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Abstract

In recent years, Economic MPC (EMPC) has gained popularity due to the promise of increasing performance by directly optimizing
the performance index rather than tracking a given steady state. Moreover, EMPC formulations without terminal cost nor constraints
are appealing for the simplicity of implementation. However, the stability and convergence analysis for such formulations is rather
involved and so far only practical stability (in discrete time), respectively, practical convergence (in sampled-data continuous time)
has been proven; i.e., convergence to a horizon-dependent neighborhood of the optimal steady state. In this paper, we prove that,
whenever the cost has a non-zero gradient at the optimal steady-state and the MPC formulation satisfies a regularity assumption,
nominal stability to the economic optimum cannot be achieved. Consequently, the average performance of EMPC is bound to be
worse than that of tracking MPC. We propose to solve this problem by introducing a linear terminal penalty correcting the gradient
at steady state. We prove that this simple correction enforces uniform exponential stability of the economically optimal steady state.
We illustrate our findings in simulations using three examples.
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1. Introduction1

In recent years, there has been a growing interest in gen-2

eralized formulations of Nonlinear Model Predictive Control3

(NMPC) beyond the classical control tasks of setpoint stabiliza-4

tion and tracking. This includes schemes with purely economic5

objectives [31, 40, 10, 4, 50] and dual formulations [34, 5],6

wherein a combination of tracking and economic objectives is7

considered. The former approach is termed Economic MPC8

(EMPC) in [40]. Instead of designing cost functions in order to9

solve a given control or stabilization problem, in EMPC user-10

provided economic objectives are considered and optimized in11

a receding horizon fashion. In this setting, one aims at directly12

designing an economic control scheme, thus avoiding the of-13

ten cumbersome translation of economic objectives into corre-14

sponding control tasks, cf. [37, 31].15

Recent progress on EMPC includes Lyapunov-based stability16

results [12], dissipativity-based approaches using terminal con-17

straints [10, 4], and dissipativity-based approaches without end18

penalties and terminal constraints [23, 26, 14, 13]. In dissipa-19

tivity-based EMPC approaches without end penalties, one re-20

lies on the observation that, under mild reachability assump-21

tions, dissipativity of the Optimal Control Problem (OCP) im-22

plies the existence of a turnpike in the open-loop predictions,23
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whereby the turnpike happens to be the optimal steady state24

[24, 23, 18, 17]. Furthermore, we remark that, again under25

mild assumptions, the existence of a turnpike implies recursive26

feasibility of the OCP [14, 15]. We refer to [12, 16] for recent27

overviews. The main difference between the dissipativity-based28

approaches with and without terminal constraints is that, in29

the former, one can establish Lyapunov stability of the optimal30

steady state (provided that the terminal constraint and penalty31

are chosen appropriately); while, in the latter, one proves con-32

vergence to a neighborhood of the optimal steady state without33

requiring a priori knowledge of this target.134

The present paper tries to close this evident gap between35

dissipativity-based EMPC with and without terminal con-36

straints in terms of convergence and stability properties. That37

is, we investigate under which conditions EMPC with terminal38

penalty and no terminal constraint enforces asymptotic stability39

of the optimal steady state. It is well known that in the context40

of tracking MPC this can be achieved by using (global) con-41

trol Lyapunov functions as end penalties [29]. Here, instead of42

using control Lyapunov functions, we pursue a different route43

by designing the terminal penalty so as to correct the gradi-44

ent of the underlying cost function. This, in turn, corrects the45

gradient of the underlying steady-state optimization problem.46

We prove that the required gradient correction can be achieved47

by a linear end penalty. Further, we prove that this correction48

1We remark that the majority of discrete-time results [10, 4, 23] establishes
(practical) asymptotic stability properties, while sampled-data continuous-time
counterparts typically establish asymptotic convergence due to the use of Bar-
balat’s Lemma [18].
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is equivalent to a linear rotation of the stage cost and a zero49

terminal cost. Our approach combines linearly approximated50

storage functions, which have been introduced for terminally51

constrained EMPC in [10], with recent results on EMPC with-52

out terminal constraints [14] and recent insights on indefinite53

LQR control and approximate EMPC [47, 48, 49].54

The contributions of this paper are as follows. We begin with55

a formal investigation the effect of cost rotations on primal-dual56

solutions of OCPs. We prove that EMPC without terminal con-57

straints nor end penalties can never stabilize the optimal steady58

state whenever the cost has a non-zero gradient at the optimal59

steady state and the OCP satisfies a regularity assumption, as60

per Definition 1. En passant, this shows that non-singular, i.e.61

regular, OCPs do not exhibit exact turnpikes. Furthermore,62

we establish a crucial relation between the local geometry of63

any storage function and the dual variables of the underlying64

steady-state optimization problem. Finally, we establish suf-65

ficient conditions sampled-data continuous-time EMPC with a66

linear gradient-correcting end penalty uniformly exponentially67

stabilizes the optimal steady-state.68

The remainder of the paper is structured as follows. Sec-69

tion 2 introduces the problem setting and recalls an EMPC con-70

vergence result. Section 3 presents the main results and their71

proofs. Section 4 first illustrates our findings using two simple72

examples and then applies the developed theory to a practical73

example from the literature on chemical processes. The paper74

concludes with a discussion in Section 5.75

Notation76

The inner product of x1,x2 ∈ Rnx is written as 〈x1, x2〉. We77

denote the state and control of a system, respectively, as x∈Rnx78

and u ∈ Rnu . We denote partial derivatives of functions by79

a subscript: e.g. for function F : Rnx × Rnu → R we use80

Fx(v,w) = ∂F
∂x

∣∣∣∣ x=v
u=w

and Fxx(v,w) = ∂ 2F
∂x2

∣∣∣∣ x=v
u=w

Moreover, we de-81

fine z := (x,u) ∈ Rnz = Rnx+nu , and use the shorthand notation82

F(z) = F(x,u). Finally, we omit the dependence of the function83

on its variables whenever it is clear from context, especially in84

the case Fz(z). The notation x(·,x0,u(·,x0)) refers to a trajectory85

of ẋ = f (x,u) originating at x0 and driven by u(·,x0).86

2. Problem Statement and Preliminaries87

In this paper, we consider sampled-data continuous-time88

NMPC formulations with economic cost functions. However,89

the results obtained are expected to essentially hold also in the90

discrete-time framework, modulo proper adaptations. In the91

following, we introduce the problem, recall important results92

and definitions from the literature and establish an equivalence93

between different problem formulations.94

2.1. Nonlinear Model Predictive Control95

Consider the dynamic system given by

ẋ = f (x,u), x(0) = x0, (1)

Li(x,u) Mi(x(0),x(T ))

OCP1 F(x,u) E(x(T ))

OCP2 F(x,u)−〈Sx, f (x,u)〉 E(x(T ))+S(x(T ))

OCP3 F(x,u) E(x(T ))+S(x(0))

Table 1: Considered cost functionals.

and subject to the mixed state-input constraints z :=(x,u)∈Z⊂
Rnx+nu ,

Z= {z ∈ Rnx+nu |g j(z)≤ 0, j ∈ G}, (2)

where G = {1, . . . ,ng} is the index set of the mixed state-96

input constraints. Occasionally, we use the shorthand nota-97

tion g(x,u) = [g1(x,u), . . . ,gng(x,u)]
>. We assume w.l.o.g. that98

f (0,0) = 0.99

NMPC is based on repeatedly solving a given OCP according100

to the following strategy:101

1. Get the current state x0 at time t0;102

2. Solve OCP (3);103

3. Apply the optimal control law u∗(·) over the time interval104

[t0, t0 +δ ), set t0← t0 +δ and go to Step 1.105

In this paper, we compare NMPC formulations based on mem-
bers of the following family of OCPs

V i(x0) := min
x(·),u(·)

∫ T

0
Li(x(t),u(t)) dt +Mi(x(0),x(T )) (3a)

s.t. x(0) = x0, (3b)
ẋ(t) = f (x(t),u(t)), t ∈ [0,T ], (3c)

0≥ g(x(t),u(t)), t ∈ [0,T ]. (3d)

In many engineering applications, the input u(·) is required to106

be piecewise continuous. Hence, we restrict ourselves to this107

function space. To avoid cumbersome technicalities, we as-108

sume that the problem data of (3) is sufficiently smooth, i.e.109

at least twice differentiable, and that the minimum exists.2110

We consider three variants of OCP (3), denoted as OCPi,111

i ∈ {1,2,3} := I differing in the considered cost functionals112

as listed in Table 1, where F : Rnx ×Rnu → R denotes the113

running cost, E : Rnx → R denotes what is usually called ter-114

minal cost. The function S : Rnx → R, is typically a stor-115

age function, which is used to establish closed-loop stability116

and whose properties will be defined later. Unless explicitly117

stated otherwise, S should be considered as any differentiable118

function. Consistently with the literature on EMPC [9, 1], we119

will call F̂(x,u) := F(x,u)−〈Sx, f (x,u)〉= L2(x,u) the rotated120

cost. If it exists, we denote the optimal pair of OCPi, i ∈ I as121

zi(·) := (xi(·),ui(·)). Moreover, we denote the corresponding122

optimal adjoint as λ i(·).123

2For a detailed investigation of conditions ensuring the existence of minima
in OCPi we refer the interested reader to [32, 45].
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Henceforth, OCP1 is referred to as original OCP, OCP2 as124

rotated OCP [10] and OCP3 as OCP with initial penalty [14].125

Typically, OCP1 is the formulation of a problem in its “natu-126

ral” form, i.e. as it makes the most sense from a modelling127

or engineering point of view. OCP2 and OCP3 instead, are128

used in the economic MPC literature order to analyse the sta-129

bility properties of the closed-loop system. Note that, these130

OCP formulations are very similar, e.g. the cost of OCP1 and131

OCP3 only differs by a constant term, therefore they must de-132

liver the same primal solution. However, the three formulations133

also present some important differences which we will high-134

light, together with the similarities, in Theorem 2. In particu-135

lar, we will prove that while the primal solutions zi(·) coincide,136

the adjoint solutions λ i(·) differ. Particular attention should be137

dedicated to OCP3, as the formal definition of OCP3 does not138

require any differentiability or continuity properties of S, while139

OCP2 does. Moreover, we will prove in Theorem 2 that while140

the dual solution satisfies λ 3(t) = λ 1(t), t ∈ (0,T ], it also holds141

that λ 3(0), λ 1(0) and V 3(x0) =V 2(x0),V 1(x0). In particular142

this last fact has been used to prove convergence of EMPC.143

2.2. Necessary Optimality Conditions144

In our later developments, we rely on the Necessary Condi-145

tions of Optimality (NCO) of OCPi. The set of NCOs consid-146

ered hereafter require the following technical assumption.147

Assumption 1 (Linear independence of g(x,u)).
Along any optimal pair zi(·), i ∈ I and for all t ∈ [0,T ], the

following constraint qualification holds

rank
[
diag

(
g(zi(t))

