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The thermodynamic properties of vector (O(2) and Complex Spherical) models with four-body
interactions are analyzed. When defined in dense topologies, these are effective models for the non-
linear interaction of scalar fields in the presence of a stochastic noise, as has been well established
for the case of the mode locking laser formation in a closed cavity. With the help of a novel efficient
Monte Carlo algorithm we show how beyond the fully connected case novel and rich phenomenology
emerges. Below a certain dilution threshold, the spherical model condensates in a non-equipartite
way, while in the XY model the transition becomes continuous and the O(2) symmetry remains
unbroken, we attribute this fact to the invariance under local gauge transformations. The intro-
duction of topological inhomogeneities in the network of quadruplets induces novel features: again
symmetry conservation; the vanishing of two-point correlators; and a dynamical correlation function
presenting two timescales, the large one being related to the transition between different degener-
ated configurations, connected by nonlocal gauge transformations. We discuss possible experimental
implications of these results in the context of nonlinear optics.

I. INTRODUCTION

A. Thermodynamic approach to nonlinear optics

In the last decade there have been several fascinat-
ing attempts to understand nonlinear wave phenom-
ena as collective, emergent behavior.1–10 Within such a
scheme, the focus is not on the kinetics of the nonlinear
wave propagation,11 but on the description in terms of
static quantities in a suitably defined ensemble, in such
a way that different wave regimes are in correspondence
with different thermodynamic phases of a Hamiltonian
model.

A set of fundamental works in this context are Refs.
5–7 which describe the mechanism of Passive Mode-
Locking in multi-mode lasers within a statistical me-
chanical framework. The electromagnetic modes in this
case are the longitudinal modes of the resonant cav-
ity, and the non-linearity is provided by a saturable ab-
sorber, a device which enhances high electromagnetic
field intensity, hence favoring modes with large ampli-
tude and locked phases. The temporal evolution of
modes is described by a master equation12 account-
ing for the nonlinear coupling of tetrads of modes (a
four body interaction), and with an additional stochas-
tic drift term due to the spontaneous emission, which
opposes mode-locking as it tends to incoherently dis-
order moduli and phases. In the limit in which the
dispersion can be neglected,9 the master equation leads
to a Hamiltonian formulation such that the electromag-
netic modes can be regarded as (complex) spin degrees
of freedom, coupled by a four-body ferromagnetic in-
teraction, while the stability of the system is assured
by a global constraint on the sum of the mode intensi-
ties (a spherical constraint, in the spin language). The
steady state of the laser is described by measurements
in the canonical ensemble of the spin model, where the
role of the temperature is played by the inverse square
of pumping rate of the laser source. The methods of

statistical physics applied to this problem reveal that,
for sufficiently high ratio between the pumping rate and
the noise strength, a discontinuous transition separat-
ing a para- from a ferromagnetic phase takes place.13 In
the ferromagnetic regime the phases and intensities of
modes at different frequencies become locked, i.e., cor-
related, and long-range order appears, associated with
O(2) symmetry breaking. In the optical language this
phase corresponds to a coherent light regime in which
ultra-short electromagnetic pulses are generated (the
Mode Locked (ML) regime). On the other hand, if the
spontaneous emission dominates, light is in an Incoher-
ent Wave (IW) regime with low power efficiency and
flat intensity spectrum, which is described by a para-
magnetic state in the spin language. This approach
allows for a treatment of the non-perturbative influ-
ence of noise, and explains the discontinuous nature of
the mode-locking transition, along with other properties
reminiscent of discontinuous transitions, as an hystere-
sis effect called optical bistability.14 Variations of this
problem have also been considered, as the Active Mode
Locking,8 injection of pulses from an external source,15

and a general agreement with experimental results has
been found.

On the other hand, there have been a series of the-
oretical works generalizing the study of these Hamilto-
nians through the addition of quenched disorder in the
interaction couplings.16–19 These more complex models
may represent different physical situations, as the ran-
dom laser phenomena,20 under specific assumptions.21

In this case, a sufficiently large amount of disorder even-
tually leads to a glassy phase in the spin model, antici-
pated by a region with nonzero complexity, which is be-
lieved to describe a frustrated laser regime with absence
of long-range correlations, possibly present in random
lasers.

In the relevant statistical models in this context, the
electromagnetic modes are complex degrees of freedom
(or O(2) spins, if their amplitude dynamics can be ig-
nored) subject to a 4-body interaction which can be
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purely ferromagnetic or disordered. These are, in sub-
stance, XY or Complex Spherical p-spin ferromagnets
or spin glasses, with p = 4. They have been studied
so far in the mean field approximation, which is basi-
cally exact in the the fully connected case. In this work
we perform a systematic study of the thermodynam-
ics of the XY and spherical models with four body in-
teractions beyond mean field, considering the influence
of dilute topologies and of network correlations. From
the optical point of view, such a generalization allows
to account for two ingredients of crucial importance in
optical systems, that could not have been considered in
previous studies, in which correlations were disregarded.

First, the role of mode frequencies, {ωn}, which have
an essential influence on the list of interacting mode
tetrads since these are subject to an energy conservation
prescription on their four frequencies, called frequency
matching condition (see the next subsection). In cavity
lasers it is not physically justified to neglect the influ-
ence of mode frequencies. We will see that they may
induce correlations in the system dynamics which lead
to dramatic differences with respect to the mean field
case, and these differences have clear physical conse-
quences in the optical counterpart.

Second, the presence of dilution in the interaction
network, from the fully connected down to the sparse
network with an extensive number of tetrads. This ele-
ment is necessary, e.g., to account for the onset of lasing
in more complicated experimental setups as the random
laser, in which the interaction sparseness depends on the
spatial superposition of the electromagnetic fields of the
modes. As we will see, a sufficiently large degree of dilu-
tion induces nontrivial changes in the nature of the XY
transition. Furthermore, in the spherical model case,
the dilution induces a transition to a regime in which
the nonlinearity prevents the equipartition of energy.
Since the seminal work of Fermi, Pasta and Ulam,22

the non-equipartition of energy induced by nonlinear-
ity is one of the crucial phenomena in nonlinear physics
that claims for a statistical treatment.1,3

From the point of view of statistical mechanics, on
the other hand, the models investigated in this article
are novel, and present a surprisingly rich phenomenol-
ogy when fluctuations are allowed to take place. As we
explain in subsection I C, the Ising model with p = 4
has already been considered beyond mean field approx-
imation, exhibiting slow dynamics and other kinetic fea-
tures characteristic of glass formers. On the other hand,
the XY model with suitable plaquette interactions is an
effective lattice model for the gaugeO(2) field theory de-
scribing electromagnetism, but, to our knowledge, this
is the first work considering this model within a statis-
tical mechanical framework. We will show how in the
arena of these models one can find, according to the di-
lution and to the presence or absence of topological cor-
relations, a variety of phenomenology ranging from the
symmetry conservation (reminiscent of the Kosterlitz-
Thouless transition), to different orders of the transi-
tion, non-equipartite energy localization, and slow dy-

namics, among other features.
To better motivate the study of these models in the

optical context, we review in some detail the Hamil-
tonian approach to the Passive mode locking transi-
tion in the next subsection. Subsection I C is to review
precedent studies of four-body interactions in statisti-
cal physics. We then define the models under study and
describe their properties in Sec. II. The effect of a suf-
ficiently large amount of dilution on them is described
in Sec. III. Sec. IV is dedicated to the numerical meth-
ods that we have employed, and the consequent results
about the spherical and XY models are exposed in Secs.
V, VI respectively. We will, then, draw some analogies
between these results and similar phenomena occurring
in lattice gauge theories (Sec. VII), and propose possi-
ble physical consequences in the field of nonlinear optics
in Sec. VIII. Our conclusions are in Sec. IX.

