuss several technical issues: relation between
the Glazek-Wilson model and the anyonic model, computation of wavefunction scalar
products and correlation functions of the anyonic pairing and the p + ip models, a q-
deformed version of the Moore-Read state, solution of the gap and chemical potential
equations.

2 Construction of an integrable anyonic pairing model

2.1 The Yang–Baxter equation

A systematic method to construct integrable quantum systems is through the Quantum
Inverse Scattering Method (QISM) [41]. The key element in this approach is a solution
of the Yang–Baxter equation [8, 38], commonly known as an R-matrix. This is a linear

5



operator acting on a two-fold tensor product space which is dependent on x ∈ C known as
the spectral parameter. Denoting the R-matrix as R(x) ∈ End(V ⊗V ), the Yang–Baxter
equation reads

R12(x/y)R13(x)R23(y) = R23(y)R13(x)R12(x/y) (1)

which acts on the three-fold space V ⊗ V ⊗ V . The subscripts above refer to the spaces
on which the operators act. E.g.

R12(x) = R(x)⊗ I.

The specific example we will use is the well-known XXZ solution associated with the
quantum algebra Uq[sl(2)]

1 [39]

R(x) =













(q2x− q−2x−1) 0 | 0 0
0 (x − x−1) | (q2 − q−2) 0
− − − −
0 (q2 − q−2) | (x − x−1) 0
0 0 | 0 (q2x− q−2x−1)













.

We define the local L-operator as L(x) = R(xq−1) which is a solution of

R12(x/y)L13(x)L23(y) = L23(y)L13(x)R12(x/y) (2)

as a consequence of (1). It is customary to consider L(x) ∈ End(V ⊗ V ) as acting on the
tensor product of an “auxiliary” space and a local “quantum” space. We use the subscript
a to denote the auxiliary space and the labels j = 1, ..., L for the local quantum spaces of
a many-body system.

To apply the QISM to construct a pairing Hamiltonian we next introduce the hard-
core boson (Cooper pair) operators in terms of fermion operators. Let {c†jσ, cjσ : j =
1, ..., L, σ = ±}, denote a set of creation and annihilation operators with the usual canon-
ical anticommutation relations and where the labels ± refer to time-reversed pairs. The
hard-core boson operators are defined

bj = cj−cj+, b†j = c†j+c
†
j−.

We also set Nj = b†jbj as the Cooper pair number operator such that the total number of
Cooper pairs in a system is given by the eigenvalue of

N =

L
∑

j=1

Nj .

Throughout we will use M to denote the eigenvalues of N .
For each j the local Hilbert space of states is four-dimensional. Excluding the subspace

of states which contain unpaired fermions reduces the local Hilbert spaces to dimension
two, spanned by the vacuum |0〉 and the paired state b†j |0〉. Now expressing the linear
operators of the quantum space of the L-operator in terms of hard-core boson operators
we have

Laj(x) = x

(

q2Nj−I 0
0 qI−2Nj

)

+ (q2 − q−2)

(

0 bj
b†j 0

)

− x−1

(

qI−2Nj 0
0 q2Nj−I

)

1It is convenient for our purposes to express the deformation parameter as q2 rather than the more
familiar q.
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noting that
qγNj = (qγ − 1)Nj + I.

Using the L-operator in this form, we will next apply the QISM to construct an integrable
pairing Hamiltonian with anyonic degrees of freedom.

2.2 Transfer matrix, Hamiltonian, and exact solution

The most common use of the QISM is to construct a transfer matrix on a closed chain
(to adopt the language of spin models). Here we use this approach with a “twist” in
the boundary conditions, which will be chosen in a sector dependent manner as described
below. The quantum space for such a model is the L-fold tensor product space W = V ⊗L.
We introduce the monodromy matrix T (x) ∈ End(V ⊗W ) defined by

T (x) = UaLa1(xz
−1
1 )La2(xz

−1
2 )....LaL(xz

−1
L )

where

U =

(

exp(−iα′) 0
0 exp(iα′)

)

.

The monodromy matrix is commonly expressed in a matrix form as

T (x) =

(

T 1
1 (x) T 1

2 (x)
T 2
1 (x) T 2

2 (x)

)

.

where the entries are operators acting on W . As a result of (2) and

[U ⊗ U, R(x)] = 0

it follows that

Rab(x/y)Ta(x)Tb(y) = Tb(y)Ta(x)Rab(x/y) (3)

which is an operator equation on V ⊗ V ⊗W , with the two auxiliary spaces labelled by
a and b.

Defining the transfer matrix to be

t(x) = tr (T (x)) = T 1
1 (x) + T 2

2 (x).

it follows from (3) that the transfer matrices form a commutative family; i.e.

[t(x), t(y)] = 0 ∀ x, y ∈ C. (4)

The transfer matrices can be expanded in a Laurent series

t(x) =

L
∑

j=−L

t(j)xj

and because of (4) the co-efficients commute

[

t(j), t(k)
]

= 0, −L ≤ j, k ≤ L.
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One may check directly that the transfer matrix commutes with N , so the Hilbert space
of states can be decomposed into sectors labelled by the eigenvalues M of N . The leading
order terms in the expansion are

t(L) =

(

L
∏

j=1

z−1
j

)

(

exp(−iα′)q2N−L + exp(iα′)qL−2N
)

t(L−1) = 0.

We will construct a Hamiltonian in terms of the operator t(L−2), where the choice of the
variable α will depend on the sector labelled by M . Setting

q = exp(iβ)

α = α′ + β(L− 2M + 2)

we define

H =
1

4 sin(2β) sin(α)

[

t(L−2)
L
∏

j=1

zj + 2 cos(α)
L
∑

j=1

z2j

]

.

The Hamiltonian may be expressed as

H =

L
∑

j=1

z2jNj −
sin(2β)

sin(α− 2β)

L
∑

k>r

zkzr
(

exp(−iα)d†rdk + h.c.
)

(5)

with

dj = bj

L
∏

k=j+1

q4Nk−2I ,

d†j = b†j

L
∏

k=j+1

q2I−4Nk , (6)

α, β are assumed to be real and h.c. denotes hermitian conjugate. Due to the non-local
action of the operators d†j, dj they satisfy

djdk = q4dkdj j > k

d†jdk = q−4dkd
†
j j > k

amongst other relations, and therefore can be viewed as anyonic creation and annihilation
operators. By the nature of the above construction, the anyonic Hamiltonian is integrable
as it commutes with all terms in the expansion of the transfer matrix. That is

[

H, t(j)
]

= 0, j = −L, ..., L

establishing that the t(j) provide a set of conserved operators2.
Recall that the derivation of the Hamiltonian was made using a restricted subspace of

the Hilbert space obtained by excluding unpaired states. By noting that the second term

2In principle for integrability to hold one would need to check that the number of independent con-
served operators is not less that the number of degrees of freedom.
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in (5), which describes the scattering of Cooper pairs, vanishes on unpaired states3 it is
straightforward to extend the action of the Hamiltonian to the full 4L-dimensional Hilbert
space. We define anyonic creation and annihilation operators {a†j±, aj± : j = 1, ..., L}
which are defined in terms of the canonical fermion operators through

ajσ = cjσ

L
∏

k=j+1

q2nkσ−I ,

a†jσ = c†jσ

L
∏

k=j+1

qI−2nkσ

where njσ = c†jσcjσ. These operators satisfy the relations

{ajσ, ajρ} = {aj+, ak−} = 0, (7)

{ajσ, a†jρ} = δσρI, (8)

ajσakσ = −qakσajσ j > k (9)

a†jσakσ = −q−1akσa
†
jσ j > k (10)

and those relations obtained by taking hermitian conjugates. The usual fermionic com-
mutation relations are recovered in the limit q → 1. Then the Hamiltonian

H =
1

2

L
∑

j=1

z2j (nj+ + nj−)−
sin(2β)

sin(α− 2β)

L
∑

k>r

zkzr

(

exp(−iα)a†r+a†r−ak−ak+ + h.c.
)

is an extension to the 4L-dimensional Hilbert space which has the same action as (5) when
the unpaired states are excluded.

Having constructed the Hamiltonian through the QISM it is a standard calculation to
obtain the exact solution through the algebraic Bethe ansatz. We simply present the key
results. Explicit details relevant to the derivation of the formulae below may be found in
[26, 40, 41, 62].

The first step is to identify that the vacuum state |0〉 admits the properties

T 1
1 (x) |0〉 = a(x) |0〉 ,
T 1
2 (x) |0〉 = 0,

T 2
1 (x) |0〉 6= 0,

T 2
2 (x) |0〉 = d(x) |0〉

where

a(x) = exp(−iα′)
L
∏

k=1

(q−1xz−1
k − qx−1zk),

d(x) = exp(iα′)
L
∏

k=1

(qxz−1
k − q−1x−1zk).

We then look for eigenstates of t(x) in the form

|Φ(Y )〉 =
M
∏

j=1

T 2
1 (yj) |0〉

3In standard BCS theory this phenomenon is well-known and goes by the name of the blocking effect,
e.g. see [63]).
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where Y = {yj}. Note that

[

T 2
1 (yj), T

2
1 (yk)

]

= 0

so the operators may be ordered arbitrarily. Using the algebraic relations amongst the
T i
j (x) operators, this leads to the eigenvalues Λ(x) of the transfer matrix being given by

[26, 40, 41, 62]

Λ(x) = exp(−iα′)
L
∏

k=1

(q−1xz−1
k − qx−1zk)

M
∏

j=1

q2x2 − q−2y2j
x2 − y2j

+ exp(iα′)
L
∏

k=1

(qxz−1
k − q−1x−1zk)

M
∏

j=1

q−2x2 − q2y2j
x2 − y2j

= exp(−iα)
L
∏

k=1

(xz−1
k − q2x−1zk)

M
∏

j=1

x2 − q−4y2j
x2 − y2j

+ exp(iα)
L
∏

k=1

(xz−1
k − q−2x−1zk)

M
∏

j=1

x2 − q4y2j
x2 − y2j

such that the parameters {yj} satisfy the Bethe ansatz equations

exp(−2iα)

L
∏

k=1

1− q2y−2
m z2k

1− q−2y−2
m z2k

=

M
∏

j 6=m

1− q4y−2
m y2j

1− q−4y−2
m y2j

m = 1, ...,M. (11)

To obtain the energy expression E for the Hamiltonian (5), it is a matter of expanding
the transfer matrix eigenvalues in the Laurent series

Λ(x) =

L
∑

j=−L

Λ(j)xj

giving

E =
1

4 sin(2β) sin(α)

[

Λ(L−2)
L
∏

j=1

zj + 2 cos(α)
L
∑

j=1

z2j

]

=
sin(α)

sin(α− 2β)

M
∑

j=1

y2j . (12)

We leave to Appendix A.2 the computation of the scalar product and correlators for this
model.

From the form of the Hamiltonian (5) and the definition of the operators dj, eq. (6)
one can see that the model parameters can be restricted to the domain 0 ≤ α, β ≤ π. If
α = 0 the Hamiltonian (5) reduces to

H =

(

L
∑

r=1

zrd
†
r

)(

L
∑

k=1

zkdk

)

.

Formally eq. (12) yields that the energies are zero. However in this limit the roots yj can
be divergent, such that non-zero energies do occur.
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It is possible to generalise the above construction in a number of ways. Instead of
using the closed chain transfer matrix construction, one can adopt the open chain version
developed by Sklyanin [58]. In this manner a Hamiltonian is obtained which not only
involves scattering interactions between the anyonic pair operators given by (6), but
also their complex conjugates. A second route is to use different solutions of the Yang–
Baxter equation. An obvious choice would be to employ Baxter’s eight-vertex solution
[7, 8]. But this solution suffers from the fact that it is not U(1) invariant which prohibits
the construction of a Hamiltonian which conserves particle number. Beyond this there
are however many known solutions of the Yang-Baxter equation which do possess U(1)
symmetries, particularly those associated with representations of the quantum algebras
Uq[g] where g is a classical simple Lie algebra (e.g. see [37]). In principle these can be
applied for the construction of models, which in particular cases will provide anyonic
generalisations of integrable pairing models based on bosonic or fermionic degrees of
freedom.

3 Limiting cases

3.1 Russian doll and s-wave BCS models

An example of a many-body system which admits a cyclic Renormalization Group (RG)
equation analogous to the Glazek-Wilson Hamiltonian (see (103) of Appendix A.1) was
studied in [45]. The many-body Hamiltonian was taken to be the s-wave BCS model with
complex-valued coupling parameter, later to become known as the Russian Doll (RD)
BCS model. The cyclic RG was discovered through a mean-field analysis. Subsequently
in [16] it was proved that the RD BCS model is integrable, and in [4] the connection
between the Bethe ansatz solution and the RG equation was exposed. Next we will show
that the RD BCS model can be obtained as a limiting case of the anyonic pairing model
(5). Moreover the exact solution for the usual s-wave BCS model, which was first found
in [54], is obtained by performing a second limiting procedure.

We introduce a new variable η and define the parameters εk, k = 1, ..., L and vj, j =
1, ...,M through

zk = exp(2βεk/η)

yj = exp(2βvj/η)

and redefine the Hamiltonian (5) by a simple rescaling and additional conserved term

H 7→ η

sin(2β)
(H −N)

so the energy expression (12) becomes

E =
η sin(α)

sin(α− 2β) sin(2β)

M
∑

j=1

y2j −
η

sin(2β)
M.

Now we take what is known as the rational limit β → 0 to obtain the following expressions
for the Hamiltonian, Bethe ansatz equations, and energy respectively

H = 2

L
∑

j=1

εjNj −G

L
∑

k>r

(

exp(−iα)b†rbk + h.c.
)

(13)

11



exp(−2iα)

L
∏

k=1

vj − εk − iη/2

vj − εk + iη/2
=

M
∏

m6=j

vj − vm − iη

vj − vm + iη
, j = 1, ..., N (14)

E = 2
M
∑

j=1

vj +GM cos(α). (15)

where G = η/ sin(α). This is the exact solution for the Russian Doll BCS model in
terms of the parameterisation used in [16]. Applying the same limiting procedure to the
expressions (112,117) derived in Appendix A.2 yields the wavefunction scalar product and
one-point functions given in [16].

Performing a second limiting procedure to the Russian Doll Hamiltonian yields the
s-wave Hamiltonian. To make this result explicit we implement the following change of
variable α → ηα and add the conserved quantity −GN to the Hamiltonian (13). Taking
the quasi-classical limit η → 0 we obtain from (13,14,15)

H = 2

L
∑

j=1

εjNj −G

L
∑

k,r=1

b†rbk (16)

2

G
+

L
∑

k=1

1

vj − εk
=

M
∑

j 6=m

2

vm − vj
, j = 1, ...,M (17)

E = 2

M
∑

j=1

vj (18)

where G = 1/α. Up to a change in notational conventions this is precisely the exact
solution first given in [54].

3.2 The p+ ip-wave BCS model

The Hamiltonian of the BCS pairing model with p + ip-wave symmetry was introduced
in reference [33]

H =
∑

k

k2

2m
c†
k
ck −

G

4m

∑

k 6=±k′

(kx − iky)(k
′
x + ik′y) c

†
k
c†−k

c−k′ck′ (19)

where ck, c
†
k
are destruction and creation operators of two-dimensional polarised fermions

with momentum k = (kx, ky), m is their mass and G is a dimensionless coupling constant
which is positive for an attractive interaction. We remark that we impose no constraint
on the choice for the ultraviolet cut-off, which we denote as ω. Likewise the distribution
of the momenta k is arbitrary other than the assumption that all momentum states arise
in time-reversed pairs k and −k. In particular this means that a one-dimensional system
is obtained by simply setting all ky = 0.