)
gu(zi(t))

]
= ng.

Using this assumption, the NCO of OCPi can be expressed via
the Hamiltonian

H i(z,λ ,µ) = Li(z)+ 〈λ , f (z)〉+ 〈µ, g(z)〉. (4)

We restrict the consideration to OCPs [33, 44] without terminal
constraints; i.e. we consider normal OCPs and thus drop the
constant adjoint for the Lagrange function Li. The NCOs can
then be stated as follows

ẋi = H i
λ
(zi,λ i,µ i), xi(0) = x0, (5a)

λ̇
i =−H i

x(z
i,λ i,µ i), λ

i(T ) =
∂Mi

∂x(T )

∣∣∣∣
(x0,xi(T ))

, (5b)

0 = H i
u(z

i(t),λ i(t),µ i(t)), (5c)

0 = 〈µ i(t),g(zi(t))〉, µ
i
j(t)≥ 0 (5d)

where λ i(·) is the adjoint/costate and µ i(·), µ i(t)≥ 0 for all t ∈148

[0,T ], is the multiplier function associated with the constraints149

g.150

Here, we are not interested in discussing the most general151

form of the NCO; we rather aim at keeping the exposition at152

an accessible level. Hence, we restrict ourselves to cases where153

the optimal solutions ui(·),λ i(·),µ i(·) are piecewise continu-154

ous, respectively, absolutely continuous in case of xi(·). We155

remark that most of our results can be extended to more general156

formulations of OCPs such as problems with pure state con-157

straints. This however requires working with technically cum-158

bersome versions of the Pontryagin Maximum Principle (PMP),159

cf. [27] for an overview of PMPs for state-constrained OCPs.160

We define three steady-state optimization problems SOPi, i∈
I corresponding to OCPi, i ∈ I as

min
x,u

Li(x,u) s.t. 0 = f (x,u), g(x,u)≤ 0, (6)

where the cost functions are listed in Table 1. If it exists, we161

denote the optimal pair of SOPi, i ∈ I as z̄i = (x̄i, ūi). Note that162

the differentiability assumption on the problem data of OCPi,163

i ∈ I implies similar smoothness in SOPi, i ∈ I. Furthermore,164

we require regularity in the following sense:165

Assumption 2 (Regularity of SOPi).166

Whenever SOPi, i ∈ I has an optimal solution z̄i ∈ intZ, the167

corresponding dual variables λ̄ i, i ∈ I are unique; i.e., we168

assume that the linear independence constraint qualification169

(LICQ) holds.170

We note that due to z̄i ∈ intZ Assumption 2 refers to LICQ of171

the steady-state equality constraints, while Assumption 1 re-172

quires linear independence of the mixed state-input constraints.173

In Theorem 2 we will prove that the primal solutions of SOPi,174

i ∈ I coincide; i.e., z̄i = z̄, while the dual solutions differ. Fi-175

nally, without loss of generality, we assume that z̄ = 0. Note176

that, in case z̄ , 0, one can use the transformed state and control177

space given by z− z̄, such that this assumption is not restrictive.178

In the considered setting, the NCO of SOPi, i ∈ I can be
stated in terms of the Hamiltonian (4) as

0 = H i
z(z̄

i, λ̄ i, µ̄ i), (7a)

0 = H i
λ
(z̄i, λ̄ i, µ̄ i), (7b)

0 = H i
µ(z̄

i, λ̄ i, µ̄ i), (7c)

0 = µ̄
i
j g j(z̄i), µ̄

i
j ≥ 0, j = 1, . . . ,ng. (7d)

Henceforth, we denote the optimal dual of the equality con-179

straint 0 = f (x,u) in SOPi, i ∈ I as λ̄ i.180

2.3. Useful Notions181

For the purpose of this paper, we define regularity of an OCP182

as follows:183

Definition 1 (OCP regularity at the optimal steady-state).184

OCPi, i ∈ I is said to be regular at the steady-state z̄ =185

(x̄, ū) ∈ intZ if its Hamiltonian H i is twice differentiable at z̄186

and det H i
uu(z̄) , 0. If additionally det H i

uu(z̄) � 0, the OCP is187

said to be regular positive at z̄.3188

3We remark that the regular positivity is needed to enforce satisfaction of
sufficient second-order conditions for OCPs, cf. [35, Thm. 2.2]. If one employs
other types of sufficient conditions, one could drop this assumption.
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In this paper, we will occasionally approximate OCP1 locally
around optimal solutions z̄1 = 0 ∈ intZ to SOP1 by the linear-
quadratic problem:

min
x(·),u(·)

∫ T

0

1
2

z(t)>Wz(t)+w>z(t)dt

+
1
2

x(T )>PT x(T )+ x>pT (T ) (8a)

s.t. x(0) = x0, (8b)
ẋ(t) = Ax(t)+Bu(t), t ∈ [0,T ], (8c)

Cx(t)+Du(t)−g(z̄1)≤ 0, t ∈ [0,T ]. (8d)

where the linear dynamics and path constraints are defined via
the Jacobians

A = fx, B = fu, C = gx, D = gu, (8e)

and the quadratic objective is given by W =

[
Q S
S> R

]
, w =[

q
r

]
, with

Q = H1
xx, S = H1

xu, R = H1
uu, q = L1

x , r = L1
u, (8f)

PT = Exx, pT = Ex, (8g)

all evaluated at z̄1, λ̄ 1 and µ̄1 = 0. Whenever necessary, in order189

to clearly distinguish OCP1 from the LQ OCP (8), we will de-190

note the latter as OCP1
LQ. The same notation—i.e., the addition191

of the subscript LQ—is used for the linear-quadratic approxi-192

mation of SOP (6).193

The NCOs of OCP1
LQ (8) coincide with a form of linearisa-194

tion of the NCOs (5) of OCP1 evaluated at the optimal steady195

state, where in (5d) function g is linearized but the inner prod-196

uct is not, to obtain 0 = 〈µ i(t),Cx(t) +Du(t)− g(z̄1)〉. This197

is similar to the discrete-time case studied in [48]. Note that,198

by assumption g(z̄1) < 0, and no path constraint is active at199

the optimal steady state. It is also worth to be noted that this200

time-invariant approximation is similar but not identical to the201

classical second variation, which is usually stated as a time-202

varying LQ approximation around optimal trajectories, cf. [6].203

Moreover, in second variations one usually does not have the204

linear term in the cost (8a), see cf. [6, 35] for the time-varying205

case. In this paper, similar to [44], we will use the LQ Prob-206

lem (8) to characterize the situation in which the solution of the207

original OCP (3) remains at steady-state when x(0) = x̄. Then,208

Problem (8) yields an LQ approximation around the optimal209

stationary trajectory z(t)≡ z̄.210

Consider the LQ approximation (8) and denote the value of211

time-varying variables, computed for a prediction horizon T ,212

evaluated at time t by ξ (t,T ) with ξ ∈ {u, p,P,K}.213

Lemma 1 (Indefinite LQR solution).
Consider the unconstrained version of OCP1

LQ (8). Suppose
that (A,B) is stabilizable and let the end penalty in (8a) be such
that PT = P>T . Then the optimal input is given by

u1
LQ(t,T ) =−K(t,T )x1

LQ(t)−R−1(B>p(t,T )+ r), (9a)

where

K(t,T ) = R−1(S+B>P(t,T )), (9b)

−Ṗ(t,T ) = A>P(t,T )+P(t,T )A+Q− (P(t,T )B+S)K(t,T ),
(9c)

−ṗ(t,T ) =
(

A>−K(t,T )>B>
)

p(t,T )+q−K(t,T )>r, (9d)

P(T,T ) = PT , p(T,T ) = pT ; (9e)

and the optimal value function is given by V (x0) =214

1
2 x>0 P(0,T )x0 + 〈p(0,T ), x0〉.215

PROOF. The proof of this result is given in Appendix A. 2216

The next lemma recalls conditions under which OCP1
LQ (8)217

yields a first-order approximation of the solution of OCP1, cf.218

[35, Theorem 3.1].219

Lemma 2 (Local LQ approximation of OCP1).220

Let OCP1 be regular positive at z̄ in the sense of Definition 1221

and let z(t) ≡ z̄ be the optimal solution to OCP1 for x(0) = x̄.222

Assume that F and f are at least C2 in a neighborhood of z̄.223

Then, OCP1
LQ (8) with initial constraint x(0) = x0 (and x0 in

a neighborhood of x̄) yields a first-order approximation of the
solution of OCP1, i.e.

