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Abstract

The analysis of fracture phenomena of thin-walled structures has been a matter of intensive research in
the last decades. These phenomena notably restrict the applicability of slender structures, especially under
the influence of temperature. With the aim of achieving reliable prediction of temperature-driven failures in
thin-walled structures, this research is concerned with the development of a thermodynamically consistent
framework for the coupled thermo-mechanical phase-field model for thin-walled structures using a fully-
integrated finite elements. This enables the use of three-dimensional constitutive thermo-mechanical models
for the materials. The proposed thermo-mechanical phase-field models are equipped with the Enhanced As-
sumed Strain (EAS) in order to alleviate Poison and volumetric locking pathologies. This technique is further
combined with the Assumed Natural Strain (ANS) method leading to a locking-free thermo-mechanical solid
shell phase-field element. A special attention is also paid to evaluation of the corresponding thermodynamic
consistency and the variational formalism leading to the non-linear coupled equations equipped with the
coupled driving force. Moreover, the same degradation function is used for both displacement field and ther-
mal field. The coupled equations are numerically solved with ad hoc efficient solution schemes for nonlinear
problems. Several numerical examples (straight and curved shells) are provided to show the practicality and
reliability of the proposed modeling framework. Representative examples assess stable and unstable crack
propagation along with their thermo-mechanical interactions.

Keywords: A. Solid Shell, B. Phase-Field fracture, C. Finite Element Method, D: Non-linear
Thermo-Elasticity, E. Large Deformations.

1. Introduction

Thermal interactions and the load-bearing capacity of are key aspects to regulate the design, analysis,
and production of thin-walled structures. Due to the complex interactions and geometrical definition, the
use of analytical methods is rather limited. Therefore, numerical methods lead to a more broad and versatile
range of analysis.

The literature regarding the computational procedures for triggering fracture in shell structures can be
broadly classifies into 4 categories: (a) Non propagating crack approaches based on the partition of unity
methods [1], (b) discrete crack methods such as XFEM [2–5], phantom node models [6], meshless methods
[7, 8]. These are largely based on classical shell theories such as Kirchhoff-Love [9–12] (3 parameters),
Reissner-Mindlin (5-parameters) [2, 4] and geometrically nonlinear continuum shell [13] for their kinematic
description. (c) Cohesive zone models [14–17] implemented via interface or contact elements. The above
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mentioned methods require ad-hoc criteria for their initiation and propagation of the crack, and often it
is necessary to know the crack path a priori. (d) Continuum-based methods such as non-local or gradient
enhanced damage approaches [18–21], which use constitutive equations at the material point level describing
damage in the bulk. In contrast to the above mentioned approach, the phase-field approach has emerged
as an alternative modeling tool for its ability to describe initiation, propagation, and handle complex crack
paths through the minimization of the total energy (elastic and dissipative due to cracks) of the system, see
[22–26] and the references therein. Isogeometric shell analysis could be used as notable alternative modelling
tool largely developed [27–29] for the analysis of shells and integrate CAD with CAE.

In this context, the phase-field (PF) approach to fracture originally proposed by Francfort and Marigo
[30] and subsequently developed in [31] is very promising. The PF method approximates the original theory
developed by Griffith and Irwin as a free discontinuity problem [32] using a diffusive representation of the
crack by introducing an internal length scale l for nonlocal damage evolution. It postulates that the crack
propagation is due to competition between the strain energy created in the bulk and the surface energy/crack
energy related to the creation of new crack paths/surfaces. This further leads to a minimization problem
whose solution is sought using variational formulations, see [31] for more details, and [33] for a detailed review
of the phase-field approach. The PF approach of fracture has been applied to different applications such
as brittle materials [31], ductile fracture [34–36], composites [37–43], heterogeneous media [40], hydrogen
assisted cracking in metals [44], functionally graded materials [45, 46], solid shell structures [22–25, 47]
to name a few. Thermo-mechanics with phase-field has been developed in recent years, see [36] and the
references therein.

Regarding the thermo-mechanical coupling, recently, R. G. Tangella et al [48] proposed the hybrid phase-
field model to predict complex crack paths in quasi-static thermo-elastic brittle fracture. H. Badnava et
al [49] suggested an h-adaptive thermo-mechanical phase-field model, T.-T. Nguyen et al [50] postulated
the chemo-thermo-mechanical coupling for the phase-field to predict early age shrinkage in cement-based
materials, whereas A. Dean at al [36, 51] proposed invariant-based anisotropic material models for short
fiber-reinforced thermoplastics, to name a few of recent contributions. On the other hand, W. Shu et al
[52] proposed a thermo-mechanical solid shell for reduced integration and with the Enhanced Assumed
Strain (EAS) and Assumed Natural Strain (ANS) methods to avoid hourglass locking [52], and P.K.Asur
Vijaya Kumar et al [26] proposed a thermo-mechanical solid shell formulation for geometric non-linearity
having full integration, incorporating EAS and ANS methods to alleviate the locking pathologies. However,
at present, the application of the PF approach of fracture to thermo-mechanical analysis of thin-walled
structures relying on the solid shell concept is largely unexplored.

This work presents phase-field modeling of fracture fully coupled with thermo-mechanics for the failure
analysis of thin-walled structures using the solid shell concept. In order to avoid the complex update of rota-
tional tensor, the shell model presented exploits the solid shell concept aforementioned which parametrizes
the top and bottom surface of the body [53–57], see [58–62] for alternative formulations. By the virtue of this
kinematic description, the solid shell approach features a discretization identical to that of 8 node brick ele-
ment [54, 63, 64]. Within this framework, three-dimensional constitutive equations (such as) thermo-elastic
Kirchhoff-Saint-Venant Material Model is considered and extended to accommodate phase-field degradation.
Moreover, the elastic energy and the thermal energy are degraded using the same phase-field degradation
function. The potential locking pathologies arising due to the intrinsic nature of a shell complying with
lower-order kinematic displacement interpolation schemes is alleviated by the combination of the popular
Enhanced Assumed Strain (EAS) [61, 65–68] and the Assumed Natural Strain (ANS) [69, 70] methods, in
line with the advanced shell formulations discussed in [71–74]. Hence, the volumetric and the Poisson’s thick-
ness locking effects are alleviated by EAS, whereas trapezoidal and transverse shear locking are alleviated
using the ANS method. Furthermore, a fully coupled scheme between the phase-field and the mixed finite
element formulation (particularly EAS) is accordingly condensed using static condensation of the enhancing
strain at the element level [67] such that the original coupling is fully preserved.

The article is organized as follows. Section 2 outlines the principle aspects of the solid shell, thermo-
mechanical couplings, and the corresponding constitutive equations. Section 3 presents the variational
formulation of the finite element formulation as a minimization problem, finite element approximation of
the problem, along with the linearization principles leading to a system of linear equations. In this regard,
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Figure 1: Finite deformation of a body: reference and current configurations. Deformation mapping ϕ(X, t), that transforms
at time t the reference configuration B0 onto the current configuration Bt, and the displacement-derived deformation gradient
Fu := ∂Xϕ(X, t).

the Hu-Washizu principle is adopted for removing the locking pathologies through EAS, and ANS methods.
Section 4 presents the numerical examples concerning the phase-field approximation thermo-mechanical solid
shell is presented with several benchmark examples, and the role of temperature in each example is pointed
out. Finally, the main conclusions of the work is drawn in Section 5.