We shall discuss now how this Hamiltonian can be obtained from another limiting
case of the Hamiltonian (5), which establishes the integrablity of the p + ip-wave BCS
model. The strategy here is to take the quasi-classical limit first, rather than the rational
limit. While this general approach has previously appeared in the literature to construct
integrable Hamiltonians in the context of Gaudin algebras [1, 2, 14, 15], the connection
with the p + ip model has thus far not been made apparent for reasons we will discuss
below.
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Introducing the parameterisation

α = −iγt
β = −iγp

and taking the limit γ → 0 leads to the Hamiltonian

H =

L
∑

j=1

z2jNj −
2p

t− 2p

L
∑

k>r

zkzr
(

b†rbk + h.c.
)

with the Bethe ansatz equations and energies given respectively by

− 2t− 4p
L
∑

k=1

z2k
y2m − z2k

= −8p
M
∑

j 6=m

y2j
y2j − y2m

, (20)

E =
t

t− 2p

M
∑

j=1

y2j

Next we set

G =
2p

t− 2p
=

2

α/β − 2
(21)

in terms of which we have

H =

L
∑

j=1

z2jNj −G

L
∑

k>r

zkzr
(

b†rbk + h.c.
)

, (22)

G−1 − L+ 2M − 1

y2m
+

L
∑

k=1

1

y2m − z2k
=

M
∑

j 6=m

2

y2m − y2j
, (23)

E = (1 +G)
M
∑

j=1

y2j . (24)

To show that (22) is equivalent to (19), we first define the Cooper pair operators

b̃†
k
= c†

k
c†−k

, b̃k = c−kck, Ñk = b̃†
k
b̃k,

which have odd symmetry (consistent with p-wave pairing):

b̃−k = −b̃k, Ñk = Ñ−k.

We let K+ denote the set of momenta where kx > 0 and no restriction placed on ky, so
that we avoid issues with double counting. Excluding the unpaired states and setting
m = 1, the Hamiltonian (19) takes the form

H =
∑

k∈K+

z2
k
Ñk −G

∑

k 6=k′∈K+

zkzk′ exp(−iφk) exp(iφk′)b̃†
k
b̃k′ (25)

where zk = |k| and exp(iφk) = (kx + iky)/k
2. Performing the unitary transformation

b̃†
k
= exp(iφk)b

†
k
, b̃k = exp(−iφk)bk (26)
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and using the integers rather than k to enumerate the momentum states in the half plane
brings (25) into (19).

Note that the main results derived for the exact solution of the p + ip model, viz.
(23,24), are functions of the squares of the Bethe roots. Throughout the subsequent
analyses (with the exception of Appendices B.3 and B.4) we will simplify the notation by
making the substitution

y2j 7→ yj. (27)

In terms of the original parameterisation, we may now write that the exact eigenstates
of the Hamiltonian (19) with M fermion pairs are given by

|ψ〉 =
M
∏

j=1

C(yj)|0〉, C(y) =
∑

k∈K+

kx − iky
k2 − y

c†
k
c†−k

(28)

where the rapidities yj , j = 1, ...,M satisfy the Bethe ansatz equations

q

yj
+

1

2

∑

k∈K+

1

yj − k2
−

M
∑

l 6=j

1

yj − yl
= 0, m = 1, . . . ,M (29)

with 2q = 1/G− L+ 2M − 1. The total energy of the state (28) is given by

E = (1 +G)
M
∑

j=1

yj. (30)

This limiting case is closely related to other models which have been constructed using
the hyperbolic Gaudin algebras [1, 2, 14, 15]. In fact the conserved operators for the
Hamiltonian (22) which are obtained by taking the quasi-classical limit of the operators
{t̃(qzj) : j = 1, ..., L} are equivalent to those which are discussed in [1, 2, 14, 15] with
an important difference due to the coupling parameter of the overarching anyonic model
being defined in a sector-dependent manner. To make this explicit, expressing the leading
term expansion as

t̃(qzk) ∼ I − 2pγτk

we find

τk = (2G−1 − L+ 2M)Nk −
L
∑

l 6=k

(

2zkzl
z2k − z2l

(

b†kbl + bkb
†
l

)

+
z2k + z2l
z2k − z2l

(2NkNl −Nk −Nl)

)

.(31)

Besides a constant term, the difference with the conserved operators in [1, 2, 14, 15] is
the M- and L-dependence on the co-efficient of Nk. Through the conserved operators we
can write for each sector with fixed M

H =
G

2

L
∑

k=1

z2k(τk −M)

The eigenvalues λk of the τk are

λk =

M
∑

j=1

z2k + y2j
z2k − y2j

14



which follows from taking the leading terms in the expansion of (109) in Appendix A.2.
One may check, with the help of (23), that

E = (1 +G)

M
∑

j=1

y2j

=
G

2

L
∑

k=1

z2k(λk −M)

as required.
It is important to clarify here the reason why the conserved operators are said to be

associated with hyperbolic Gaudin algebras. Introducing the scaling parameter ν we set

εk =
1

ν
ln(zk), vj =

1

ν
ln(yj). (32)

Through this change of variables the Bethe ansatz equations (23) can be expressed as

2

G
− L+ 2M +

L
∑

k=1

coth(ν(vm − εk)) = 2

M
∑

j 6=m

coth(ν(vm − vj)) (33)

and in a similar way the expressions for τk and λk can be written in terms of hyperbolic
functions. In this form, we can now take the rational limit to recover the s-wave BCS
model from the p+ ip model. We redefine the Hamiltonian (22) as

H 7→ 1

ν
(H − (1 +G)N).

Then setting G 7→ νG and taking the limit ν → 0, (22,23,24) reproduce (16,17,18).

3.3 The Gaudin models

The Gaudin model can be considered as the G→ ∞ limit of the corresponding s- wave and
p-wave models introduced above. In the s-wave model the U(1) symmetry is promoted to
a SU(2) symmetry and the Gaudin model can be regarded as a rotational invariant spin
chain with local spin 1/2 operators Si whose dynamics is described by a set of commuting
operators

Ri =
L
∑

j 6=i

Si · Sj

εi − εj
, [Ri, Rj ] = 0

These operators are simultaneously diagonalized by the Richardson ansatz in terms of a
set of rapidities εj satisfying the G→ ∞ limit of the Bethe ansatz equations (11), namely

L
∑

k=1

1

vj − εk
=

M
∑

j 6=m

2

vm − vj
, j = 1, ..., N

The p-wave Gaudin model corresponds to the trigonometric version considered earlier
with the commuting operators given by the G → ∞ limit of the operators τk defined in
eq. (31). The corresponding Bethe ansatz equations are given by the G → ∞ limit of
(29), or equivalently (33).
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4 Analysis of the p + ip model

4.1 Ground-state phase diagram from BCS mean-field theory

To undertake the mean-field analysis of the p + ip model it is more convenient to work
with the Hamiltonian

H =
∑

k

k2

2m
c†
k
ck −

G

4m

∑

k,k′

(kx − iky)(k
′
x + ik′y) c

†
k
c†−k

c−k′ck′ (34)

which differs from (19) only in that the double sum is now not restricted to k 6= ±k′. The
differences between using (19) and (34) will be discussed at the end of Subsection 4.1.1.

The derivation of the gap and chemical potential equations which give the mean-field
solution of (34) follows now standard techniques which are a straightforward extension of
the original methods of the BCS paper [5]. Here we will only outline the main steps. First
we assume that the number of fermions is even and that in the ground state of the system
all fermions are paired. Our convention will again be to use N to denote the Cooper pair
number operator and M for the eigenvalues of N . The BCS order parameter associated
to (34) is

∆̂ =
G

m

∑

k

(kx + iky)〈c−kck〉

in terms of which the Hamiltonian (34) can be approximated as

H ≈
∑

k

ξk c
†
k
ck −

1

4

∑

k

(

∆̂ (kx − iky)c
†
k
c†−k

+ h.c.
)

+
|∆̂|2
4G

+ µM

where ξk = k2/2m − µ/2 and µ/2 is the chemical potential. This Hamiltonian can be
diagonalized by a Bogoliubov transformation. By minimising the energy, and fixing the
expectation value of the number of Cooper pairs to beM , it is found that the gap ∆ = |∆̂|
and chemical potential are the solutions of the equations

∑

k∈K+

k2

√

(k2 − µ)2 + k2∆2
=

1

G
(35)

µ
∑

k∈K+

1
√

(k2 − µ)2 + k2∆2
= 2M − L+

1

G
(36)

where we have set m = 1 and 2L is the total number of momentum states below the
cut-off ω. The mean-field expression for the ground-state energy is

E0 =
1

2

∑

k∈K+

k2

(

1− 2k2 +∆2 − 2µ

2
√

(k2 − µ)2 + k2∆2

)

. (37)

The normalised ground state is given by

|Ψ〉 =
∏

k∈K+

(ukI + vkc
†
k
c†−k

)|0〉 (38)

16



where

|uk|2 =
1

2

(

1 +
k2 − µ

√

(k2 − µ)2 + k2∆2

)

|vk|2 =
1

2

(

1− k2 − µ
√

(k2 − µ)2 + k2∆2

)

and the phases must be chosen such that

(kx + iky)∆̂
∗vk

uk
= 2E(k)− k2 + µ

is real. Above, E(k) is the quasiparticle energy spectrum

E(k) =
1

2

√

(k2 − µ)2 + k2∆2. (39)

To obtain an approximation for the ground state with a fixed number of Cooper pairs
M , one can take a projection of (38). Writing (38) as

|Ψ〉 =





∏

k∈K+

u−1
k



 exp





∑

k∈K+

vk
uk
c†
k
c†−k



 |0〉,

projection onto a fixed number of M pairs gives

|ψ〉 =





∑

k∈K+

g(k)c†
k
c†−k





M

|0〉 (40)

where

g(k) =
vk
uk

=
2E(k)− k2 + µ

(kx + iky)∆̂∗
. (41)

4.1.1 The Moore-Read and Read-Green lines

By analysing the above mean-field results we can piece together the various phases of
the model. To some extent this has been undertaken in [53], and we will first review
their findings. Then we will extend the analysis to expose a duality that exists in the
ground-state phase diagram.

Following [53], note that the spectrum is gapless at µ = 0 as |k| → 0. Furthermore,
the behaviour of g(k) as |k| → 0 depends on the sign of µ,

g(k) ∼
{

kx − iky, µ < 0,
1/(kx + iky), µ > 0.

It was argued in [53] that µ = 0 corresponds to a topological phase transition, a subject
we will return to later in Subsection 4.3. From (36) it is seen that µ = 0 necessarily
implies

M =
1

2

(

L− 1

G

)
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Introducing the filling fraction x =M/L and defining g = GL we equivalently have

x =
1

2

(

1− 1

g

)

. (42)

We will refer to (42) as the Read-Green (RG) line of the phase diagram.
In real space the state (40) takes the form of a pfaffian

ψ(r1, . . . , r2M) = A[ĝ(r1 − r2) . . . ĝ(r2M−1 − r2M )]

where A denotes the antisymmetrization of the positions and ĝ(r) is the Fourier transform
of g(k). We will refer to the case µ = 0 as the Read-Green (RG) state. For µ > 0 the large
distance behaviour is ĝ(r) ∼ 1/(x+ iy), which asymptotically reproduces the Moore-Read
(MR) state found in studies of the Fractional Quantum Hall Effect [49] (see Appendix
B.1 for the derivation of this result and its comparison with the exact wavefunctions in
real space). In momentum space co-ordinates the (unnormalised) MR state of M Cooper
pairs is

|MR〉 =





∑

k∈K+

1

kx + iky
c†
k
c†−k





M

|0〉. (43)

Upon closer inspection of the mean-field equations we find that the MR state (43)
coincides (up to normalisation) with the projected ground state (40) whenever

∆2 = 4µ (44)

The result is easily verified by simply substituting (44) into (39,41). Furthermore, sub-
stituting (44) into (35,36) and adding these equations yields

M = L− 1

G
,

or in terms of the filling fraction

x = 1− 1

g
. (45)

We will refer to (45) as the MR line of the phase diagram. Finally, we substitute (44)
into (37) to obtain

E0 = 0. (46)

This means that the condensation energy of the state equals the energy of the Fermi sea!
From the above considerations we gain an initial insight into topological properties of

the model. Both the RG line given by (42), for which the excitation spectrum becomes
gapless as |k| → 0, and the MR line given by (45), for which the ground-state energy
is zero, hold independent of the choice of distribution for the momenta k. These are
properties of the model that are protected (in a topological sense to be discussed in
Subsection 4.3) from perturbations of the system which are reflected by changes in the
momentum distribution.

Both the RG and MR lines can be viewed as boundary lines in the ground-state phase
diagram relative to a duality property of the mean-field solution, which is our next item
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to discuss. First we introduce parameters a and b related to the chemical potential and
the gap by

a, b = µ− ∆2

2
±∆

√

∆2

4
− µ (47)

which simply allows us to write the quadratic term under the square root in (35,36) in
terms of its roots:

√

(k2 − µ)2 + k2∆ =
√

(k2 − a)(k2 − b).

The parameters a and b can either both be real, or form a complex pair in which case we
denote them as ǫ± iδ. In either case they satisfy the relation

µ2 = ab.

We see from (37) that in terms of a and b the ground-state energy reads

E0 =
1

2

∑

k∈K+

k2

(

1− 2k2 − a− b

2
√

(k2 − a)(k2 − b)

)

(48)

which is independent of the sign of µ. On the other hand, the sign of the µ coincides, by
eq. (36), with that of

q0 = L

(

x− 1

2
+

1

2g

)

. (49)

This implies the existence of a duality between phases which we will denote as weak
pairing and strong pairing, adopting the terminology of [53]. Specifically, the two ground
states with filling fractions xW (with µ > 0) and xS (with µ < 0) satisfying

xW + xS = 1− 1

g
(50)

share the same values of a, b, g, µ2. Besides differing in the sign of µ, they also differ in
the values of ∆. One can check that the required map which preserves (47) is

∆2 7→ ∆2 − 4µ

µ 7→ −µ

Finally, from (48) we see these ground states have the same mean-field energy, and from
(39) the same excitation spectrum above them.

Taking into account all these considerations, the ground state of the model consists of
three phases detailed in Table 1. In the weak coupling BCS phase where x > 1 − 1/g, a
and b form a complex pair parameterized by ǫ and δ. When x = 1 − 1/g, the MR line,
both a and b are equal and real. This line is dual to the vacuum. From (39) the mean-field
solution predicts this line is gapped, so it is not clear at this stage in what sense the MR
line might be considered a phase transition. We shall come back to this issue later on
when we discuss the solution of the model in terms of the Bethe ansatz equations. The
two regions denoted weak pairing and strong pairing, for which the parameters a and b
are real and negative, are separated by the critical RG line where the chemical potential
µ = 0 and the excitation gap vanishes. The RG line is self-dual.
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Phase a, b µ,∆ x

Weak coupling BCS ǫ± iδ µ > ∆2/4 x > 1− g−1

Moore-Read line a = b = −µ µ = ∆2/4 xMR = 1− g−1

Weak pairing a < b < 0 0 < µ < ∆2/4 (1− g−1)/2 < x < 1− g−1

Read-Green line a < b = 0 µ = 0 xRG = (1− g−1)/2

Strong pairing a < b < 0 µ < 0 x < (1− g−1)/2

Table 1: Phases of the p+ ip model in terms of the mean-field variables µ, ∆, a, b.