a1(t) = a1
LQ(t)+O(‖x0− x̄‖2), with a ∈ {x,u,λ}. (10)

Occasionally, we will require the following properties of224

functions G : Rnx → Rm evaluated along optimal trajectories of225

OCPi.226

Definition 2 (Absolute continuity along optimal pairs).227

Consider OCPi, i ∈ I for some horizon T > 0. A function G :228

Rnx → Rm is said to be absolutely continuous along optimal229

pairs zi(·) of OCPi, i ∈ I, if γ : [0,T ]→ Rm, γ(t) := G(xi(t)) is230

such that231

(i) the derivative d
dt γ(t)=Gx f (xi(t),ui(t)) exist almost every-232

where on [0,T ],233

(ii) d
dt γ(t) is componentwise Lebesgue integrable and

γ(t2) = γ(t1)+
∫ t2

t1
Gx(xi(t)) f (xi(t),ui(t))dt

holds, for any interval [t1, t2]⊆ [0,T ].234

Essentially, the above definition is satisfied for differentiable235

functions G and absolutely continuous optimal state trajectories236

xi(·). In case that G is not continuously differentiable the defini-237

tion requires that the set of time points for which optimal pairs238

zi(·) are at any point of non-differentiability of G is of measure239

zero. One can regard this as an extension of absolute continuity240

of trajectories to absolute continuity of state-dependent func-241

tions evaluated along trajectories.242
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2.4. Economic and Tracking NMPC243

We introduce and discuss next the definition of economic and244

tracking MPC that we will use throughout the paper.245

Definition 3 (Tracking and economic MPC).
Let z̄ ∈ intZ be the optimal steady-state from SOP (6). We say

a predictive control scheme is a tracking MPC (TMPC) if

Li(z̄)< Li(z), ∀z ∈ Z\ z̄. (11)

We label as economic MPC (EMPC) those MPC schemes for246

which (11) does not hold, i.e. the cost function does not have a247

strict (global) minimum at the optimal steady state.4248

Note that (11) implies that F(z) is a positive-definite function,249

and thus it is lower bounded by α i ∈ K : α i(‖z− z̄‖) ≤ Li(z);250

moreover, z̄ = argminz∈Z Li(z). Finally, Equation (11) implies251

λ̄ 1 = 0. Therefore, the condition λ̄ 1 , 0 implies that removing252

the constraint 0 = f (x,u) from SOPi (6) would yield a lower253

cost. This, in turn, implies that the MPC scheme is economic,254

though the converse is in general not true. In the following,255

whenever it will be necessary to clearly distinguish tracking and256

economic MPC formulations, we will denote the tracking stage257

cost as F t, while F will refer to economic stage costs.258

In the sense of Definition 3, tracking and economic MPC259

differ in how stability can be proven. In classical tracking260

MPC approaches one can enforce stability in different ways.261

One typical option is to choose E as a local control Lyapunov262

function and enforce additional terminal constraints, see e.g.263

[19, 36, 7, 25, 41]. If no terminal constraints are imposed, the264

terminal cost E can still be chosen as global control Lyapunov265

function guaranteeing closed-loop stability [30, 29]. However,266

as control Lyapunov functions are often difficult to compute,267

in practice a common choice is E(x) = 0 and no terminal con-268

straint is enforced. In this case, asymptotic stability can still be269

proven for TMPC provided that the prediction horizon is long270

enough and certain controllability assumptions hold [25, 42].271

In contrast to TMPC, stability results for EMPC often require
that there exists a function S :Rnx →R satisfying the following
strict dissipation inequality

S(x(T ))−S(x0)≤
∫ T

0
−α(‖z− z̄‖)+F(z(t))−F(z̄) dt, (12)

where α is of class K, see [3, 10, 1, 23, 14].5 Hence S is called272

storage function. It has been observed in [23, 17, 8] that dis-273

sipativity combined with reachability of the best steady state274

4In principle, this notion of EMPC is as general as the term nonlinear sys-
tem. Yet, with this definition we aim at characterizing schemes where some
generic stage cost L, which happens to be not a tracking cost, is given instead
of being designed.

5It is worth to be remarked that while the early papers [3, 10, 1, 23] require
dissipativity along all admissible trajectories, the recent paper [14] shows that
satisfaction of the dissipation inequality (12) is only required along optimal tra-
jectories. Furthermore, we remark that [3, 10, 1, 23] require strict dissipativity
with respect to α(‖x− x̄‖), while [14] requires α(‖z− z̄‖). For more details on
the implications of this subtle difference, we refer to [24, 18].

implies the existence of a turnpike property in the OCP. Further-275

more, recent works [24, 18] show that, under certain assump-276

tions, dissipativity of the OCP is very close to being equivalent277

to the existence of a turnpike in the OCP.6278

Assuming w.l.o.g. that F(z̄) = 0, an important conse-279

quence of (12), enabling stability proofs for EMPC, is that280 ∫ T
0 L2(x,u) dt ≥

∫ T
0 α(‖z− z̄‖) dt. Note that, F and f being281

continuous, this implies that ∇zL2|z=z̄ = 0, so that the storage282

function must have a specific slope. We will provide a formal283

proof in Theorem 4.284

By relying on S being a storage function, using E(x) = 0,285

and considering no terminal constraint, it can be shown that the286

closed-loop system converges to a neighborhood of the optimal287

steady-state x̄, cf. [14, 23, 26]. In other words, one establishes288

practical convergence in this case as summarized next:7289

Theorem 1 (Practical convergence of EMPC [14]).290

Consider an EMPC controller based on OCP3 with T <∞, and291

E(x) = 0. Suppose that292

A1 for all x0 ∈ X0, the strict dissipation inequality (12) holds293

along all optimal pairs z(·,x0);294

A2 the optimal steady steady is admissibly reachable in finite295

time from x0 ∈ X0;296

A3 the Jacobian linearization of (1) at z̄∈ intZ, (A,B), is con-297

trollable.298

Then, there exists a finite horizon T < ∞, a sampling period
δ > 0, and a constant ρ(T,δ )> 0 such that OCP3 is recursively
feasible and

lim
t→∞

(
max{‖x(t,x0,uEMPC(·))− x̄‖, ρ(T,δ )}

)
= ρ(T,δ ),

(13)
holds for all x0 ∈ X0, and furthermore lim

T, 1
δ
→∞

ρ(T,δ ) = 0.299

The proof of this result is given in [14] and thus omitted.8 It300

relies on the existence of a turnpike at z̄, which is implied by301

the dissipativity and reachability assumptions. The turnpike al-302

lows one to conclude that, for a sufficiently long horizon T , the303

open-loop predictions will stay close to z̄ during large parts of304

the horizon. However, they may leave the neighborhood of z̄305

towards the end of the horizon. Furthermore, it is important to306

note that the size of the neighborhood to which the closed-loop307

EMPC solutions eventually converge, ρ(T,δ ), shrinks with in-308

creasing horizon length and decreasing sampling period δ . Nat-309

urally, it is fair to ask, if this result for OCP3 carries over to310

6In order establish converse {turnpike, dissipativity} results [24, 18] as well
as [39] require non-negativity of S. However, it should be noted that the EMPC
stability proofs typically do not require this. Moreover, on compact sets the
non-negativity does not pose any restriction as one can always add a constant
to shift the storage S.

7We remark that [26] establishes practical stability, while the sampled-data
result [14] shows practical convergence.

8The proof given in [14] relies on a regularity property of the underlying
turnpike. It is, however, straightfoward to show that the respective assumption
holds by considering the rotated problem in a neighborhood of x̄. Moreover,
[18, Thm. 2] implies that finite-time reachability in A2 can be relaxed to expo-
nential reachability.
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OCPi, i ∈ {1,2}. This question will be answered by Theorem 2311

in Section 3.312

In the context of this paper, it is important to note that the313

existence of a turnpike in the open-loop predictions is not af-314

fected by end penalties, cf. the proof of [18, Thm. 2]. Yet, we315

remark that the existence of a leaving arc will be affected by316

end penalties. The next result is a direct consequence of [18,317

Thm. 2] and Theorem 1 showing that, as long the horizon T is318

sufficiently large, adding an end penalty does not jeopardize the319

convergence to a neighborhood of z̄.9320

Corollary 1 (Terminal penalties preserve stability).321

Let Conditions A1-A3 of Theorem 1 hold and consider a twice-322

differentiable end penalty E(x) , 0 in OCP3. Then, there exists323

a finite horizon T > ∞, a sampling period δ > 0, and a constant324

ρ(T,δ )> 0 such that (13) holds for the closed EMPC loop.325

3. Main Results326

The main question we answer in this paper is:327

Under which conditions does the linear end penalty,
E(x) = x>pT , in OCPi, i ∈ I enforce stability of the
optimal steady state x̄?

