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Anna Gallo ,1,2,* Diego Garlaschelli ,1,2,3 and Tiziano Squartini 1,4,2

1IMT School for Advanced Studies, Piazza San Francesco 19, 55100 Lucca, Italy
2INdAM-GNAMPA Istituto Nazionale di Alta Matematica “Francesco Severi,” P.le Aldo Moro 5, 00185 Rome, Italy
3Lorentz Institute for Theoretical Physics, University of Leiden, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands

4Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

(Received 24 April 2024; accepted 8 November 2024; published 19 December 2024)

According to the so-called strong version of structural balance theory, actors in signed social networks avoid
establishing triads with an odd number of negative links. Generalizing, the weak version of balance theory
allows for nodes to be partitioned into any number of blocks with positive internal links, mutually connected by
negative links. If this prescription is interpreted rigidly, i.e., without allowing for statistical noise in the observed
link signs, then most real graphs will appear to require a larger number of blocks than the actual one, or even to
violate both versions of the theory. This might lead to conclusions invoking even more relaxed notions of balance.
Here, after rephrasing structural balance theory in statistically testable terms, we propose an inference scheme
to unambiguously assess whether a real-world signed graph is balanced. We find that the proposed statistical
balance theory leads to interpretations that are quite different from those derived from the current deterministic
versions of the theory.
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Introduction. The interest towards signed networks dates
back to balance theory, first proposed by Heider as a theory
of behavior [1]. As the name suggests, the theory revolves
around the concept of “balance,” i.e., the tendency of peo-
ple to engage, and remain, in situations that support their
beliefs. The practice of adopting signed graphs to model so-
cial networks subsequently led Cartwright and Harary [2] to
introduce the structural version of balance theory [2–6]: A
complete signed graph is said to be balanced if all triads have
an even number of negative edges, i.e., either zero (in this
case, the three edges are all positive) or two. The so-called
structure theorem states that a complete signed graph is bal-
anced if and only if its set of nodes can be partitioned into
k = 2 disjoint subsets whose intramodular links are all posi-
tive and whose intermodular links are all negative. Cartwright
and Harary extended the definition of balance to incomplete
graphs [2] by including cycles of length larger than three: A
network is now said to be balanced if all cycles have an even
number of negative edges (although the points of each subset
are no longer required to be connected). Taken together, the
criteria above define the so-called strong balance theory.

In an attempt to make such a framework more applicable,
Davis introduced the concept of k-balanced networks: Ac-
cording to it, signed graphs are balanced if their set of nodes
can be partitioned into k � 2 disjoint subsets with positive
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intramodular links and negative intermodular links [7]. This
generalized definition of balance has led to the formulation
of the weak balance theory, according to which triads whose
edges are all negative are balanced as well, since each node
can be thought of as a group on its own. From a mesoscopic
perspective, however, both versions of the balance theory
require the presence of positive blocks along the main diag-
onal of the adjacency matrix (k = 2, according to the strong
variant; k > 2, according to the weak variant [8,9]) and of
negative off-diagonal blocks. Taken together, the strong and
the weak variants of the balance theory define what may be
called traditional balance theory: Hence, k-balanced networks
are traditionally balanced.

Currently, when real-world networks are used to test tra-
ditional balance theory, the possible presence of statistical
noise in the observed link signs is not taken into account. As
a result, a network produced by a k-balanced process might
appear as requiring a larger number k′ > k of blocks to be
consistent with the theory, hence favoring the weak over the
strong version of the theory. Even more dramatically, there
might not be any partition into blocks with the “ideal” sign
assignments compatible with traditional balance theory. The
theory might then be erroneously dismissed in favor of looser
alternatives such as the so-called relaxed balance theory [10],
which allows for the blocks of the matrix to be connected
with the “wrong” signs, raising, however, the problem that a
block structure with arbitrary signs can always be found on
any signed graph, thus not being truly informative about the
tendency towards balance of real-world networks. Here, we
recast the idea of balance theory within a statistical frame-
work, thus allowing for noise in the empirical link signs, while
attempting at identifying the underlying “denoised” signed
block structure from which more robust conclusions can be
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drawn about the observed level of balance. As expected, we
find that the proposed statistical variant of the theory leads to
conclusions that are quite different from those derived from
the current deterministic variants.