To solve the mean-field gap (35) and chemical potential (36) equations for the case
of large L it is useful to undertake a continuum limit whereby the sums are replaced by
integrals. Making the change of variable ε̄ = k2/ω we introduce a density function ρ̄(ε̄)
with the choice of normalisation

∫ 1

0

dε̄ ρ̄(ε̄) = 1.

The densities are chosen as

ρ̄(ε̄) =
1

2
√
ε̄

(51)

which corresponds to free fermions in one dimension (1D), and

ρ̄(ε̄) = 1 (52)

for free fermions in two dimensions (2D). The integral approximations of (35,36) are

1

g
=

∫ 1

0

dε̄
ε̄ ρ̄(ε̄)

√

(ε̄− ā)(ε̄− b̄)
, (53)

2

∣

∣

∣

∣

x− 1

2
+

1

2g

∣

∣

∣

∣

=
√

āb̄

∫ 1

0

dε̄
ρ̄(ε̄)

√

(ε̄− ā)(ε̄− b̄)
, (54)

where ā = a/ω, b̄ = b/ω. From (37) we obtain the ground-state energy per pair as

e0 =
ω

2x

∫ 1

0

dε̄ ε̄ ρ̄(ε̄)

(

1− 2ε̄− ā− b̄

2
√

(ε̄− ā)(ε̄− b̄)

)

. (55)

The integral equation approximations become exact in the thermodynamic limit L → ∞,
which requires that G → 0, M → ∞ in order for g = GL, x = M/L to remain finite.
Solutions of (53,54) are given in Appendix B.1. Numerical results are presented in Figs.
3 and 4 below.

To conclude here, we turn to the comparison between the Hamiltonians (19) and (34).
Excluding the subspace of unpaired states we have

H(G) = (1 +G)H(G/(1 +G))

which shows that H is equivalent to H up to a scaling factor 1 + G and the redefintion
of the coupling G 7→ G/(1 + G). For systems with an even number of fermions, the
mean-field ground states of H and H are equal in the thermodynamic limit since we take
G→ 0.
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4.1.2 The Volovik line

The energy gap between the ground and first excited states is the minimum of the quasi-
particle excitation energies as given by (39). In order to make comparison with later
results for finite-sized systems where the total fermion number is fixed, we will consider
an elementary excitation to be associated with two quasiparticle excitations. From (39)
we find that the gap Egap is

Egap(k) =

{ |µ|, µ ≤ ∆2/2,
1

2

√

∆2(4µ−∆2), µ ≥ ∆2/2.

For µ > ∆2/2 the quasiparticle energy has a minimum at a non zero momentum k

different from zero, while for µ ≤ ∆2/2 the minimum is achieved at k = 0. This situation
is reminiscent of the Higgs transition that takes places for a scalar field with a quartic
potential [61]. For this reason we call the case µ = ∆2/2 the Volovik line in the p+ip phase
diagram. In this instance eliminating ∆ from the gap and chemical potential equations
(35,36) gives

∑

k∈K+

k2

√

k4 + µ2
=

1

G
,

µ
∑

k∈K+

1
√

k4 + µ2
= 2M − L+

1

G
.

Further eliminating the 1/G term we obtain the equation of the Volovik line

x =
1

2
− 1

2L

∑

k∈K+

k2 − µ
√

k4 + µ2
(56)

which lies in the weak coupling BCS phase. In contrast to the RG (42) and MR (45)
line equations, the Volovik line is dependent on the distribution of the momenta k and
consequently is not topologically protected. In the continuum limit the equation (56)
reads

x =
1

2
− 1

2

∫ 1

0

dε̄ ρ̄(ε̄)
ε̄− µ̄

√

ε̄2 + µ̄2
(57)

which relates the filling fraction x with the value of the normalized chemical potential µ̄.
In 2D the gap equation (53) becomes

1

g
= −µ̄+

√

1 + µ̄2

which can be easily inverted to yield µ̄ as a function of g. Plugging that result into the
integral of (57) gives the Volovik line for the 2D model

x =
1

2

(

1− g−1 +
1

2
(g − g−1) log

g + g−1 + 2

g − g−1

)

. (58)

In 1D the gap equation (53) yields

1

g
=

1

3µ̄
F2,1

(

1

2
,
3

4
,
7

4
,− 1

µ̄2

)
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Figure 2: Ground-state phase diagram of the p + ip model in terms of the inverse coupling 1/g and
filling fraction x = M/L. Phase boundaries are given by the Read-Green line (µ = 0) and the Moore-
Read line (µ = ∆2/4). The phase boundary conditions are independent of the choice of the momentum
distribution, and independent of the ultraviolet cut-off. Also shown are the Volovik lines corresponding
to 1D and 2D momentum distributions.

which together with the integration of (57) gives

x =
1

2

(

1− g−1 + F2,1

(

1

4
,
1

2
,
5

4
,− 1

µ̄2

))

which is the equation of the Volovik line in 1D. In Fig. 2 we depict the Volovik lines, of
the 1D and 2D models, on the the phase diagram of the p + ip model. One can see that
they lie close to the MR line although do not coincide with it. As explained earlier the
Volovik line depends on the choice of the energy level density ρ(ε), while the MR and RG
lines are independent of it.

4.1.3 Fidelity susceptibility

The notion of fidelity has been adopted in a variety of ways to characterise quantum
phase transitions [65, 68]. Here we focus on one such formulation, which is the fidelity
susceptibility [28].

The fidelity susceptibility χF is defined as

χF =

〈

dΨ

dG

∣

∣

∣

∣

dΨ

dG

〉

−
〈

dΨ

dG

∣

∣

∣

∣

Ψ

〉〈

Ψ

∣

∣

∣

∣

dΨ

dG

〉

.

For the mean-field wavefunction this reduces to

χF =
∑

k∈K+

〈

dψk

dG

∣

∣

∣

∣

dψk

dG

〉

=
∑

k∈K+

(

duk
dG

)2

+

(

dvk
dG

)2

.

The derivatives of uk and vk with respect to G can be computed in terms of

dµ

dG
= c,

d∆

dG
= d.
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Figure 3: Mean-field order parameter, ∆, and chemical potential, µ, solution of the gap and chemical
potential equations in 2D for filling fractions x = 1/4, 1/2 and 3/4, vs. g. The rectangles over the curves
indicate, from left to right, the Volovik, Moore-Read and Read-Green points (x = 1/4); the Volovik and
Moore-Read points (x = 1/2), and the Volovik point (x = 3/4).
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Figure 4: The mean-field energy gap Egap versus coupling constant g for a 2D momentum density
distribution as given by (52). From top to bottom the curves shown correspond to the filling fractions
x = 3/4, 1/2, 1/4. The squares over the curves indicate, from left to right, the Volovik, Moore-Read, and
Read-Green points respectively.

which never vanish for G > 0, as can be seen from Fig. 3. Now

(

duk
dG

)2

+

(

dvk
dG

)2

=
ǫk
4

(c∆+ d(ǫk − µ))2

((ǫk − µ)2 + ǫk∆2)2

In the mean-field theory gapless excitations occur when ǫ0 = µ = 0. Now

lim
ǫ0→0

lim
µ→0

[

(

du0
dG

)2

+

(

dv0
dG

)2
]

= ∞.

This indicates the fidelity susceptibility is divergent on the Read-Green line. The expres-
sion of χF in the continuum limit is given by
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χF =
L3

4

∫ 1

0

dε̄ ρ̄(ε̄) ε

[

c̄∆̄ + d̄(ε̄− µ̄)

(ε̄− µ̄)2 + ε̄∆̄2

]2

(59)

where
dµ̄

dg
= c̄,

d∆̄

dg
= d̄.

In Fig. 5 we plot χF as a function of g for x = 1/4. The results show a logarithmic
divergence at the Read-Green point gc = 2, reflecting that the model is critical here.

4.2 Analysis of the Bethe ansatz equations in the continuum

limit

4.2.1 The electrostatic analogy

For the s-wave BCS model, the relationship between the mean-field gap and chemical
potential equations and the exact Bethe ansatz solution was first explored by Gaudin
[23]. This was achieved by use of an electrostatic analogy, whereby the Bethe ansatz
equations represent the equilibrium conditions for a two-dimensional system of fixed and
mobile charges. Further studies along this line for the s-wave case can be found in [55, 56].
Our aim below is to extend this approach for the p+ ip model. In the general framework
of exactly solvable models based on hyperbolic Gaudin algebras this type of study has
previously been conducted in [1]. There the mapping from the hyperbolic form of the
Bethe ansatz equation such as (33) to a set of algebraic equations was implemented by
a change of variable. However this change of variable is not the same as (32), so the
algebraic form considered in [1] is different from (23).

Taking into account the change of notational conventions as described by (27), let us
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write the Bethe ansatz equation (23) as

− 1

2

L
∑

k=1

1

ym − z2k
− q0
ym

+

M
∑

j 6=m

1

ym − yj
= 0, m = 1, . . . ,M (60)

where q0 is given by (49). This equation admits an electrostatic analogy associating −1/2
charges at the fixed positions z2k, a −q0 charge at the origin, and mobile +1 charges with
positions yj. With these assignments (60) amounts to the vanishing of the total electric
field acting on the charge ym. The continuum limit of (60) is given by (we shall follow
the conventions of references [23, 55]):

∫

Ω

dε
ρ(ε)

ε− y
− q0
y
− P

∫

Γ

|dy′| r(y
′)

y′ − y
= 0, ∀y ∈ Γ (61)

where Ω = (0, ω) denotes the interval on the real line where lie the energy levels which
can be associated to a negative charge density −ρ(ε) such that

∫ ω

0

dε ρ(ε) =
L

2
.

The function r(y) denotes the charge density associated to the roots ym which lie on an
arc Γ of the complex plane. It satisfies

∫

Γ

|dy| r(y) =M

while the energy (24) in the continuum limit is given by
∫

Γ

|dy| y r(y) = E. (62)

For the ground-state roots the topology of the arc Γ depends crucially on the domain of
the phase diagram one is exploring. In each phase Γ consists of the union of several types
of arcs whose properties are given in Table 2. Table 3 displays the arcs associated to the
different phases of the model. We shall first comment on the results contained in these
tables and will give the derivation later.

An arc of type ΓA is a segment of the real line (0, εA) which is contained in the real
interval Ω. At G = 0, all the roots ym associated to the ground state lie on ΓA, where
εA = µ only depends on the filling fraction x. When the coupling is switched on, g > 0,
the roots closer to the Fermi level form a complex arc ΓB parameterized by its end points
a, b = ǫ± iδ, and which cuts the real axis at εA whose value has also changed slightly. In
the weak coupling BCS phase, Γ is the union of the arcs ΓA and ΓB. This type of arc is
the familiar one encoutered in the solution of the s-wave model [23, 55]. As g increases,
the arc ΓB enlarges and bends towards the negative real axis. At the Moore-Read line
the complex arc closes and is denoted by ΓC . This arc cuts the real axis at εA > 0 and
a = b < 0. Some real roots may still remain, so that Γ at the Moore-Read line is the union
ΓA∪ΓC . In the weak pairing phase the closed arc ΓC remains but there appear some new
roots on the negative real axis forming the open arc ΓD = (a, b). Hence Γ = ΓA∪ΓC ∪ΓD.
As g increases further, the closed arc ΓC shrinks and ΓD becomes larger until g reaches
the Read-Green line, where ΓC disappears. Finally in the strong pairing phase there are
only negative real roots. In Fig. 6 we display the types of arcs depending on the region
of the phase diagram together with the exact numerical roots.
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Figure 6: Representation of the electrostatic arcs in several regions of the phase diagram. The roots of
the Bethe ansatz equations for L = 64 and M = 16 are also shown. For the four smaller figures, the same
horizontal scale is used which is shown explicitly for case (d). Cases (a) and (b) have the same vertical
scale, as do cases (c) and (d). We note that while the roots lie close to the electrostatic arc in cases (a),
(c) and (d), the agreement is not as good in case (b) which lies near the Moore-Read line.

Type Reality Topology Parameters Meaning

ΓA real open (0, εA) ⊆ Ω Fermi pairs
ΓB complex open ǫ± iδ BCS pairs
ΓC complex closed εA, a = b BCS pairs
ΓD real open (a, b) 6⊆ Ω BEC pairs

Table 2: Classification of the arcs containing the roots of the Bethe ansatz equation (61).

Phase Γ

Weak coupling BCS ΓA ∪ ΓB

Moore-Read line ΓA ∪ ΓC

Weak pairing ΓA ∪ ΓC ∪ ΓD

Read-Green line ΓD

Strong pairing ΓD

Table 3: Structure of the electrostatic arcs in the different phases of the p+ ip model.

Next we consider the solution of (61) in the different regions of the phase diagram.

4.2.2 Weak coupling BCS phase

In this region Γ = ΓA ∪ ΓB, where ΓA = (0, εA), εA < ω and ΓB is a complex arc with
end points ǫ ± iδ. In the continuum limit, the roots belonging to ΓA lie between the z2k.
Recalling that the charge associated to the ym is +1, while that associated to the z2k is
−1/2, one finds that the effect of the arc ΓA can be taken into account by writing (61) as

−
∫ εA

0

dε
ρ(ε)

ε− y
+

∫ ω

εA

dε
ρ(ε)

ε− y
− q0
y
− P

∫

ΓB

|dy′| r(y
′)

y′ − y
= 0, ∀y ∈ ΓB. (63)

To solve this equation we introduce a function h(y) which is analytic outside ΓB, Ω and
0, and has a branch cut on the arc ΓB, such that
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r(y) |dy| = 1

2πi
(h+(y)− h−(y)) dy, y ∈ ΓB (64)

where h+(y) and h−(y) are the limiting values of h(y) to the right and left of ΓB. The
appropiate ansatz for h(y) is

h(y) = R(y)

[∫ ω

0

dε
ϕ(ε)

ε− y
− Q

y

]

(65)

where

R(y) =
√

(y − a)(y − b) =
√

(y − ǫ)2 + δ2 (66)

such that R(ε) is positive on the interval (ωA, ω) and negative on (0, ωA). In particular
R(0) < 0. Using (64) one can write the last term of (63) as

P

∫

ΓB

|dy′| r(y
′)

y′ − y
=

∫

LB

dy′

2πi

h(y′)

y′ − y
(67)

where LB is a counterclockwise contour surrounding ΓB. Plugging (65) into (67) and
deforming the contour LB around Ω, 0 and ∞ one finds

∫

LB

dy′

2πi

h(y′)

y′ − y
= −

∫ ωA

0

dε
ϕ(ε)|R(ε)|
ε− y

+

∫ ω

ωA

dε
ϕ(ε)R(ε)

ε− y
− Q R(0)

y
−
∫ ω

0

dεϕ(ε)−Q.