2. Coupled thermo-mechanical formulation

The initial boundary value problem (IBVP) for coupled thermo-mechanical solid shell with phase-field
damage is characterised by: (i) the deformation field of the solid shell, (ii) the temperature field, and (iii)
the scalar valued phase-field variable. In the sequel, the basic aspects and definitions are introduced for the
sake of clarity.

2.1. Primary fields of thermo-mechanical analysis

Let B0 ⊂ Rndim denote a reference configuration of a continuum body in ndim Euclidean space with its
delimiting boundary ∂B0 ⊂ Rndim−1. For every position vector X ∈ B0, define the vector valued displacement
field u(X, t) : B0 × [0, t] → R3, the smooth scalar valued temperature T (X, t) : B0 × [0, t] → R+, and a
smooth scalar valued function of damage (phase-field) d(X, t) : B0 × [0, t] → [0, 1], for time interval [0, t],
here d = 0 refers to intact material and d = 1 refers to a cracked material.

The fields in the reference configurations are assumed to be a consequence of prescribed: (i) displacement
u = ū on ∂B0,u, (ii) traction t̄ = σ · n(X, t) on ∂B0,t̄ for the Cauchy stress σ and outwards normal n, (iii)

temperature T0 on ∂B0,T , and (iv) heat flux QN on ∂B0,q such that ∂B0 = ∂B0,u ∪ ∂B0,t̄ ∪ ∂B0,T ∪ ∂B0,q

and ∂B0,u ∩ ∂B0,t̄ = ∅, ∂B0,T ∩ ∂B0,q = ∅ as in Fig. 1.
Define a single valued continuously differentiable function ϕ(X, t) : B0 × [0, t] → R3 that maps the

reference material point X ∈ B0 onto the current configuration point x ∈ Bt, such that x = ϕ(X, t) =
X + u(X, t) for each t. The operator ϕ(X, t) is then subjected to local conditions

Fu := ∂Xϕ(X, t) = ∇Xϕ(X, t) = 1 +∇u =
∂x

∂X
∈ Rndim×ndim , and Ju := det[Fu] > 0.
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Here, Fu, Ju and ∇u are displacement-derived deformation gradient, the Jacobian operator, and the
displacement gradient, respectively, where det[•] stands for the determinant operator.

Note that the operator Fu represents a linear map between the unit reference element dX onto the
current element dx. The co-variant basis as in Fig. 1 in reference (Gi) and the current configurations (gi)
are defined as

Gi(ξ) :=
∂X(ξ)

∂ξi
, gi(ξ) :=

∂x(ξ)

∂ξi
, i = {1, 2, 3}. (1)

The metric tensors now take the form G = GijG
i ⊗Gj = GijGi ⊗Gj in the reference configuration

and g = gijg
i ⊗ gj = gijgi ⊗ gj in the current configuration. Here, Gi and gi are contravariant basis in

reference and current configuration satisfying the standard relationship Gi.G
j = δji and gi.g

j = δji . The
displacement-derived deformation gradient Fu in the curvilinear setting reads

Fu := gi ⊗Gi. (2)

Furthermore, the displacement-derived left Cu Cauchy-Green deformation tensor takes the form

Cu := [Fu]T · g · [Fu] = gijG
i ⊗Gj , (3)

whereas the displacement-derived Green-Lagrangian strain tensor takes the form

Eu :=
1

2
[Cu −G] =

1

2
[gij −Gij ] Gi ⊗Gj . (4)

The displacement-derived Green-Lagrangian strain tensor is enhanced by the considering incompatible
Green-Lagrangian tensor Ẽ in order to avoid locking pathologies. This is achieved by additive decomposition
of the total Green-Lagrangian strain tensor which constitutes the central idea of EAS, in line with [61], as

E := Eu + Ẽ. (5)

Consequently, the enhanced right Cauchy-Green tensor C is modified to accommodate the total Green-
Lagrangian strain tensor and it takes the form

C := Cu + C̃ = 2(Eu + Ẽ) + G. (6)

In order to compute the enhanced right Cauchy-Green tensor, the displacement-derived deformation field
can be decomposed into the rotation tensor R and the compatible right stretch tensor Uu as Fu = RUu

by applying the polar decomposition theorem. The modified right stretch tensor U is then estimated via
Eq. (6) accounting for the enhanced strains, and it takes the form U := C

1
2 . With this, the modified

deformation gradient yields

F := R ·U, (7)

with J = det[F] being the corresponding modified Jacobian.
The second Piola-Kirchhoff stress tensor S (referred as PK2 in the related literature) in the reference

configuration is estimated using the Cauchy stress tensor as

S = F−1 ·P = JF−1 · σ · F−1 = SijGi ⊗Gj , (8)
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where Sij identifies its contravariant component.
Analogous to the stress tensor, the heat flux vector Q can be obtained in the reference configuration

using the Cauchy heat flux q in the current configuration as

Q = JF−1 · q = QiGi, (9)

where, Qi identifies its contravariant component.

2.2. Global equations of thermo-elasticity

The constitutive equations are derived such that they comply with the essential balance principle (con-
servation law) and second law of thermodynamics, which in its local material version is identified as the
Clausius-Duhem inequality. Assuming a local theory, the constitutive law postulates that the Helmholtz
free energy function Ψ depends on the modified Green-Lagrangian strain tensor E, the temperature T and
its spacial gradient ∇XT , phase-field (excluded here) and a set of internal variables III as

ρ0Ψ = Ψ̂(E, T,∇XT,III), (10)

for ρ0 being the material density in reference configuration. For the isotropic Kirchhoff-Saint-Venant material
model, the Helmholtz free energy reads

Ψ(E, T ) = 1
2λ (tr[E])

2
+ µtr[E2]− 3καtr[E] (T − T0) +cp

[
(T − T0)− T log

T

T0

]
, (11)

where λ and µ are the Lamé constants, κ identifies the bulk modulus, and α is the coefficient of thermal
expansion and T0 is the initial reference temperature.

As mentioned earlier, the constitutive law follows the energy balance with respect to the reference
configuration as


ρ0 = Jρ : Local mass balance

ρ0ϕ̈ = DIV [P] + ρ0γ̄ = 0 : Linear Momentum balance

ρ0ė = S : Ė +R−DIV [Q] : Energy balance

(12)

Here, ρ0(X) and ρ(X, t) are the density fields in the reference and current configurations, respectively.
Whilst, ρ0γ̄ identifies the prescribed body forces per unit of reference volume, e stands for the specific
internal energy whose temporal rate given by ė, Ė represents the rate of Green-Lagrange strain tensor, R is
the internal heat source measured per unit reference volume.