328

Throughout our derivations, it will become clear that the addi-329

tion of the linear end penalty E(x) = x>pT is equivalent to the330

linear rotation of the stage cost given by S(x) = −x>pT with331

a zero terminal cost; i.e., eventually we consider an OCP with332

Lagrange term F̂(x,u) = F(x,u)−〈pT , f (x,u)〉 and no Mayer333

term (Ê(x) = 0).334

To establish the result, we first show that general rotations335

of the cost of an OCP do not affect its primal solutions. Fur-336

thermore, we verify that, provided that regularity of the OCP337

holds at the optimal steady state pair z̄, without any terminal338

constraint or terminal penalty, the optimal steady state z̄ is not339

an equilibrium of the closed-loop system arising from EMPC.340

Thereafter, we turn towards the relation between the geometry341

of the storage functions and the dual variables of the SOP. Fi-342

nally, we prove that linear end penalties allow the recovery of343

closed-loop stability of the optimal steady state, provided that344

pT is chosen appropriately.345

3.1. Invariance of Rotated OCPs346

Theorem 2 (Rotation invariance of primal solutions).347

For any function S : Rnx → R, which is absolutely continuous348

along optimal pairs, the families of OCPs (3) and SOPs (6)349

have the following properties:350

(i) If (xi(·),ui(·)) is optimal for OCPi, i ∈ I, then it is optimal351

for OCP j, j ∈ I.352

(ii) The value functions V i(x0) of OCPi, i ∈ I satisfy

V 1(x0)+S(x0) =V 2(x0) =V 3(x0). (14)

9One can also easily show that the size of the neighborhood is not affected
by the end penalty. Due to space limitations, we do not investigate this in detail.

(iii) Additionally, suppose that Assumption 2 holds, let S be353

differentiable at x̄2, and let (x̄i, ūi) ∈ intZ and λ̄ i be the354

optimal primal solution, respectively, the dual solution of355

SOPi, i ∈ I. Then (x̄i, ūi) is also optimal for SOP j, j ∈ I.356

Moreover, λ̄ 1 = λ̄ 2−Sx(x̄2) = λ̄ 3.357

(iv) Let λ i(·) be the optimal (piecewise continuous) adjoint for
OCPi, i ∈ I, let Assumption 1 hold, and let S be continu-
ously differentiable and Sx is absolutely continuous along
optimal pairs, then

λ
1(t) = λ

2(t)−Sx(x2(t)) = λ
3(t) (15)

holds almost everywhere on (0,T ].358

PROOF. Claim (i) and Claim (ii): Because of the constraint359

x(0) = x0, adding the term S(x(0)) to the cost functional (3a)360

only shifts it by a constant value. Therefore, z1(·) = z3(·) and361

V 1(x0)+S(x0) =V 3(x0).362

Moreover,
∫ T

0
−〈Sx, f (x,u)〉dt = S(x(0))−S(x(T )) by Def-

inition 2, so that∫ T

0
F(x,u)−〈Sx, f (x,u)〉dt+S(x(T ))=

∫ T

0
F(x,u)dt+S(x(0)).

Therefore, z2(·) = z3(·) and V 2(x0) =V 3(x0).363

Claim (iii): The first part of Claim (iii) is an immediate con-364

sequence of the steady-state constraint of Problem (6), i.e.365

f (x,u) = 0. This entails that, for all feasible (x,u), the cost is366

given by Li(x,u) = F(x,u), i ∈ I, such that the primal solutions367

of the three problems coincide.368

The second part of the claim is obtained using Assumption
2 and z̄i ∈ intZ by writing the NCOs for the three SOPs. Be-
cause (7b)-(7d) coincide for the three formulations, we only
detail (7a):

SOP1 : Fx + 〈 fx, λ̄
1〉= 0,

Fu + 〈 fu, λ̄
1〉= 0.

SOP2 : Fx−〈Sxx, f (x,u)〉+ 〈 fx, λ̄
2−Sx〉= 0,

Fu + 〈 fu, λ̄
2−Sx〉= 0.

SOP3 : Fx + 〈 fx, λ̄
3〉= 0,

Fu + 〈 fu, λ̄
3〉= 0.

Since 0= f (x,u) it follows immediately that λ̄ 1 = λ̄ 2−Sx(x̄) =369

λ̄ 3.370

Claim (iv): NCOs (5a) and (5d) coincide for the three OCPs.
Consider the adjoint equations of OCPi, i ∈ I; i.e., consider
NCO (5b)

λ̇
i =−Fx−〈 fx,λ

i〉−〈gx,µ
i〉, i = 1,3

λ̇
2 =−Fx + 〈Sxx, f 〉+ 〈 fx,Sx−λ

2〉−〈gx,µ
2〉,

with the respective terminal conditions

λ
i(T ) = Ex(xi(T )), i = 1,3,

λ
2(T ) = Ex(x2(T ))+Sx(x2(T )).
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Using Definition 2, we have that d
dt [Sx] = 〈Sxx, f 〉 holds almost

everywhere. Hence, we rewrite the adjoint dynamics of OCP2

d
dt

[
λ

2−Sx
]
=−Fx−〈 fx,λ

2−Sx〉+ 〈gx,µ
2〉,

λ
2(T )−Sx(x2(T )) = Ex(x2(T )).

Now, recall that the already proven Claim (i) states z1(·) =371

z2(·) = z3(·). This implies that (a) NCO (5c) must coincide372

for the three OCPs and (b) µ1(·) = µ2(·) = µ3(·). Therefore,373

we conclude that, almost everywhere on t ∈ (0,T ], we have374

λ 1(t) = λ 2(t)−Sx(x2(t)) = λ 3(t). 2375

It is worth to stress that, due to the penalty on the initial con-376

dition in OCP3, S(x(0)), the adjoint variable λ 3(·) is discon-377

tinuous at t = 0. More precisely, by differentiation of (14) one378

obtains λ 1(0) + Sx(x0) = V 1
x (x0) + Sx(x0) = V 3

x (x0) = λ 3(0).379

Hence, the equivalence (15) does not hold at t = 0.380

We remark that the proof of Theorem 2 can be easily ex-381

tended to OCPs that do not satisfy Assumption 1. However,382

this implies working with more technical versions of the PMP.383

Theorem 2 is particularly important for the developments of384

this paper as it states that SOPi and OCPi yield the same pri-385

mal solution when formulated using any of the stage costs Li,386

i ∈ I. In case of the rotated OCP, i.e. when the stage cost L2
387

is considered, in order to obtain the exact same primal solution,388

the addition of the term S(x(T )) to the terminal cost is neces-389

sary, cf. Table 1. We remark that the result also holds in case S390

does not satisfy the dissipation inequality (12). In other words,391

Theorem 2 shows that rotating the objective by means of any392

function S, which is absolutely continuous along optimal pairs,393

does not change the primal solutions.394

3.2. Closed-loop Stability of EMPC at Optimal Steady States395

Theorem 3 (EMPC is not stabilizing the system to z̄).396

Consider an EMPC controller based on OCPi, i ∈ I with T <397

∞, E(x) = 0 and no terminal constraint. Let Assumption 2 hold.398

Furthermore, suppose that399

1. OCPi, i ∈ I is regular positive at z̄ ∈ intZ;400

2. λ̄ 1 , 0, ;i.e., the cost has a non-zero gradient at the opti-401

mal steady state z̄, which implies that the scheme is not of402

tracking type;403

3. the Jacobian linearization of (1) at z̄∈ intZ, (A,B), is con-404

trollable.405

Then, the EMPC controller cannot stabilize the system to z̄.406

Before proving Theorem 3, we turn to the easier linear-
quadratic case (8), with generic data

ẋ = Ax+Bu, F(z) =
1
2

z>Wz+w>z, (16a)

W=

[
Q S
S> R

]
, w =

[
q
r

]
. (16b)

Lemma 3 (Linear EMPC is not stabilizing the system to z̄).407

Consider OCPi
LQ, i ∈ I with the problem data from (16). Sup-408

pose that Assumption 2 holds and that409

1. the optimal steady state is z̄ = 0 and all OCPi
LQ, i ∈ I are410

regular at z̄ ∈ intZ;411

2. (A,B) is controllable.412

Then, whenever λ̄ 1
LQ , 0, any EMPC scheme based on413

OCPi
LQ, i ∈ I with E(x) = 0 and without additional terminal414

constraints does not stabilize the system at the optimal steady415

state z̄.416

PROOF. Since OCPi
LQ, i∈{2,3} and OCP1

LQ have identical pri-417

mal solutions, cf. Theorem 2, it suffices to consider OCP1
LQ.418

In order to prove the Lemma, we show that, when starting at419

the initial state xLQ(0) = x̄, the condition ẋ1
LQ(0) = AxLQ(0)+420

Bu1
LQ(0) = 0 cannot hold along optimal solutions. In other421

words, we prove that the open-loop optimal prediction leaves422

the steady state immediately with non-zero velocity, such that423

the closed-loop system instantaneously moves away from the424

optimal steady state. The proof proceeds in two steps: first we425

recall the implications of the stated assumptions for OCP1
LQ,426

then we prove the assertion for OCP1
LQ.427

Step 1: By assumption there are no active constraints at the
optimal steady state. Hence the optimality conditions of SOP1

LQ
read

0 =

 A 0 B
−Q> −A> −S

S> B> R

 x̄1
LQ

λ̄ 1
LQ

ū1
LQ

+
 0
−q

r

 . (17)

Setting w.l.o.g. z̄1
LQ = 0, we obtain

0 = A>λ̄
1
LQ +q, 0 = ū1

LQ =−R−1(r+B>λ̄
1
LQ). (18a)

Note that regularity, i.e. det Huu(z̄1
LQ) , 0, implies that R−1

exists. Moreover, for OCP1
LQ regularity entails that

u1
LQ = 0 ⇔ r+B>λ

1
LQ = 0. (18b)

Starting at xLQ(0) = x̄1
LQ = 0 ∈ intX, the optimality conditions

of OCP1
LQ entail

−λ̇
1
LQ = Qx1

LQ +Su1
LQ +q+A>λ

1
LQ, (19a)

u1
LQ =−R−1(r+B>λ

1
LQ), (19b)

and the transversality condition λ 1
LQ(T ) = 0.428

Step 2: For the sake of contradiction, assume that for
xLQ(0)= x̄1

LQ ∈ intX, the optimal pair z1
LQ(·, x̄1

LQ) remains at the
steady state (x̄1

LQ, ū
1
LQ) for some non-vanishing interval [0,τ].