The solution of the electrostatic equation (63) is obtained with the choices

ϕ(ε) =
ρ(ε)

|R(ε)| , Q =
q0
R(0)

,

∫ ω

0

dε
ρ(ε)

|R(ε)| = −Q =
q0

|R(0)| . (68)

Observe that the last equation in (68) coincides, up to a rescaling of the variables, with
the chemical potential equation (54) (use |R(0)| =

√
ab = |µ|). In the s-wave model the

analogue of (68) provides the gap equation. However for the p + ip model the roles of
the gap and chemical potential equations are reversed. To find the gap equation from the
electrostatic model one has to compute the number of roots on the arc Γ:

M =

∫

ΓA

|dy|r(y) +
∫

ΓB

|dy|r(y) = 2

∫ εA

0

dε ρ(ε) +

∫

LB

dy

2πi
h(y) (69)

Plugging (65) into (69) and deforming the contour LB as done above, one finds

1

2G
=

∫ ω

0

dε
ε ρ(ε)

√

(ε− ǫ)2 + δ2

where we have also used (68). This is the gap equation (53). The energy of the solution
can be computed from (62)
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E =

∫

ΓA

|dy| y r(y) +
∫

ΓB

|dy| y r(y) = 2

∫ εA

0

dε ε ρ(ε) +

∫

LB

dy

2πi
y h(y). (70)

As in the case of equation (68), we substitute (65) into (70) and after the contour defor-
mation of LB one finds

E =

∫ ω

0

dε ρ(ε) ε

(

1− ε− ǫ
√

(ε− ǫ)2 + δ2

)

(71)

in agreement with (55). This formula is similar to the one found for the s-wave model
except for the fact that is missing a constant term −δ2/4 corresponding to the conden-
sation energy [23, 55]. Finally, the equation for the arc ΓB is given by the equipotential
equation

Re

[
∫ y

ǫ−iδ

dy′ h(y′)

]

= 0, y ∈ ΓB

while the density of roots is

r(y) =
1

π
|h(y)|, y ∈ ΓB.

4.2.3 Moore–Read line

This case is reached when the arc ΓB studied in the previous subsection closes, i.e. δ = 0,
so that a = b = ǫ. The function R(y) defined in eq. (66) becomes R(y) = y − a, so it no
longer has a branch cut. To find the closed arc ΓC one introduces an analytic function
s(y) satisfying

r(y) |dy| = s(y) dy, y ∈ ΓC .

The Bethe anstaz equation is similar to (63), i.e.

−
∫ εA

0

dε
ρ(ε)

ε− y
+

∫ ω

εA

dε
ρ(ε)

ε− y
− q0
y
− P

∫

ΓC

|dy′| r(y
′)

y′ − y
= 0, ∀y ∈ ΓC (72)

where εA is the point where ΓC cuts the positive real axis. The analogue of (67) is

P

∫

ΓC

|dy′| r(y
′)

y′ − y
=

∫

ΓC

dy′
s(y′)

y′ − y
, (73)

where ΓC is the counterclockwise contour containing the complex roots. To solve (72) we
choose the following ansatz

s(y) =
1

iπ

[
∫

Ω

dε
ρ(ε)

ε− y
+
q0
y

]

(74)
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which is motivated by the two level s-wave model where the roots form a closed loop
when the coupling constant is less than half the distance between the two levels [23, 55].
Introducing (74) into (73) one can check that (72) holds (we use that

∫

ΓC
dy′/(y′−y) = iπ

for y ∈ ΓC). The total number of roots M is given by

M = 2

∫ εA

0

dε ρ(ε) +

∫

ΓC

dy s(y) = 2q0 =⇒ x = 1− 1

g

which shows that the criterion for the Moore–Read line is reproduced. The chemical
potential equation is equivalent to the vanishing of the potential s(y) at the point a
where ΓC cuts the real axis, i.e.

q0 = −a
∫ ω

0

dε
ρ(ε)

ε− a
⇐⇒ s(a) = 0.

The latter condition follows from continuity of the weak coupling case since the density
of roots on the arc ΓB also vanishes at the end points.

The equation of the arc ΓC is given by

Im

[
∫ y

y0

dy′ s(y′)

]

= 0, y ∈ ΓC (75)

where y0 is a point of ΓC which can be taken as a. Doing the integral one finds

Re

[
∫

Ω

dερ(ε) log

(

ε− y

ε− y0

)

− q0 log
y

y0

]

= 0. (76)

In 1D this equation becomes, in normalized variables (i.e. y → ωy)

Re

[√
y log

(√
y + 1

√
y − 1

)

−√
y0 log

(√
y0 + 1

√
y0 − 1

)

+ log

(

y − 1

y0 − 1

)

− (1− 1

g
) log

y

y0

]

= 0,

while in 2D it is

Re

[

−y log
(

1− 1

y

)

+ y0 log

(

1− 1

y0

)

+ log

(

y − 1

y0 − 1

)

− (1− 1

g
) log

y

y0

]

= 0.

These eqs. have two real solutions, corresponding to the intersections points of Γc

with the real axis: y0 = a/ω and y = εA/ω. The total energy can be computed in a way
similar to eq. (70) and the result is

E = 2

∫ εA

0

dε ε ρ(ε) +

∫

LC

dy y s(y) = 0,

which agrees with the mean-field result (46). This result can also be obtained as a limit
of eq.(71) by setting δ = 0 and ǫ = a < 0.
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4.2.4 Weak pairing phase

This is the most complicated phase concerning the structure of the arc Γ which consists
now of three pieces, Γ = ΓA∪ΓC ∪ΓD, where ΓA = (0, εA), ΓD = (a, b) and ΓC is a closed
arc that touches the points εB = b and εA on the real line. Combining the results of the
two previous cases we introduce a function h(y) associated to the open arc ΓD

h(y) = R(y)

[
∫ ω

0

dε
ϕ(ε)

ε− y
− Q

y

]

(77)

and a function s(y) associated to the closed arc ΓC , i.e.

s(y) =
1

iπ
R(y)

[
∫ ω

0

dε
ϕ(ε)

ε− y
− Q′

y

]

, (78)

where

R(y) =
√

(y − a)(y − b), a < b < 0

which is always positive for ε ∈ Ω. The electrostatic equation (61) reads,

−
∫ εA

0

dε
ρ(ε)

ε− y
+

∫ ω

εA

dε
ρ(ε)

ε− y
− q0
y

=

∫

LD

dy′

2πi

h(y′)

y′ − y
+

∫

LC

dy′
s(y′)

y′ − y
, y ∈ ΓC or ΓD

and it is solved by the ansatze (77, 78) provided

ϕ(ε) =
ρ(ε)

R(ε)
, Q = − q0

R(0)
, Q = Q′ (79)

and

∫ ω

0

dε
ρ(ε)

R(ε)
= −Q =

q0
R(0)

. (80)

The last equation coincides with the chemical potential equation (54) since µ = R(0) =
ab > 0. On the other hand the gap eq.(53) is obtained from the counting of the number
of roots M

M = 2

∫ εA

0

dε ρ(ε) +

∫

ΓC

dy s(y) +

∫

LD

dy

2πi
h(y) =⇒

∫ ω

0

dε
ερ(ε)

√

(ε− a)(ε− b)
=

1

2G
. (81)

The total energy is given by

E = 2

∫ εA

0

dε ε ρ(ε) +

∫

ΓC

dy y s(y) +

∫

LD

dy

2πi
y h(y)

=

∫ ω

0

dε ρ(ε) ε

(

1− ε− (a+ b)/2
√

(ε− a)(ε− b)

)

(82)

which coincides with (55). Finally the equation for the closed arc ΓC is the same as (75)
with s(y) replaced by (78). The results obtained so far must reproduce those found ealier
for the Moore-Read line. Indeed, if a → b, one can check that the function s(y) given in
(78) coincides with (74).
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4.2.5 Read–Green line

This case can be obtained from the previous one taking the limit b → 0. One can easily
prove that the number of roots on ΓA and ΓC is zero so that all the roots lie in the open
arc ΓD. The gap and chemical potential equations and energy are given by (80,81,82)
setting b = 0. The criticality of this line can be seen from the fact that the function
R(ε)/2, which is the mean-field energy of the excitations, vanishes as

√
ε ∝ |k| when

|k| → 0. Note that this also means that the density of roots is divergent at the origin, as
can be deduced from (77).

4.2.6 Strong pairing phase

In this case all the roots lie on the open arc ΓD = (a, b) belonging to the negative real
axis. As in the weak pairing phase we introduce the function h(y) given by (77), so that
the electrostatic equation becomes

∫ ω

0

dε
ρ(ε)

ε− y
− q0
y

=

∫

LD

dy′

2πi

h(y′)

y′ − y
, y ∈ ΓD.

The solution of this equation is provided by

ϕ(ε) =
ρ(ε)

R(ε)
, Q =

q0
R(0)

and

∫

Ω

ϕ(ε) = −Q =
|q|
R(0)

.

Notice the change of sign of the equation for Q as compared to (79). Computing the
number of roots on the arc gives the gap equation:

1

2G
=

∫ ω

0

dε
ερ(ε)

√

(ε− a)(ε− b)
.

The total energy is given by

E =

∫

LD

dy

2πi
y h(y) =

∫ ω

0

dε ρ(ε) ε

(

1− ε− (a + b)/2
√

(ε− a)(ε− b)

)

.

4.3 Topological properties of the ground state

4.3.1 Dressing and duality

Above we established, through use of the electrostatic analogy, that the continuum limit
of the Bethe ansatz equations for the ground state is in agreement with the mean-field
solution. However with reference to Fig. 6, we see a noticeable discrepancy between the
theoretical arc and the position of the roots near the Moore-Read line. Here we re-examine
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the Bethe ansatz equations in the case of finite-sized systems to clarify some subtle issues
about the nature of the ground state. Using an algebraic approach we will introduce the
concept of dressing of states, which gives a different perspective on the duality that was
seen in the mean-field analysis.

For a generic splitting of the set of roots Y into nonintersecting sets Y ′ and Z such
that Y = Y ′ ∪ Z, we can express the Bethe ansatz equations (23) as

G−1 − L+ 2M − 1 +
L
∑

k=1

ym
ym − z2k

=
∑

yj∈Y ′,yj 6=ym

2ym
ym − yj

+
∑

yj∈Z

2ym
ym − yj

, ym ∈ Y ′ (83)

G−1 − L+ 2M − 1 +
L
∑

k=1

ym
ym − z2k

=
∑

yj∈Z,yj 6=ym

2ym
ym − yj

+
∑

yj∈Y ′

2ym
ym − yj

, ym ∈ Z. (84)

Setting |Y ′| =M ′ and |Z| = P we take the sum over elements in Z in (84) to give

P (G−1 − L+ 2M − 1) +
∑

ym∈Z

L
∑

k=1

ym
ym − z2k

=
∑

yj∈Z,ym∈Z,yj 6=ym

2ym
ym − yj

+
∑

yj∈Y ′,ym∈Z

2ym
ym − yj

= P (P − 1) +
∑

yj∈Y ′,ym∈Z

2ym
ym − yj

(85)

Suppose that at some limiting value of G we have

ym 6= 0 for all ym ∈ Y ′,

ym = 0 for all ym ∈ Z.

Taking note that M ′ + P =M equation (85) informs us that

P = G−1 − L+ 2M ⇒ P = L− 2M ′ −G−1, (86)

while from (83) we obtain

G−1 − L+ 2M − 1 +
L
∑

k=1

ym
ym − z2k

=
∑

yj∈Y ′,yj 6=ym

2ym
ym − yj

+ 2P, ym ∈ Y ′

⇒ G−1 − L+ 2M ′ − 1 +
L
∑

k=1

ym
ym − z2k

=
∑

yj∈A,yj 6=ym

2ym
ym − yj

, ym ∈ Y ′. (87)

Equation (87) is simply the set of Bethe ansatz equations for a system ofM ′ Cooper pairs.
The above calculations suggest that given such a solution set Y ′, we can augment it with
P additional roots which all have zero value to obtain the solution set Y , provided that
P is given by (86). It is important to check that this solution set is indeed valid for there
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are known examples where the roots of the Bethe ansatz equations must be distinct, most
noticibly the repulsive Bose gas [36].

A fairly straightforward calculation, using proof by induction, leads to the following
commutator identity for H in the form (22)

[

H, CP (0)
]

= PQ†CP−1(0)(GL− 1−GP − 2GN) (88)

where

Q† =

L
∑

k=1

zkb
†
k.

If we partition the Hilbert space of states into subspaces defined by the eigenvalues M ′

of the Cooper pair number operator N , there exists a subspace on which the commutator
(88) vanishes whenever P = L− 2M ′ −G−1 which is precisely equation (86). That is to
say given any eigenstate |φ(Y ′)〉 with M ′ Cooper pairs, we can construct a new eigenstate
|φ(Y )〉 = CP (0)|φ(Y )〉 of M = M ′ + P Cooper pairs and the same energy as |φ(Y ′)〉
provided (86) holds. Whenever this is the case we say that the state |φ(Y )〉 is a dressing

of the state |φ(Y ′)〉.
To explore in more depth the consequences of this result, we first note that P must

necessarily be a non-negative integer. In terms of the filling fraction x′ = M ′/L, non-
negativity of P implies that

x′ <
1

2

(

1− 1

g

)

so that the state |φ(Y ′)〉 belongs to the strong pairing phase. Letting x = M/L =
(M ′ + P )/L denote the filling of the dressed state we find

x+ x′ = 1− 1

g

which is simply the duality relation (50) obtained from the mean-field theory. We can
immediately conclude that |φ(Y )〉 belongs to the weak pairing phase. However one signif-
icant point about this derivation of the duality is that it only applies in particular cases
when the coupling g is rational. This aspect has some ramifications to which we will
return later.

For the moment, we will consider a simple example of dressing. Starting with the
sector of the Hilbert space where the number of Cooper pairs is zero there is only one
state, that being the vacuum |0〉. We can dress this state withM additional Cooper pairs
where, by equation (86), we must choose

M = P = L−G−1. (89)

There is no reason yet to expect that the dressed state will be the ground state in the
sector with M Cooper pairs. However we do recognise that (89) is precisely the equation
of the MR line (45) found from mean-field theory, for which the mean-field ground-state
energy is zero. The dressed state will have the same energy as the vacuum, which is also
zero. Performing the dressing gives us

CM(0)|0〉 =

[

L
∑

k=1

b†k
zk

]M

|0〉 =





∑

k∈K+

c†
k
c†−k

kx + iky





M

|0〉
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which is precisely the MR state (43). Recall that the projected mean-field wavefunction
gives the MR state as the ground state on the MR line with zero energy. We can show
that this is indeed the ground-state. In fact, in all instances dressing a ground state in
the strong pairing phase leads to a ground state in the weak pairing phase, which we now
show follows from the Perron-Frobenius theorem.

By adding an appropriate constant term to (22) we obtain an operator with strictly
negative entries for each sector of M ′ pairs. The Perron-Frobenius theorem tells us that
the ground-state vector of this operator can be normalised such that all components of
the vector are strictly positive. Applying the dressing operator CP (0) with P given by
(86) to the ground-state of M ′ pairs leads to an eigenstate of (22) in the weak pairing
phase, which also has strictly positive components. By the Perron-Frobenius theorem,
this must be the ground state in the weak pairing phase for M ′ + P pairs.

It is of importance to compare this result with the previous discussions of the solution
in the thermodynamic limit described in Subsection 4.2. There, it was concluded that
on the MR line the ground-state roots formed a closed arc in the complex plane. In the
finite system, we have now found that all ground-state roots are zero on the MR line. In
both instances the ground-state energy was found to be zero. One way to resolve this
apparent contradiction would be to suggest that the assumption used in Subsection 4.2,
viz. that in the thermodynamic limit the ground-state roots form a dense arc in complex
plane, was not valid. To investigate this matter further we next turn our attentions to
the numerical solution of the Bethe anastz equations.