The second law of thermodynamics which ensures the consistency of the formulation takes the form

D = Dloc +Dcond =
[
S : Ė− ρ0

(
Ψ̇ + Ṫ η

)]
−
[

1

T
Q · ∇XT

]
≥ 0, (13)

which is referred as Clausius-Duhem inequality, with D representing the dissipated energy, Dloc the energy
due to the local actions and Dcond is the energy due to heat conduction. It is easy to see that by enforcing

Dloc ≥ 0, and Dcond ≥ 0, (14)

the Clausius-Duhem inequality in Eq. (13) is satisfied, leaving Clausius-Planck inequality Eq. (14)1 and the
Fourier inequality (14)2.
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Inserting the free energy function in Eq. (10), and Eq. (11) into Eq. (13) satisfies the Clausius-Duhem
inequality by following the Coleman and Noll procedure [75] with

Dloc = [S− ∂EΨ] : Ė− [η + ∂TΨ] Ṫ − ∂∇XTΨ : ∇XṪ − ∂IIIΨ : İII ≥ 0, (15)

Accordingly, the constitutive equations corresponding to the second Piola-Kirchhoff tensor, and entropy
reads

S := ∂EΨ = λ (tr[E]) 1 + 2µE− 3κα (T − T0) 1, (16)

η := −∂TΨ = 3καtr[E] + cp log
T

T0
, (17)

Consequently, the internal dissipation reads

Dloc := −∂IIIΨ : İII ≥ 0, (18)

accouting for the evolution of inelastic processes such as visco-elastic, plastic effects, among others. Note
that damage variable can be added here to the local action Dloc as ∂dΨ : ḋ, the irreversibility condition and
Karush-Kuhn-Tucker (KKT) conditions can be readily obtained as a consequence of Eq.(18) and Eq.(15).
In order to keep the formulation close to the original phase-field formulation as in [31] i.e as a competition
between the elastic (thermo-elastic) and the surface energy/crack energy, the phase-field variable is added
at a later stage as in Section 3.

Based on the Legendre transformation, the evolution equation for entropy η takes the form

ρ0η̇T = −∂IIIΨ : İII +R−DIV[Q] = Dloc +R−DIV[Q]. (19)

The left hand side of Eq.(19) can be expressed as:

ρ0ηṪ = cpṪ − ρ0H, (20)

where the heat capacity, cp, and the structural heating SH due to the rate of temperature reads

cp := −ρ0T∂
2
TTΨ; (21)

SH := T∂2
TEΨ : Ė + T∂2

TIIIΨ : İII = TZ : Ė + TQQQ : İII,

where Z is the second order tensor containing the thermal conductivity k in the curvilinear setting associated
with the Helmholtz free energy, and QQQ identifies the internal variable operator. For an adiabatic process,
DIV[Q] ≡ 0 and R ≡ 0. Since there is no irreversible evolution in interval variables (phase-field not included
yet), ∂2

TIIIΨ = 0 in above equation and hereafter.
The constitutive operators in the curvilinear setting reads

C = ∂EEΨ =
[
λGijGkl + µ

(
GikGjl +GilGjk

)]
Gi ⊗Gj ⊗Gk ⊗Gl,

Z = −3κα
[
GijGi ⊗Gj

]
, (22)

Q = −JF−1 · k · F−T · ∇XT = −Jk
(
Gi ⊗ gi

) (
gklgk ⊗ gl

) (
gj ⊗Gj

)
∇XT = −JkC−1 · ∇XT . (23)

Here, the isotropic conductivity is written using the contravariant basis vector as k = kgijgi ⊗ gi, and
C−1 stands for the inverse of the right Cauchy-Green strain tensor. By assuming a isotropic heat flux in
the reference configuration, the formulation for the heat flux can be further simplified to Q = −k0G · ∇XT ,
where k0 identifies the thermal conductivity in the reference configuration.
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3. Variational basis and finite element formulation

Based on the previous considerations, and assuming a scalar isotropic degradation of the Helmholtz free
energy function in Eq.(11) due to the evolution of fracture, the variational basis for the thermo-mechanical
phase-field problem is herewith described. Within the framework of Hu-Washizu variational principle, the
modified version of the Helmholtz free energy function incorporating the EAS method and the surface energy
created due to fracture takes the form

Π(u, Ẽ, d, T ) =

∫
B0

g(d)Ψ(u, Ẽ, T )dΩ−
∫
B0

S : Ẽ dΩ +

∫
B0

GC
2

[
α(d)

l
+ l |∇d|2

]
dΩ + Πext. (24)

Here, α(d) := d2 is a continuous monotonic function with α(0) = 0 and α(1) = 1, called the geometric

crack function [45, 76–78]. The term α(d)
l refers to the local part of the crack surface and l |∇d|2 is the non

local part. Moreover, g(d) := [(1 − d)2 + xk] refers to the energetic degradation function that is used to
deteriorate the initial coupled thermo-mechanical Helmholtz free energy function with g(d) : [0, 1] → [1, 0]
and xk refers to a residual stiffness.

Recalling the additive decomposition of the strain field in Eq. (5), it is important to note that the
orthogonality condition between the interpolation spaces of the stress and enhanced strain fields can be
exploited from the subsequent derivations.

With this at hand, the solution of Eq.(24) can be obtained by solving it as a minimization problem

Determine (u, Ẽ, d, T ) from

(u∗, Ẽ∗, d∗, T ∗) = arg min
S

Π(u, Ẽ, d, T ), (25)

with S = {ḋ ≥ 0 for all x ∈ B0}. The quadruplet set (u∗, Ẽ∗, d∗, T ∗) in Eq. (25) is solved by taking a
first variation of the total modified potential functional assuming enough regularity of the fields involved.
Recalling the irriversibility of the damage variables d, for any admissible test function (δu, δẼ, δd, δT ) in the
appropriate space of distribution (see below for details), this leads to the following residual of continuous
multi-field problem:

Ru(u, Ẽ, d, T, δu) =

∫
B0

g(d) [S : δEu] dΩ−
∫
B0

ρ0γ̄δu dΩ−
∫
∂B0,t

t̂ · δu d∂Ω = 0,

Ru =Ruint −Ruext = 0,

(26)

for all δu ∈ Bu with Bu = {δu ∈ H1(B0), δu = 0 on ∂B0,u}. Here, ρ0γ̄ denotes the external force applied
per unit volume. The residual vector associated with the incompatible strain tensor takes the form

RẼ(u, Ẽ, d, T, δẼ) =

∫
B0

g(d)
[
S : δẼ

]
dΩ = RẼint = 0, (27)

for all δẼ ∈ BẼ with BẼ = {δẼ ∈ L2(B0)}. The residual associated with the phase-field variable takes the
form