Combining (18) with (19) and xLQ(0) = x̄1
LQ = 0, we obtain that

the optimal pair z1
LQ(·, x̄1

LQ) remains at (x̄1
LQ, ū

1
LQ) if and only if

−λ̇
1
LQ = A>λ

1
LQ +q, (20a)

−r = B>λ
1
LQ, (20b)
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holds on [0,τ]. Observe that x̄1 ∈ intX implies that no state429

constraint can be activated immediately. In other words, we430

can do the analysis as if OCP1
LQ does not involve any active431

state constraint on [0,τ].432

Regarding (20b) as the linear output of (20a), conditions (20)433

require that the output of a linear system stays constant for some434

non-vanishing interval [0,τ]. Taking into account that control-435

lability of (A,B) implies observability of (A>,B>), we have that436

the only solution to (20) is a constant solution. Note that any437

constant solution λ̃LQ to (20) combined with x̄1
LQ, ū

1
LQ satisfies438

the NCOs (17). By Assumption 2 we have that λ̃LQ = λ̄ 1
LQ , 0439

is the unique constant solution to (20).440

As we consider time-invariant OCPs, this also implies441

λ 1
LQ(T ) = λ̄ 1

LQ , 0, which contradicts the boundary (transver-442

sality) condition λ 1
LQ(T ) = 0. Hence, we arrive at a contradic-443

tion, i.e. starting at the optimal steady state x̄1
LQ, the system444

immediately leaves the optimal steady state with non-zero ve-445

locity ẋ1
LQ(0) = Bu1

LQ(0) , 0. 2446

PROOF (THEOREM 3). By virtue of Theorem 2, we restrict the447

proof to OCP1. Temporarily assume that EMPC based on OCP1
448

stabilizes the system to x̄ = 0. Then, this implies that starting449

at x0 = x̄, there exists τ > 0 such that for all t ∈ [0,τ], x1(t)≡ x̄450

and λ 1(t)≡ λ̄ 1.451

Observe that due to the regularity assumption on OCP1, in452

a small neighborhood around z̄ ∈ intZ, u1(t) is a continuous453

function of x1(t) and λ 1(t). In other words, for x1(t) to leave454

x̄ for t > τ , we need to have that u1(τ) , ū, which in turn only455

happens if λ 1(τ) , λ̄ 1.456

Lemma 2 implies λ 1(t) = λ 1
LQ(t)+O(‖x0− x̄‖2), ∀ t ∈ [0,τ]457

and we assumed ‖x0− x̄‖ = 0. In Lemma 3 we have shown458

that λ̄ 1 , 0 implies λ 1
LQ(t) . const. for all t ∈ [0,τ]. In turn459

this yields u1(τ) . ū on [0,τ). Thus the optimal solution x1(t)460

leaves x̄ immediately, i.e. x1(t) , x̄, ∀ t > 0. 2461

This result has several consequences, which we elaborate in
the following corollaries and remarks. The first important con-
sequence regards closed-loop performance, evaluated via the
asymptotic average, defined as

Av[v(·)] := liminf
t→∞

1
t

∫ t

0
v(τ)dτ. (21)

Henceforth, we consider the closed-loop performance as mea-462

sured by the asymptotic average cost, i.e. Av[F(z(·))]. Note463

that we will use the economic cost F also when referring to464

closed-loop trajectories obtained by tracking MPC schemes.465

Corollary 2 (TMPC performing better than EMPC).
Consider a stabilizing TMPC (in the sense of Definition 3, with
z̄ the economic optimum given by (6)) and a stabilizing EMPC
based on OCPi, i ∈ I with T < ∞, E(x) = 0 and λ̄ 1 , 0. We
define zcl

TMPC and zcl
EMPC the closed-loop state and control tra-

jectories obtained with TMPC and EMPC respectively. Then

Av[F(zcl
TMPC(·))]≤ Av[F(zcl

EMPC(·))],

i.e. the TMPC controller yields a better average closed-loop466

performance than the EMPC controller. Moreover, if z̄ is a strict467

global optimum, then the inequality is strict.468

PROOF. This is an immediate consequence of Theorem 3:
whenever λ̄ , 0, EMPC stabilize s the system to a steady state
z̄EMPC , z̄. Therefore, F(z̄EMPC) > F(z̄). TMPC on the other
hand, does stabilize the system to z̄, such that it yields a better
average closed-loop performance, i.e.

Av[F(zTMPC(·))]≤ Av[F(zEMPC(·))].

Finally, consider the case when z̄ is a strict global optimum.469

Because zcl
TMPC asymptotically tends to z̄, while z̄EMPC , z̄, for470

t sufficiently large, F(zcl
TMPC(t)) < F(zcl

EMPC(t)), which yields471

Av[F(zcl
TMPC(·))]< Av[F(zcl

EMPC(·))]. 2472

Lemma 4 (Linear cost rotation in TMPC).473

Let there be a stabilizing TMPC with F t(x,u) satisfying (11)474

and E(x) = 0. Consider a linear rotation of the stage cost,475

i.e. consider using the cost defined by F̂(x,u) = F t(x,u) +476

a> f (x,u), a , 0 and M(x0,x(T )) = 0.477

Then, the obtained MPC scheme is economic in the sense of478

Definition 3 and does not stabilize the system to the origin.479

PROOF. We define L̂i, i ∈ I analogously to the definition of Li,480

but by replacing F t with F̂ . Accordingly, we use the defini-481

tions ˆSOPi, ˆ̄zi and ˆ̄
λ i. By assumption, z̄i = 0. Moreover, by482

using the same arguments of Theorem 2, one immediately ob-483

tains that ˆ̄zi = z̄i = 0 and ˆ̄
λ i = λ̄ i−a. Therefore, F̂z(0) , 0 and,484

by Definition 3 the obtained MPC scheme is economic.485

Finally, by Theorem 3, ˆ̄
λ 1 , 0 implies that the EMPC scheme486

does not stabilize the closed-loop system to the optimal steady-487

state. 2488

Remark 1 (No exact turnpikes in regular OCPs).489

Recently, it has been shown in [13, 15] that under certain490

technical assumptions EMPC without terminal constraints and491

without terminal penalty implies (i) finite-time convergence to492

the optimal steady state and (ii) recovering infinite-horizon op-493

timal performance via MPC receding horizon optimization. The494

core assumption of [13, 15] is that the underlying OCP admits495

an exact turnpike, which implies that, for long horizons, the496

open-loop optimal solutions have to be exactly at steady state497

during the largest part of the optimization horizon. In [15],498

it is furthermore shown for a specific class of singular OCPs499

that turnpikes, if they appear, have to be exact. In this con-500

text, Lemma 3 allows the immediate conclusion that turnpikes501

of regular OCPs (Definition 1), if they exist, are never exact.502

3.3. Storage Function Geometry and Optimal Steady-State503

Multiplier504

We turn towards the investigation of the relation between the505

Lagrange multipliers of SOPi, i ∈ J and the local geometry of506

the storage function.507

Theorem 4 (Storage function slope at x̄).508

Let S be a storage function which satisfies the strict dissipa-509

tion inequality (12) along any optimal pair zi(·), i ∈ I. Suppose510

that S is continuously differentiable on some open neighbor-511

hood B(x̄) of the optimal steady state x̄.512
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Then the slope of S at x̄ is given by the Lagrange multiplier
of SOP1, i.e.

Sx(x̄) =−λ̄
1.

PROOF. On the open set B(z̄) :=B(x̄)×B(ū), consider the the
rotated cost function given by

F̂(z) := F(z)+Sx f (z).

As F and f are assumed to be continuously differentiable on Z,
F̂ is so on B(z̄). Strict dissipativity implies

F̂(z)−F(z̄)≥ α(‖z− z̄‖), ∀z ∈B(z̄). (22)

Hence, z̄ is a strict local minimizer of F̂ on B(z̄). Differentia-513

bility of F̂ on B(z̄) implies that F̂x(z̄) = 0.514

Consider now the SOP (6) formulated using (a) the original515

cost F , i.e. SOP1 and (b) the rotated cost F̂ , i.e. SOP2 with S as516

specified above. Statement (iii) of Theorem 2 implies that ˆ̄
λ =517

λ̄ 1 + Sx(x̄). Because F̂x(z̄) = 0, we have ˆ̄
λ = 0 and, therefore,518

Sx(x̄) =−λ̄ 1. 2519

At first glance the assumption of local differentiability of S520

close to x̄ might appear to be a strict condition. However, close521

to z̄∈ intZ, one may approximate OCPi by means of (8) as a lin-522

ear quadratic problem (Lemma 2). Furthermore, storage func-523

tions for linear systems subject to quadratic supply rates can be524

computed via Linear Matrix Inequalities (LMIs) as quadratic525

forms [38, 47, 48]. Thus, the local differentiability assumption526

imposed on S does not appear to be overly restrictive.527

Note that the last result connects the stability proof of [10],528

which makes use of a linear storage function, with the result529

of [1], which uses a nonlinear storage function. In the former530

publication, the connection to the Lagrange multiplier of the531

SOP is explicitly made. In the latter one instead, this connection532

has not been investigated.533

Remark 2 (Gradients of value and storage functions).
It has been shown in [44] that whenever the optimal pairs z(·)i

stay close to the turnpike z̄ ∈ intZ, then also the adjoint λ i(t)
is close to its turnpike value λ̄ i. Provided that the horizon is
long enough such that the turnpike can be observed, combining
these two observations with Theorem 4 yields