Setting up the formalism. Each edge of a signed graph can
be positive, negative, or missing: As we will focus on binary
undirected signed networks, a generic entry of the signed adja-
cency matrix A will be assumed to read ai j = −1, 0,+1, with
ai j = a ji,∀ i < j. To ease mathematical manipulations, let us
employ Iverson’s brackets (a notation ensuring all quantities
of interest to be non-negative—see Supplemental Material
Sec. A [11]) and define the quantities a−

i j = [ai j = −1], a0
i j =

[ai j = 0], a+
i j = [ai j = +1]: The new variables are mutually

exclusive, sum to 1, and induce the two matrices A+ and A−,
satisfying A = A+ − A− and |A| = A+ + A−. The number of
positive and negative links is defined as L+ = ∑N

i=1

∑
j(>i) a+

i j

and L− = ∑N
i=1

∑
j(>i) a−

i j , respectively.
Traditional balance theory. The top-down formulation of

the traditional balance theory leads quite naturally to the
definition of a score function for quantifying the “degree of
compatibility” of a given partition with the theory itself. It is
referred to as frustration1 and reads

F (σ) =
N∑

i=1

∑

j(>i)

a−
i jδσi,σ j +

N∑

i=1

∑

j(>i)

a+
i j

(
1 − δσi,σ j

)

= L−
• + L+ − L+

•
= L−

• + L+
◦ , (1)

where σ ≡ {σi} stands for a vector of labels characterizing a
generic partition and δσi,σ j is the Kronecker delta (i.e., δσi,σ j =
1 if σi = σ j and 0 otherwise). In other words, F (σ) counts the
amount of misplaced links according to the traditional bal-
ance theory, i.e., the number of negative links within modules
(indicated with a solid dot) plus the number of positive links
between modules (indicated with an open dot). The simplest
operative criterion for singling out a k-balanced partition is
based upon the following theorem (see Refs. [7,9,14,15] for
similar results).

Theorem I. F (σ) = 0 ⇐⇒ the partition σ is k balanced.
Proof. Sufficiency condition: F (σ) = 0 �⇒ the partition

σ is k balanced. Since L+
◦ � 0 and L−

• � 0, F (σ) = 0 implies
that L+

◦ = 0 and L−
• = 0; hence, the definition of k-balanced

partition is satisfied. Necessity condition: The partition σ

is k-balanced �⇒ F (σ) = 0. Since a k-balanced partition is
defined by the presence of a clustering with k subsets, no
negative links within modules and no positive links between
modules, L−

• = 0 and L+
◦ = 0; hence, F (σ) = 0. �

In other words, the bare numerical value F (σ) can be
thought of as acting in a thresholdlike fashion, classifying
the configurations characterized by F (σ) = 0 as balanced
and the configurations characterized by F (σ) > 0 as frus-
trated. The criterion embodied by the F test is, however, too
strict for real-world networks, which are hardly (if ever) found
to obey it: As Table I shows, in fact, none of the listed configu-
rations satisfies it. As noticed in Ref. [10], the block structure

1More formally, line index of imbalance [12,13].

TABLE I. Empirical amount of frustration, detected by searching
for the partition minimizing F (σ) that characterizes the listed real-
world networks: According to the F test, none of them turns out to
satisfy the traditional balance theory. The same result holds true even
when employing the generalized definition of the frustration index
(here, implemented by posing α = 0.2 and α = 0.8).