B. Statistical approach to Mode Locking

The evolution of the electromagnetic mode al ∈ C,
in a standard passive mode locking laser is expressed
through the well-known master equation12

d

dt
al(t) =(Gl + ıDl) al(t) + (1)

+ (Γ− ı∆)
∑

k1,k2,k3

′
ak1(t)a∗k2(t)ak3(t) + Fl(t) ;

here the parameter Gl represents the difference between
the gain and loss of the mode l in a complete round-trip
through the cavity, Dl is the group velocity dispersion
of the wave packet, Γ is the nonlinear self-amplitude
modulation coefficient associated to a saturable ab-
sorber and, hence, to the passive mode-locking, and ∆ is
the self-phase modulation coefficient (responsible of the
Kerr lens effect). The noise Fl(t) is generally assumed
Gaussian, white and uncorrelated:

〈F ∗k1(t1)Fk2(t2)〉 = 2T0 δk1k2 δ(t1 − t2) ,

〈Fk1(t1)Fk2(t2)〉 = 0 , (2)

where T0 is the spectral power of the noise.
A fundamental element, that deserves a particular

attention in this paper, is that the sum in the nonlinear
term in Eq. (1) is restricted to the tetrads of modes
such that the following Frequency Matching Condition
(FMC)

|ωl − ωk2 + ωk3 − ωk4 | . γ (3)

is satisfied, where γ is the single mode line-width.
In the following we are interested in the purely dissi-

pative case, in which the group velocity dispersion and
the Kerr effect can be neglected. This includes the im-
portant case of soliton lasers.9 The purely dissipative
situation plays an exceptional role in our approach: in
this case, the evolution depicted by Eq. (1) is Hamilto-
nian, while the system remains stable because the gain
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decreases as the optical intensity increases.23 To study
the equilibrium properties of the model, this last ele-
ment can be included considering an equivalent variant
of the model where the gain assumes the value that
exactly keeps the total optical power, E =

∑
j |aj |2 con-

stant of motion, as Gordon and Fischer have proposed
in Ref 5. In this way the system evolves over the hy-
persphere:

∑

j

|aj |2 ≡ εN. (4)

In this situation, the effective temperature in the statis-
tical model is inversely proportional to the squared op-
tical power: T ≡ T0/ε

2, where T0 is the true heat-bath
temperature. Equivalently, the parameter that drives
the transition in the photonic system can be expressed
through the so-called pumping rate P2 = T−1.

C. Previous studies of 4-body models: lattice
gauge theories

Ising models with four body (lattice plaquette) inter-
actions have been studied as cut-off regularized versions
of scalar gauge theories.24 If the interacting quadru-
plets are suitably defined in terms of plaquettes of a
hyper-cubic lattice in d dimensions, the model energy
becomes invariant under flipping the sets of four neigh-
boring spins (a local gauge transformation).25 The p = 4
Ising model so defined is called Ising lattice gauge theory
and is known to present a single, disordered phase for
any nonzero temperature in d = 2, when it is equiva-
lent to an independent set of d = 1 pairwise Ising mod-
els. In d = 3 the Ising lattice gauge theory exhibits
a phase transition, which is related to the d = 3 Ising
model transition. The low-temperature phase is, how-
ever, unmagnetized, as a consequence of the local gauge
symmetry: the expectation value of any operator not in-
variant under local gauge symmetries vanishes, a result
called Elitzur’s theorem.24 The magnetization is a one-
body observable, clearly not invariant under the 4-spin
flipping gauge transformation, and it consequently van-
ishes. The nature of the low-temperature phase is un-
veiled instead by the gauge-invariant correlation func-
tion, or the expectation value of bunches of spins whose
positions draw a planar close contour in the lattice.
Such a non-local operator is helpful to interpret the
phase transition as a confinement-deconfinement con-
densation of kinks, rather than a usual order-disorder
transition found in pairwise models. In a different con-
text, classical Ising models with four-body interactions
are also studied as effective models for the interaction
of superconducting electrons or grains.26,27

On the other hand, different p = 4 Ising models
have been studied from a statistical physical point of
view.28–34 They are, in particular, subject of interest as
far as their plaquette version may exhibit slow dynam-
ics and other dynamical features reminiscent to those

of glasses, which are self-induced (i.e., not induced by
quenched disordered couplings).30–33. The system with
interacting quadruplets defined as the plaquettes of a
hyper-cubic lattice (the plaquette Ising model) has been
particularly studied. In two dimensions it presents a
phase transition with dynamical activated behavior.35

In three dimensions the model is called the Gonihedric
model,36,37 and is known to exhibit a first-order phase
transition, and a degenerated ground state.28,30,38 The
slow dynamics, metastability and glass-like features of
the 3D model have been studied in Refs. 30, 33, 39, and
40. A anisotropic variant of the Gonihedric model has
been recently studied,41 its dynamical properties are
shown to be signaled by the expectation values of quan-
tum information-theoretical estimates in its quantum
counterpart.

The O(2) generalization of the lattice gauge-invariant
model, called Abelian gauge theory, presents a larger,
O(2), local gauge invariance. Indeed, its behavior at low
temperature is described in the continuum limit with
the Euclidean action of electrodynamics, according to
a spin-wave approximation resembling the one allowing
to describe the undercritical temperature of the d = 2
O(2) model in terms of a Gaussian theory.24 As in the
Ising gauge theory, the d = 2 Abelian gauge theory
presents no phase transition, while the d = 3 presents
a phase transition separating two unmagnetized phases
and, again, the order parameter being a nonlocal con-
tour correlator, an object which is directly related with
the potential energy of deconfinement, in the field the-
oretical language.

II. THE LEADING MODELS: p = 4 XY AND
COMPLEX SPHERICAL (CSM) MODELS

A. Definition of the model

We are interested in the statistical analysis of the
mode wave interaction Hamiltonian, introduced in sec-
tion I B. We will restrict our analysis to the four-body
interaction term, as it contains the essential nonlinear
phenomenology. The inclusion of the local interaction
due to a non-flat gain, see Eq. (1), does not change the
thermodynamic features of the model, and its inclusion
is discussed in Sec. VIII C.

We, then, consider a set of N electromagnetic modes
whose amplitudes are described by the complex num-
bers am, m = 1, . . . , N , with phases φm = arg am and
moduli Am = |am|. The Hamiltonian, H, is completely
specified in this case by the the list of quadruplets, or
ordered sets of four mode indices (spqr), which corre-
spond to different terms in H. The list of quadruplets
can be specified by the Adjacency Tensor, Asprq, equal
to 1 whenever the quadruplet defined by its indices is a
term of the Hamiltonian, and zero otherwise. Hence, H
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takes the form5 (see Eq. (1)):

H = −J0

8

∑

s,p,q,r

Aspqr AsApAqAr

cos(φs − φp + φq − φr), (5)

while the mode amplitudes are constraint by Eq. (4).
This model corresponds to the (ferromagnetic) 4-body
Complex Spherical Model (CSM) in an arbitrary topol-
ogy of quadruplets. In the particular case where the
moduli Am are fixed and all equal to 1, the Hamilto-
nian reduces to the 4-body XY (O(2)) model:

HXY = −J0

8

∑

s,p,q,r

Aspqr cos(φs − φp + φq − φr). (6)

B. Symmetry of the list of quadruplets

The adjacency tensor A is in general not symmetric
under permutations of its indices. However it exhibits a
symmetry which is also in each one of the terms in the
Hamiltonian (5). Given an ordered set of four indices,
its 24 possible permutations (i.e., quadruplets) can be
split into 3 non-equivalent subsets of the 8 permutations
that have the same energy. Moreover, if a quadruplet
respects the FMC, then all its 8 equivalent permuta-
tions do. The three non-equivalent permutations can
be chosen to be Q = {(1234), (1324), (4231)}, in such a
way that the Hamiltonian can be then written as:

H = −J0

∑

s<p<q<r

∑

π∈Q
Aπsπpπqπr AπsAπpAπqAπr

cos(φπs
− φπp

+ φπq
− φπr

), (7)

where πs are the members of the permutation, π =
(π1π2π3π4). This is the origin of the 1/8 factor in Eq.
(5). The size scaling of J0 is to be fixed in such a way
that the energy E = 〈H〉 is an extensive quantity in
both low and high-temperature phases. We will treat
this point in Sec. III.

C. Topology of quadruplets

In the following analysis we have considered two types
of topologies A:

1) Homogeneous Topology (HT). The quadru-
plets are selected uniformly at random. The desired
number of quadruplets (or ordered sets of four indices),
N4, are randomly chosen among all the possible quadru-
plets. Specifically, in order to preserve the permutation
symmetry of the Hamiltonian (cf. sec II B), this random
selection is performed randomly selecting N4/8 quadru-
plets among all possible N(N − 1)(N − 2)(N − 3)/8
quadruplets with different energy, and, for each one, we
append all their 8 equivalent permutations to the list.

We will call fully connected the particular case of the
HT such that all quadruplets are considered.

