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In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and

low-lying excitations are described by conformal field theory (CFT). The same holds true for the von

Neumann and Rényi entropies of the ground state, which display a universal logarithmic behavior

depending on the central charge. In this Letter we generalize this result to those excited states of the

chain that correspond to primary fields in CFT. It is shown that the nth Rényi entropy is related to a

2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This

result uncovers a new link between quantum information theory and CFT.
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Entanglement is one of the central concepts in quantum
physics since Schrödinger used the term in an answer to the
Einstein-Podolsky-Rosen article in 1935. A particularly
active line of research is concerned with the role played
by entanglement in the physics of many-body systems [1].
One is typically interested in the amount of entanglement
between two spatial partitions, say A and B, of a many-
body system in its ground state. For a pure ground state
the amount of entanglement is usually quantified with the
entanglement entropy, or the von Neumann entropy of
the reduced density matrix �A: SA ¼ �trA�A ln�A.
Alternatively, the Rényi entropies Sn are also used:
ðSnÞA ¼ 1

1�n lntrA�
n
A, the entanglement entropy being

limn!1Sn. One of the most important results in this topic
is the celebrated area law [2–4], which, roughly speaking,
states that ground states of gapped many-body systems
with short-range interactions have an entanglement en-
tropy proportional to the area of the hypersurface separat-
ing both partitions. The area law restricts the fraction
of the Hilbert space accessible to ground states of local
Hamiltonians in an essential way, allowing for their effi-
cient numerical simulation [4].

Violations of the area law occur in gapless (critical)
systems. In one dimension most of critical systems, as
well as being gapless, are also conformal invariant. The
attention to the entanglement properties on these systems
came after the seminal result of Holzhey, Larsen and
Wilczek [5], who showed that the leading behavior of the
ground state entropies S

gs
n is proportional to the central

charge of the underlying conformal field theory (CFT)
governing the long-distance physics of the discrete quan-
tum chain. If ‘ and N are the lengths of the partition A and
of the total system, both measured in lattice spacing units,
then the Rényi entropy of the ground state, with periodic
boundary conditions, is [5–7]

S
gs
n ð‘Þ ¼ cðnþ 1Þ

6n
ln

�
N

�
sin

�
�‘

N

��
þ �n; (1)

where c is the central charge of the CFT and �n is a
nonuniversal constant.
In a critical model, the finite-size scaling of the energy of

excitations is given by the scaling dimension of the corre-
sponding conformal operators [8]. This fact suggests that
also the entanglement entropy could be related to proper-
ties of these operators. Entanglement of excited states has
been considered previously. In [9] it was shown that the
negativity of the excited states in the XXZ critical model
shows a universal scaling. In [10] it was shown that a
violation of the area law should be expected for the low-
lying excited states of critical quantum chains, and in [11],
it was considered the entanglement of very large energy
excitations in XY and XXZ spin chains.
In this Letter we show that the entropy Sexcn of excited

states associated to primary fields exhibits a universal
behavior that generalizes (1). The energy of these low-
lying states degenerate as 1=N in the bulk limit N ! 1.
We prove that the excess of entanglement, Sexcn � Sgsn , is a
finite-size scaling function related to the 2n-point correla-
tor of the primary field. These results are verified in two
models: the XX and XXZ spin chains.
Entanglement of generic primary states.—Let us con-

sider a system S of length N with periodic boundary
conditions. To describe it, we introduce the complex vari-
able � ¼ �þ it, where 0 � � � N is the spatial coordi-
nate and t is the time coordinate. S is split into two
subsystems S ¼ A [ B, with A ¼ ð�; ‘� �Þ and B ¼ ð‘þ
�;N � �Þ, and where � � ‘ < N is a short-distance cutoff
[5]. The world sheet of the past (t < 0), is a cylinder with
two semidisks of radius � cut out (denoted C and D in
Fig. 1). The boundary of the world sheet of Fig. 1 is given
by the union A [ C [ B [D. After the conformal trans-
formations � ! w ! z,

w ¼ � sinð�ð��‘Þ
N Þ

sinð��N Þ
; z ¼ logw (2)
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the � cylinder gets mapped into a strip of height � and

width d ¼ 2 log½ N�� sinð�‘N Þ�; being A, B, C, D the bounda-

ries of the strip in z space (see Fig. 1). Moreover, the point
at the infinite past �1 ¼ �i1 gets mapped into �1 !
z1 ¼ i�ð1� ‘=NÞ. We shall consider the simplest excited
states in a CFT, namely, the primary states, which are those
generated acting on the vacuum j0i with a primary field
�ð�; ��Þ, with conformal weights (h, �h),

j�i ¼ lim
�; ��!�i1

�ð�; ��Þj0i: (3)