G(σ|α)

N L F (σ ) α = 0.2 α = 0.8

Fraternity [16] 16 40 1 0.2 0.4
New Guinea Highlands
(N.G.H.) Tribes [16]

16 58 2 1.4 0.4

Slovenian Parliament [8] 10 45 2 0.4 0.8
Monastery [16] 18 49 5 2.4 1.8
Spanish School 2 [17] 182 866 69 43.4 42.4
Spanish School 1 [17] 359 2048 153 44 61
U.S. Senate [16] 100 2461 247 166.8 56
CoW, 1946–1949 [18] 60 360 12 3.8 5.8
CoW, 1950–1953 [18] 72 437 11 5.6 5.4
CoW, 1954–1957 [18] 80 492 27 7 12.2
CoW, 1958–1961 [18] 101 613 25 6.4 14.6
CoW, 1962–1965 [18] 109 642 32 16.8 24.6
CoW, 1966–1969 [18] 111 607 24 11.8 15.6
Epidermal Growth
Factor Receptor (EGFR)
[16]

313 755 189 51.2 46.8

Macrophage [16] 660 1897 316 91.4 77.2
Bitcoin Alpha [19] 3775 14120 1399 337.9 585.6
Bitcoin
Over-The-Counter
(OTC) [19]

5875 21489 3259 540.4 800.4

defining the traditional balance theory is overly restrictive,
dooming the vast majority of real-world signed networks to
be quickly dismissed as frustrated—in fact, observing one
misplaced link is enough to let one conclude that the theory
is not obeyed.

Softening frustration. In order to overcome what was per-
ceived as a major limitation of the traditional balance theory,
Doreian and Mrvar [10] proposed to replace F (σ) with its
softened variant

G(σ|α) = αL−
• + (1 − α)L+

◦ , (2)

allowing (i) the misplaced positive links to be weighted more
upon choosing 0 � α < 1/2 and (ii) the misplaced negative
links to be weighted more upon choosing 1/2 < α � 1. Even
ignoring the ambiguity due to the lack of a principled way
for selecting α (the so-called “α problem” in Ref. [13]), the
criterion embodied by the G test is still too strict: As Table I
shows, in fact, none of the listed configurations satisfies it
either. This is rigorously stated by the following theorem,
whose proof is immediate.

Theorem II. If 0 < α < 1, F (σ) = 0 ⇐⇒ G(σ|α) = 0,
i.e., the partition σ is k balanced.2

2Notice that the values α = 0 and α = 1 would, respectively, lead
to the trivially balanced partition characterized by a single commu-
nity gathering all nodes together and N single-node communities (or
singletons).
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Relaxed balance theory. In light of previous results, the sec-
ond attempt pursued by Doreian and Mrvar [10] to overcome
the perceived limitations of the traditional balance theory was
more radical, as they proposed to relax it by allowing for the
presence of positive off-diagonal blocks and negative diagonal
blocks, a generalization that has gained the name of relaxed
balance theory [10]. Such a formulation, however, lacks a
proper mathematization, as a score function such as F (σ)
or G(σ|α) cannot be easily individuated. In addition, it is
affected by the problem highlighted in Ref. [20]: “[...] if the
number of clusters is left unspecified a priori, the best partition
is the singleton’s partition (i.e., each node in its own cluster)
[...].” A bit provocatively, one may say that “the remedy seems
worse than the disease” as no criterion is provided to (i)
quantify the extent of the violation of the traditional balance
theory and (ii) assess if it is indeed so relevant to justify the
introduction of an alternative conceptual framework.

Statistical balance theory. Recasting the theory of balance
within a statistical framework solves all the aforementioned
problems at once, allowing us to define an inference scheme
to unambiguously assess if a signed graph is either tradition-
ally or relaxedly balanced, hence overcoming the limitations
of the F -based and G-based tests while providing a proper
mathematization of the relaxed balance theory.

In order to define a statistical theory of balance, let us
suppose the presence of a probabilistic model behind the ap-
pearance of any signed configuration: The traditional balance
theory could be then rephrased by posing

p−
rr = 0, r = 1 . . . k, (3)

and

p+
rs = 0, ∀ r < s, (4)

with p+
rr indicating the probability that any two nodes belong-

ing to the same block r are connected by a positive link, p+
rs

indicating the probability that any two nodes belonging to the
different blocks r and s are connected by a positive link, and
analogously for their negative counterparts.