We stress that in the HT case, hence, the list of
quadruplets is not conditioned by the set of frequen-
cies. In the photonic language, this situation corre-
sponds to the case of the so-called narrow frequency
distribution, in which the different frequencies ωn are
all similar in magnitude, the difference between them
being lower than the linewidth γ, so that the FMC Eq.
(3) is trivially satisfied.

2) Correlated Topology (CT). The quadruplets
are no longer chosen in an uncorrelated way, although
still stochastically chosen. We randomly select N4/8
quadruplets with different energy, only among the pos-
sible ∼ N3 quadruplets spqr satisfying the relation:

s− p+ q − r = 0 , (8)

and, for each one, we append all its 8 equivalent per-
mutations to the list. This prescription is the result of
imposing a FMC, cf. Eq. (3), if one supposes a set of
N frequencies distributed as a linear comb,

ωm = ω0 +mδω, δω � γ, (9)

which is the case of interest describing closed cavity
lasers. The FMC identity has become an integer iden-
tity since, in the optical interpretation, the values ωm
are to be understood as the centers of the bins of a dis-
crete frequency distribution whose bin width is given by
the line-width γ, so that Eq. (3) becomes equivalent to
Eq. (8).

Besides having a clear physical motivation (the equi-
spaced frequency case), the constraint Eq. (8) is also
the simpler and most natural way of introducing correla-
tions in an abstract stochastic set of interacting quadru-
plets. Consider the analogy with a random network: a
way to construct random but correlated graphs is intro-
ducing some kind of distance between different nodes
(as the absolute value of the difference between the node
indices dsp = |s− p|), and choosing bonds with a prob-
ability depending of such a distance. In the case of the
list of quadruplets, one needs a four-index function, and
a similar role can be played by dspqr = |s−p+q−r|. The
FMC with the equispaced set of frequencies is equiva-
lent to choosing quadruplets presenting the minimum
value, dspqr = 0. In this way, the mode frequencies
are not a degree of freedom, but a coordinate driving
correlations as distance in a graph.

While there is a stochasticity in both Homogeneous
and CT, due to the fact that only a random fraction
of the possible quadruplets are considered, there is an
important difference: in the HT, the average number
of quadruplets connecting two nodes is independent of
the nodes in the quadruplet, while in the CT one can
show that the number of quadruplets (normalized as
a probability distribution) connecting couples of nodes
with frequency difference ωi − ωj , i.e., at a distance
|i− j|, is h(x) = 2(−x+ 1) where x = |i− j|/N . Modes
with similar frequencies are connected by a higher num-
ber of quadruplets (and, consequently, effectively more
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FIG. 1. From–quadruplet graphs of two lists of quadruplets
with N = 12, N4 = 97 and Homogeneous (left) and Cor-
related (right) Topology, respectively. Adjacent nodes rep-
resent adjacent mode indices, and the thickness of a link is
proportional to the number of quadruplets that contain the
two linked nodes. The angular position of nodes corresponds
to their index, so that nodes on adjacent clock hours have
adjacent frequencies. The central frequencies are at hour 9
and 10 o’clock. For the HT the thickness is uncorrelated
to the position. For the CT it is apparent that the thickest
links are between adjacent modes. Moreover, in the CT case
the modes at the center of the spectrum (at hour 9 and 10
o’clock) share more quadruplets than those at the edge (at
hour 3 and 4 o’clock).

coupled) in Eq. (5). This difference is illustrated in
Fig. 1: we show the difference through the so called
From-Quadruplet Graph, or a weighted graph such that
each node represents a mode, and the edge weight (rep-
resented by the line thickness) is proportional to the
number of quadruplets containing their modes.

There are good reasons to classify the interaction
topology in the two types, HT, CT. As we will ex-
plain below, if N4 ∼ O(N≥2), the thermodynamic be-
havior of the system is completely determined by the
type of topology of quadruplets and not by N4, and it
is essentially different in the HT and CT cases. The
frequency correlations in the last case induce correla-
tions between mode amplitudes with different frequen-
cies, ajaj′ , that will drastically modify the thermody-
namic phases, as will be shown in Sec. V. We stress that
there is, then, also a convenience for studying stochas-
tic sets of quadruplets: as we will discuss, such dilute
systems can be numerically processed more efficiently,
hence the usefulness of the dilute ensemble of quadru-
plets. This point will be discussed in Sec. IV.

On the other hand, one may ask why we do study
stochastic sets of quadruplets instead of considering,
for example, deterministic sets given by the four nodes
composing a plaquette of a d-dimensional hyper-cubic
lattice, as done for the Gonihedric model in the works
already mentioned in the introduction. The answer is
given by the fact that the p = 4 ferromagnetic Spher-
ical Model, as we explain in the next section, presents
a trivial thermodynamic behavior when the number of
quadruplets is low enough and, in particular, in the
N4 ∼ O(N) case corresponding to the plaquette-based
list of quadruplets. From the point of view of optics, on

the other hand, the present system is relevant for the
description of a closed cavity laser, such that, in princi-
ple, each mode interacts with the rest of the modes (the
fully connected case). This would lead to N4 ∼ O(N4)
(or to N4 ∼ O(N3) with the constraint Eq. (8)), a sit-
uation which is incompatible with the plaquette-based
topology.

III. ROLE OF THE QUADRUPLET DILUTION
THRESHOLD

A. Non-equipartite condensation in the Spherical
Model.

As will see, the Complex Spherical model presents
a trivial low-temperature behavior, that will be called
Non-equipartite Condensation, whenever the number of
quadruplets is low enough, N4 ∼ O(N<2) for the fer-
romagnetic case. The non-equipartite condensation is
such that all the spherical constraint Eq. (4) is con-
centrated in a low, O(1) number of sites, whose ampli-

tudes are A ∼ O(
√
N). In this case, the energy in

the low-temperature phase is of order E ∼ −J0N
2.

The Equipartition, alternative to the non-equipartite
condensation, is characterized by a A ∼ O(1) in both
phases, hence E ∼ −J0N4. In the latter case, the low-T
phase is characterized by the homogeneity of spin mod-
uli, which tend to lock, i.e., to become equal throughout
the system, contrarily to the former case. One observes
that the energy is lower (of a larger order with N) in the
non-equipartite condensation whenever N4 ∼ O(N<2).
Requiring the extensivity of the energy one obtains that,
according to the type of condensation, J0 is subject to
satisfy the following scaling

J0 ∼
{

1/N non− equipartition (N4 ∼ O(N<2))
N/N4 equipartition (N4 ∼ O(N>2))

.

(10)
For high enough temperature, one expects a disor-

dered phase with uncorrelated and equipartited spins.
The extensivity of the energy requires J0N4 ∼ O(N),
implying in its turn that the non-equipartite conden-
sation do not occur for N4 ∼ O(N>2), confirming Eq.
(10).

This argument does not apply to the marginal situa-
tion N4 ∼ O(N2). We expect, however, equipartition,
since in this circumstance there is an extensive entropic
contribution to the free energy. This is in agreement
with our numerical results for all the considered systems
satisfying N4 ∼ O(N2), which turn to be equipartite.

In the following we are interested in the equipartite
case. We, hence, consider from now on systems with
N4 ∼ O(N≥2). Our Hamiltonian, in its final form, will
be taken as (see Eq. (10)):

H = − N

8N4

∑

spqr

Aspqr AsApAqAr

cos(φs − φp + φq − φr). (11)



6

B. Non-equipartition in the Disordered Spherical
Model.

Although in the next chapter our numerical analysis
focuses on the ferromagnetic case, for completeness we
also discuss how the non-equipartite condensation oc-
curs in the quenched disordered case below the higher
threshold N4 ∼ O(N3). The argument is based on a
mean field approximation allowing to compute the scal-
ing of the average energy with N , N4 within the replica
formalism. The details can be found in the Appendix
B. Supposing that the coupling J in Eq. (5) is no longer
ferromagnetic but Gaussian distributed with average J0

and variance σ, one has that the energy scaling in both
non- and equipartite types of condensation goes as:

E ∼
{

non− equipartite −(J0 + σ)N2

equipartite −(J0 + σ2)N2 , (12)

so that for the extensivity of the energy, one is forced
to take for σ the minimum between N/N4 and 1/N2.
Hence, the threshold between non- and equipartition
becomes in this case N4 = O(N3). This threshold is
compatible with the provisional results of our simula-
tions in the presence of disorder (that will be reported
in a future communication).