4.3.2 Numerical solution of the Bethe ansatz equations for finite systems

First we will discuss the behaviour of the roots in the three different regions. Later
we will discuss properties across all regions. The numerical solutions of the Bethe ansatz
equations are obtained starting from the initial condition ym → (1+G)k2 (m = 1, . . . ,M)
as G→ 0, with the k chosen to fill the Fermi sea. As g increases, the roots ym, closest to
the Fermi level become complex pairs. When g approaches the MR-line the roots bend
towards the origin, and at the value x = xMR all the roots collapse onto the origin. At
larger values of g one enters the weak pairing phase where all the roots are non-zero,
except at some rational values of g where a fraction of the roots collapse again. Finally,
in the strong pairing regime all the roots become real and they belong to the interval
(a, b) on the negative real axis. The RG-line is obtained when b = 0, in which case the
quasiparticle energy (39) becomes gapless.

In the weak coupling regime the parameters a, b appearing in (47) give the end points
of the complex arcs shown in Figs. 7(a) - 7(d) for the 1D and 2D models (recall Table 1).
On the MR line a and b become real and equal, giving E = 0 from (48), and the complex
arc closes satisfying eq. (76).

Fig. 7(e) shows how the roots approach this closed arc for increasing values of M at
g = 1.99 and x = 1/2. For g = 2 and x =M/L = 1/2 (MR line) all roots collapse to the
origin in any finite system. The continuous arc is the solution of eq. (76) corresponding
to g = 2, x = 1/2, where L → ∞ is taken before g → 2. However the exact solution
of the Bethe ansatz equations (29) is ym = 0, ∀m, exactly giving the Moore-Read state
[49] C(0)M |0〉 which also has total energy E = 0. In Fig. 7(f) we plot the real part
of the Bethe ansatz equations roots for a 2D momentum distribution in a system with
M = 8, L = 32. The Moore-Read points, in which all the roots collapse to zero, are
clearly noticeable. This fact presents a paradoxical situation where the thermodynamic
limit does not commute with the limit where the coupling g approaches the MR line from
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the weak coupling BCS phase.
In the strong pairing phase we expect from the calculations in the continuum limit

that the ground-state roots should be real and negative. Moreover, the Perron-Frobenius
theorem indicates that there can only be one such set of roots with this property. This
fact makes the numerical analysis of the ground-state roots fairly efficient in the strong
pairing phase, since the solution converges quickly to the unique real and negative solution
set. In all instances we considered we always found a numerical solution set of real and
negative roots in this phase.

To illustrate the results for this phase we define the discrete root density to be

r(yj) =
1

(M − 1)(yj+1 − yj)
. (90)

which we have plotted in Fig. 8 for a system with L = 450 and M = 150. The results
compare the cases g = 3, the Read-Green line, and g = 20. As discussed in Subsection
4.2.6 the continuum limit of the Bethe ansatz equations predicts a divergence in the root
density at the origin when the coupling is on the Read-Green line. The numerical results
support this picture with the value of the root density at the origin for g = 3 several times
larger than for g = 20.

In Fig. 9 we plot the exact and mean-field energy of the ground state of a 2D system,
showing results for the two filling fractions x = 1/2, 1/4. Observe that at the MR coupling
the exact and mean-field energies coincide, i.e. E = 0. For x = 1/4 there is a departure
between the exact and mean-field results in the strong pairing phase, which disappears
for large systems.

In Fig. 10(a) we plot the expectation values of the Cooper pair density 〈Nn〉 (using
117 in Appendix A.2). In Fig. 10(b) we plot the exact and mean-field values of the the
fluctuation parameter C defined as

C =
1

L

L
∑

j=1

(

〈Nj〉 − 〈Nj〉2
)

. (91)

In both of these instances there is reasonably good agreement between the mean-field and
the exact results.
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Figure 7: Real and imaginary parts of the roots of the Bethe ansatz equations in several regimes for
several values of the coupling constant g. In the cases (c,d,e) the corresponding electrostatic arcs are also
shown: (a) 1D model, M = 31, L = 62, (b) 1D model, M = 16, L = 64, (c) 2D model, M = 31, L = 62,
(d) 2D model, M = 16, L = 64 (e) 2D model, g = 1.99, M = 8, 14, 31, L = 2M . Notice that the MR point
is g = 2, x = 1/2. (f) Real part of the Bethe ansatz equation roots for 2D momentum distribution with
M = 8, L = 32. The range of g covers both the weak pairing and strong pairing phases. The dressing
points, in which some of the roots collapse to zero, can be seen to occur at regular intervals between
gMR = 4/3 and gRG = 2.
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Figure 8: Discrete root densities as given by (90) for L = 450 and M = 150. The momenta have been
chosen as |k| = m, m = 1, ..., 450. The left graph shows results for the coupling choices g = 10, 15, 20,
which correspond to the strong pairing phase. The support of the discrete root density lies on the negative
real axis, and in each case the maximum value does not occur at the endpoint. For comparison, the right
graph shows analogous results for g = 3 corresponding to the Read–Green line. Here the maximum value
of the discrete root density occurs at the endpoint of the support at y = 0. Note also the different scale
for the vertical axis.
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Figure 9: Comparison between the exact and mean-field ground state energy in 2D for x = 1/2,M =
14, L = 28 (left) and x = 1/4,M = 16, L = 64 (right). The arrows indicate, from left to right, the values
of the coupling g corresponding to the Volovik, Moore-Read and Read-Green lines. For x = 1/2 the latter
point is absent.

4.3.3 A zeroth-order quantum phase transition

We have already observed that the MR line has the peculiar property that the behaviour
of the roots of the Bethe ansatz equations in the limits g → gMR, L → ∞ depends
on the order in which the limits are taken. Another curious property of the MR line is
the discontinuity of the ground-state energy E(g, x) in the thermodynamic limit as the
filling fraction x approaches the value xMR from the weak pairing region. To derive this
result, for finite L we take the one-pair state and dress it to give the dual GS in the weak
pairing region. The filling xI of the dressed state is given by (50), setting xII = 1/L,
i.e. xI = xMR − 1/L, which approaches xMR = 1 − 1/g as L → ∞. Since the MR pairs
carry no energy, the ground-state energy of the dressed state coincides with the one-pair
energy. To compute this energy we consider the Bethe ansatz equation for one Cooper
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Figure 10: a) Cooper pair expectation values of the n-th level, 〈Nn〉, for a 2D momentum distribution
system with M = 24, L = 48, for several values of g. The values of g corresponding to the weak coupling
BCS phase. The mean-field counterpart of this magnitude is also shown for each value of g and x=1/2
(continuous lines). (b) The parameter C as given by (91), measuring fluctuations of the expected value
of the ocupation number is plotted as a function of g. Results are shown using the roots of the Bethe
ansatz equations for a M=8, L=32 system, and for mean-field case in the continuum limit with x = 1/4.
The arrows indicate the Volovik, Moore-Read and Read-Green points.

pair and take the continuum limit (i.e. eq. (29) with M = 1). For simplicity we take the
momentum distribution to be that for free particles in 2D, i.e. ρ(ε) = L/ω. This leads to

L− 1

G
− 1 =

∑

k∈K+

y

y − k2
=⇒ 1− 1

g
= y

∫ ω

0

dε

ω

1

y − ε
.

This equation has a unique negative energy solution y < 0 satisfying

1− 1

g
=
y

ω
log

(

y

y − ω

)

which we denote as y = E(g). From here one derives the aforementioned discontinuity on
the MR line xMR = 1− g−1,

lim
L→∞

E(g, xI) = E(g) 6= E(g, xMR) = 0

which may reasonably be termed a zeroth-order quantum phase transition. We note
that in thermodynamic systems analogous zeroth-order transitions have been discussed
in [10, 13, 48].

All of the above considerations point towards the MR line signifying a phase boundary
which has significantly different properties to the RG line. In the latter case, both the
excitation spectrum is gapless and the mean-field fidelity susceptibility is divergent. These
are not properties associated with the MR line.

4.3.4 Winding number of wavefunctions

Here we formulate a description of the three phases in terms of the ground-state wave-
function topology. To this end we will use a winding number approach.
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Let us consider a continuous map S2 → S2, given by a function g : (X, Y ) → (gX , gY )
where (X, Y ) and (gX , gY ) are the stereographic coordinates of the spheres. The winding
number is defined as

w =
1

π

∫

dgX dgY
(1 + g

2
X + g

2
Y )

2
=

1

π

∫

R2

dX dY
∂J(gX , gY )

∂(X, Y )

1

(1 + g
2
X + g

2
Y )

2
(92)

The function
∂J(gX , gY )

∂(X, Y )
is the Jacobian of g. An alternative way to write (92) is

w =
1

π

∫

R2

dX dY

(

∂g

∂z

∂ḡ

∂z̄
− ∂g

∂z̄

∂ḡ

∂z

)

1

(1 + gḡ)2
(93)

where g = gX + igY and z = X + iY .
To start, we consider the exact eigenstate of (19) for one Cooper pair, as given by (28).

In the limit L → ∞ with one Cooper pair there are only two ground-state phases, the
weak coupling BCS phase and the strong pairing phase, with the transition point given
by g = 1 at which the ground-state energy is zero. In first quantized formulation we have
that the momentum-space wavefunction is

g(k) =
kx − iky
k2 −E

where E denotes the energy. In terms of the complex variable z = kx + iky, the Jacobian
is given by

J =
∂g

∂z

∂ḡ

∂z̄
− ∂g

∂z̄

∂ḡ

∂z
=

(zz̄)2 −EĒ

(zz̄ − E)2(zz̄ − Ē)2
.

The winding number is then obtained as

w =
1

π

∫

R2

dkx dky
(zz̄)2 −EĒ

[zz̄ + (zz̄ − E)(zz̄ − Ē)]2

=

∫ ∞

0

du
u2 −EĒ

[u+ (u−E)(u− Ē)]2

= −
[

u

u− (E + Ē)u+ u2 + EĒ

]∞

0

which yields

w =

{

1, E = 0,
0, E 6= 0.

(94)

In this manner we find a topological change in the wavefunction when the energy is zero,
or equivalently g = 1, consistent with the phase diagram Fig. 2. However in both the weak
coupling BCS phase and the strong pairing phase the wavefunction topology is trivial.

It is useful to contrast the above with the analogous result for the mean-field wave-
function. Up to a factor of ∆̂∗ which can be omitted, we have from (41,47)

g(z, z̄) =
e(z, z̄)− zz̄ + µ

z
, e(z, z̄) =

√

(zz̄ − a)(zz̄ − b)

where µ2 = ab. The Jacobian is given by

J =
1

(2zz̄ e(z, z̄))2
[

((a+ b)zz̄ − 2ab− 2µ e(z, z̄))2 − (zz̄)2 (2zz̄ − a− b− 2e(z, z̄))2
]

.
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We have found numerically that

w =







1, µ > 0,
a/(a− 1), µ = 0,

0, µ < 0
(95)

where µ = 0 corresponds to a choice a < 0, b = 0. In this case the winding number is not
an integer at µ = 0 . The reason for this is that setting µ = 0 gives

g(z, z̄) =

√

z̄

z

(√
zz̄ − a−

√
zz̄
)

which is not continuous at z = 0. The above shows very different topological predictions
between the exact wavefunction and the mean-field wavefunction, specifically with the
mean-field wavefunction having non-trivial topology in the weak coupling BCS phase.

To gain a further understanding of the many-body system, next we consider the exact
wavefunction for two Cooper pairs:

ψ(z1, z̄1, z2, z̄2) =

{

g(z1, z̄1, E1)g(z2, z̄2, E2) + g(z1, z̄1, E2)g(z2, z̄2, E1), z1 6= z2,
0, z1 = z2

(96)

where g(z, z̄, E) is the one-pair wavefunction and E1, E2 are roots of the Bethe ansatz
equations (30), which can either be real or a complex conjugate pair. In order to apply the
winding number approach described above we reduce (96) to a complex-valued function
by setting

g(z, E1, E2, c) = g(z, E2, E1, c) = ψ(z, z + c, E1, E2)

for some c 6= 0. Numerically we find

w =







2, E1 = 0, E2 = 0,
1, E1 = 0, E2 6= 0,
0, E1 6= 0, E2 6= 0.

This result shows that the winding number coincides with the number of MR pairs.
Equation (93) is given an interesting interpretation if we parameterize g(z, z̄) as in the
BCS model

g(z, z̄) =
v(z, z̄)

u(z, z̄)
, u(z, z̄)ū(z, z̄) + v(z, z̄)v̄(z, z̄) = 1

where u and v are well defined functions in the complex plane. It can be shown that

w =
1

2πi

∫

R2

dX dY [∂X(ū ∂Y u+ v̄ ∂Y v)− ∂Y (ū ∂Xu+ v̄ ∂Xv)] . (97)

and from the Gauss theorem

w = lim
r→∞

∫ 2π

0

dθ

2πi
(ū ∂θu+ v̄ ∂θv) (98)

where X + iY = reiθ. This expression indicates that w measures the angular dependence
of the wave funcion g(z, z̄). The result (95) for the BCS wavefunction can be derived
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analytically from (98), by noticing that the proper definition of u and v depend on the
sign of the chemical potential, i.e.

u =
z∆

√

2e(z, z̄)(e(z, z̄)− zz̄ + µ)
, v =

√

e(z, z̄)− zz̄ + µ

2e(z, z̄)
, µ > 0,

u =

√

e(z, z̄) + zz̄ − µ

2e(z, z̄)
, v =

z̄∆
√

2e(z, z̄)(e(z, z̄) + zz̄ − µ)
, µ < 0

which leads to

w = lim
r→∞

|u(r, 0)|2 = 1, µ > 0, w = − lim
r→∞

|v(r, 0)|2 = 0, µ < 0.

Similarly, equation (94) can be derived from (98) using the following expression of the u
and v functions corresponding to the one pair wavefunction

u =
z√

1 + zz̄
, v =

1√
1 + zz̄

, E = 0,

u =
zz̄ − E

√

|zz̄ −E|2 + zz̄
, v =

z̄
√

|zz̄ −E|2 + zz̄
, E 6= 0.

In the general case of an exact wavefunction with M pairs, having P vanishing rapidities,
the asymptotic expression of u and v immediately yields the expected value of w, i.e.

u ∼ zM z̄M−P , v ∼ z̄M−P =⇒ w = P.

This result shows that non-trivial topology of the wavefunction can only be found in the
weak pairing phase.

As a final comment we note that the winding number w appears in a completely
different context, namely the O(3) non-linear sigma model in 2D. The order parameter of
the latter model is a three component unit vector ~n, which can be constructed out of the
two component spinor ψ = (u, v), as ~n = ψ†~σψ. Using this parametrization the winding
number w can be written as

w =
1

8π

∫

R2

d2x ~n · (∂µ~n× ∂ν~n) ǫ
µν

where ǫµν is the 2D Levi-Civita tensor. This term appears in the action of the O(3) non-
linear sigma model multiplied by a parameter θ, which is defined modulo 2π. In a famous
work, Haldane mapped the 1D antiferromagnetic Heisenberg model of spin S into the O(3)
non-linear sigma model with θ = 2πS [30]. The gapped nature of the integer spin chains
then follows from the gapped nature of the non-linear sigma model with θ = 0 (mod 2π).