The wave function of this state j�i is given by the path
integral

�XYð�Þ /
Z

D��½�ðz1Þ�e�Að�Þ; (4)

where � denotes the local field whose Euclidean action is
Að�Þ. The field � is a functional of �, that is evaluated
at the infinite past z1 in Eq. (4) (recall Eq. (3)). X and Y
denote the values of the field � in the subsystems A and B
respectively. Periodic boundary conditions are imposed on
the C and D edges [5]. If � were not primary, then Eq. (4)
would include additional terms generated by the conformal
transformations (2).

The density matrix � � �A of subsystem A is obtained
by tracing over the variables in B:

�XX0 ð�Þ /
Z

DY�XYð�Þ��
YX0 ð�Þ: (5)

Plugging (4) into (5) one finds

�XX0 ð�Þ ¼
R
D��½�ðz1Þ���½�ðz01Þ�e�Að�Þ

Zð1Þh�ðz1Þ�yðz01Þi
; (6)

where z01 ¼ i�ð1þ ‘=NÞ represents the point at the infi-
nite future. The functional integral is over a strip of height
2� and width d, with boundary conditions � ¼ X on the
lower edge and � ¼ X0 on the upper edge. The normal-
ization factor is determined by the condition tr� ¼ 1,
which implies that Zð1Þ is the functional integral with no
operator insertion and the top and bottom edges of the strip
being identified (i.e. a torus partition function), and h��yi
is the two point correlator on this torus. To compute the
entanglement entropy one first computes the trace of �n

�,

which is given by

tr�n
� ¼ ZðnÞ

Zð1Þn
Q

n�1
k¼0h�ðz1 þ 2i�kÞ�yðz01 þ 2i�kÞi�n

h�ðz1Þ�yðz01Þin�1
;

(7)

where ZðnÞ denotes the partition function on a torus of
lengths 2�n and d, so that the moduli parameter is given by
�n ¼ 2�in=d, and where h. . .i�n denotes the expectation

value in the �n torus. Notice that the 2n-point correlator of
fields �, �y depends on the ratio ‘=N and on the moduli
parameter.
To further proceed one uses the expression of the parti-

tion function ZðnÞ of a general CFT with central charge c

for chiral and antichiral sectors of the theory, ZðnÞ ¼
Zð�; ��Þ ¼ trqL0�ðc=24Þ �q �L0�ðc=24Þ, with the nome q ¼ �q ¼
expð2�i�Þ. In the limit d � 1, it is convenient to perform
the modular transformation � ! �1=�. The partition func-
tion is modular invariant and can be easily evaluated in

terms of the nome ~q ¼ e�2�i=� ¼ e�d=n [5]. In particular,
for the ground state (�0 ¼ 1) one gets (up to a model-

dependent factor cn ¼ eð1�nÞ�n):

tr�n
�0

¼ ZðnÞ
Zð1Þn � ec=12ð1=n�nÞd ¼

�
N

��
sin

�
�‘

N

��
c=6ð1=n�nÞ

(8)

as anticipated in (1). In the general case, Eq. (7) depends on
a 2n-point correlator of the fields� and�y on a cylinder of
length 2�n along the time direction. It is now convenient
to rescale this length to 2�. Afterwards, we shift the
coordinates in which the fields are evaluated zj ! zj �
i�ð1� xÞ=n, where x ¼ ‘=N. Finally, we exchange � and
t coordinates in such a way that zj ¼ 2�j=n for � and

zj ¼ 2�ðjþ xÞ=n for �y. The ratio between the excited

and the ground state traces, FðnÞ
� ðxÞ ¼ tr�n

�=tr�
n
�0
, be-

comes, from (7)

FðnÞ
� ðxÞ � n�2nðhþ �hÞhQn�1

j¼0 �ð2�jn Þ�yð2�ðjþxÞ
n Þicy

h�ð0Þ�yð2�xÞincy
; (9)

where h. . .icy denotes the expectation value in a cylinder of
length 2�. The entanglement entropy for j�i can then be

computed using the replica trick: Sexc1 ¼ S
gs
1 � @nF

ðnÞ
� jn¼1.