The starting point of our approach is that of softening these
positions, replacing them with the milder relationships

sgn[p+
rr − p−

rr] = +1, r = 1 . . . k, (5)

which amounts to requiring p+
rr > p−

rr , r = 1 . . . k, and

sgn[p+
rs − p−

rs] = −1, ∀ r < s, (6)

which amounts to requiring p+
rs < p−

rs,∀ r < s. A configura-
tion satisfying these relationships will be claimed to support
the statistical variant of the traditional balance theory: specif-
ically, its strong variant if k = 2 and its weak variant if k > 2;
otherwise (because p+

rr � p−
rr for some diagonal blocks or

p+
rs � p−

rs for some off-diagonal blocks), it will be claimed
to support the statistical variant of the relaxed balance the-
ory. Additionally, we call a partition homogeneous if either
p+

rs = 0 or p−
rs = 0,∀ r � s; otherwise, it will be called het-

erogeneous (see Supplemental Material Sec. B [11]). In other
words, the deterministic rules first defined by Cartwright,
Harary, and Davis are replaced by a probabilistic criterion in-
dividuating “a tendency” to obey, or not to obey, the traditional
balance theory.

Tuning the aforementioned parameters on a given signed
network requires a generative model to be specified: Here,
we will adopt the signed stochastic block model (considered
also in Refs. [21–23] but derived within the exponential ran-
dom graph framework in Supplemental Material Sec. B [11]),
defined by the likelihood function

LSSBM =
k∏

r=1

(p+
rr )L+

rr (p−
rr )L−

rr (1 − p+
rr − p−

rr )(
Nr
2 )−Lrr

×
k∏

r=1

∏

s(>r)

(p+
rs)L+

rs (p−
rs)L−

rs (1 − p+
rs − p−

rs)Nr Ns−Lrs ,

(7)

where Nr is the number of nodes constituting block r, L+
rr

(L−
rr) is the number of positive (negative) links within block

r, L+
rs (L−

rs) is the number of positive (negative) links between
blocks r and s, ∀ r < s and the probability coefficients read
p+

rr = 2L+
rr/Nr (Nr − 1), p−

rr = 2L−
rr/Nr (Nr − 1), r = 1 . . . k,

and p+
rs = L+

rs/NrNs, p−
rs = L−

rs/NrNs,∀ r < s. As maximizing
the bare likelihood is a recipe known to be affected by a num-
ber of limitations [13], we have opted for the minimization
of

BIC = κSSBM ln n − 2 lnLSSBM, (8)

referred to as the Bayesian information criterion (BIC). Deriv-
able as the saddle-point approximation of the (Bayesian)
evidence of a model, such a criterion embodies a trade-off
between parsimony [accounted for by the first addendum,
with κSSBM being the number of parameters of the model3

and n = N (N − 1)/2 proxying the system dimensions] and
accuracy (accounted for by the second addendum, i.e., the
log-likelihood term) [24,25]. Although the magnitude of
both addenda rises with the number of parameters, the log-
likelihood term drives BIC towards more negative values
while the parsimony term drives BIC towards more positive
values: The number of parameters in correspondence of which
the minimum is reached is selected and drives the network
partition.

Our bottom-up approach is “maximally agnostic” towards
any theory of balance, letting the data determine the number
and the values of the parameters best fitting a given con-
figuration: BIC is, in fact, sensitive to the “signed density”
of the modules “by design,” hence capable of spotting the
presence of groups of nodes as well as attributing to each of
them the sign of the majority of its constituting links. From
a purely computational perspective, instead, the complexity
of the algorithm to minimize BIC decreases with the link
density c = 2L/N (N − 1): In other words, the denser the con-
figuration, the faster the algorithm (see Supplemental Material
Sec. B [11]).