C. Magnetized-to-unmagnetized threshold of the
XY model for low number of quadruplets.

An equivalent threshold effect is observed for the
p = 4 XY ferromagnet, Eq. (6), with HT. In this
case the threshold is, instead, the extensive situation
N4 ∼ O(N), above which the system presents a low
temperature phase with spontaneous breaking of the
O(2) symmetry. Below and at the threshold, i.e., for
N4 ∼ O(N≤1), the model remains unmagnetized. This
fact will be discussed in more detail in Sec. VI.

IV. NUMERICAL ANALYSIS

A. Efficient Monte Carlo simulation: the
synchronous Monte Carlo algorithm

We have performed a Monte Carlo (MC) integration
using a home-made algorithm dealing with vector p = 4
interaction models in arbitrary topologies. The algo-
rithm uses local updates (in the case of the Spherical
Model it is not possible to use cluster updating, due to
the non-locality induced by the spherical constraint).
The Parallel Tempering algorithm has been used to en-
hance equilibration in large systems.

Moreover, for most of the results presented in this ar-
ticle we have used a parallel, high-performing version of
the algorithm, running on Graphics Processing Units.
The parallel Monte Carlo integration of a system of in-
teracting spins requires the division of the set of spins

in non-interacting subsets, such that the members of
each one can be processed in parallel. In bipartite lat-
tices, such a division is called the checkerboard decom-
position, while in general graphs defining the pairwise
interaction it is necessary to perform the coloring of the
graph, in such a way that all spins with equal color are
processed in parallel, and different colors are processed
sequentially.42 As explained before, the case of interest
is a system in which the topology of the interaction is
given by a set of at least O(N2) quadruplets between N
modes, so that each mode possesses an extensive num-
ber of quadruplet neighbors, i.e., of modes such that
there is at least a quadruplet connecting both. As a
consequence, the MC parallelization of such a kind of
highly connected system is, in principle, unfeasible.

However, parallel Monte Carlo techniques can still
be used in this case. We have observed that, quite re-
markably, there are circumstances (that will be specified
elsewhere) in which applying the so-called Synchronous
Monte Carlo rule (i.e., to all spins in parallel, regardless
of their connectivity), one recovers the correct results.
Although one is making an error in each update (since
one updates interacting spins simultaneously), the over-
all error averages down to zero. In a fully connected
p = 2 spin model the fully-parallel MC update does not
differ with respect to a sequential MC scheme, as it has
been already observed.43 In the present case with p = 4
body interactions and O(N≥2) quadruplets, the results
of the Synchronous Monte Carlo are, again, consistent
from the serial algorithm.

It is particularly remarkable that for the present
model it is not necessary to have a fully connected
system for the Synchronous Monte Carlo algorithm to
work: a dilute, but connected enough system is suffi-
cient to obtain results which are indistinguishable from
that of the serial MC algorithm. Interestingly, this
holds true even if the transition is no longer describ-
able in mean field approximation: we will show that in
the CT case fluctuations arise and change the nature of
the transition and, even in this case, the Synchronous
Monte Carlo leads to correct results.

An example of the reliability of the Synchronous
Monte Carlo is shown in Fig. 2 for the average en-
ergy in the HT, but the picture is valid also for the CT
case. The measures are always compatible for a serial
MC and a parallel MC. In the low temperature phase,
in particular, the values are numerically indistinguish-
able. Some appreciable deviations are observed only
in the high temperature phase in the case of diluted
systems (N4 = N2 in Fig. 2). In this case the syn-
chronous algorithm predicts an average energy which is
closer to zero, although compatible with the serial al-
gorithm within thermal fluctuations. For T > Tc, the
synchronous algorithm has hence the effect of masking
finite size effects, since the energy per site E/N vanishes
at large N for T > Tc.
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FIG. 2. High temperature intensive energy versus temper-
ature for systems with three sizes in a diluted HT with
N4 = N2 quadruplets, computed with the serial MC algo-
rithm (open symbols for N = 50, 100, 150). The results ob-
tained with the synchronous update for these systems (cor-
responding full symbols for N = 100, 150) yield an average
value closer to zero, though compatible in the statistical un-
certainty. At low temperature both algorithms accurately
coincide and the results are indistinguishable, as displayed
in the inset for N = 150. Note as the fully connected system
(open circles), simulated by means of a serial MC exhibits a
zero energy at high T yet for N = 50.

B. Observables of interest

Besides the energy E = 〈H〉, we will consider the
following observables. Firstly, the specific heat:

c =
1

N

∂〈H〉
∂T

=
〈H2〉 − 〈H〉2

N T 2
. (13)

Also, the average modulus, 〈r〉 with r being

r =
1

N

∑

j

Aj (14)

a quantity which is related with the site-fluctuations of
the modulus: 1

N

∑
j (|aj | − r)2 = 1 − r2: the larger r,

the more locked are the moduli of the spins in a given
configuration, and r = 1 corresponds to a configuration
with all the mode amplitudes that have modulus equals
to one. Another interesting observable is the magneti-
zation, 〈m〉, where m is the complex number:

m =
1

N

∑

j

aj , (15)

along with its Cartesian components, mx = Re[m],
my = Im[m].

Finally, we also measure frequency correlation func-
tions, which are ensemble averaged correlations between
modes whose frequencies differ by a given quantity ω.
These observables acquire full sense in the CT case,
when the mode frequencies play a role in the topol-
ogy and, hence, in the thermodynamics. We define, in

particular, the intensity correlation function Ci:

Ci(ω) =
1

K(ω)
〈
N∑

i,j=1

A2
i A

2
j δ(ωi − ωj + ω)〉 (16)

K(ω) =
∑
i

∑
j δ(ωi−ωj +ω) being the normalization,

along with the phase correlation function, Cp:

Cp(ω) =
1

K(ω)
〈
N∑

i,j=1

cos(φi−φj) δ(ωi−ωj +ω)〉. (17)

We also define their respective connected functions:

C̄i(ω) = Ci(ω)− 1

K(ω)

N∑

i,j=1

〈A2
i 〉 〈A2

j 〉 δ(ωi − ωj + ω)

(18)
and idem for C̄p(ω).

C. Details of the simulations

We have considered finite-size realizations for several
values of N , ranging from N = 50 to N = 103, depend-
ing on the topology and on N4. As an equilibration test
we have verified the stationarity of the distributions of
observables in different Monte Carlo time windows of
exponentially increasing length, and the symmetry of
the histograms of the single components of the magne-
tization, h(mx,y) = h(−mx,y) (cf. Fig. 10).

Throughout our analysis, we have not performed sys-
tematic averages over realizations of the list of quadru-
plets, in none of the topology types (HT, CT). This is
justified since the fluctuations of thermodynamic quan-
tities among different realizations of the interaction net-
work are at least one order of magnitude less than ther-
mal fluctuations. In Fig. 3 we show how thermal fluc-
tuations are larger than topological fluctuations of the
energy in the worst case analyzed: the N = 50 with
N4 ∼ O(N2) quadruplets distributed with the CT (i.e.,
the smallest, most inhomogeneous system).

V. NUMERICAL RESULTS FOR THE
COMPLEX SPHERICAL MODEL

We now present the results of our Monte Carlo analy-
sis for the Complex Spherical Model. The most salient
feature of our simulations is the presence of a phase
transition of first-order nature. The phase transition
separates a high-T phase with randomly distributed de-
grees of freedom, zero magnetization and zero energy
per mode for large N from a low-temperature phase
with (1) locked moduli and phases (2) non-zero spin-
spin correlations, at least in single configurations and
for moderate time scales.

A remarkable observation is the irrelevance of ran-
dom dilution: for both kinds of topologies the results
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FIG. 4. Energy per spin versus temperature for several sizes
in the HT with N4 = N2. The finite-size critical temper-
ature Tc(N) increases with size. The inset shows that the
data satisfies a scaling of the form Tc(N)−Tmf

c ∼ N−b, with
b = 0.6, indicating that they are compatible with the mean
field critical temperature for large N .

of our simulations are independent on the number of
quadruplets, as far as this quantity is above the thresh-
oldN4 ∼ O(N≥2) corresponding to equipartite systems.
This means that the results (with the only exception of
the finite-size scaling of the critical temperature) remain
unchanged in the broad range of N4 scaling from ∼ N4

down to ∼ N2.