Rd(u, Ẽ, d, T, δd) =

∫
B0

GC

[
d

l
δd + l∇d · ∇δd

]
dΩ−

∫
B0

2(1− d)Ψ(u, Ẽ, T )δd dΩ = 0, (28)

for all δd ∈ Bd with Bd = {δd ∈ H1(Ω)
∣∣∣δd ≥ 0 ∀ X ∈ B0}. In the absence of other dissipative mechanisms

and heat source (R ≡ 0), the residual for the coupled thermal field reads

RT (u, Ẽ, d, T, δT ) =

∫
B0

cpṪ δT dΩ−
∫
B0

g(d)
[
TZ : Ė

]
δT dΩ +

∫
B0

DIV[Q]δT dΩ = 0, (29)
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for all δT ∈ BT with BT = {δT ∈ H1(Ω)
∣∣∣δT = 0 on ∂B0,q}. The third term in Eq.(29) can be reformulated

using the divergence theorem as∫
B0

DIV[Q]δT dΩ =

∫
∂B0,q

QNδT d∂Ω−
∫
B0

Q · ∇XδT dΩ, (30)

where QN = Q ·N refers to the Neumann boundary condition on ∂B0,q. With this, the variational form of
energy balance equation at the reference configuration takes the form

RT (u, Ẽ, d, T, δT ) =

∫
B0

cpṪ δT dΩ−
∫
B0

g(d)
[
TZ : Ė

]
δT dΩ+

∫
∂B0,q

QNδT d∂Ω−
∫
B0

Q·∇XδT dΩ = 0.

(31)

Through the insertion of the Duhamel’s law, Eq.(23)1

RT (u, Ẽ, d, T, δT ) =

∫
B0

cpṪ δT dΩ−
∫
B0

g(d)
[
TZ : Ė

]
δT dΩ +

∫
∂B0,q

QNδT d∂Ω

+

∫
B0

[∇XδT ]
T · JF−1 · k · F−T · ∇XT dΩ = 0.

(32)

For isotropic thermal conductivity, Eq.(23)2, the temperature residual finally reads

RT (u, Ẽ, d, T, δT ) =

∫
B0

cpṪ δT dΩ−
∫
B0

g(d)
[
TZ : Ė

]
δT dΩ

+

∫
∂B0,q

QNδT d∂Ω +

∫
B0

Jk [∇XδT ]
T ·C−1 · ∇X[T ] dΩ = 0.

(33)

Notice that, the degradation function g(d) is added in Eq. (32). Meaning that, the thermal conductivity
associated in Z is degraded. As the phase-field value reaches d = 1, the thermal conductivity approaches
zero acting as a potential barrier for the heat transfer across the cracked region Γ.

3.1. Finite Element Formulation

The finite element discretization is introduced on the reference configuration B0 following the standard
arguments of isoparametric interpolation. The functional space B0 is discretized into ne non-overlapping

elements, such that B0 ≈
⋃ne

e=1 B
(e)
0 . Complying with the solid shell approach, for the natural coordinate

system (ξ1, ξ2, ξ3), the position vector at reference and current configuration X and x are expressed by
the points of top and bottom surface Xt(ξ

1, ξ2) and bottom surfaces Xb(ξ
1, ξ2) of the shell as in Fig. 1.

Accordingly, the position vector in the reference configuration can be expressed as

X(ξ) =
1

2

(
1 + ξ3

)
Xt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
Xb(ξ

1, ξ2), (34)

whereas the position in the current configuration takes the form

x(ξ) =
1

2

(
1 + ξ3

)
xt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
xb(ξ

1, ξ2), (35)

with the parametric space defined in natural co-ordinates as A := {ξ = (ξ1, ξ2, ξ3) ∈ R3 | −1 ≤ ξi ≤ +1; i =
1, 2, 3}, with (ξ1, ξ2) being in plane and ξ3 being thickness direction.
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Regarding the phase-field variable embedded in the shell body, the definition of position vector is adopted
in the reference and current configuration, a possible anszat yields to a linear interpolation between the top
(dt) and bottom (db) surfaces of the shell in line with [56], expressed as

d(ξ) =
1

2

(
1 + ξ3

)
dt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
db(ξ

1, ξ2). (36)

The discrete reference (Lagrangian) and current (Eulerian) nodal position vectors are interpolated
through standard trilinear shape functions N I (N(ξ) in matrix notation) as

X ≈
nn∑
I=1

N I(ξ)XI = N(ξ)X̃ and x ≈
nn∑
I=1

N I(ξ)xI = N(ξ)x̃, (37)

with number of nodes nn = 8 whose nodal values are collected into the respective global vectors X̃ and x̃.
The interpolation of the fields (u, Ẽ, d, T ), their respective variations (δu, δẼ, δd, δT ) and their increments

(∆u,∆Ẽ,∆d,∆T ) in compact form reads

u ≈ N(ξ)d; δu ≈ N(ξ)δd; ∆u ≈ N(ξ)∆d, (38)

Ẽ ≈M(ξ)ς, δẼ ≈M(ξ)δς, ∆Ẽ ≈M(ξ)∆ς, (39)

d ≈ N(ξ)d̃; δd ≈ N(ξ)δd̃; ∆d ≈ N(ξ)∆d̃ (40)

T ≈ N̂(ξ)T̂ , δT ≈ N̂(ξ)δT̂ ,∆T ≈ N̂(ξ)∆T̂ . (41)

Here, the M(ξ) denotes the enhancing interpolation matrix and ς is the vector collecting the EAS
parameters. In particular, within the element space ξ = {ξ1, ξ2, ξ3}, the operator M(ξ) takes for form

M̃ =


ξ1 0 0 0 0 0 0
0 ξ1 0 0 0 0 0
0 0 ξ3 ξ1ξ3 ξ2ξ3 0 0
0 0 0 0 0 ξ1 ξ2

0 0 0 0 0 0 0
0 0 0 0 0 0 0

 . (42)

The operator M(ξ) with 7 parameter at each element level is suitable to alleviate membrane, volumetric
and Poisson’s thickness locking pathologies. It is important to note that the interpolation introduced in Eq.
(42) should be transformed into the global cartesian space.

In the current solid shell formulation, transverse shear and transverse normal strain components are
modified in order to circumvent transverse shear and trapezoidal locking respectively using ANS interpolation
method. The interpolation of the transverse shear strains E13 and E23 are performed at points ξA =
(0,−1, 0), ξB = (1, 0, 0), ξC = (0, 1, 0) and ξD = (−1, 0, 0) as in Fig. 2. Accordingly, the transverse shear
strain components reads

{
2EANS13

2EANS23

}
=

{
(1− ξ2)2E13(ξA) + (1 + ξ2)2E13(ξC)
(1 + ξ1)2E23(ξB) + (1− ξ1)2E23(ξD)

}
. (43)
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Figure 2: ANS for transverse shear locking and ANS for trapezoidal locking

Similarly, the interpolation of the transverse normal strain E33 are performed at points ξO = (−1,−1, 0),
ξP = (1,−1, 0), ξS = (1, 1, 0) and ξT = (−1, 1, 0) as in Fig. 1. Based on this, the transverse normal strain
takes the form

EANS33 =
∑

m=M,N,O,P

Nm(ξ1, ξ2)E33;

Nm(ξ1, ξ2) =
1

4

(
1 + ξ1

mξ
1
) (

1 + ξ2
mξ

2
)
,

with ξ1
m, ξ

2
m = ±1.