Results. First, let us test our prescription on a number
of synthetic configurations. As Fig. 1 shows, BIC mini-
mization always leads to recovering the planted partition,

3To avoid confusion with the number of modules k characterizing
k-balanced networks, we have indicated the number of a model pa-
rameters as κ: Naturally, κSSBM = k(k + 1) since we need to estimate
two parameters per module.
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FIG. 1. Consistency checks on four synthetic configurations (positive links are colored in blue; negative links are colored in red):
Minimizing BIC always leads to recovering the planted partition, be it homogeneous and balanced according to the traditional balance theory
(first panel); homogeneous and balanced according to the relaxed balance theory (second and third panel); or heterogeneous and balanced
according to the statistical variant of the relaxed balance theory (fourth panel). Nodes of different colors belong to different groups.

irrespectively from the values of the sets of coefficients
{p+

rr}, {p−
rr}, {p+

rs}r<s, {p−
rs}r<s, i.e., be it a homogeneous parti-

tion, balanced according to the weak variant of the traditional
balance theory (more precisely, a 4-balanced partition); two
homogeneous partitions, balanced according to the relaxed
balance theory (e.g., the third adjacency matrix is defined by
p+

11 = p+
22 = p+

33 = 0 and p−
12 = p−

13 = p−
23 = 0); a heteroge-

neous partition, balanced according to the statistical variant of
the relaxed balance theory (i.e., the fourth adjacency matrix,
defined by p+

11 < p−
11, p+

22 > p−
22, p+

33 > p−
33 and p+

12 < p−
12,

p+
13 < p−

13, p+
23 < p−

23). Additional exercises of the kind are
reported in Supplemental Material Sec. B [11], where it is
shown that employing BIC leads to robust inference towards
perturbations aimed at degrading a given balanced partition,
across a wide range of related parameter values.

Second, let us compare our recipe with that prescribed to
minimize F (σ). As Fig. 2 shows, implementing the latter does
not lead to recovering the planted partition (in this case, a

FIG. 2. Partitions recovered upon minimizing F (σ) (left panel)
and upon minimizing BIC (right panel): While minimizing F (σ)
leads to recovering a partition that is compatible with the traditional
balance theory even if there is none “by design,” minimizing BIC
leads to recovering the homogeneous planted partition, compatible
with the relaxed balance theory. Positive links are colored in blue;
negative links are colored in red. Nodes of different colors belong to
different groups.

homogeneous one, compatible with the relaxed balance the-
ory): Instead, it leads to a traditionally balanced configuration
where the planted negative cliques have been fragmented
into singletons. Minimizing F (σ) can lead to a number of
ambiguous situations, such as (i) returning configurations that
are neither traditionally nor relaxedly balanced or (ii) return-
ing more than one frustrated configuration (see Supplemental
Material Sec. B [11]). More in general, ignoring the inter-
play between the signs and the density of connections, solely
accounting for the information carried by the first ones may
lead to “resolution errors” such as (i) splitting modules (even
fully connected ones) into finer regions or (ii) misinterpreting
adjacent modules, characterized by the same dominant sign,
as single coarser regions.

Let us now apply our recipe to a number of real-world
signed configurations, i.e., six snapshots of the “Correlates
of Wars” (CoW) data set [18], providing a picture of the
international political relationships over the years 1946–1997
and consisting of 13 snapshots of 4 years each: A positive
edge between any two countries indicates an alliance, a polit-
ical agreement, or the membership to the same governmental
organization; conversely, a negative edge indicates that the
two countries are enemies, have a political disagreement, or
are part of different governmental organisations. As Fig. 3
shows, minimizing BIC leads to recover partitions that obey
the statistical variant of the relaxed balance theory (a blue
block is characterized by a majority of positive links; a red
block is characterized by a majority of negative links); other
real-world signed configurations, instead, are found to obey
the statistical variant of the traditional balance theory (see
Supplemental Material Sec. B [11]). All such partitions are
heterogeneous. Overall, larger configurations seems to align
more with the (statistical variant of the) relaxed balance theory
while smaller configurations seems to align more with the
(statistical variant of the) traditional balance theory.