There is an essential difference between the thermo-
dynamic behavior of the system in the presence of Ho-
mogeneous and Correlated Topologies: in the first case
the behavior is compatible with the mean-field solu-
tion, the low-temperature phase is spontaneously mag-
netized, and spin-spin correlators are nonzero. On the
other hand, for CT’s the results significantly differ from
the mean field solution; there is lack of spontaneous
magnetization at low temperatures, and two-point cor-
relators turn out to vanish.

A. Homogeneous topology

1. General features and comparison with mean field theory

We will first consider the HT system and the fully
connected case (i.e., with all the possible quadruplets
active), as a particular case of it. Our first, already
mentioned result is that, given the topology type, the
dilution turns out to be irrelevant: the intensive quan-
tities for values of N4 lower than its maximum value are
indistinguishable, within statistical errors, from that of
the fully connected case. We thus expect the behavior
in the HT to coincide in the large-N limit with the mean
field solution of the model,5,19 cf. Appendix A. This pre-
dicts for the transition temperature Tmf

c = 0.40726. In
Fig. 4 we present a finite size analysis of the energy E in
the case of a homogeneous set of N4 ∼ O(N2) quadru-
plets. The high-temperature phase has zero energy,
and decreases discontinuously at a size-dependent value
Tc(N). As shown in the figure inset for the N4 ∼ O(N2)
case, the finite size scaling of the transition temper-
ature, Tc(N) = kN−b + Tc(∞), leads to an infinite-
volume Tc(∞) which is compatible with Tmf

c , for all the
studied sets of quadruplets.44

In figure 4 we also present the energy as a function of
temperature for the marginal mean field solution shown
in Appendix A

Emf(T ) = −1

4
[1 + (1− 2T )1/2]2 , T < Tc . (19)

It is apparent how, while the value of the critical tem-
perature is compatible with the mean field analytical
solution, the behavior of Emf(T ) below the transition
does not coincide with the numerics. Indeed, the so-
lution Eq. (19) corresponds to the solution of two un-
coupled real spherical models with apart spherical con-
straints, as it can be seen analytically and verified nu-
merically. We consider this observation as the evidence
of the inaccuracy of this solution in the generic case of
coupled real and imaginary parts of the complex am-
plitudes. To restore the entropy corresponding to the
angular degree of freedom (the extra freedom coming
from the global constraint, which is less restrictive than
two independent constraints), it may be necessary to
consider corrections with contributions of O(N) to the
saddle-point equations, changing the solution (and its
stability). According to this argument, the marginally
stable mean field energy (19) must be lower than the
corrected mean field solution as, indeed, observed in
Fig. 4.

This problem is absent in both the XY and the real
spherical model, for which the respective mean field so-
lutions exactly describe the behavior of finite size sys-
tems already at quite small sizes at all temperatures, as
we have verified numerically.

The finite size transition temperatures Tc(N) re-
ported as vertical lines in Fig. 4 have been calculated
from the bimodal energy probability distribution (cf.,
Fig. 5), as the temperatures at which the high- and
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low-energy peaks enclose equal areas. We have also con-
sidered the metastable continuation of the disordered
phase energy, averaging over the disordered peak only,
and a temperature limit of the metastable regime (a
Spinodal Temperature Ts) as the one at which the low-
energy peak vanishes. As shown in Fig. 6, the quan-
tity Ts(N)− Tc(N) decreases with increasing size, thus
indicating that again the metastability behavior of the
model is different from that predicted by the marginally
stable mean field solution, which predicts Ts = 1/2 in
the thermodynamic limit (the metastable energy being
that of Eq. (19), continued to Ts = 1/2). The shrinking
of the metastable interval persists even using a Monte
Carlo protocol which favors the relaxation towards the
(low-T ) metastable phase, i.e., starting from an ordered
configuration and switching off the Parallel Tempering
algorithm. The observed decreasing of the metastable
interval with system size is so strong that, with the
actual statistics and temperature grid, for the largest
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FIG. 7. Specific heat versus temperature for different sizes
of HT. The dataset is the same of figure 4. The inset shows
the data with the scaling relation Tc(N)−Tmf

c ∼ N−b, with
b = 0.6.

simulated sizes we are not able to observe any spinodal
point distinct from the critical point in the statistical
error. For the largest sizes the low energy peak in the
energy distribution associated to the ordered phase, see
Fig. 5, disappears as the zero energy peak of the param-
agnetic phase appears. This situation is different from
what happens in the marginal mean field solution de-
scribed in Appendix A. We note also that the finite-
size nature of metastability in temperature-driven tran-
sitions has already been observed in a ferromagnetic
model with pairwise interactions.45

The specific heat is presented in Fig. 7. One observes
no divergence with increasing system size, and a finite
size scaling confirming the one of the energy reported
in Fig. 4. The average modulus and the magnetiza-
tion are presented in Fig. 8. For high temperature,
the average modulus achieve (up to O(N−1/2) fluctua-
tions) the value (2/π)1/2, which is the average modulus
of uncorrelated complex random variables satisfying the
spherical constraint, as can be exactly proven for large
N . The value of 〈r〉 is discontinuous at the transition
and converges to 1 for T → 0, which means that all
the spins exhibit equal modulus, |aj | = 1. The mag-
netization vanishes in the high-T phase and it is 1 for
zero temperature, indicating that it is of ferromagnetic
nature: not only the moduli are locked but also all the
phases coincide and both phases and moduli lock at the
same temperature, as predicted by mean-field theory.19

B. Correlated Topology of quadruplets

We will now describe the differences induced by the
presence of inhomogeneity of quadruplet topology, due
to the FMC. The inhomogeneities promote fluctuations
on the radial and angular degrees of freedom, not de-
scribable in mean field approximation. As a conse-
quence, the behavior substantially differs from the HT
case.



10

1. Absence of spontaneous O(2) symmetry breaking

Although the transition remains first order, and qual-
itatively equal to that of the HT case, the energy density
stays below the HT case (see Fig. 9). Again, the energy
density is independent from N4 up to fluctuations. The
most dramatic difference induced by the CT is, however,
seen in the average magnetization, which vanishes for
all temperatures. We show the change in the magneti-
zation behavior comparing the histogram of the magne-
tization components mx = Re[m], Fig. 10. In both HT
and CT cases, the high-temperature phase is unmag-
netized with a Gaussian distribution of mx centered in
zero. In the Homogeneous case, the low temperature
phase is magnetized (|m|2 → 1 for T → 0) following a
phase direction (φ = argm) which is degenerated, and
whose average projection in the x axis results in the
peaks of h(mx). For zero temperature, the distribution
coincides, indeed, with h(m) = (2π)−1(1−m2)−1/2, or
the m distribution corresponding to a homogeneously
distributed φ, cf. Fig. 10; in other words, the average
magnetization is zero for HT, but this happens since the
single configurations are fully magnetized over an angle
which is degenerated. In the CT case, on the other
hand, the low temperature phase is unmagnetized: the
average and the most probable magnetization remains
zero for arbitrary low temperature, indicating absence
of global magnetic order. In the low-temperature phase,
the magnetization histogram becomes nearly constant
in temperature and it develops long tails.

2. Phase Wave and two-point phase correlators

At the origin of this feature there is a property of
the low-T phase with CT that we call the Phase Wave.
Modes at near-by frequencies, with small value of |i −
j|, participate in a larger number of quadruplets, since
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magnetization versus temperature for the two systems. The
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N = 80, N4 = N2, for four temperatures. The different
peaks correspond to different possible slopes. At supercriti-
cal temperatures, Σ does not present peaks but uncorrelated
oscillations, while at undercritical temperatures, the posi-
tion of the peaks is common for all the temperatures, and
the peak amplitude roughly decreases for increasing temper-
ature.

the condition Eq. (8) is more frequently satisfied than
for distant modes. For this reason, near-by spins in
the frequency are effectively more coupled, and tend to
align. This induces a Phase Wave (in analogy with the
“spin wave” term in the context of the O(2) pairwise
model): in single low T configurations, the phases of
the spins exhibit an approximated linear dependence
with the frequencies ωj (or with the spin index, see Eq.
(9) φ(ωj) ' φ0 +∆(ωj−ω0), where ∆ is the phase wave
slope, a configuration-dependent quantity. In Fig. 11

we illustrate the phase wave at two different equilibrated
configurations at the same temperature.