V 1
x (x)

∣∣
x≈x̄ = λ

1(0)≈ λ̄
1 =−Sx(x̄), (23)

i.e. the negative gradient of any locally differentiable storage534

function approximates the gradient of the optimal value func-535

tion of OCP1 at x̄.536

3.4. Recovering Stability at the Optimal Steady State537

In the following, we show how closed-loop stability of the538

optimal steady state can be recovered and, consequently, opti-539

mal average performance can be achieved also in the absence540

of terminal cost or constraints.541

Lemma 5 (Nonlinear rotation of cost functions).542

Any EMPC scheme based on OCPi, i ∈ I with T < ∞, and543

E(x) = −S(x) is a TMPC scheme in the sense of Definition 3,544

provided (i) that S(x) is a storage function which satisfies the545

strict dissipation inequality (12) and (ii) that S(x) is absolutely546

continuous in the sense of Definition 2.547

PROOF. By Theorem 2, all OCPs yield the same primal solu-
tion and, therefore, induce the same EMPC stability properties.
Hence, we focus on OCP2. By construction, E(x) =−S(x) im-
plies that M(x0,x(T )) = 0. Moreover, absolute continuity of S
implies that the strict dissipation inequality (12) can be written
in its differential form almost everywhere on [0,T ]. In turn, this
gives

F(z)−F(z̄)−Sx f (z)≥ α(‖z− z̄‖).

Recalling, that w.l.o.g. we have set F(z̄) = 0 and z̄ = 0, this548

proves that the rotated stage cost is positive definite. 2549

Provided that a almost everywhere differentiable storage func-550

tion S is known, the immediate consequence of this lemma is551

the applicability of sufficient TMPC stability conditions such as552

[21, 29, 20, 42]. In other words, EMPC falls back to TMPC pe-553

nalizing the deviation from the optimal steady state z̄ and, by an554

appropriate choice of sampling period and prediction horizon,555

convergence to and/or stability of x̄ can be concluded. We refer556

to [1] for the counterpart for EMPC with terminal constraints.557

Unfortunately, although it provides a condition which en-558

forces stability without terminal cost nor constraints, Lemma 5559

is impractical, as it requires explicit knowledge of a storage560

function. The computation of storage functions is in general561

as difficult as the computation of Lyapunov functions for un-562

controlled systems [11, 18]; i.e., one typically applies sum-of-563

squares techniques to polynomial problems of rather small di-564

mensions.565

Next, we analyze how to tackle this issue by means of end566

penalties in the linear-quadratic setting.567

Lemma 6 (Properties of stabilizing LQ EMPC).568

Consider OCP1
LQ with the problem data from (16), and such569

that λ̄ 1
LQ , 0. Let (A,B) be stabilizable, consider an EMPC for-570

mulation with E(x) = 1
2 x>PT x, with PT = P>T . Suppose that,571

with the chosen T and PT , the EMPC with instantaneous feed-572

back, i.e. δ = 0, asymptotically stabilizes the system to some573

z̄EMPC , z̄ = 0. Then the following statements hold:574

(i) For increasing prediction horizons T , the closed-loop575

steady-state z̄EMPC tends to z̄ with an exponential decay576

in T .577

(ii) The EMPC formulation with E(x) = 1
2 x>PT x+ x>pT sta-578

bilizes the closed-loop system to a steady-state z̄EMPC,579

which tends to the optimal steady-state z̄LQ = 0 linearly580

as pT tends to λ̄ 1
LQ.581

PROOF. Recall that the fact that the EMPC formulation with582

E(x) = 0 does not stabilize the system to z̄LQ = 0 is a conse-583

quence of Theorem 3. In order to prove Claims (i) and (ii) we584
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rely on the characterization of the optimal solution to OCP1
585

provided in Lemma 1.586

The optimality conditions of SOP1
LQ entail, cf. (18a),[

A>

B>

]
λ̄

1
LQ +

[
q
r

]
= 0. (24)

Henceforth, the subscript ·∞ denotes steady-state solutions for
T = ∞. Consider the optimal feedback (9) from Lemma 1. As
we assume that EMPC with instantaneous feedback stabilizes
the system, in the limit for T → ∞, we obtain

0 = A>P∞ +P∞A+Q− (PB+S)K∞,

K∞ = R−1(B>P∞ +S>),

0 =
[

I −K>∞
]([ A>

B>

]
p∞ +

[
q
r

])
. (25)

Then, because
[

I −K>∞
]

is full row rank, we have

p∞ = λ̄
1
LQ, B>p∞ + r = 0, (26)

u∞ =−K∞x.

Using (26), Equation (9a) can be written as

u1
LQ(0,T ) =−K(0,T )x1

LQ−R−1B>(p(0,T )− p∞).

By assumption, T and PT are chosen such that A−BK(0,T ) is
Hurwitz and thus invertible. Using the last equation the steady-
state x̄EMPC satisfies

0 = (A−BK(0,T ))x̄EMPC−BR−1B>(p(0,T )− p∞). (27)

Using (24) and p∞ = λ̄ 1
LQ, and pre-multiplying by [I −

K(t,T )>] we obtain

[
I −K(t,T )>

]([ A>

B>

]
p∞ +

[
q
r

])
= 0.

Therefore, q−K(t,T )>r = −(A−BK(t,T ))>p∞. Hence, we
rewrite (9d) as

ṗ(t,T ) = (BK(t,T )−A)>(p(t,T )− p∞), p(T,T ) = pT . (28)

By assumption, T is large enough such that A− BK(0,T ) is587

asymptotically stable. Then, p(0,T )− p∞ decays exponentially588

with increasing T . Moreover, for a fixed T , p(0,T ) depends589

linearly on pT − p∞. Hence, x̄EMPC depends linearly on pT − p∞590

and decays exponentially for increasing T . �591

Remark 3 (Primal interpretation of E(x) = x>λ̄ 1).592

The end penalty E(x) = x>λ̄ 1 is equivalent to a gradient-593

correcting linear rotation of the stage cost. The EMPC prob-594

lem of Lemma 6 can be expressed in its rotated form, i.e.595

OCP2, SOP2, by setting Sx(x) = −λ̄ 1. For PT = 0 this yields596

L2(z) = F(z)+(Ax+Bu)>λ̄ 1 and M(x(0),x(T )) = 0. This for-597

mulation can be seen as the form ÔCP
1
, ŜOP

1
of a problem598

formulated using the same system dynamics, but the cost de-599

fined by F̂(z) = L2(z) and Ê(x) = 0, which implies that ˆ̄
λ 1 = 0.600

Moreover, the optimality conditions of the SOP2 ≡ ŜOP
1

imply601

that F̂ has no gradient at the optimal steady-state pair z̄ = 0.602

Nevertheless, the problem does not necessarily define a TMPC603

scheme, since the cost F̂ is in general not positive definite.604

Remark 4 (Adjoint interpretation of E(x) = x>λ̄ 1).605

Note that the end penalty can be motivated not only as a lo-606

cal gradient correction of F̂(z) = L2(z) at z̄. In the view of607

the NCOs of OCP1, we observe that E(x) = x>λ̄ 1 implies the608

boundary/transversality condition λ 1(T )= λ̄ 1. Having in mind609

that, for OCPs without terminal constraints, leaving arcs of610

turnpikes are driven by λ 1(T ) = 0, λ̄ 1 , 0—i.e. they do not611

occur whenever the optimal steady state corresponds to the un-612

constrained minimum of F(z)—we can interpret E(x) = x>λ̄ 1
613

as a simple way of enforcing a terminal constraint on the ad-614

joint at λ̄ 1, which corresponds to the optimal steady state z̄.615

Remark 5 (Stabilizing indefinite LQR feedback).616

A sufficient condition for the LQR feedback to be stabilizing is617

S = 0, Q = QT � 0, such that C>C = Q with (A,C) detectable,618

cf. [2]. However, in many relevant EMPC applications, this619

is not the case. We remark that if the set Z is not compact,620

then strict dissipativity does not automatically imply stability621

of infinite horizon optimal solutions. A simple example is given622

by ẋ = x+ u, F(x,u) = u2. Strict dissipativity holds with e.g.623

S(x) = x2, but the optimal solution is u = 0 and the system is624

unstable. If, on the other hand, Z is compact and the problem is625

feasible, the optimal solution stabilizes the system to the origin.626

For more insight on this problem see [46] and, for a discrete-627

time counterpart, [22].628

Remark 6 (Case PT = 0).629

The case of PT = 0 is particularly interesting because it cor-630

responds to the case of a formulation without quadratic terms631

in the terminal penalty. That PT , 0 is not necessary to guar-632

antee stability is readily seen in the case Q = QT � 0, such633

that C>C = Q with (A,C) detectable, cf. [2]. Unfortunately, a634

characterization of stability conditions in the generic case when635 [
Q S
S> R

]
� 0 is, to the best of the authors’ knowledge, not636

available.637

Before we state our main result, we introduce the following
closed-loop dynamics

ẋ = Ax+Bu1
LQ(τ,x(tk)), x(0) = x0 (29a)