4.4 Vortex wavefunctions

So far we have discussed the p + ip model for a constant value of the order parameter
∆, which describes the system in the bulk. It is however of interest to study the effect
of vortices. As shown by Read and Green [53] there are vortices with zero energy when
the chemical potential µ is positive. We shall show below that the structure of the
vortex wavefunction for µ > 0 depends on the region of the phase diagram, with different
behaviours in the weak coupling BCS and weak pairing regimes. However the transition
between these two regimes is smooth in the mean-field analysis.
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We shall consider the Bogolioubov-de Gennes (BdG) equations in the simplest situa-
tion of a single vortex with rotational invariance characterized by an order parameter

∆(r) = ieilϕ |∆(r)|
where l is the vorticity and r, ϕ are the polar coordinates centered on the vortex. (We
shall closely follow the results of references [29, 53, 59] with the appropiate notational
changes: the mass is equal to 1, the gap ∆ and the chemical potential in this paper are
twice those considered in the cited references.) The BdG equations are a set of coupled
equations for the functions un(r), vn(r), corresponding to energies En, which determine
the Bogolioubov quasiparticle operators γn by

γn =

∫

d2r
[

u∗n(r)a(r) + v∗n(r)a
†(r)
]

where a(r), a†(r) are annihilation and creation operators of polarised electrons. The zero
energy solutions, i.e. En = 0, can be choosen to satisfy the reality condition un(r) = vn(r),
in which case the quasiparticle operator γn corresponds to a Majorana fermion. For odd
vorticity, l = 2n−1, the BdG equation for u(r) can be most conveniently written in terms
of a function χ(r) defined through

u(r) = χ(r) exp

(

−1

2

∫ r

0

dr′ |∆(r′)|
)

and it reads

−χ′′ − χ′

r
+

( |∆2(r)|
4

+
n2

r2

)

χ = µ χ.

Let us suppose that the order parameter |∆(r)| vanishes inside a core of radius a and that
it reaches its bulk value, ∆0, outside i.e.

|∆(r)| =
{

0, 0 < r < a,
∆0, a < r <∞.

The previous equation becomes

r2χ′′ + rχ′ +
[

µr2 − n2
]

χ = 0, 0 < r < a, (99)

r2χ′′ + rχ′ +

[(

µ− ∆2
0

4

)

r2 − n2

]

χ = 0, a < r <∞.

Notice that the coefficient multiplying the r2 term in the second equation changes sign
when crossing the MR line µ = ∆2

0/4. This fact leads to two different type of equations
corresponding to the weak coupling and weak pairing regimes. (We do not consider the
strong coupling regime where the vortices have a trivial topological structure [29, 53, 59].)

4.4.1 Weak coupling BCS phase

For the weak coupling BCS phase µ > ∆2
0/4 we make the change of variables

µ = k20, µ− ∆2
0

4
= k2,

Eq. (99) becomes

x2χxx + xχx +
[

x2 − n2
]

χ = 0, x = k0r, 0 < r < a

y2χyy + yχy +
[

y2 − n2
]

χ = 0, y = kr, a < r <∞
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whose solutions are Bessel functions. Let us denote by I and II the regions 0 < r < a
and a < r <∞ respectively. Imposing that χ is regular at r = 0 and infinity one has

χI = AJn(k0r),

χII = BJn(kr) + CYn(kr).

The constants A,B,C are found by matching the function u(r) and its derivative u′(r)
at the boundary r = a. The relation between u and χ in the regions I and II is

uI(r) = χI(r),

uII(r) = χII(r)e
−∆0r/2. (100)

Hence

uI(a) = uII(a) =⇒ χI(a) = χII(a)e
−a∆0/2,

u′I(a) = u′II(a) =⇒ χ′
I(a) = (χ′

II(a)−
∆0

2
χII(a))e

−a∆0/2.

Combining these two equations one can write

χI(a) = χII(a)e
−a∆0/2,

χ′
I(a) +

∆0

2
χI(a) = χ′

II(a)e
−a∆0/2

with the explicit expressions

AJn(k0a) = (BJn(ka) + CYn(ka))e
−a∆0/2,

A

(

k0J
′
n(k0a) +

∆0

2
Jn(k0a)

)

= k(BJ ′
n(ka) + CY ′

n(ka))e
−a∆0/2.

This then leads to

B

A
=

1

2
aπea∆0/2

[

kY ′
n(ka)Jn(k0a)− Yn(ka)

(

k0J
′
n(k0a) +

∆0

2
Jn(k0a)

)]

,

C

A
=

1

2
aπea∆0/2

[

−kJ ′
n(ka)Jn(k0a) + Jn(ka)

(

k0J
′
n(k0a) +

∆0

2
Jn(k0a)

)]

.

For an infinitesimal core, a → 0, the zero mode is localized on an isolated vortex with
wavefunction

u(r) = Jn(kr) e
−∆0r/2, r > 0 (µ > ∆2

0/4).

This result reproduces the one found by Gurarie and Radzihovsky [29]. The funcion u(r)
has an oscillatory and decaying asymptotic behaviour dominated by ∆0, i.e.

u(r) ∼ cos(kr + φ0)√
r

e−r∆0/2, r → ∞.

4.4.2 Weak pairing phase

To study the weak pairing case 0 < µ < ∆2
0/4 we make the change of variables

µ = k20, −µ+
∆2

0

4
= k2,
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which corresponds to the replacement k → ik in the previous case. The equation for χ
becomes

x2χxx + xχx +
[

x2 − n2
]

χ = 0, x = k0r, 0 < r < a,

y2χyy + yχy −
[

y2 + n2
]

χ = 0, y = kr, a < r <∞.

whose solutions are Bessel functions in region I and modified Bessel functions in region
II:

χI = AJn(k0r),

χII = BIn(kr) + CKn(kr).

The computation of A,B,C is similar to the previous one. The final solution is

B

A
= −aea∆0/2

[

kK ′
n(ka)Jn(k0a)−Kn(ka)

(

k0J
′
n(k0a) +

∆0

2
Jn(k0a)

)]

, (101)

C

A
= −aea∆0/2

[

−kI ′n(ka)Jn(k0a) + In(ka)

(

k0J
′
n(k0a) +

∆0

2
Jn(k0a)

)]

.

In the limit a→ 0 one obtains

u(r) = In(kr) e
−∆0r/2, r > 0 (µ < ∆2

0/4)

in agreement with [29]. It is important to notice that the exponential factor e−∆0r/2 in
equation (100) is essential to get a convergent asymptotic behaviour of u(r). Assuming
that the coefficient B, given in eq. (101), is non zero one finds for B 6= 0

u(r) ∼ 1√
r
exp

[

−r
(

∆0

2
−
√

∆2
0

4
− µ

)]

, r → ∞,

while if B = 0, the asymptotic behaviour of u(r) changes to

u(r) ∼ 1√
r
exp

[

−r
(

∆0

2
+

√

∆2
0

4
− µ

)]

, r → ∞.

which is a more localized vortex. The condition for this to happen is

B = 0 =⇒ k
K ′

n(ka)

Kn(ka)
− k0

J ′
n(k0a)

Jn(k0a)
=

∆0

2
. (102)

This equation has an infinite number of solutions for a as a function of µ and ∆0. In the
case where ka, k0a >> 1, the solutions of eq. (102) are

k0a ∼ π

4
+
nπ

2
+ arctan

(

k +∆0/2

k0

)

(mod π).

Hence there is a minimal core size in order to have these more localized vortices. In Fig.
11 we plot the function u(r) for several values of the coupling constant g. In the weak
coupling regime the function u(r) has an oscillatory behaviour, while in the weak pairing
regime the oscillations are absent. We observe that the different qualitative behaviour
depends on the region of the phase diagram.
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Figure 11: The wavefunction u(r) for the vortex solution with l = −1 for x = 1/4 and several values
of the coupling constant g. The size of the core is a = 6 in units of

√
ω. Left: weak coupling BCS region

for g = 0.3− 0.13 in steps of 0.2. Right: weak pairing region for g = 1.4− 1.9 in steps of 0.1.

5 Conclusions

In summary, we have constructed an exactly solvable pairing model which contains in
various limits some of the most studied pairing models of current studies such as: the
Richardson model with s-wave symmetry, the p + ip BCS model, the Russian doll BCS
model and the Gaudin models with s-wave and p-wave symmetries. We have computed
the wavefunctions scalar products and one-point and two-point correlators. Futhermore,
we have carried out an in depth study of the p + ip model combining the exact solution
with mean-field methods. We have found the phase diagram of this model characteriz-
ing the various phases in terms of the fidelity susceptibility, topological invariants, and
other quantities such as the ground state energy, gap, chemical potential and occupation
numbers. We have also studied the structure of the vortex wave function which is shown
to depend on the region of the phase diagram. The richness of the p + ip model calls
for further studies concerning its behaviour. This task can be greaty facilitated by the
existence of an exact solution for studies such as entanglement [17], correlation functions
[3, 18] and quenching [19, 20].
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A Calculations for the anyonic pairing model

A.1 Cyclic renormalisation group

In this Appendix we discuss how the Hamiltonian (5) is related to a known Hamiltonian,
viz. the Galzek–Wilson model [24, 25]. This model was introduced as a simple example
of a quantum mechanical system which admits a cyclic renormalisation group (RG) map.
As will be shown below, the Glazek–Wilson is simply the one-body version of the anyonic
pairing Hamiltonian (5). Cyclic behaviour of the RG also occurs in the many-body system,
and we will demonstrate how the RG equation is easily obtained from the Bethe ansatz
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equations.
The model introduced in [24, 25], which we will denote as HGW , is defined by the

matrix

HGW (n,m) =
√

En Em(δn,m − g − ih sign(n−m)) (103)

where M < n,m < N . In [24, 25] the En are assumed to scale exponentially En = µn, µ >
1 under which there is a discrete scale invariance n→ n+ 1 such that

H(n+ 1, m+ 1) = µ H(n,m).

However this scale invariance is broken by the infra-red and ultra-violet cutoffs M and
N .

In [24, 25] the RG is performed by a Gaussian elimination procedure for the highest
component of the wavefunction in the Schrödinger equation, reducing N to N −1. Under
this process the result of the RG is that the coupling h remains invariant while the coupling
g renormalises as

gN−1 =
gN + h2

1− gN
. (104)

Reparameterising the couplings in terms of angles φN , χ through

tan(φN ) =
gN
h
,

tan(χ) = h

the RG equation becomes

tan(φN−1) =
tan(φN ) + tan(χ)

1− tan(φN ) tan(χ)
= tan(φN + χ)

or equivalently, iterating the RG equation p times,

φN−p = φN + pχ.

A cycle occurs in the RG after p steps if χ = π/p since

gN−p = h tan(φN−p) = h tan(φN + pχ) = h tan(φN + π) = gN

with the RG period given by

p =
π

arctan(h)
.

Next we show that (103) is equivalent to the one-pair version of (5). The first thing
to observe is that for the one-pair version of (5) the string operators (6) appearing in the
definition of the anyonic creation and annihilation operators can be removed by a unitary
transformation. The Hamiltonian is then given in terms of the hard-core boson operators
as

Hone−pair =

L
∑

j=1

z2jNj −
sin(2β)

sin(α− 2β)

L
∑

k>r

zkzr
(

exp(−iα)b†rbk + h.c.
)
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with the Hilbert space spanned by the one-body states

|j〉 = b†j |0〉 , j = 1, ..., L.

Here the energy is

Eone−pair =
sin(α)

sin(α− 2β)
y2

such that

exp(−2iα)
L
∏

k=1

1− q2y−2z2k
1− q−2y−2z2k

= 1.

Setting

Ek = z2k, g = tan(2β) cot(α), h = tan(2β) (105)

yields

HGW = (1− g)Hone−pair, N −M = L.

To derive the RG equations from the Bethe ansatz, we only assume that the variables
zk are distinct and ordered 0 < z1 < z2 < ... < zL. We may then write

exp(−2iα).
1− q2y−2z2L
1 − q−2y−2z2L

.
L−1
∏

k=1

1− q2y−2z2k
1− q−2y−2z2k

= 1.

Assuming |zL| >> |y|, which is a reasonable assumption for low energy states in a weakly
coupled system, we can eliminate the highest energy degree of freedom of the Hamiltonian
by making the approximation

1− q2y−2z2L
1− q−2y−2z2L

≈ q4,

⇒ exp(−2iα + 4iβ)
L−1
∏

k=1

1− q2y−2z2k
1− q−2y−2z2k

≈ 1.

Thus for one RG step we have the renormalised coupling

αN−1 = αN − 2β, (106)

while β remains invariant. Substituting back into (105) shows that, in terms of the HGW

coupling parameters, h is invariant while

gN−1 = tan(2β) cot(αN−1)

= tan(2β) cot(αN − 2β)

= tan(2β)
cot(αN ) + tan(2β)

1− tan(2β) cot(αN )

=
gN + h2

1− gN

in agreement with (104).
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For the many-body Hamiltonian (5), a completely analogous approach can be taken
to establish the existence of the cyclic RG equation. Starting with the Bethe ansatz
equations (11) we can make the same approximation as in the one-pair case by eliminating
the highest energy level, i.e. if |zL| >> |ym| for all m = 1, ...,M then

1− q2y−1
m z2L

1− q−2y−1
m z2L

≈ q4 ∀m = 1, ...,M

and (11) gives

exp(−2iα + 4iβ)

L−1
∏

k=1

1− q2y−2
m z2k

1− q−2y−2
m z2k

=

M
∏

j 6=m

1− q4y−2
m y2j

1− q−4y−2
m y2j

m = 1, ...,M.

This leads to exactly the same RG equation (106) for α, with β again invariant.

A.2 Wavefunction scalar product and correlation functions

One of the byproducts of formulating the model via the QISM is that it readily provides
access to the evaluation of correlation functions. Again, we will only outline these calcu-
lations. We will follow the general procedures of [40], where explicit details of derivations
can be found.

It is convenient to first rescale the L-operator as

L̃(x) =















1 0 | 0 0

0 q−1x−qx−1

qx−q−1x−1 | q2−q−2

qx−q−1x−1 0

− − − −
0 q2−q−2

qx−q−1x−1 | q−1x−qx−1

qx−q−1x−1 0

0 0 | 0 1















(107)

such that it has the properties

L̃(x)
∣

∣

∣

q=1
= I ⊗ I

L̃(x)
∣

∣

∣

x=q
= P

with P the permutation operator. We also rescale the matrix U to be

Ũ =

(

exp(−2iα′) 0
0 1

)

.

These rescalings have the net effect of working with rescaled elements of the monodromy
matrix

T̃ i
j (x) = exp(−iα′)

(

L
∏

k=1

1

qxz−1
k − q−1x−1zk

)

T i
j (x)

The transfer matrix eigenvalues of t̃(x) = T̃ 1
1 (x) + T̃ 2

2 (x) are now

Λ̃(x) = ã(x)

M
∏

j=1

q2xy−1
j − q−2yjx

−1

xy−1
j − yjx−1

+ d̃(x))

M
∏

j=1

q−2xy−1
j − q2yjx

−1

xy−1
j − yjx−1
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with

ã(x) = exp(−2iα′)
L
∏

k=1

q−1xz−1
k − qx−1zk

qxz−1
k − q−1x−1zk

d̃(x) = 1

One reason for working with the the rescaled monodromy matrix is that it provides a
compact solution of the “inverse problem” of expressing the local operators bj , b

†
j , Nj in

terms of the elements of the monodromy matrix. The result, which is obtained by a minor
generalisation of the methods used in [16, 40, 47], is

bj =

(

j−1
∏

k=1

t̃(qzk)

)

T̃ 1
2 (qzj)

(

j
∏

k=1

t̃−1(qzk)

)

,

b†j =

(

j−1
∏

k=1

t̃(qzk)

)

T̃ 2
1 (qzj)

(

j
∏

k=1

t̃−1(qzk)

)

,

I −Nj =

(

j−1
∏

k=1

t̃(qzk)

)

T̃ 2
2 (qzj)

(

j
∏

k=1

t̃−1(qzk)

)

.