Given a realization of the quadruplet topology, there
are some different possible values of the phase wave
slope with a nontrivial probability distribution. We con-
sider, then, the quantity

Σ(∆) =

∣∣∣∣∣∣

N∑

j=1

〈cosφj〉 eı2πj∆/N
∣∣∣∣∣∣
. (20)

A given value of the slope ∆ is a narrow peak in the
function Σ. At a finite temperature, we observe wide
peaks in ∆, as a result of thermal fluctuations, at some
privileged values of ∆ depending on the specific real-
ization of the list of quadruplets (see Fig. 12). Given
a realization of the list of quadruplets, there are peaks
at fixed values of ∆, the amplitude of which increases
with decreasing temperature. Above the critical tem-
perature, on the other hand, the function Σ randomly
fluctuates near zero, indicating the lack of correlation
between different spins.

The Phase Wave is, hence, the microscopic mecha-
nism for which there is no global O(2) symmetry break-
ing in the low-T phase of the CT.

Phase Correlation versus Frequency. The phase cor-
relation function helps to further characterize the Phase
Wave above described. Fig. 13 reports the phase corre-
lation function Cp for a system with N = 150 in a CT,
for several temperatures. In the figure, the correlations
have been averaged over a short number (τ ∼ 103) of
Monte Carlo steps. While for T > Tc the phases of
different spins are completely uncorrelated, the correla-
tion is not trivial for T < Tc, and presents oscillations
in frequency around zero, in correspondence with the
Phase Wave oscillations: spins near-by in frequency (in
spin index) exhibit strongly correlated orientations, at
least in single configurations.

The picture, however, turns different when averaging
over larger intervals of time. Our numerical results in-
dicate that in the CT the sum of the correlations Cp

over all distances decays to zero when averaged for ar-
bitrary large Monte Carlo times, at difference with the
HT case (see Fig. 14 and Sec. V B 4). This gives strong
evidence of the fact that the two-point angle correlators
vanish even at arbitrary low temperatures. The micro-
scopic origin of this fact is the degeneracy of Phase Wave
configurations with different slopes, so that phase cor-
relations corresponding to different slopes cancel out.

3. Two-point moduli correlations

As a further insight into the low-temperature phase
we present the behavior of the two-point moduli corre-
lator. As shown in Fig. 15, the disconnected quantity
Ci is approximately equal to (2/π)2 in the high-T phase,
indicating independence of moduli, while for low tem-
peratures there is a nontrivial correlation presenting a
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Wave slope.

maximum at a nonzero value of the spin frequency dis-
tance ω, and decaying below the value (2/π)2 for distant
spins, which are less coupled and hence less correlated.
Since spins must obey the spherical constraint, the ex-
istence of spins with moduli larger than one implies the
existence of other spins with moduli less than one. How-
ever, the connected function C̃i, registering the fluctu-
ations on top of this general tendency, results to vanish
for large system size, as can be seen for different sizes
in Fig. 15: for larger and larger sizes, the values of C̃i

corresponding to both phases decrease with the value
of N , along with the “gap” separating the data of both
phases, which turns to be a finite-size effect of the high-
temperature phase.

We conclude that also moduli-moduli correlators van-
ish for CT in the thermodynamic limit.

4. Slow dynamics at low temperature

We now present numerical evidence of the CT sys-
tem to exhibit slow dynamics at low temperatures,
whose origin is the degeneracy of phase wave config-
urations with different frequencies. To this aim, we de-
fine dynamical measurements, through the time average
〈· · ·〉τ =

∑τ
τ ′(· · · )/τ over a finite time interval of length

τ , in units of local Monte Carlo steps. For sufficiently
large τ , such an average coincides with the thermal av-
erage. Consequently, we define the τ -Correlation Func-
tion for phases and moduli, respectively as

Cp(τ) =
1

N

∑

r

Ξτ (r) , (21)

Ci(τ) =
1

N

∑

r

[〈AiAj〉τ − 〈Ai〉τ 〈Aj〉τ ] , (22)
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FIG. 14. Angular two-point correlators, as in Fig. 13, but
with N = 100 and averaged over larger intervals of local-
update Monte Carlo time (τ = 104 and 105, upper and lower
panel respectively).

Ξτ (r) ≡ 1

N

∑

j

[
〈cos(φj − φj+r)〉τ (23)

− 〈cosφj〉τ 〈cosφj+r〉τ − 〈sinφj〉τ 〈sinφj+r〉τ
]
,

along with the modified τ -long Phase Correlation Func-
tion:

Ψ(τ) =

N∑

r=1

N

K(r)

∣∣∣Ξτ (r)
∣∣∣ (24)

where K is defined after Eq. (16). The functions Cp,i(τ)
are simply the sum of two-point correlators in different
sites, while Ψ(τ) is the the sum of the absolute value of
the function Ξτ (r) for all the possible spectral distances
r. Note also that in the limit τ → ∞ the time aver-
age coincides with the equilibrium average and, thus,
Ψ(τ →∞) is equivalent to

∑
ω Cp(ω), cf. Eq. (17).

We stress that the function Ψ(τ) decays slower than
Cp(τ), and it has been defined to estimate the corre-
lation time of the Phase Wave, as it does not include
the anti-correlation between “distant” spins (intrinsic
to the Phase Wave configurations) occurring in single
configurations. Both functions, nevertheless, present a
qualitatively similar behavior.

As it has been explained in the previous section, we
have found strong evidence for the thermal average of
both Cp and Ψ to vanish at low temperature in the CT,
and to be nonzero in the HT. Above Tc they obviously
vanish for all topologies, up to finite-size effects. This
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is illustrated in Fig. 16 for a N = 50 system in the
CT case, where correlations decay towards zero for suf-
ficiently large times.

A remarkable feature of the temporal correlation
functions is that, at least for CT, both Cp and Ψ de-
cay slower and slower as temperature decreases. This
is also reflected in the probability distribution of the
Phase Wave correlation time, τφ, defined as the time
employed by Ψ(τ) to decay below a given threshold.
Such a distribution develops long tails as temperature
decreases, as shown in Ref. 44.

An explanation for such a behavior is provided by the
dynamical measure of the function Σ. Its estimation in
equilibrium dynamical simulations over a time window
such that Cp in Fig. 16 has not yet decayed, presents
just few peaks or even a single peak only, correspond-
ing to the few different Phase Wave configurations with
fixed slope in which the system remains trapped during
few thousands of local MC steps. In this situation the
use of a nonlocal update, as the Parallel Tempering al-
gorithm, is essential to thermalize the system (to get it
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FIG. 16. Temporal correlation functions Cp and Ψ for N =
50, N4 = N2, CT and HT’s (upper and lower panel, respec-
tively), for several temperatures (the color code is as in Fig.
10). The finite-size critical temperature is T (50) = 0.39(7).

decorrelated) in a feasible number of MC steps (∼ 104

for a system with N = 50), recovering the multiplicity
of peaks in Fig. 12. These facts suggest a dynamical
picture of the CT system according to which, at low
temperatures, different Phase Wave slopes are degener-
ated and correspond in some way to different minima
in the potential energy landscape, so that the time to
escape from one of them dramatically increases with
decreasing T .

A careful sight suggests that a slow dynamics may be
present also in the HT case, whose origin is, however,
different, being towards a nonzero value for the correla-
tion. The analysis in the HT case is more difficult since
it requires the knowledge of the thermalized probabil-
ity distributions of Cp, Ψ at different temperatures. A
deeper study is necessary to describe the dynamics of
both cases in an accurate way.

The moduli temporal correlation function Ci presents
but quite short relaxation times even at low tempera-
ture in both HT and CT, indicating that the moduli dy-
namics is irrelevant in the emergence of large timescales.



14

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

〈H
〉/
N

T

mean �eld

N = 50
100
150
200
300
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mean field prediction. The data are indistinguishable from
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c .

VI. NUMERICAL RESULTS FOR THE XY
MODEL

The XY model with four-body interactions (defined
by the Hamiltonian Eq. (6) with quenched amplitudes,
Aj = 1 for all j), presents as well a rich and interesting
phenomenology, that we now resume.