τ := t− tk, k = max{k ∈ N |τ = t− kδ ∈ [0,δ )} . (29b)

generated by the sampled-data EMPC based on OCP1
LQ.638

Theorem 5 (Asymptotic stability of EMPC).639

Consider an EMPC controller based on the regular positive640

OCPi, i ∈ I with T < ∞. Let Conditions A1-A3 of Theorem 1641

hold. Then, the following holds:642

(i) If E(x) = x>λ̄ 1 and T,δ ≥ 0 are chosen such that (29)643

is uniformly exponentially stable at x = x̄, then there ex-644

ists T̃ ≥ T, δ̃ ∈ (0,δ ) such that for all x0 ∈ X0 the closed645

EMPC loop is uniformly exponentially stable at x̄.646
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(ii) If, E(x) = 0, λ̄ 1 , 0, PT = 0, δ = 0, and T is chosen such647

that the instantaneous feedback (9) asymptotically stabi-648

lizes the linear system (A,B), then there exist a finite hori-649

zon T̃ ≥ T and x̄EMPC , x̄ such that for all x0 ∈ X0 the650

closed EMPC loop is exponentially stable at x̄EMPC.651

PROOF. Conditions A1–A3 ensure that Theorem 1, respec-
tively Corollary 1, holds for instantaneous (δ = 0) or sampled-
data (δ > 0) EMPC. Hence, we can conclude that, by choosing
T sufficiently large and δ sufficiently small, OCPi, i ∈ I is re-
cursively feasible and the closed-loop system will converge to
some small neighborhood of x̄. Thus, it suffices to locally an-
alyze the closed-loop dynamics generated by EMPC based on
OCP1

ẋ = f (x,u1(τ,x(tk)), (30)

where τ is defined by (29b). Part (i) considers the sampled-data652

case δ > 0 and Part (ii) deals with the instantaneous case δ = 0.653

Part (i): Note that in the analysis we have to acknowledge654

the fact that the rhs of the sampled-data system (30) does not655

necessarily evolve continuously with time.656

Consider the initial condition x0 = x̄. Due to the terminal657

penalty E(x) = x>λ̄ 1, the NCO (5) admit the steady-state so-658

lution (x̄, ū, λ̄ 1). Moreover, as by assumption OCP1 is regular659

positive at z̄, the triple (x̄, ū, λ̄ 1) satisfies local second-order suf-660

ficient conditions of optimality for OCPs, cf. [35, Thm. 2.2].661

Due to the LQ approximation properties of Lemma 2, we may662

even conclude that (x̄, ū, λ̄ 1) is the unique optimal solution orig-663

inating at x(0) = x̄.10 Thus, (x̄, ū) is a steady state of (30).664

Now, linearizing (30) around (x̄, ū) yields

ẋ = Ax+Bu1
LQ(τ,x(tk))+O(‖x0− x̄‖2), (31)

whereby we employ Lemma 2 to approximate u1(·) by u1
LQ(·).

Invoking Lemma 2 and (9a) we have that

u1
LQ(τ,x(tk)) =−K(t,T )x1

LQ(t)−R−1(B>p(τ,T )+ r)

Using (10), (28), which implies that p(τ,T ) ≡ λ̄ 1, and (26),
which implies that B>λ̄ 1 + r = 0 we obtain

u1
LQ(τ,x(tk)) =−K(τ,T )x1(t)+O(‖x0− x̄‖2). (32a)

Moreover, for τ ∈ [0,δ ), the triangle inequality gives that

‖x0− x̄‖ ≤ ‖x(t)− x̄‖+‖x(t)− x0‖ ≤ (1+δL f )‖x(t)− x̄‖,
(32b)

where the bound on the right follows from ‖x(t) − x0‖ ≤
δL f ‖x(t) − x̄‖ and L f is a uniform Lipschitz constant of
f (x,u1(τ,x(tk)). Using (32) to rewrite (31) yields

ẋ(t) = (A−BK(τ,T ))x(t)+O(‖x(t)− x̄‖2).

Now invoking a standard result [28, Thm. 3.3.41], we conclude665

that x̄ is a locally uniformly exponentially stable equilibrium of666

(30).667

10Any competing optimal solution would need to satisfy (10), which however
states that for x0 = x̄ the unique LQ solution is met.

Part (ii): On a sufficiently small neighborhood of x̄, we again
characterize the optimal solution by the corresponding LQ ap-
proximation (8). Due to δ = 0 the closed-loop dynamics of the
local approximation turn out to be the LTI system

ẋ = (A−BK(0,T ))x−BR−1(B>p(0,T )+ r). (33)

Hence, by assumption within a sufficiently small neighborhood668

the LQR solution will be asymptotically stabilizing and thus the669

EMPC will converge to x̄EMPC, which differs from x̄ if λ̄ 1 , 0.670

2671

Remark 7 (Limit-cycles in sampled-data EMPC).
The subtle difference between Part (i) and Part (ii) of the above
theorem is that a sampled-data δ > 0 local LQ-approximation
with E(x)= x>pT , pT , λ̄ 1 cannot be expected to be stabilizing.
This is easy to see in (9a), (28): the fact that pT , λ̄ 1 implies
that p(t,T ) . const, for all t ∈ [0,δ ). In turn this implies that
the LQ-approximation has the closed-loop dynamics

ẋ = (A−BK(τ,T ))x−BR−1(B>p(τ,T )+ r),

with τ from (29). Note that this system differs from (33) by the672

periodic forcing−BR−1(B>p(τ,T )+r). In other words, when-673

ever pT , λ̄ 1 and δ > 0, the closed-loop system will approach a674

limit cycle in-between two sampling instants. However, in typi-675

cal EMPC implementations with piecewise constant inputs one676

will not observe this as one often computes the solutions only at677

the sampling instants. In Section 4.3 we present a numerical ex-678

ample exhibiting the predicted limit-cycle behavior in-between679

sampling instants.680

Finally, without further elaboration, we remark that uniform681

asymptotic stability of (29) does not suffice to guarantee local682

uniform exponential stability of (30) , cf. [28, Rem. 3.3.42].683

Thus the assumption of uniform exponential stability of (29) at684

x̄ in Part (i) is crucial.685

Remark 8 (Asymptotic stability in instantaneous EMPC).686

Recall that Lemma 6 derives a relation between pT , λ̄ 1 and687

the closed-loop steady-state attained by the instantaneous LQR688

feedback. Combining Theorem 5 Part (ii) with Lemma 6, we ob-689

tain that if instantaneous EMPC practically stabilizes a neigh-690

borhood of x̄, then (a) the closed EMPC loop converges to some691

steady state x̄EMPC , x̄ inside this neighborhood, and (b) con-692

sidering E(x) = x>λ̄ 1 will lead to stability of x̄.693

We conclude the discussion with a direct consequence of694

Theorem 5.695

Corollary 3 (Recovering average performance for EMPC).696

The average performance of the EMPC scheme from Theorem 5697

is no worse than that of any TMPC scheme.698

4. Simulation Examples699

In this section, we provide three numerical examples illus-700

trating the theoretical developments of the paper.701
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4.1. A Linear System with Quadratic Cost702

Consider the linear system

ẋ(t) = Ax(t)+Bu(t), F(z) =
1
2

z>Hz+h>z, (34a)

A =

[
−2.4 0

1.2 1.2

]
, H =

 0 0 1
0 0 0
1 0 0.2

 , (34b)

B =

[
0.05
−0.05

]
, h =

 0.0
−24.0
−0.5

 . (34c)

Note that the stage cost does have a gradient at the optimal703

steady-state. Moreover, the Hessian of the stage cost is indef-704

inite, such that a linear rotation of the cost is not sufficient to705

yield a positive-definite stage cost. Because the system is lin-706

ear, it is possible to compute the storage function by solving707

an SDP [48]. Note that the technique has been developed for708

discrete-time systems but can readily be adapted to the case of709

continuous-time systems. Moreover, sampled-data systems can710

alternatively be considered as discrete-time systems within the711

framework of [48]. Finally, we stress here that, because of the712

absence of active constraints at steady-state, the linear rotation713

of the stage cost corresponds to setting h = 0.714

We use a prediction horizon T = 0.5 s, a sampling time715

δ = 0.1 s, and we use an explicit Runge-Kutta scheme of order716

4 with a fixed time grid based on 50 identical integration steps717

per sampling interval. We consider the three initial conditions718

(0,0.3), (−0.3,−0.1), (0,0). The closed-loop trajectories ob-719

tained by the original formulation and by the formulation with720

the linearly rotated cost, i.e. using E(x) = x>λ̄ 1, are displayed721

in Figure 1. As predicted by the theory, the linearly rotated722

scheme stabilizes the system to the optimal steady-state, while723

the original scheme does not. Indeed, while in the first case the724

MPC predictions do not leave the optimal steady-state, in the725

second case, they first bring the system close to the steady-state726

but afterwards they move away from it.727

4.2. A Simple Nonlinear System728

Consider the nonlinear system

ẋ =
[

0.1u(1− x1)−1.2x1
0.1u(1− x2)+1.2x1

]
, (35a)

F(x,u) =−2ux2 +0.5u+0.1(u−12)2, (35b)

which has an optimal steady-state at x̄ = (0.5,0.5), ū = 12. We729

use a prediction horizon T = 0.5 s, a sampling time δ = 0.1 s,730

we use an explicit Runge-Kutta of order 4 with a fixed time grid731

based on 50 identical integration steps per sampling interval.732

We consider the three initial conditions (0.5,0.8), (0.2,0.4),733

(0.5,0.5). The closed-loop trajectories obtained by the origi-734

nal formulation and by the formulation with the linearly rotated735

cost are displayed in Figure 2.736

We remark that (34) is the linear quadratic approximation737

of (35), computed at the optimal steady-state, cf. (8).738
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Figure 1: Linear system with quadratic cost. Closed-loop simulations starting
from three different initial conditions. The MPC prediction at each sampling
instant are displayed in grey lines. The optimal steady-state is displayed as a
black circle. Left graph: formulation with linear rotation; right graph: formu-
lation without linear rotation.