Note that the operators {t̃(qzj) : j = 1, ..., L} are conserved. Explicitly these are

t̃(qzk) = L̃k(k−1)(qzkz
−1
k−1)...L̃k1(qzkz

−1
1 )ŨkL̃kL(qzkz

−1
L )...L̃k(k+1)(qzkz

−1
k+1) (108)

where

L̃kl(qzkz
−1
l ) =

qzkz
−1
l + q−1z−1

k zl

(q − q−1)(q2zkz
−1
l − q−2z−1

k zl)

(

q2Nk+2Nl−2 + q2−2Nk−2Nl
)

+
q2 − q−2

q2zkz
−1
l − q−2z−1

k zl

(

b†kbl + bkb
†
l

)

− (q + q−1)(zkz
−1
l + z−1

k zl)

(q − q−1)(q2zkz
−1
l − q−2z−1

k zl)
I.

The eigenvalues of t̃(qzk) are

Λ̃(qzk) =
M
∏

j=1

q−1zky
−1
j − qyjz

−1
k

qzky
−1
j − q−1yjz

−1
k

. (109)

Next we consider the scalar products between the states 〈Φ̃(W )|, |Φ̃(Y )〉, where

〈Φ̃(W )| = 〈0|
L
∏

j=1

T̃ 1
2 (wj), (110)

|Φ̃(Y )〉 =
L
∏

j=1

T̃ 2
1 (yj) |0〉 . (111)

If W = {wi} is a set of solutions of the Bethe ansatz equations (11), and Y = {yj} are
arbitrary parameters, then the Slavnov formula for the the scalar product is [57]

〈Φ̃(W )|Φ̃(Y )〉 = C(W,Y ) det(F (W,Y )) (112)
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where elements of the matrix F (W,Y ) are given by

F (W,Y )ij =
(q2 − q−2)d̃(wi)

(yjw
−1
i − y−1

j wi)

(

ã(yj)

M
∏

m6=i

(yjw
−1
m q2 − y−1

j wmq
−2)

+d̃(yj)
M
∏

m6=i

(yjw
−1
m q−2 − y−1

j wmq
2)

)

, (113)

and

C(W,Y ) =
1

∏M
k>l(yky

−1
l − y−1

k yl)(wlw
−1
k − w−1

l wk)
. (114)

Note that

C(Y, Y ) =
1

∏M
p=1

∏M
q 6=p(ypy

−1
q − y−1

p yq)
.

We remark that the Slavnov formula (112) is a scalar product as opposed to an inner

product. However for the anyonic pairing model we expect, due to a lack of symmetries,
that generically there are no degeneracies in the energy spectrum for fixed particle number.
In such an instance the eigenstates must be real, up to an overall phase factor, in which
case the scalar product between any two eigenstates is equivalent to the inner product up
to a phase.

An application of the Slavnov formula (112) is that it allows us to compute the nor-
malised wavefunction overlap between two states with different values of the coupling
parameter α. Specifically this permits us to compute the fidelity, as defined in [65, 68],
which has been proposed as a technique to identify quantum phase transitions (for a
review see [28]). To make this point transparent, we start with the explicit form of the
monodromy matrix elements in terms of the elements of the L-operators which is

T̃ i
j (x) =

L
∑

k1,...,kL=1

g̃kLj

[

L̃
kL−1

kL
(xz−1

L )
]

L
...
[

L̃k1
k2
(xz−1

2 )
]

2

[

L̃i
k1
(xz−1

1 )
]

1
.

Since g̃ is a diagonal matrix we can then write

T̃ i
j (x) = g̃jj

L
∑

k1,...,kL−1=1

[

L̃
kL−1

j (xz−1
L )
]

L
...
[

L̃k1
k2
(xz−1

2 )
]

2

[

L̃i
k1
(xz−1

1 )
]

1
(115)

and each of the operators

[

L̃
kj−1

kj
(xz−1

j )
]

j
(116)

is not explicitly dependent on α. Consequently the explicit α-dependence of T̃ i
j (x) is

only in terms of an overall phase. Thus we can take the set W to be a solution of the
Bethe ansatz equations for a given coupling, say α1, and the set Y , which in general
may be arbitrary, to be a solution to the Bethe anstaz equations with a second choice
of the coupling, say α2. This is not to say that the eigenstates of the Hamiltonian (5)
are independent of α, but rather the dependence is implicit through the solution sets W
and Y of the Bethe ansatz equations. In this way the normalised wavefunction overlaps
between ground states with different values of the coupling α can be computed, which is
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in essence the computation of the fidelity.4 Note however we cannot compute the overlaps
between ground states with different values of q nor the zk, since these parameters appear
explicitly in the operator elements (116).

Using the Slavnov formula and the solution of the inverse problem the form factors
(matrix elements) for the local operators bj , b

†
j can also be written, although we will not

give details here (however see Appendix B.4 for an example). Our main objects of interest
for now are the one-point correlation functions, or expectation values, of the Cooper pair
number operators Nj . We begin with the following form factor between two Bethe states
[40]

〈Φ̃(W )|T̃ 2
2 (x)|Φ̃(Y )〉

= C(W,Y )d̃(x)θ(x)
M
∏

j=1

(xy−1
j q−2 − x−1yjq

2)

(xy−1
j − x−1yj)

det(F (W,Y ) +Q(W, y; x)),

where

θ(x) =

M
∏

k=1

xw−1
k − x−1wk

xy−1
k − x−1yk

,

and Q(W,Y ; x) is a rank-one matrix with elements

Q(W,Y ; x)ij =
(q2 − q−2)d̃(wi)d̃(yj)

(xw−1
i − x−1wi)(xw

−1
i q−1 − x−1wiq)

×
M
∏

k=1

(yjy
−1
k q−2 − y−1

j ykq
2)

(

1− ã(x)

d̃(x)

M
∏

k 6=i

xw−1
k q2 − x−1wkq

−2

xw−1
k q−2 − x−1wkq2

)

.

This expression enables us to compute the expectation value

〈Nm〉 =
〈Φ̃(Y )|Nm|Φ̃(Y )〉
〈Φ̃(Y )|Φ̃(Y )〉

= 1− t−1(qzm)
〈Φ̃(Y )|T̃ 2

2 (qzm)|Φ̃(Y )〉
〈Φ̃(Y )|Φ̃(Y )〉

= 1− det(F (Y, Y ) +Q(Y, Y ; qzm))

detF (Y, Y )
. (117)

Note that for the present case because ã(qzm) = 0, d̃(x) = 1 we have the following
simplification for the matrix Q(Y, Y ; qzm):

Q(Y, Y ; qzm)ij =
(q2 − q−2)

(qzmy
−1
i − q−1z−1

m yi)(zmy
−1
i − z−1

m yi)

M
∏

k=1

(yjy
−1
k q−2 − y−1

j ykq
2).

A.3 Duality and the analogue of the Moore-Read state

The p + ip model was derived from the anyonic pairing model in a limit where the pa-
rameters α, β go to zero while keeping their ratio fixed, which gives the coupling constant
G = 2/(αβ−1 − 2) (recall (21)). One may ask wether the results obtained in this section

4In the context of the s-wave model this property has been exploited in [19, 20] to study quenching
dynamics.
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have an analogue in the anyonic pairing model. To answer this question we first look for
a solution of the Bethe ansatz equations (11) with the property that all the roots vanish,
i.e. yj → 0 (j = 1, . . . ,M). From eq. (11) this implies

exp(4iβ(L−M − α

2β
+ 1)) = lim

yj→0

M
∏

j 6=m

q−2y2m − q2y2j
q2y2m − q−2y2j

m = 1, ...,M.

The RHS of this equation is identically equal to 1 in the limit β → 0, which is why there
is such a solution in the p+ ip model. One can readily check that this result remains true
for any β provided

y2m ∝ e2πim/M , m = 1, ...,M,

which implies

M = L− α

2β
+ 1 = L−G−1.

This equation coincides with the condition (89) for the existence of a MR state in the
p + ip model. In the latter equation the parameter G should not be confused with the
coupling constant of the anyonic pairing model given by GAP = sin(2β)/ sin(α − 2β),
except in the limit α, β → 0. The corresponding eigenstate of the anyonic pairing model
has zero energy and it is an anyonic deformation of the MR state. Explicitly the state is

|AMR〉 =
(

L
∑

j=1

d†j
zj

)M

|0〉 .

As in the p+ ip model we can look for a set of roots Y , where a subset Z of P roots
vanish, while the other set Y ′ with M ′ roots do not. The Bethe ansatz equations for the
roots in Z yield

exp(4iβ(L− P − 2M ′ − α

2β
+ 1)) = lim

yj→0

M
∏

yj∈Z,yj 6=ym

q−2y2m − q2y2j
q2y2m − q−2y2j

ym ∈ Z

while for the roots in Y ′ the Bethe ansatz equations become

exp(−2iα)

L
∏

k=1

1− q2y−2
m z2k

1− q−2y−2
m z2k

=

M
∏

yj∈Y ′,yj 6=m

1− q4y−2
m y2j

1− q−4y−2
m y2j

ym ∈ Y ′.

Hence the roots in Y ′ satisfy the same Bethe ansatz equations as the original model,
provided

P = L− 2M ′ − α

2β
+ 1 = L− 2M ′ −G−1

which is the same condition as found in (86). Hence we expect that the duality symmetry
of the p+ ip model to also be a property of the anyonic pairing model.
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B Calculations for the p + ip model

B.1 Solution of the gap and chemical potential equations

In this appendix we collate some results for the dimensionless parameters ā and b̄ which
are solutions of equations (53,54). In all instances the results for the strong pairing phase
can be deduced from those of the weak pairing phase through use of the duality relation
(50). Below, the convention for the elliptic integrals are as in [27]:

E(φ, k) =

∫ φ

0

dx
√

1− k2 sin2 x,

F (φ, k) =

∫ φ

0

dx
1

√

1− k2 sin2 x
.

With the density functions as given by (51,52), performing the integrals in (53,54) one
finds the following results.

1D case

Weak coupling BCS phase: (ā, b̄ = ǭ∓ iδ̄)

2

g
=

√
R (F (φ, k)− 2E(φ, k)) + 2

√
1− 2ǭ+R2

1 +R
,

4

(

x− 1

2
+

1

2g

)

=
√
RF (φ, k)

where

R =
√

ǭ2 + δ̄2, φ = 2 arctan(1/
√
R), k2 =

1

2

(

1 +
ǭ

R

)

.

Moore–Read line: (ā = b̄ < 0, ā = −|ā|)
1

gMR
= 1−

√

|ā| arctan(1/
√

|ā|).

Weak pairing phase: (ā = −|ā|, b̄ = −|b̄|, |ā| > |b̄|)

1

g
=

√

1 + |ā|
1 + |b̄| −

√

|ā| E(ψ,m),

2

(

x− 1

2
+

1

2g

)

=
√

|b̄| F (ψ,m)

where

ψ = arcsin(1/
√

1 + |b̄|), m2 = 1− |b̄|
|ā| .

Read–Green line: (ā = −|ā| < 0, b̄ = 0)

1

gRG
=
√

1 + |ā| −
√

|ā|.
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2D case

Weak coupling BCS: (ā, b̄ = ǭ∓ iδ̄)

1

g
=

√
1 +R2 − 2ǭ− R + ǭ log

(

1− ǭ+
√
1 +R2 − 2ǭ

−ǭ+R

)

,

2

(

x− 1

2
+

1

2g

)

= R log

(

1− ǭ+
√
1 +R2 − 2ǭ

−ǭ+R

)

,

where

R =
√

ǭ2 + δ̄2.

Moore–Read line: (ā = b̄ < 0, ā = −|ā|)

1

gMR
= 1− |ā| log(1 + 1/|ā|).

Weak pairing phase: (ā = −|ā|, b̄ = −|b̄|, |ā| > |b̄|)

1

g
=

√

(1 + |ā|)(1 + |b̄|)−
√

|āb̄|+ (|ā|+ |b̄|) log
(

√

|ā|+
√

|b̄|
√

1 + |ā|+
√

1 + |b̄|

)

,

(

x− 1

2
+

1

2g

)

=
√

|āb̄| log
(

√

1 + |ā|+
√

1 + |b̄|
√

|ā|+
√

|b̄|

)

.

Read–Green line: (ā = −|ā| < 0, b̄ = 0)

1

gRG

=
√

1 + |ā| − |ā| log
(

1
√

|ā|
+

√

1 +
1

|ā|

)

.

B.2 Ground-state wavefunction: exact results versus mean-field

results

We first recall from eq. (28) that for the p+ ip model

C(y) =
∑

k∈K+

kx − iky
k2 − y

c†
k
c†−k

,

while in 1D this simplifies to

C(y) =
∑

k>0

k

k2 − y
c†kc

†
−k.

In the latter formulae we extended the domain of the momentum variables to include
negative values of kx which is done to properly account for the antisymmetry of the
wavefunction. Now we will compare the exact wavefunction with the mean-field one.
Recalling (40) we have
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|ψ〉 =
(

∑

k

g(k) c†
k
c†−k

)M

|0〉

This expression can be viewed as an average of the exact wavefunction (28) which involves
a product of pair operators characterized by the roots ym. Read and Green have shown
[53] that in the limit where k → 0 the BCS wavefunction behaves as

g(k) ∼
{

kx − iky, µ < 0, (strong − coupling),
1/(kx + iky), µ > 0, (weak− coupling).

This behaviour can be compared with the wavefunction associated to the roots appearing
in (28),

g(k, y) =
kx − iky
k2 − y

∼
{

kx − iky, if |k| <<
√

|y|,
1/(kx + iky), if |k| >>

√

|y|

which in real space leads to

ĝ(r, y) =

∫ ∞

−∞

∫ ∞

−∞
d2k eik·r g(k, y) ∼ z̄

|z|K1(|z|
√−y)

where z ∈ C and K1(z) is a Bessel function. Using the asymptotic results K1(z) ∼
1/z (|z| << 1) and K1(z) ∼ e−z

√

π/2z (|z| >> 1) one finds

ĝ(r, y) ∼
{

z̄|z|−3/2e−|z|√−y, |z| >> 1/
√

|y|,
1/z, |z| << 1/

√

|y|.

Hence at short distances all the pairs behave as in the Moore-Read wavefunction and at
large distances they show the typical behaviour associated to localized BCS pairs with a
correlation length

ξy =
1

Re(
√−y) . (118)

If most of the roots y lie near the origin then the overall behaviour of the exact wavefunc-
tion will be well described by the Moore-Read wavefunction.