Discussion. The present Letter proposes a statistical ap-
proach to the theory of balance, assuming that any real-world

L042065-4
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35-0591WoC)b(94-6491WoC)a(

16-8591WoC)d(75-4591WoC)c(

96-6691WoC)f(56-2691WoC)e(

FIG. 3. Partitions recovered upon minimizing BIC on six snapshots of the CoW data set [18], providing a picture of the international
political relationships over the years 1946–1997. A generic block, indexed as rs, is colored in blue if L+

rs > L−
rs, in red if L+

rs < L−
rs, and in white

if L+
rs = L−

rs: As blue blocks do not appear only on the diagonal and red blocks do not appear only off diagonal, the considered configurations
obey the statistical variant of the relaxed balance theory. Nodes of different colors belong to different groups.

signed configuration is the result of a generative process, prob-
abilistic in nature. As some unavoidable degree of statistical
noise is expected to affect any observed network structure,
the criterion adopted to assess the consistency with balance
theory can be recast in terms of the signs of the estimated
probabilities to observe positive and negative links, i.e., p+

rs −
p−

rs,∀ r � s. Estimating these coefficients by minimizing BIC
allows one to unambiguously assess which variant of the
theory is obeyed, from a statistical perspective, by any signed
configuration.

On the contrary, minimizing F (σ) is practically equiva-
lent to carrying out a sort of one-sided test of hypothesis,
allowing one to conclude if a given partition does not obey
the traditional balance theory (as a matter of fact, practically
always) but incapable of providing a univocal classification
for a generic signed configuration. Moreover, it “works” even
with configurations generated by the signed random graph

model, i.e., a model carrying no information about a network
modular structure, hence overfitting (i.e., misinterpreting sta-
tistical noise as a genuine signal—see Supplemental Material
Sec. B [11]).

Under this respect, maximizing the signed modularity Q(σ)
is of no help, being defined as

Q(σ) =
N∑

i=1

∑

j(>i)

[(a+
i j − p+

i j ) − (a−
i j − p−

i j )]δσi,σ j

= −F (σ) + 〈F (σ)〉 + L+ − 〈L+〉, (9)

with the obvious meaning of the symbols (the addendum
L+ − 〈L+〉 is just an offset not depending on the specific
partition and amounting to zero for any model reproduc-
ing the total number of positive links) [26]. In other words,
the signed modularity compares the empirical amount of
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frustration of a given signed configuration with the one pre-
dicted by a properly defined reference model: One may thus
define a partition as statistically balanced if it satisfies the
relationship F (σ) < 〈F (σ)〉, i.e., Q(σ) > 0. Although reason-
able, such a criterion does not differ (much) from the one
embodied by the F test: More formally, it can be proven that
the relationship L+ � L− (often, if not always, found to hold
true for real-world signed networks) favors the fragmentation
of the negative cliques into singletons, hence leading to re-
cover traditionally balanced configurations even when there
is none “by design” (see Fig. 2 and Supplemental Material
Sec. C [11]).

Conclusions. Although the problem of partitioning a
signed network has been approached in the past (e.g., by
maximizing the signed modularity [9,26,27]), the existing
works have completely overlooked the issue of harmonizing
the request of having balanced configurations with that of
having modular configurations, in most of the cases verifying
either the “degree of balance” of modular structures or the
“degree of modularity” of balanced structures a posteriori
[28,29]; generative models, instead, can accommodate both
requests, thus avoiding to return contradictory results, i.e.,
those one generally gets when combining a purely structure-
based community detection with a purely sign-based one,
while laying the basis of a more comprehensive theory of
balance, grounded on probability theory (see Refs. [30–32]
for related results).

Recasting the idea of balance within a statistical framework
allows the presence of noise in the empirical link signs to
be accounted for, hence overcoming the limitations of the
current deterministic theories, which are doomed to misinter-
pret random patterns for genuine signals of (im)balance. Our
inference scheme instead allows us to unambiguously assess
whether a real-world signed graph obeys the traditional notion
of balance or aligns with a more relaxed variant of it. As a last
point, we would like to stress that, within such a framework,
the standard notion of frustration should be replaced by a
fuzzy one, to be interpreted as proxying the “distance” of a
given configuration from the closest, either traditionally or
relaxedly, balanced one.
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