4.3. Convergence to the Economically Optimal Steady-State739

In this subsection, we verify the results of Lemma 6 nu-
merically. We define the closed-loop steady state z̄cl

EMPC =
(x̄cl

EMPC, ū
cl
EMPC) obtained with the EMPC formulation. We

show the linear dependence of z̄cl
EMPC on the linear rotation

E(x) = x>pT , and the exponential dependence of z̄cl
EMPC on the

prediction horizon T . Moreover, in order to measure average
performance in the nominal case, we use the metric

GEMPC =
F(x̄cl

EMPC, ū
cl
EMPC)−F(x̄, ū)

F(x̄, ū)
. (36)

In Figure 3, the closed-loop steady-state z̄EMPC is displayed740

for several choices of cost rotations, obtained by using E(x) =741

σx>λ̄ 1, σ ∈ [0,1]. For the linear-quadratic case, one obtains742

that the closed-loop steady-state drifts away from the opti-743

mal steady-state with a linear relation to σ , as predicted by744

Lemma 6. For the nonlinear case, instead, the drift is present745

but nonlinear.746

In Figure 4, the distance of the closed-loop steady-state747

z̄EMPC is displayed for an increasing prediction horizon T . As748
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Figure 2: Nonlinear system. Closed-loop simulations starting from three dif-
ferent initial conditions. The MPC prediction at each sampling instant are dis-
played in grey lines. The optimal steady-state is displayed as a black circle.
Left graph: formulation with linear rotation; right graph: formulation without
linear rotation.

predicted by Lemma 6, for the linear-quadratic case x̄cl
EMPC con-749

verges exponentially to x̄. Moreover, we observe a similar be-750

haviour also for the nonlinear case. Finally, also the average751

performance converges exponentially with increasing predic-752

tion horizons.753

In Figure 5 we display the sampled-data LQR formulation for754

the considered linear-quadratic example. It can be seen that the755

formulation without gradient correction has an oscillatory be-756

haviour, as predicted by Remark 7. We remark that in Figures 1757

and 2 we only displayed the states at the sampling instants and758

the oscillations are therefore not visible.759

4.4. Continuously Stirred Tank Reactor760

We consider the example of a continuously stirred tank re-
actor (CSTR) [43], also used in [17, 18] to investigate turnpike
and dissipativity properties of OCPs. A model of the reactor,
including the concentration of species A and B, cA,cB in mol/l
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Figure 3: Closed-loop steady state obtained with piecewise constant inputs and
several cost rotations, obtained by using E(x) =σx>λ̄ 1, σ ∈ [0,1]. Comparison
of the nonlinear system (continuous line) and its local linear-quadratic approx-
imation (dashed line).
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Figure 4: Left graph: convergence of the closed-loop steady state to the eco-
nomically optimal steady-state for increasing horizon length T and piecewise
constant inputs. Right graph: convergence of the average performance to the
economically optimal performance for increasing horizon length T . The non-
linear example is displayed in continuous line and the linear-quadratic example
in dashed line.

and the reactor temperature ϑ in ◦C as state variables, reads

ċA =−rA(cA,ϑ)+(cin− cA)u1

ċB = rB(cA,cB,ϑ)− cBu1

ϑ̇ = h(cA,cB,ϑ)+α(u2−ϑ)+(ϑin−ϑ)u1,

where rA = k1cA + k3c2
A, rB = k1cA − k2cB, h =

−δ (k1cA∆HAB + k2cB∆HBC + k3c2
A∆HAD) and ki =

ki0e
−Ei

ϑ+ϑ0 , i = 1,2,3. The system parameters can be
found in [43]. The states and inputs are subject to the con-
straints cA ∈ [0,6]mol

l ,cB ∈ [0,4]mol
l ,ϑ ∈ [70,150]◦C and

u1 ∈ [3,35] 1
h ,u2 ∈ [0,200]◦C. We consider the problem of

maximizing the production rate of cB; thus F in (3) and (6) is

F(cB,u1) =−βcBu1, β > 0.

In [18], the globally optimal steady state is given as

x̄ = [2.1756,1.1049,128.53]>, ū = [35,142.76]>.

The original formulation yields a singular OCP with a turn-761

pike that seems not to be exact, though no formal proof of its762

non-exactness is currently available. In this paper, we regular-763

ize the problem in order to avoid chattering of the actuators by764

adding the term 0.001‖u− ū‖2
2 to the stage cost. This makes the765

OCP regular positive, which implies that the turnpike cannot be766

exact.767
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Figure 5: Sampled-data LQR formulation with and without gradient correction,
respectively in continuous and dashed line. Prediction horizon T = 0.5 s, sam-
pling time δ = 0.1 s. Left graph: state evolution in time, x1 in red, x2 in black.
Right graph: state-space plot.

The closed-loop trajectories obtained with and without the768

linear rotation of the cost are displayed in Figure 6. It can769

be seen that, also in this case, when the cost is not rotated the770

closed-loop system converges to a steady-state which is not eco-771

nomically optimal, which is in agreement with the results in772

[18]. Without linear rotation of the cost, one obtains the closed-773

loop average loss GEMPC = 1.49 %.774

5. Conclusion775

This paper has investigated how the addition of a gradi-776

ent correcting linear end penalty to EMPC formulations with-777

out stabilizing terminal conditions affects closed-loop stability778

properties in sampled-data formulations. We have highlighted779

how different OCP definitions used in the literature can be re-780

lated to the same MPC formulation. Put differently, we have781

shown that the proposed linear end penalties are equivalent to782

a linear rotation of the stage cost. We have then proven that,783

whenever the Lagrange multiplier of the corresponding SOP is784

nonzero, economic MPC based on regular OCPs cannot be sta-785

bilizing to the economically optimal steady state. Under the786

assumption of strict dissipativity, rotating the cost using the787

storage function solves this issue. However, computing stor-788

age functions for nonlinear systems is in general difficult. Our789

main result alleviates this problem as it establishes a strong con-790

nection between the storage function and the Lagrange multi-791

plier of the SOP. Using this relation, we prove that, under mild792

conditions, a linear rotation of the cost is sufficient to enforce793

local uniform exponential stability of the economically optimal794

steady state. Moreover, we have highlighted that in sampled-795

data EMPC one should expect limit cycle behavior in-between796

sampling instants whenever the gradient correcting end penalty797

is not employed. Several simulations underpin the efficacy of798

linear gradient correcting rotations.799

Ongoing research is aiming at extending our results to the800

discrete-time case. Future investigations will include a thor-801

ough analysis of the connection between regular OCPs, turn-802

pikes and leaving arcs. Moreover, the impact of a linear rota-803
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Figure 6: CSTR example discretized using 50 steps of explicit RK 4 over a
sampling time Ts = 1 min and prediction horizon T = 3 min. Top graph: stan-
dard implementation, without cost rotation. Bottom graph: cost rotation. The
closed-loop trajectories are displayed in continuous and dashed line for two test
scenarios. The economically optimal steady state is displayed in dotted line.

tion of the cost on the transient performance will be the subject804

of future research.805
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Appendix A. Proof of Lemma 1809

The NCO for the considered LQ OCP read ẋ
−λ̇

0

=

 A 0 B
Q A> S
S> B> R

x
λ

u

+
 0

q
r

 , (A.1)

[
x(0)
λ (T )

]
=

[
x0
PT x(T )+ pT

]
. (A.2)

As in standard LQR theory, we consider a backsweep ansatz,
where λ (t) = P(t)x(t)+ p(t) is motivated by the terminal con-
straint for the adjoint [6, 2]. Differentiating this ansatz function
yields

0 =−λ̇ + Ṗx+Pẋ− ṗ. (A.3)

Solving the NCO for u as a function of x and λ , and substituting
λ (t) = P(t)x(t)+ p(t), one obtains (9a). By substituting λ (t) =
P(t)x(t)+ p(t), (A.3) and u from (9a) into the second equation
in (A.1), one obtains

0 =
(

Q+A>P+PA− (PB+S)R−1(B>P+S>)+ Ṗ
)

x

+
(
−(R−1(B>P+S>)>B>+A>)p−R−1(B>P+S>)>r+q− ṗ

)
.

Using K := R−1(B>P+S>), we can rewrite the above equation

0 =
(

Q+A>P+PA− (PB+S)K + Ṗ
)

x

+
(
(A>−K>B>)p+q−K>r− ṗ

)
.

As the above equation has to hold for all x, Equations (9) are810

readily obtained.811

Furthermore, it is known from optimal control theory that the
adjoint λ is directly related to the optimal value function V by
λ (t) =Vx(x(t)). As this has to hold at t = 0, we obtain

V 1
x (x(0)) = λ

1(0) = P(0,T )x(0)+ p(0,T ).

Integration with respect to x(0) yields the desired optimal value812

function.813
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mondo, D., Allgöwer, F. (Eds.), Nonlinear Model Predictive940

Control - Towards New Challenging Applications. Vol. 384 of941

Lecture Notes in Control and Information Sciences. Springer942

Berlin, pp. 119–138.943

[41] Rawlings, J., Mayne, D., 2009. Model Predictive Control: The-944

ory & Design. Nob Hill Publishing, Madison, WI.945
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