(44)

The interpolation of displacement derived compatible strains are approximated using displacement strain
operator B as

Eu ≈ B(d)d, δEu ≈ B(d)δd, ∆Eu ≈ B(d)∆d. (45)

Similarly, the gradient of phase-field are interpolated using a suitable operator Bd as

∇xd ≈ Bd(d)d̃, ∇xδd ≈ Bd(d)δd̃, ∇x∆d ≈ Bd(d)∆d̃. (46)

The interpolation of the spatial temperature gradient at current configuration (∇XT ), and its associated
variations can be expressed as

∇XT = G−1∇ξT ≈ G−1∇ξN̂(ξ)T̂ ; ∇XδT ≈ G−1∇ξN̂(ξ)δT̂ ; ∇X∆T ≈ G−1∇ξN̂(ξ)∆T̂ , (47)

where ∇ξ is the gradient of temperature at each node with respect natural coordinate defines in the curvi-
linear setting.
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3.2. Consistent linearization of the coupled thermo-mechanical weak form

Through the insertion of the previously discussed interpolation scheme, the residuals of the independent
fields (u, Ẽ, d, T ) in the discrete form can be expressed as

R̂uint(d, ς, d̃, T̂ , δd) = δdT

[∫
B0

g(d)B(d)TS dΩ

]
, (48)

R̂Ẽint(d, ς, d̃, T̂ , δς) = δςT

[∫
B0

g(d)M(ξ)TS dΩ

]
, (49)

R̂d(d, ς, d̃, T̂ , δd) = δdT

[∫
B0

GC

[
1

l
N(ξ)Td + lBd(ξ)T∇xd

]
dΩ−

∫
B0

2(1− d)NT(ξ)Hδd dΩ

]
, (50)

R̂Tint(d, ς, d̃T̂ , δT̂ ) = δT̂
T

[∫
B0

N̂(ξ)TcpṪ dΩ−
∫
B0

g(d)N̂(ξ)T
(
ZTĖ

)
T dΩ+

∫
B0

JBT
TF−1·k·F−T·∇XT dΩ

]
.

(51)

Here,

H = max
τ∈[0,t]

[
Ψ(u, Ẽ, T )

]
, (52)

is the crack driving force (history variable) as defined in [56] to ensure the irreversibility of the phase-field
variable d and BT defines a suitable operator to compute the gradient of the temperature field.

Due to the existence of non-linearity in the multi-field Eqs.(48)- (51), an incremental iterative quasi
Newton-Raphson scheme is adopted (details are omitted for the sake of brevity). This is achieved by
linearization of the residual in Eq.(48), (49), (50), (51) using directional Gateaux derivatives [26, 45, 56].

For this, consider a finite time increment ∆t := t
(k)
n+1 − tn > 0, where the fields (u, Ẽ, d, T ) at step tn is

assumed to be known. The temporal variation of the fields are expressed as

˙̂T =
T̂ n+1 − T̂ n

∆t
; Ė =

En+1 −En

∆t
; ḋ =

dn+1 − dn
∆t

; ς̇ =
ςn+1 − ςn

∆t
, (53)

constituting a backward Euler scheme.
The independent fields (u, Ẽ, d, T ) are computed at current time step tn+1 via consistent linearization of

the residual functions which can be expressed as

L̂[R̂u] = R̂u(d, ς, d̃, T̂ , δd) + ∆R̂u(d, ς, d̃, T̂ , δd,∆d,∆ς,∆d̃,∆T̂ )

= R̂u + ∆dR̂u∆d + ∆ςR̂u∆ς + ∆dR̂u∆d̃ + ∆T R̂u∆T̂ ,
(54)

L̂[R̂Ẽ ] = R̂Ẽ(d, ς, d̃, T̂ , δς) + ∆R̂Ẽ(d, ς, d̃, T̂ , δd,∆d,∆ς,∆d̃,∆T̂ )

= R̂Ẽ + ∆dR̂Ẽ∆d + ∆ςR̂Ẽ∆ς + ∆dR̂Ẽ∆d̃ + ∆T R̂Ẽ∆T̂
(55)

L̂[R̂d̃] = R̂d̃(d, ς, d̃, T̂ , δς) + ∆R̂d̃(d, ς, d̃, T̂ , δd,∆d,∆ς,∆d̃,∆T̂ )

= R̂d̃ + ∆dR̂d̃∆d + ∆ςR̂d̃∆ς + ∆dR̂d̃∆d̃ + ∆T R̂d̃∆T̂
(56)

11



L̂[R̂T ] = R̂T (d, ς, d̃, T̂ , δT̂ ) + ∆R̂T (d, ς, d̃, T̂ , δd,∆d,∆ς,∆d̃,∆T̂ )

= R̂T + ∆dR̂T∆d + ∆ςR̂T∆ς + ∆dR̂T∆d̃ + ∆T R̂T∆T̂
(57)

where ∆b[a] denotes the tangent matrices calculated as a directional derivative of the residual form a with

respect to the field b. In particular ∆b[a] = kab with { a, b} = {d, ς, d̃, T̂ }. Following the standard finite
element procedure, Eq.(54), (55), (56), (57) can be expressed as a system of linear equations as


Kdd Kdς Kdd̃ KdT

Kςd Kςς Kςd̃ KςT

Kd̃d Kd̃ς Kd̃d̃ Kd̃T

KTd KTς KT d̃ KTT




∆d
∆ς
∆d

∆T̂

 =


R̂uext

0
0

R̂Text

−

R̂uint

R̂ςint

R̂d̃
int

R̂Tint

 . (58)

The different elements of the tangent stiffness matrix takes the form

Kdd =

∫
B0

g(d)

(
B(d)TCB(d) +

[
∂B(d)

∂d

]T

S

)
dΩ = Kdd,mat + Kdd,geom (59a)

Kdς =

∫
B0

g(d)M(ξ)TCB(d) dΩ; (59b)

Kdd̃ =

∫
B0

−2(1− d)B(d)TSN(ξ) dΩ, (59c)

KdT =

∫
B0

g(d)B(d)TZN̂(ξ) dΩ, (59d)

Kςu =

∫
B0

g(d)M(ξ)TCB(d) dΩ; (60a)

Kςς =

∫
B0

g(d)M(ξ)TCM(ξ) dΩ, (60b)

Kςd̃ =

∫
B0

−2(1− d)M(ξ)TSN(ξ) dΩ; (60c)

KςT =

∫
B0

M(ξ)TZN̂(ξ) dΩ (60d)

Kd̃d =

∫
B0

−2(1− d)N(ξ)TSB(d) dΩ; (61a)

Kd̃ς =

∫
B0

−2(1− d)N(ξ)TSM(ξ) dΩ, (61b)

Kd̃d̃ =

∫
B0

[
2
Gc
l
H
]

N(ξ)TN(ξ) dΩ +

∫
B0

2GclB
d(ξ)TBd(ξ) dΩ, (61c)

Kd̃T =

∫
B0

−2(1− d)N(ξ)BT (d)N̂(ξ) dΩ, (61d)
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KTd =

∫
B0

∆d[J ]BT
TF−1 · k · F−T · ∇XT dΩ

+

∫
B0

JBT
T

(
∆d[F−1] · k · F−T + F−1 · k ·∆d[F−T]

)
· ∇XT dΩ−

∫
B0

N̂T T

∆t
ZTB dΩ,

(62a)

KTς = −
∫
B0

N̂(ξ)T T

∆t
ZTM(ξ) dΩ; (62b)

KTd = −
∫
B0

−2(1− d)N̂(ξ)T(ZTĖ)N(ξ) dΩ, (62c)

KTT =

∫
B0

N̂(ξ)T cp
∆t

N̂(ξ) dΩ−
∫
B0

g(d)N̂(ξ)T(ZTĖ)N̂(ξ) dΩ +

∫
B0

JBT
TF−1 · k · F−TBT dΩ.