Dense Homogeneous Topology. As we have explained
in the previous section, the moduli dynamics at low
temperatures does not play any essential role in the
thermodynamics of the Spherical Model for a dense
(N4 ∼ O(N≥2)) set of quadruplets: in the low-
temperature phase the moduli are more and more ho-
mogeneous and equal to one at lower and lower tem-
peratures. The behavior of the p = 4 XY model in
dense HT’s, as one could expect from this argument,
is indeed qualitatively identical to that of the Spherical
Model: there is a discontinuous phase transition sepa-
rating a phase with uncorrelated angles, and a low-T
magnetized phase with O(2) symmetry breaking. The
finite-size critical point Tc(N) is obviously higher than
the Complex Spherical Model case (see Fig. 17). In the
dilute (though dense) version, N4 ∼ O(N2), we have
observed how the mean field solution accurately repro-
duce the numerical results for energy and magnetiza-
tion, with the exception of the transition temperature,
which may be higher than the mean field value (see
sizes N = 200 and 300 in Fig. 17). In the fully con-
nected case the critical temperature is compatible with
the mean field value.

Sparse Homogeneous Topology. We have also con-
sidered the case with high dilution, so that the num-
ber of quadruplets is N4 ∼ O(N<2). For the Complex
Spherical Model, one obtains a non-equipartite conden-
sation in such a topology, as explained in Sec. III.
In the XY case, our simulations provide instead evi-
dence that the system exhibits the mean-field behavior
for N4 ∼ O(N>1). In the extensive, homogeneously
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FIG. 18. Energy of the XY model in sparse (N4 = N),
homogeneous sets of quadruplets, for four sizes. The energy
is continuous at the transition. Inset: Specific Heat for the
same systems.
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N), homogeneous set of quadruplets, for N = 150. Inset:
mx histogram for the size N = 500.

sparse, case N4 ∼ O(N), instead, we observe evidence
for the onset of a second-order phase transition, separat-
ing two unmagnetized phases. Remarkably, the effect of
diluting, until reaching sparseness, has the effect of pre-
venting the symmetry breaking. The energy presents
no discontinuity while the specific heat is an increasing
function of N at the transition, cf. Fig. 18. The magne-
tization histograms reveal absence of angular symmetry
breaking, with long tails that appear continuously at
low temperatures and whose magnitude decreases with
the size of the system, cf. Fig. 19. The resemblance
of the sparse case with the unbroken symmetry in the
pairwise XY model in two dimensions is discussed in
the next section.

Correlated Topology. Remarkably, for both N4 ∼
O(N) and N4 ∼ O(N≥2), our numerical analysis sug-
gests that the phase transition remains discontinuous,
with a low-temperature phase characterized by the ab-
sence of magnetization and the presence of phase waves,
as in the Complex Spherical Model case in a dense CT.
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model topology N4 transition m(T < Tc)

CSM HT O(N≥2) 1st-order 6= 0

CSM HT O(N<2) non-Eq. cond. -

CSM CT O(N≥2) 1st-order = 0

CSM CT O(N<2) non-Eq. cond. -

XY HT O(N>1) 1st-order 6= 0

XY HT O(N) 2nd-order = 0

XY CT O(N>1) 1st-order = 0

XY CT O(N) 1st-order = 0

TABLE I. Nature of the transitions and of the correlators
in the low-T phase for the different considered models, as
emerges from the numerical analysis. Whenever m = 0, also
the two-point correlators Ci,p vanish.
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FIG. 20. XY model energy in CTs for several sizes and two
types of dilution, dense (N4 = N2) and sparse (N4 = N).
The inset shows the energy histogram in the sparse case with
N = 200 and several temperatures in the range [0.38 : 0.51].
In the presence of CT the transition remains first order even
in the sparse system, with the energy in the low temperature
phase coinciding with the mean field theory (see main text).

In the presence of a CT, our results indicate that the
sparseness of the list of quadruplets (i.e., N4 ∼ O(N) in
this case) only changes the approach to the critical point
from high temperatures, where we observe an ordering
with negative energy different from the phase wave,
while the transition remains first order. We present the
finite size E(T ) curves in Fig. 20. From our data, we
have concluded that the transition remains first order in
the sparse case, since there is no finite size indication of
divergence in the susceptibility χ = N(〈|m|2〉− |〈m〉|2),
and since the energy histogram presents two separated
peaks, with a coexistence region, as can be seen in the
inset of Fig. 20. The magnetization histograms are
qualitatively identical to those of the Complex Spheri-
cal Model in CTs, in Fig. 10.

The whole picture on the type of low-temperature
behavior and the symmetry conservation for all of our
models happens to be rich and unexpected, and it is
outlined in Table I.

A remarkable fact of the results of Fig. 20 is that
the energy of the dense case coincides with the mean
field energy in the whole range T < min{Tc(N), Tmf

c },
although the finite-size transition temperature can be
larger than the mean field solution. Such an agreement
between the CT and the HT observables (and, inciden-
tally, between both and the mean field theory) was ab-
sent in the Complex Spherical Model (see the precedent
section), indicating that the differences between CT and
HT is attributable to the moduli dynamics. What is
more, we observe that also in the sparse case there is
an agreement between mean field theory, dense CT and
dense HT for sufficiently low temperature.

VII. ANALOGY WITH THE ABELIAN
LATTICE GAUGE THEORY

In the introduction we have mentioned the fact
that the three-dimensional Abelian lattice gauge the-
ory presents a second-order phase transition, mappable
to the 2D Kosterlitz-Thouless transition. The low-
temperature phase is unmagnetized, a property which
follows from the model gauge invariance via Elitzur’s
theorem, which states that non-invariant observables
under a gauge transformation present vanishing ex-
pected value in a gauge-variant system. We believe this
mechanism to be the origin of the vanishing of the mag-
netization also in our 4-XY model in a homogeneous
sparse topology, mentioned in the previous section. Ac-
cording to this argument, the stochastic set of homoge-
neous quadruplets acquires a kind of gauge invariance
under some type of transformations. For example, it
is possible that in a sparse list of random quadruplets
there is a proliferation of sets of four spins which, al-
though not forming a quadruplet, occupy the bonds of
four neighboring quadruplets (as the sets of four spins
on which the lattice gauge transformations act). These
arguments justify the fact that in presence of topolog-
ical correlations, the 1-point (magnetization) and the
2-point (phase and intensity correlators) operators van-
ish, since they are not invariant under gauge symme-
try transformation, involving four spins. On the other
hand, four-point correlators, as the different terms in
the Hamiltonian, are nonzero in general.

In any case, we stress that such a symmetry does
not completely forbid the presence of magnetized con-
figurations: in Fig. 19 one observes two maxima of the
distribution h(mx) at nonzero values of mx. These mag-
netizations, however, are much less probable than the
most probable value at mx = 0. An analogous mecha-
nism could be behind the vanishing of the average mag-
netization found in both XY and Spherical models in
the presence of topological correlations. In this case,
the transformations leaving the total energy invariant
(up to fluctuations) would depend on the frequencies,
and would be no longer local but global transformations
connecting Phase Wave configurations with different al-
lowed slopes.
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VIII. CONNECTION WITH OPTICS AND
POSSIBLE EXPERIMENTAL REALIZATIONS

Interpreted from the point of view of optics, the re-
sults of our analysis lead to several straightforward con-
sequences in the field of multimode laser formation.
Perhaps the most immediate result, not captured by
approaches that neglect the role of the frequencies, is
the existence of a correlated phase without global O(2)
order, whose microscopic origin is the Phase Wave. We
now explain how this novel phase can have experimen-
tally accessible consequences in the form of a phase
delay of the ultra-short electromagnetic pulses result-
ing from the nontrivial mode-locking in the presence of
FMC.44 Such a temporal delay should be experimen-
tally accessible, as similar carrier phase delays are mea-
sured even in ultra-short lasers.46

A. Phase Delay and Phase Wave

Let τ be the time measured in units of the time inter-
val between two pulses, which in the statistical physical
framework can be associated to a microscopic unit of
time evolution, for example a Monte Carlo step. Let
an(τ) = An(τ)eıφn(τ) be the n-th electromagnetic mode
at the Monte Carlo time τ . Consider also the micro-
scopic time unit t � τ describing the evolution of the
electromagnetic pulse, whose form is:

E(t|τ) =

N∑

n=1

An(τ)eı[2πωnt+φn(τ)] . (25)

In the low-temperature phase (i.e., the mode-locking
phase at high pumping rate) of a system with HT, all
electromagnetic modes exhibit a common phase φn = φ
up to thermal fluctuations, and there is no phase delay
in the resulting E. On the other hand, the non-trivial
ML induced by the CT is such that the phase veloc-
ity dE/dt|t0 changes from pulse to pulse, where t0 is a
reference time with respect to the position of the maxi-
mum envelope at a given τ . The time delay of the field
with respect to the envelope is a nontrivial function of
the Phase Wave slope ∆ and of the central frequency ω0

(see Eq. (9)). We show in Fig. 21 the form of the pulses
at different thermalized configurations characterized by
different τ ’s, and their corresponding phase waves, from
which the fields E have been calculated through Eqs.
(9,25).