In 1D the real-space wavefunction associated to a root y is given by

g(x, y) =

∫ ∞

−∞
dk eikx

k

k2 − y
= iπsign(x) e−|x|√−y

which decays exponentially with a correlation length given by (118).
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B.3 Wavefunction scalar product and one-point correlation func-

tions

The wavefunction scalar product and one-point correlation functions of the p+ ip model
can be obtained directly as a limiting case of the results in Appendix A.2. The elements
of the L-operator (107) act locally, to leading order in γ, as

L̃1
1(x) ∼ I − 2pγ

x+ x−1

x− x−1
(I −N),

L̃1
2(x) ∼ 4pγ

x− x−1
b,

L̃2
1(x) ∼ 4pγ

x− x−1
b†,

L̃2
2(x) ∼ I − 2pγ

x+ x−1

x− x−1
N.

Now using (115) we have to leading order

T̃ 2
1 (x) ∼ 4pγ

L
∑

j=1

1

xz−1
k − x−1zk

b†j

= 4xpγ

(

L
∑

j=1

zjb
†
j

x2 − z2j

)

.

We define the operator (cf. (28))

C(x) =

L
∑

j=1

zjb
†
j

x2 − z2j
(119)

such that the states of the system are of the form

|φ(Y )〉 =
M
∏

j=1

C(yj) |0〉 (120)

where Y = {yj} are a solution set of the Bethe ansatz equations (23). The formula for
the scalar products of the states (120) follows from taking the appropriate limit of (112).
For the limit of the matrix (113) the result is

F (W,Y )ij ∼
4pγ2

∏M
l 6=i(yjw

−1
l − y−1

j wl)

(yjw
−1
i − y−1

j wi)

(

−2t− 2p

L
∑

r=1

y2j + z2r
y2j − z2r

+ 4p

M
∑

m6=i

y2j + w2
m

y2j − w2
m

)

.

Recalling the Bethe ansatz equations in the form (20), we can substitute into the above
to eliminate t:

F (W,Y )ij ∼ 4pγ2yjwi

M
∏

l 6=i

(yjw
−1
l − y−1

j wl)

×
(

4p

L
∑

k=1

z2k
(w2

i − z2k)(y
2
j − z2k)

+ 8p

M
∑

m6=i

w2
m

(w2
m − w2

i )(y
2
j − w2

m)

)

.
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To simplify the calculation we introduce the diagonal matrices

Γ(W,Y )ij = δij

(

wj

yj

)

yjw
−1
j − y−1

j wj
∏M

k=1(yjw
−1
k − y−1

j wk)
,

Π(W,Y )ij = δij
1

16p2γ2w2
j

such that

det(Π(W,Y )) =

(

1

16p2γ2

)M
(

M
∏

j=1

w−2
j

)

,

det(Γ(W,Y )) =
M
∏

j=1

(

wj

yj

)

Υ(W,Y )

where

Υ(W,Y ) =

∏M
j=1(yjw

−1
j − y−1

j wj)
∏M

j=1

∏M
k=1(yjw

−1
k − y−1

j wk)
.

Note that

Υ(Y, Y ) = C(Y, Y )

with C(W,Y ) given by (114). Now defining

G(W,Y ) = lim
γ→0

Π(W,Y )F (W,Y )Γ(W,Y )

leads to

G(W,Y )ij =
(y2j − w2

j )

(y2j − w2
i )

(

L
∑

k=1

z2k
(w2

i − z2k)(y
2
j − z2k)

+ 2

M
∑

m6=i

w2
m

(w2
m − w2

i )(y
2
j − w2

m)

)

.

We will also need

C2(W,Y )

Υ2(W,Y )
=

∏M
j 6=k(yjw

−1
k − y−1

j wk)
∏M

m>l(ymy
−1
l − y−1

m yl)(wlw−1
m − w−1

l wm)

×
∏M

a6=b(yaw
−1
b − y−1

a wb)
∏M

p>q(ypy
−1
q − y−1

p yq)(wqw−1
p − w−1

q wp)

=
M
∏

k=1

M
∏

j 6=k

(y2j − w2
k)

2

(y2j − y2k)(w
2
j − w2

k)
.

Keeping in mind that C(x) differs from the leading term in the expansion of T̃ 2
1 (x) by a

scale factor, we now have

〈φ(W )|φ(Y )〉 =
∏M

k=1

∏M
j 6=k(y

2
j − w2

k)
∏M

j<k(y
2
j − y2k)(w

2
k − w2

j )
det(G(W,Y )).
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Finally we can make explicit the square of the normalised wavefunction scalar product
F(W,Y ) (equivalent to the square of the fidelity) between two states as a function of the
Bethe roots, but independent of the coupling G. The result is

F(W,Y )2 =
〈φ(W )|φ(Y )〉2

〈φ(W )|φ(W )〉〈φ(Y )|φ(Y )〉

=
C2(W,Y )

Υ2(W,Y )

det(G(W,Y ))2

det(G(W,W )) det(G(Y, Y ))

=

M
∏

k=1

M
∏

j 6=k

(y2j − w2
k)

2

(y2j − y2k)(w
2
j − w2

k)

det(G(W,Y ))2

det(G(W,W )) det(G(Y, Y ))

and we note

G(Y, Y )ii =
L
∑

k=1

z2k
(y2i − z2k)

2
− 2

M
∑

m6=i

y2m
(y2i − y2m)

2
,

G(Y, Y )ij =
2y2j

(y2j − y2i )
2
, i 6= j. (121)

In a similar manner we obtain the formula for the one-point correlation functions from
the limit of (117). The result is

〈Nm〉 = 1− det(G(Y, Y )− zmWm(Y ))

det(G(Y, Y ))
(122)

with G(Y, Y ) given by (121) and

(Wm(Y ))ij =
zm

(y2i − z2m)
2
. (123)

B.4 Two-point correlation functions

Finally we turn our attention to the more technically demanding problem of calculating
two-point correlation functions. We will derive formulae for both the off-diagonal case
〈b†mbn〉 and the diagonal case 〈NmNn〉. For the calculation of these results we extend the
methods used in [18, 52, 69] which were developed for the s-wave model.

First we consider the off-diagonal case. For any fixed n we may express the state
|φ(Y )〉 as

|φ(Y )〉 =
M
∏

β=1

C(yβ)|0〉 =
M
∏

β=1

(

C̃n(yβ) + Aβ
nb

†
n

)

|0〉, (124)

where

C̃n(yβ) =
M
∑

l 6=n

zlb
†
l

y2β − z2l
, Aβ

n =
zn

y2β − z2n
.

Keeping in mind that
(

b†n
)2

= 0, bn|0〉 = 0, we find

bn|φ(Y )〉 =

M
∑

β=1

Aβ(n)

M
∏

α6=β

C̃n(yα)|0〉
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=

M
∑

β=1

Aβ
n

M
∏

α6=β

(

C(yα)− Aα
nb

†
n

)

|0〉

=
M
∑

β=1

Aβ
n

M
∏

α6=β

C(yα)|0〉 −
M
∑

β=1

M
∑

α6=β

Aα
nA

β
nb

†
n

M
∏

γ 6=α,β

C(yγ)|0〉. (125)

With the help of (125) we have that form 6= n the unnornormalised two-point off-diagonal
correlation functions are

〈φ(Y )|b†mbn|φ(Y )〉 =

M
∑

β=1

Aβ
n〈φ(Y )|b†m

M
∏

α6=β

C(yα)|0〉

−
M
∑

β=1

M
∑

α6=β

Aα
nA

β
n〈φ(Y )|b†mb†n

M
∏

γ 6=α,β

C(yγ)|0〉

=

M
∑

β=1

Aβ
n〈φ(Y )|b†m

M
∏

α6=β

C(yα)|0〉

− 2
M
∑

β=1

M
∑

α<β

Aα
nA

β
n〈φ(Y )|b†mb†n

M
∏

γ 6=α,β

C(yγ)|0〉 (126)

where in the last step we use the fact that the terms in the double sum are symmetric
with respect to interchange of the labels α and β. Now the two-point correlation function
has been reduced to a sum of one-point form factors of b†m and a double sum over the
two-point form factors of b†mb

†
n. Recalling the definition (119), for the p + ip model the

inverse problem is easily solved as

b†m = lim
y→zm

y2 − z2m
zm

C(y).

Using this expression and the wavefunction scalar product formula we obtain the matrix
elements of both b†m and b†mbn. For the one-point case the result is

〈φ(Y )|b†m
M
∏

α6=β

C(yα)|0〉 = lim
v→zm

v2 − z2m
zm

〈φ(Y )|C(v)
M
∏

α6=β

C(yα)|0〉

= Kβ
mdet(T β

m)

where T β
m is the M ×M matrix with elements

(

T β
m

)

ij
= Gij , j 6= β,

(

T β
m

)

iβ
= (Wm)iβ ,

Kβ
m = (y2β−z2m), G ≡ G(Y, Y ) is given by (121), and Wm ≡ Wm(Y ) is given by (123). (To

keep the notation compact, we hereafter omit the Y dependence on all such matrices.)
For the two-point form factors we have

〈φ(Y )|b†mb†n
M
∏

γ 6=α,β

C(yγ)|0〉

= lim
u→zm

lim
v→zn

(u2 − z2m)(v
2 − z2n)

zmzn
〈φ(Y )|C(u)C(v)

M
∏

γ 6=α,β

C(yγ)|0〉

= Kαβ
mndet(T

αβ
mn) (127)
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where T αβ
mn is the M ×M matrix with the elements

(

T αβ
mn

)

ij
= Gij , j 6= α, β,

(

T αβ
mn

)

iα
= (Wn)iα ,

(

T αβ
mn

)

iβ
= (Wm)iβ ,

and

Kαβ
mn =

(y2α − z2m)(y
2
α − z2n)(y

2
β − z2m)(y

2
β − z2n)

(y2α − y2β)(z
2
m − z2n)

.

This leads to

〈φ(Y )|b†mbn|φ(Y )〉 =
M
∑

β=1

J β
mndet(T β

m))−
M
∑

β=1

M
∑

α<β

J β
mnJ

αβ
mndet(T

αβ
mn)

where

J β
mn = Aβ

nKβ
m

=
zn(y

2
β − z2m)

y2β − z2n

Jαβ
mn =

2Aα
nK

αβ
mn

Kβ
m

=
2zn(y

2
α − z2m)(y

2
β − z2n)

(y2α − y2β)(z
2
m − z2n)

.

We can conveniently express the determinants of T β
m and T αβ

mn in a vector notation. Defin-

ing the M-dimensional vectors ~Gj , j = 1, ...,M and ~Wm, m = 1, ...,M to have entries

( ~Gj)i = Gij

( ~Wm)i = (Wm)ij

we can write

det(T β
m) =

∣

∣

∣

~G1, ..., ~Gβ−1, ~Wm, ~Gβ+1, ..., ~GM

∣

∣

∣
,

det(T αβ
mn) =

∣

∣

∣

~G1, ..., ~Gα−1, ~Wn, ~Gα+1, ... ~Gβ−1, ~Wm, ~Gβ+1, ..., ~GM

∣

∣

∣
.

Using standard properties of determinants we have

det(T β
m) =

∣

∣

∣

∣

∣

~G1 −
J1β
mn

J2β
mn

~G2, ..., ~Gβ−2 −
J
(β−2)β
mn

J
(β−1)β
mn

~Gβ−1, ~Gβ−1,
~Wm, ~Gβ+1, ..., ~GM

∣

∣

∣

∣

∣

,

M
∑

α<β

Jαβ
mndet(T

αβ
mn) = J (β−1)β

mn

∣

∣

∣

∣

∣

~G1 −
J1β
mn

J2β
mn

~G2, ..., ~Gβ−2 −
J
(β−2)β
mn

J
(β−1)β
mn

~Gβ−1, ~Wn, ~Wm, ~Gβ+1, ..., ~GM

∣

∣

∣

∣

∣

.

Combining these we have a single determinant expression

det(T β
m)−

M
∑

α<β

Jαβ
mndet(T

αβ
mn)

=

∣

∣

∣

∣

∣

~G1 −
J1β
mn

J2β
mn

~G2, ..., ~Gβ−2 −
J
(β−2)β
mn

J
(β−1)β
mn

~Gβ−1, ~Gβ−1 − J (β−1)β
mn

~Wn, ~Wm, ~Gβ+1, ..., ~GM

∣

∣

∣

∣

∣

.
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This allows us to express the off-diagonal two-point correlation functions as

〈b†mbn〉 =
〈φ(Y )|b†mbn|φ(Y )〉

〈φ(Y )|φ(Y )〉

=
1

det(G)

M
∑

β=1

J β
mndet(Dβ

mn)

where

(

Dβ
mn

)

ij
= Gij −

(y2j+1 − y2β)(y
2
j − z2m)

(y2j − y2β)(y
2
j+1 − z2m)

Gi(j+1), j < β − 1,

(

Dβ
mn

)

i(β−1)
= Gi(β−1) −

2z2n(y
2
β−1 − z2m)(y

2
β − z2n)

(y2β−1 − y2β)(z
2
m − z2n)(y

2
i − z2n)

2
,

(

Dβ
mn

)

iβ
=

zm
(y2i − z2m)

2
,

(

Dβ
mn

)

ij
= Gij , j > β.

Next we consider the computation of the diagonal two-point correlation functions. To
facilitate this, we first note the commutation relation

[Nm, C(v)] =
zm

v2 − z2m
b†m. (128)

With the help of the commutation relation (128), and the fact that each Nm vanishes on
the vacuum, we can write for m 6= n

〈φ(Y )|NmNn|φ(Y )〉 = 〈φ(Y )|NmNn

M
∏

β=1

C(yβ)|0〉

=
M
∑

β=1

zm
y2β − z2m

〈φ(Y )|Nnb
†
m

M
∏

α6=β

C(yα)|0〉

=

M
∑

β=1

zm
y2β − z2m

M
∑

α6=β

zn
y2α − z2n

〈φ(Y )|b†mb†n
M
∏

γ 6=α,β

C(yα)|0〉

=
M
∑

β=1

M
∑

α6=β

zm
y2β − z2m

zn
y2α − z2n

Kαβ
mndet(T

αβ
mn)

=
zm
2

M
∑

β=1

M
∑

α6=β

Jαβ
mndet(T

αβ
mn).

Using similar techniques as before, we can reduce the above to a sum of M determinants.
Doing this leads to the final result

〈NmNn〉 =
〈φ(Y )|NmNn|φ(Y )〉

〈φ(Y )|φ(Y )〉

=
zm

2det(G)

(

M−1
∑

β=1

JMβ
mn det(D

β
mn) + J (M−1)M

mn det(Emn)

)
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where

(

Dβ
mn

)

ij
= Gij −

(y2j+1 − y2β)(y
2
j − z2m)

(y2j − y2β)(y
2
j+1 − z2m)

Gi(j+1), j 6= β − 1, β,M,

(

Dβ
mn

)

i(β−1)
= Gi(β−1) −

(y2β+1 − y2β)(y
2
β−1 − z2m)

(y2β−1 − y2β)(y
2
β+1 − z2m)

Gi(β+1),

(

Dβ
mn

)

iβ
=

zm
(y2i − z2m)

2
,

(

Dβ
mn

)

iM
=

zn
(y2i − z2n)

2
,

(Emn)ij = Gij −
(y2j+1 − y2M)(y2j − z2m)

(y2j − y2M)(y2j+1 − z2m)
Gi(j+1), j 6=M − 1,M,

(Emn)i(M−1) =
zn

(y2i − z2n)
2
,

(Emn)iM =
zm

(y2i − z2m)
2
.
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