(62d)

Here, Kdd,geom refers to the geometric contribution and the Kdd,mat is the material contribution. Also,
∆d[J ] and ∆d[F−1] and ∆d[F−T] represents the linearization with respect to the kinematic field of the
Jacobian J of the transformation F, the inverse of the modified deformation gradient and its transpose,
respectively, which lead to additional geometrical terms, see Appendix A, for the detailed computation of
these terms. The overall algorithm of the implementation can be found in our recent article [26] (without
phase-field). The implementation of the phase-field to the model mentioned in [26] is straightforward keeping
in mind the Appendix A and the mathematical model presented in the article.

Since inter-element continuity is not required for enhanced strains, as in [56], they can be condensed
out at the element level via a standard condensation process. Thus, the condensed version of the stiffness
matrix given in Eq.(58) readsK∗dd K∗

dd̃
K∗dT

K∗
d̃d

K∗
d̃d̃

K∗
d̃T

K∗Td K∗
T d̃

K∗TT

∆d
∆d

∆T̂

 =


˜̂Rd

˜̂Rd

˜̂RT

 (63)

where the element stiffness contribution takes the form

K∗dd = Kdd −KdςK
−1
ςς Kςd; K∗

dd̃
= Kdd̃ −KdςK

−1
ςς Kςd̃; K∗dT = KdT −KdςK

−1
ςς kςT ,

K∗
d̃d

= Kd̃d −Kd̃ςK
−1
ςς kςd̃; K∗

d̃d̃
= Kd̃d̃ −Kd̃ςK

−1
ςς Kςd̃; K∗dT = Kd̃T −Kd̃ςK

−1
ςς KςT ,

K∗Td = KTd −KTςK
−1
ςς kςd; K∗

T d̃
= KT d̃ −KTςK

−1
ςς Kςd̃; K∗TT = KTT −KTςK

−1
ςς KςT , (64)

along with the residual force vectors

˜̂Rd = R̂uext − R̂uint + KdςK
−1
ςς R̂ςint

˜̂Rd = −R̂d
int + KdςK

−1
ςς R̂ςint

˜̂RT = R̂Text − R̂Tint + KTςK
−1
ςς R̂ςint (65)

The resulting system of algebraic equations in Eq.(63) can be solved using monolithic/staggered solution
scheme using different types of solvers such as nonlinear Newton-Raphson, quasi-Newton based solvers such
as Broyden–Fletcher–Goldfarb–Shanno (BFGS), coupled displacement solvers, etc.

Regarding the numerical implementation, the fully staggered scheme is used for the solution of the
coupled problem. The coupled terms with respect to the damage variable d is suppressed owing to the
staggered scheme implementation. i.e, Kdς ,KdT ,KTς ,KT d̄,Kd̄T ,Kd̄ςKςT = 0. Moreover, it was noticed
that normal newton solver performs better in the sense of convergence at each time step when the coupled
problems involves. Whereas, for the problem without non-linearity (geometric), BFGS performed better.
Meaning that, When the geometric non-linearity is involved BFGS takes longer time to converge at each
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Material E (MPa) ν α(10−6/oK) k0(W/mm
o
K) cp(kJ/kg

o
K) Gc (MPa

√
mm) l (mm)

Silicon 1.69× 105 0.16 1.1 0.114 0.715 0.014394 0.05
Alumina 2.1× 105 0.31 10.1 5.05 0.4 0.32 0.2
Zircona 3.8× 105 0.26 7.7 25 0.880 0.06634 0.2

Table 1: Properties of the simulated materials.

time step. The comparison between the solvers in terms of CPU times or iteration is out of scope for this
article. See [79–82] for details regarding the BFGS implementation, merits, applications and capabilities.
In the Numerical application section, Temperature assisted fracture in Section 4.2 and Plate with notch
and many holes in Section 4.4 are solved using BFGS scheme, whereas, the other examples are solved using
newton solver. Note that, the choice of solution scheme mentioned above is just to show that both solvers
can be used in the solution scheme.

4. Numerical applications

In this section, the capabilities of the proposed phase-field model for thermo-mechanical solid shell
formulation are assessed according to several representative examples. First, a benchmark test is proposed
and passed. Then, problems characterized by temperature-assisted fracture are examined in relation to a
technological phenomenon relevant for silicon solar cells. Finally, examples concerning coupled mechanical-
temperature effects, for small and large strain problems are shown for a series of structural problems with
plates and curved shells. In order to show examples spanning the wide range of material behaviour (especially
temperature effects), three different materials are considered in Tab.1. There, E is the Young’s Modulus, ν
is the Poisson’s ratio, α is the co-efficient of thermal expansion, k0 is the thermal conductivity, cp is heat
capacity, Gc is the fracture energy, and l is the length scale of the phase field model.

4.1. Verification example: double-edged notch

This example concerns with the application of the proposed model to a double-edged notched specimen.
Fig 3 shows the sketch of the model with an initial notch length a = 0.1 mm, axial length L = 1 mm, width
w = 0.5 mm and thickness h = 0.01 mm in line with the numerical experiment of [83] and has been studied
by [84] by considering the alumina whose material properties are given in Tab. 1 Here, we have used the
length scale l = 0.0075 mm in line with the experiments in [83]. The model is discretized with 812 elements
such that element size of 2l is maintained at the crack path.

The displacement load of ∆ = 0.01 mm is applied in 1000 steps on the top surface, and the bottom
surface is fully restrained. The EAS and ANS are included in the whole domain but are turned off locally
when the damage variable reaches d = 0.5 due to unstable crack propagation in the system.

Note that, due to the scarcity of thermo-mechanical crack propagation experiments, the comparison has
been made based on standard examples proposed in [83]. In line with the numerical example reported in
[83], where the temperature dependency is null, the temperature of the whole model is kept at T = 0oC,
which means that no external boundary temperature is inflicted upon the model. It can be argued that the
local temperature T0 is different from zero. Still, it is noticed that, numerically, the difference arises due
to the difference between the initial temperature and the externally applied temperature rather than the
absolute values. Hence, the all local temperatures are kept at T0 for comparison.