The dependence of the entropies on the full operator
spectrum of CFT was also observed in the ground state
entropies of two disjoint segments of the quantum critical
chains [12]. In the limit x � 1, the terms ��y appearing
in (9) can be approximated by the operator product expan-
sion (OPE) �	�y ¼ 1þ�þ . . . , finding:

FðnÞ
� ðxÞ � 1þ hþ �h

3

�
1

n
� n

�
ð�xÞ2 þOðx2��Þ; (10)

where � is the operator with the smallest scaling dimen-
sion, ��. The term of order x2�� depends on the OPE
constants C�

��y and on the expectation values

h�ð0Þ�ð2�jn Þicyl. If �� ¼ 1, this term is Oðx2Þ as the first

FIG. 1 (color online). Riemann surfaces describing the past
events in � and z. The distinguished point in z is the infinite past
�1 ¼ �i1.
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one in Eq. (10), and eventually they may cancel one
another, as we shall see in an example below. If �� � 1
one could use (10) to infer the quantities hþ �h, �� and
C�
��y from the numerical computation of the

entanglement.

Using Sexc1 ¼ S
gs
1 � @nF

ðnÞ
� jn¼1, one finds, for the low-x

behavior of the entanglement entropy (‘=N � 1):

S�1 ð‘Þ � Sgs1 ð‘Þ �
2�2

3
ðhþ �hÞ

�
‘

N

�
2 þO

�
‘

N

�
2��

: (11)

Eqs. (9)–(11) are the main results of this Letter. They
relate the von Neumann and n-Rényi entropy of the exci-
tation represented by the primary operator � to the
2n-point correlators of � and �y in the cylinder. Notice

that the ratio FðnÞ
� does not depend on the nonuniversal

constant �n, which is therefore common to Sgsn and Sexcn .
As an example of the law (9) we shall consider a c ¼ 1

CFT given by a massless boson compactified on a circle.
The primary fields are given by the vertex operators

�1½r; s� ¼ eið	þ�þ	� ��Þ (being �, �� chiral and antichiral
boson fields) where 	
 ¼ r=2

ffiffiffiffi



p 
 s
ffiffiffiffi



p
, 
 is the com-

pactification ratio, and r, s 2 Z. The scaling dimensions of
these operators are ð	2þ þ 	2�Þ=2 ¼ r2=4
þ s2
. Using
the chiral correlator of vertex operators on the cylinder,

hQje
i	j�ðzjÞicy ¼ Q

j>k½2 sinðzjk=2Þ��	j	k , it turns out that

FðnÞ
�1½r;s�ðxÞ ¼ 1; 8 n; r; s: (12)

Hence, all the excitations represented by vertex operators
have the same entropy as the ground state. This result is not
in contradiction with (10) because, in this case, �� ¼
�@� ¼ 1 and both Oðx2Þ terms in (10) cancel out due to

the properties of the OPE constants. In fact, the cancella-
tion happens to all orders in x.

Next, we study the operator �2 ¼ i@�. Using its
correlator on the cylinder h@�ðz1Þ@�ðz2Þicy ¼
�½2 sinðz12=2Þ��2 and the Wick theorem, we get, in terms
of the determinant of a 2n	 2n matrix:

FðnÞ
�2
ðxÞ ¼ ð�1Þn

�
2

n
sin�x

�
2n
det
j�k

1

eizj � eizk
; (13)

where zj ¼ �ð2j
 xÞ=nðj ¼ 0; . . . ; n� 1Þ. For n ¼ 2,

one finds Fð2Þ
�2
ðxÞ ¼ 1� 2s2 þ 3s4 � 2s6 þ s8, s �

sinð�x=2Þ. In the low-‘=N limit, FðnÞ
�2
ðxÞ � 1þ ð�xÞ2 	

ð1=n� nÞ=3, which leads to an excess of entanglement
entropy given by (11) with ðh; �hÞ ¼ ð1; 0Þ. Realizations of
both types of excitations, in particular, models will be now
shown, and their amount of entanglement compared with
the CFT predictions (12) and (13).

Excitations in the XX and XXZ models.—The
Hamiltonian of the spin-1=2 XXZ model is given by

Hxxz ¼ � 1

2

XN
j¼1

ð�x
j�

x
jþ1 þ �y

j�
y
jþ1 þ��z

j�
z
jþ1Þ; (14)

where N is even and periodic boundary conditions are
assumed (for � ¼ 0 we get the XX model). This model
is integrable [13] and gapless for �1 � �< 1. The corre-
sponding CFT is given by the aforementioned bosonic CFT
with 
 ¼ �

2 ½�� cos�1ð��Þ��1. The XX model in the

sector with magnetization M ¼ 1
2

P
j�

z
l can be mapped,

through a Jordan-Wigner transformation, into a system
with nF ¼ Mþ N=2 free fermions in a lattice of N sites.
We computed the entanglement and Rényi entropies of
several types of excitations in these models. This task
was achieved using the methods of references [7,14] in
the free fermion problem and through numerical exact
diagonalization in the XXZ case.
Let us first consider the vertex operator �1½0; m�. In the

free fermion model, the result (12) is exact and can be
proved analytically. Indeed, j�1½0; m�i corresponds to the

umklapp excitation
Q

m
j¼1 d

y
kFþð2j�1Þ�=Nd�kFþð2j�1Þ�=Nj0i,

where kF ¼ �nF=N is the Fermi momentum, and where

j0i is the Fermi state and dyk the fermionic creation operator

with momentum k. This state can be obtained from the
Fermi state shifting all the momenta as k ! kþ 2m�=N.
Such a shift produces a global phase factor in the wave
function in real space and, consequently, the entropy re-
mains unchanged. In the XXZ model, the state j�1½0; 1�i
corresponds to the ground state in the sector with nF spins
up and total momentum P ¼ 2�nF=N. We observe that

the prediction FðnÞ
�1
ðxÞ ¼ 1 holds, up to the oscillations

expected for n � 2 [15], which in this case are of the order
of 10�3 for systems with N ¼ 30 spins.
We will now consider the excitation �1½2; 1�. In a sys-

tem of free fermions the resulting state corresponds to the
addition of two fermions at the right of the Fermi point, i.e.,
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FIG. 2 (color online). An illustration of the law FðnÞ
�1½2;1�ðxÞ ¼ 1

for the XX model with N ¼ 100, nF ¼ 50, and for the XXZwith
� ¼ �1=2 and N ¼ 30, nF ¼ 14 (16 for the excited state). The
entropy of ground and excited states coincide and follows the
law (1) (continuous lines), up to oscillations [15].
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to the state dykFþ�=Nd
y
kFþ3�=Nj0i. Figure 2 shows that

ground and excited states entropies S2;3 coincide, up to

oscillations. In the XXZ model, j�1½2; 1�i is the lowest
eigenstate with total momentum P ¼ 2�ðnF þ 2Þ=N.

Again in this case, oscillations of Fð2Þ
�1½2;1� around one are

observed (see Fig. 2).
Finally, Fig. 3 shows some numerical results for the

entanglement of the excitation �2 ¼ i@�. In the free fer-
mion problem, j�2i corresponds to a particle-hole excita-

tion: dykFþ�=NdkF��=Nj0i, while in the XXZ model it

corresponds to the lowest eigenstate with P ¼ 2�=N. We
observe an excellent agreement with the theoretical pre-
diction (13) for n ¼ 2. Similar results hold for n ¼ 3.
Moreover, we have checked, for n up to 6, that the
low-‘=N formula (11) is very well satisfied for fermions.

In summary, we have obtained an expression for the
Rényi entropies of excitations associated to any primary
field. We verified the results with finite-size realizations of
the XX and XXZ models up to 30 sites in the latter case,
finding very good agreement with the theory.

As explained earlier, Eq. (9) can be used as a numerical
method to extract information about correlators, conformal
dimensions and OPE coefficients of primary fields. An
interesting problem is to generalize these results to the
descendent states in CFT. We expect that the Rényi en-
tropies, at a given level of a conformal tower will depend
on the particular state targeted. This can provide a method

to establish the correspondence between degenerated ex-
cited states of a critical lattice model, and the descendent
fields in the underlying CFT.
Equation (9) further suggests a generalization of the

Rényi entropies in terms of traces of different density
matrices tr½��1

��2
. . .�. This object would be related to

the correlator: h�1�
y
1�2�

y
2 . . .i in the very same fashion as

in (9). The numerical computation of the associated gen-
eralized entropies would then provide information on more
general correlators in CFT, and vice-versa. Applications of
the present work to other models and to nonprimary fields
are in progress. This work represents a further step along
the direction of deriving CFT data using quantum infor-
mation methods.
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FIG. 3 (color online). The quantity Fð2Þ
�2

for the XX model at
different filling fractions and for the XXZ (� ¼ �1=2, N ¼ 30,
nF ¼ 14) model, vs the CFT prediction (13). For nF ¼ 250 the
oscillations around (13) are so small that both curves are indis-
tinguishable. The inset shows S2 for the ground and excited
states (N ¼ 500). The upper inset is a zoom of the region
selected by the small rectangle over the curve in the main figure.
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