The load-displacement curve for the evolution of the simulation shows a satisfactory agreement with the
experimental results as in Fig. 3. The numerical experiments conducted in [83] consider the plane strain
condition whose thickness is 1 mm. To match that, the reactions forced are multiplied by a factor of 100
since the thickness considered here is h = 0.01 mm.

The evolution of the phase-field variable d at displacement just before and after the damage is shown in
Fig. 3. This example is complemented by adding the thermal effect. For doing that, we select a temperature
gradient within the domain, see the corresponding load-displacement evolution curves corresponding in Fig.
4(a). It can be readily seen that as the temperature increases, the maximum load-bearing capacity of the
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Figure 3: Verification example: geometry and force reaction-displacement evolution curve.
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Figure 4: Double-edged notch specimen with (a) reactions for variation of temperatures, (b) reactions for variation of thickness
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(a) (b)

Figure 5: (a) Solar panel with bus bar (b) Thermal images from thermal camera showing the local temperature rises (hot
spots) in silica cells in case of cracks, adopted from [85].

model decreases. Keeping the temperature boundary conditions (T = 250−250C) and the material properties
constants, the thickness variation in the plate is considered. It is noticed that, as the thickness increases,
the load-bearing capacity of the specimen increases, as shown in Fig. 4(b). It can be seen from Fig. 4(b)
that there exists a direct linear mapping between the different variations of thickness. Meaning that, if load-
displacement (say F1(t)) curve for thickness h1 is known, then for any thickness h2, the load-displacement

curve can be obtained from h1 as F2(t) = F1(t)
h2

h1
.

4.2. Application to photo-voltaic panels: temperature assisted fracture

In this example, the proposed model is used to investigate the effects of cracking in silicon used for solar
cells. Experimental results [85] and the numerical investigation [86] show that silicon defects may induce
hot spots in solar cells. This phenomenon may enhance cracking, degrade the photovoltaic performance of
the device, and eventually lead to safety issues.

Following [86, 87], it is discussed that during the manufacturing of a solar cell module, crack-free cells
made of mono/poly-crystalline silicon are laminated inside a stack formed of an encapsulating polymer
and a cover glass at a temperature around T0 = 150oC. Later, the module is cooled down to the ambient
temperature with a final state with residual compressive stresses.Fig. 5(a) represents the solar cell with the
glass laminate. A local temperature increase is thermal images, see Fig. 5(b) (adapted from [85]). The
thermo-elastic displacement caused by these conditions Fig. 5(a) in the solar cells can induce fracture.

As an model example, a mono-crystalline silicon solar cell without any pre-existing crack is considered
with properties as in Tab 1. The model is discretized with 16512 equidistant elements. The cell boundary
∂Ω is subdivided into ∂Ω1 and ∂Ω2, restrained as in Fig. 6(a). A temperature excursion ∆T1 = −30oC is
herein considered along ∂Ω1 to depict a temperature raise as compared to the other portion of the boundary,
∂Ω2, where we set ∆T2 = −20oC as for normal operative conditions. The temperatures are applied over
1000 steps linearly. The reference temperature is in both cases the stress-free lamination temperature T0.

The above non-linear heat conduction problem is solved using the proposed model, to simulate temperature-
assisted fracture induced by the thermo-mechanical displacement field. The evolution of the phase-field
variable along with the temperature distribution inside the cell is shown in Fig. 7(right). When the crack

16



T

T

T2

1

2

T2

T2a) b)
Increasing
thickness

Figure 6: (a) Model under consideration (b) Load-displacement curve for different solar cell thickness.

Figure 7: Temperature assisted fracture. (left) Figure on left represents phase-field and temperature distribution during
initiation of fracture at step 118. (right) Fig on right represents phase-field and temperature distribution after the fracture at
step 251.
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(a) (b)

Figure 8: (a) Phase-field and temperature distribution for a cylindrical shell with a notch before crack at displacement load
of ∆ = 2.9 × 10−3mm, (b) Phase-field and temperature distribution after crack propagation at displacement load of ∆ =
3.2× 10−3mm.

is fully propagated, it acts as a thermal barrier for heat transfer across the solar cell and the temperature
becomes uniform in the two separated regions of the material. The load-displacement curve for the evolution
of the damage is shown in Fig. 6(b) for different thicknesses of the solar cell. Analogous to the verification
example, as the thickness increases, the load-bearing capacity increases. Moreover, It can be noticed that
there exists a direct linear mapping of the load-displacement curves with the thickness as in the verification
example.

4.3. Notched cylinder under tensile loading: curved shells application

In this example, a cylindrical shell is considered. In particular, two cases are considered (a) a cylindrical
shell with an initial notch and (b) a cylindrical shell with a hole for sheets of alumina with material properties
as detailed in Tab 1.

For the cylindrical shells with a notch, the geometrical description of the model considers a radius of the
cylinder R = 2 mm, length L = 10 mm, thickness h = 0.01 mm with notch in the centre whose arc length is
1.5 mm such that the notch spans θ = 21.5o each side. The model is discretized with 24339 elements with
maximum element size is at least 2l.

One axial end of the cylinder is fixed, whereas a monotonic prescribed axial displacement is applied on
the opposite end. Temperatures of T1 = 50oC and T2 = 25oC are applied on fixed end and on the loaded
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Figure 9: Force vs displacement curve for (a) cylinder with notch, and (b) cylinder with hole.

ends, respectively. The ambient temperature is kept at T0 = 0oC. Fig. 8(a) shows the evolution of the
phase-field (d) and temperature corresponding to the displacement ∆ = 0.016 mm. It can be observed that
the temperature is linearly distributed along the cylinder length, until it breaks in two parts due to fracture,
which again leads to heat flux insulation across the corresponding generated crack surface.

Along with the base model, Fig. 9(a) shows the variation of load-displacement curves for various temper-
ature boundary conditions. It can be seen from Fig. 9(a) that as the temperature increases, the load-carrying
capacity of the model decreases.

For the case of the cylinder including the central hole, the geometrical description of the model follows
the radius of R = 2 mm, length L = 20 mm with thickness h = 0.01 mm with hole in the centre with radius
r = 0.15 mm. The model is discretized with 12491 elements with maximum element size is at least 2l. For
similar boundary conditions as before, but with T1 = T2 = 25oC (Base Model), the phase-field and the
temperature distribution before (∆ = 0.016 mm) and after the fracture (∆ = 0.016 mm) are shown in Fig.
10(a) and Fig. 10(b) respectively. Along with the base model, the load-displacement curve for the variation
of different boundary conditions T1 = T2 are shown in Fig. 9(b). As in the case with cylinder with notch,
as the temperature increases, the load carrying capacities of the cylinder decreases.

4.4. Plate with notch and multiple holes

In this example, a plate with multiple holes and an eccentric notch is considered to show stable crack
propagation. A Zircona plate (with properties as in Tab. 1) of length L = 120 mm, width w = 60 mm
and thickness h = 1 mm is considered as shown in Fig. 11(a). The model is discretized with approximately
6000 elements with finer mesh near the crack path. The bottom surface is fully restrained, whereas the
displacement boundary of ∆ = 0.1mm is applied on the top surface as shown in Fig. 11(a). The temperature
of 30oC is applied on the top and bottom surfaces, whereas a temperature of 25oC is applied on both sides
of the plate. The evolution of the temperature and the phase-field along with the reactions are presented
in Fig. 11(b). The phase-field evolution during the initiation, propagation (snapback), and the complete
damage is shown in 11(b). The temperature distribution at the end of time step (t = 1, ∆ = 0.1mm) is
shown in 11(b). It can be seen that, due to the existence of centre hole, the crack starts from the notch, and
propagate only until centre hole. The temperature starts to diffuse inwards whereas at the path of crack,
temperature is higher. Later, as the load increases, the crack travel further leading to complete failure.
Temperature distribution reflects the applied temperature and the crack propagation.
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(a) (b)

Figure 10: (a) Phase-field and temperature distribution for a cylindrical shell with a hole before crack at displacement load
of ∆ = 1.4 × 10−2mm, (b) Phase-field and temperature distribution after crack propagation at displacement load of ∆ =
1.5× 10−2mm.
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Figure 11: Phase-field and temperature distribution for plate with notch and hole along with reactions.
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5. Concluding remarks

In this work, a thermodynamically consistent derivation of thermo-mechanical locking free solid shell
with full integration capable of handling large strains has been proposed. Locking effects are alleviated
using the combination of 7 EAS parameters and the ANS method.

The numerical predicting capabilities of the model are explored with three different materials having
extremely different thermal and mechanical properties, namely: (a)silicon, (b)alumina, and (c) zircona.

The model is validated against the benchmark example of a double-edged notch of alumina to demonstrate
the predictive capabilities of the model. Furthermore, the model has been shown to predict temperature
assisted fracture using a model silicon cell. It has been also shown that due to the difference in temperature,
the crack develops and the presence of crack induces insulated barriers to heat flux. Cylinder with notch
and cylinder with hole is shows that there is no locking and effect of temperature in the fracture. From the
numerical experiments, it is shown that as the cumulative temperature increases, the maximum load bearing
capacity decreases. Correspondingly, the examples have shown that temperature distributions may lead to
fracture and, conversely, cracks may affect the temperature distribution. Plate with notch and multiple
holes shows the model ability to predict stable crack propagation.

Finally, it can be emphasized that the developed model is particularly promising in addressing a wide
range of industrial problems in automotive (body, chassis), aerospace (wings, turbines blades, rudder ),
renewable energy (photovoltaics, electronic chips, screen protectors, etc.) and thermal barrier coatings
involving thick/thin plates (straight and curved) where temperature effects are significant.
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Appendix A. Computation implementation details

This sections summarises the discrete form of several operators that are important in the numerical
implementation but are not straightforward in the current solid shell element. The curvilinear basis vector
in the current configuration reads

gi =
∂x

∂ξi
= Gi +

∂u

∂ξi
, (A.1)

≈
∑nn

j=1N
j,ξi(ξ)

xiyi
zi

+
∑nn

j=1N
j,ξi(ξ)

di,xdi,y
di,z

 , (A.2)

with i = 1, 2, 3 and N j,ξi(ξ) =
∂N j(ξ)

∂ξi
.
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The B(d) in the Eq. (45) requires the computation of partial derivative of covariant basis gi in current
configuration with respect to discrete displacement vector dj takes the form

B(d) =
∂gi

∂dj
=


∂gi,x

∂dj
∂gi,y

∂dj
∂gi,z

∂dj

 =

N j,ξi(ξ) 0 0

0 N j,ξi(ξ) 0

0 0 N j,ξi(ξ)

 , (A.3)

with i = 1, 2, 3 and j = {1, 8}.
The geometric contribution in the stiffness matrix Kdd,geom in Eq. (??) incorporates the partial derivative

of the B−operator with respect to the kinematic displacement field as

Kdd,geom = δd

[[
∂B(d)

∂d

]T

S

]
=

n∑
i=1

n∑
j=1

δdTi Hij∆dTj , (A.4)

with

Hij = S11N i,ξ1N j,ξ1 + S22N i,ξ2N j,ξ2 + S33N i,ξ3N j,ξ3 + S12
(
N i,ξ1N j,ξ2 +N i,ξ2N j,ξ1

)
(A.5)

+S13
(
N i,ξ1N j,ξ3 +N i,ξ3N j,ξ1

)
+ S23

(
N i,ξ2N j,ξ3 +N i,ξ3N j,ξ2

)
. (A.6)

Note that, in the sequel, the stress operator S has to be modified according to ANS.
In the curvilinear setting, the linearization of the determinant of deformation gradient in Eq. (??) is

expressed as

∆d[J ] = JF−T : ∆F = J(gi ⊗Gi) : (∆gm ⊗Gm) = J(gi ·∆gm)δmi = J(gi ·∆gi). (A.7)

The linearization of the covariant basis vectors ∆dgm in Eq. (??) in the current configuration can be

estimated by means of a suitable operator B
(g)
m , which renders

∆dgm = Bg
m∆d =


∂N1

∂ξm 0 0 . . . ∂N8

∂ξm 0 0

0 ∂N1

∂ξm 0 . . . 0 ∂N8

∂ξm 0

0 0 ∂N1

∂ξm . . . 0 0 ∂N8

∂ξm

∆d. (A.8)

The linearization of the inverse of the deformation gradient ∆d[F−1] and the related computation in Eq.
(??) can be expressed as

∆d[F−1] = F−1∆d[F]F−1 =
(
Gi ⊗ gi

) (
∆gk ⊗Gk

)
(Gm ⊗ gm) =

(
gi ·∆gm

)
(Gi ⊗ gm) , (A.9)

then

∆d[F−1]kF−T =
(
gi ·∆gm

)
(Gi ⊗ gm)

(
kabga ⊗ gb

)
(gc ⊗Gc) = gi ·∆gmk

mc (Gi ⊗Gc) , (A.10)

and

F−1k∆d[F−T] =
(
Gi ⊗ gi

)
(kmngm ⊗ gn)

(
∆ga · gbga ⊗Gb

)
= kia∆ga · gb (Gi ⊗Gb) . (A.11)
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[44] E. Mart́ınez-Pañeda, A. Golahmar, C. F. Niordson, A phase field formulation for hydrogen assisted cracking, Computer
Methods in Applied Mechanics and Engineering 342 (2018) 742 – 761. doi:https://doi.org/10.1016/j.cma.2018.07.021.
URL http://www.sciencedirect.com/science/article/pii/S0045782518303529

[45] P. Asur Vijaya Kumar, A. Dean, J. Reinoso, P. Lenarda, M. Paggi, Phase field modeling of fracture in functionally
graded materials:γ-convergence and mechanical insight on the effect of grading, Thin-Walled Structures 159 (2021) 107234.
doi:https://doi.org/10.1016/j.tws.2020.107234.
URL https://www.sciencedirect.com/science/article/pii/S0263823120311046

[46] Hirshikesh, S. Natarajan, R. K. Annabattula, E. Mart́ınez-Pañeda, Phase field modelling of crack propagation in func-
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