In summary, the relaxation of the narrow band ap-
proximation requires the introduction of the role of
mode frequencies, through the FMC, Eq. (3). We have
seen in Secs. V, VI how this, in turn, induces the phase
wave mechanism. We propose that, whenever the role
of the frequencies of a multimode laser is not negligi-
ble, and if the present model effectively describes the
pulse formation (as it is the case of the passive mode-
locking laser in a closed cavity, which satisfies these two
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FIG. 21. Electromagnetic pulse in time, Eq. (25), with
ω0 = 374, δ = 1 (cf. eq (9)), in correspondence of the
two Phase Wave configurations in figure 11, with slopes ∆1

and ∆2. The carrier-envelope delay indicated as horizontal
arrows is a function of ∆ and ω0.

conditions), it should be observable a carrier-envelope
delay of stochastic nature, of a magnitude changing, in
general, from pulse to pulse (as in Fig. 21). Such sin-
gle pulses dynamics and also its relationship to experi-
mental measurements of the average signal over several
(thousands) pulses, is currently under investigation.

B. Non-equipartite condensation

The non-equipartite condensation phenomena may
manifest in experimental circumstances, more compli-
cated than the multimode cavity resonant, such that
the dilution of interaction between modes can be tuned
through some mechanism. In a random laser, this is de-
termined by the spatial separation between electromag-
netic modes, since the coupling between four of them is
proportional to their spatial overlap.18 In a situation in
which the leading interaction is given by the disordered
version of Eq. (5), one expects to observe, by varying
the spatial concentration of modes, an abrupt transi-
tion from a regime with single isolated peak spectra,
with a few number of very intense modes, to a contin-
uous spectra in which the optical intensity is roughly
equidistributed among different modes.

In this spirit, we propose an interpretation of the re-
sults of the experiment performed in Ref. 47, the first
experimental observation of the onset of mode-locking
order in random lasers. In this experiment, a sample
of nanoparticles is immersed in a gain medium, and
the pumping protocol is such that the spatial region of
the sample to be pumped can be continuously enlarged,
though maintaining the overall optical power constant.
In this way, when a large fraction of the sample is il-
luminated, the onset of a continuous collective spectra
is observed, corresponding to a large amount of over-
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lapping modes. When, instead, only part of the sample
is pumped, the activated modes are low-overlapping in
space, their interaction is sparse, and the intensity be-
havior is as that of the non-equipartited phase described
in Sec. III.

C. Gain and Intensity Spectrum

One of the most easily accessible experimental quan-
tities in laser setups is the intensity spectrum of the sig-
nal, I(ω). In our framework the spectra can be directly
evaluated so to allow for a straightforward comparison.

For the study of the spectra, it is interesting to con-
sider the introduction of a non-flat gain curve,12 which
generalizes the Hamiltonian Eq. (5) in the following
way:

H = −
∑

s

GsA
2
s −

N

8N4

∑

spqr

Aspqr AsApAqAr

cos(φs − φp + φq − φr). (26)

We consider Gaussian gain curves Gs ≡ G(ωs), G be-
ing a Gaussian distribution with the maximum at the
center ω0 of the spectrum, and variance σg. In experi-
ments, the temperature is typically constant, while the
optical energy ε is ranged. To correctly compare with
our simulations, where T varies at constant ε, we mea-
sure the intensity spectrum as I(ωj) = 〈|aj |2〉/

√
T . In

this case, to be consistent with the photonic counter-
part, one also has to consider a temperature rescaled
gain curve: G(ω, T ) = TG0(ω), with a reference gain
curve G0(ω).

We now summarize the results of our numerical anal-
ysis of the Hamiltonian Eq. (26). As a first observation
we point out that the system behavior is robust against
the inclusion of the local gain term: the critical proper-
ties and the general features of thermodynamic phases
described in the previous sections remain unchanged.

In the IW regime the intensity spectrum is rather in-
fluenced by the shape of the gain curve, see Figs 22 and
23. In general, the transition causes an abrupt change
in the intensity spectrum. Above the lasing threshold,
in the ML regime, the intensity spectrum is mainly de-
termined by the topology of the interactions and it is
stable against the introduction of a non-flat gain curve.
For HT, the intensity spectrum is flat for high enough
pumping, see Fig 22. This reflects the fact that in HT
the frequencies do not play any role, besides the gain
curve, and this role becomes no longer dominant in the
ML phase. In particular, comparing to the case of an
approximately flat gain curve, the spectrum does not
change above the transition threshold (cf. left panel of
Fig 22).

The intensity spectrum has full sense in the CT,
where, instead, the frequencies play a relevant role in
determining the topology. In this case, the transition is
generally more abrupt in the intensity spectrum. Above
the threshold the spectrum is peaked around the central
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FIG. 22. Intensity spectra for HT system with N = 150
and N4 = N2 at three different temperatures. For this sys-
tem the transition is at Tc(150) = 0.369(3). The gain curve
is Gaussian with mean in the center of the considered fre-
quencies. Left: Gain profile with larger variance, σg = N .
Right: Gain profile with smaller variance, σg = N/4.
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tem the transition is at Tc(150) = 0.386(3). The gain curve
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frequencies disregarding the shape of the gain (Fig. 23),
as the modes at the central frequencies are effectively
strongly coupled (cf. Fig 1). In other words, the ML
spectrum shape observed in experiments results from
our analysis to be a direct consequence of the frequency-
dependent mode interactions resulting from the FMC.
In Fig. 24 this outcome is emphasized considering a
gain curve with an average different from the central fre-
quency of the amplified spectrum: both the frequency
of maximum intensity and the whole shape of the spec-
trum abruptly change at the ML threshold.

The observed effect may furnish a theoretical
mechanism to explain the so-called gain narrowing
phenomena.12,48,49
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but with a a gain curve σg = N/4, centered in ωj = N/6.

D. Other possible experimental consequences

In this section we propose two further aspects of our
analysis that may have a direct experimental conse-
quence. The first one is the possibility of experimen-
tally measure the vanishing of two-point (phase and
intensity) correlators. If the correlation measurements
are averaged over times much larger than a light round-
trip in the cavity, the vanishing of two point correlators
should be observable. The vanishing of two-point cor-
relators may, then, sign the dominance of the nonlinear
interaction mediated by the FMC, which leads to null
two-point functions, as emerges from our analysis in Sec.
V. Even in random lasers, intensity-intensity correla-
tions can be measured (see, for example, Refs. 50–53).
On the other hand, phase-phase correlations are mea-
sured in conventional lasers with standard techniques54

and, in principle, the Phase Wave could be observed
through phase correlation oscillations (as in Fig. 13) if
a sufficiently high time resolution is achievable.

Secondly, according to the analysis presented in Sec.
V, the metastable phase in the ML regime is expected
to decrease with the size of the system. This is ob-
served even in the HT, where the role of frequencies is
irrelevant. In the optical counterpart this would imply
that the region of Optical Bistability55 should decrease
as the number of modes in the multimode mode lock-
ing setup increases. The other way round, the depen-
dence/independence of this phenomena on the number
of nodes could be used to infer whether the Optical
Bistability is a consequence of the (finite-size) metasta-
bility observed in our simulations, or whether its origin
is different.

IX. CONCLUSIONS AND PERSPECTIVES

To the best of our knowledge, the present analysis
is the first study of vector statistical models with four-
body interactions beyond the mean field approximation.
From our numerical study it emerges that these sys-
tems present a very rich phenomenology, among which

we highlight: the absence of global symmetry breaking
in the presence of quadruplet correlations; the absence
of symmetry breaking and the smoothness of the tran-
sition in the XY model for N4 ∼ O(N) homogeneous
interacting terms; the non-equipartite condensation of
the Complex Spherical model on sparse (N4 ∼ O(N<2))
graphs; the slowing down of the dynamics in the low-
temperature phase. Other rather unconventional results
regarding these models are exposed in Secs. V and VI.

From a methodological point of view, we have pro-
vided a novel parallel algorithm to Monte Carlo sample
systems with p = 4-body interactions in an efficient way
(i.e., in a time O(N4) instead of O(N N4)) in the un-
favorable situation in which the interaction network is
non-sparse.

Moreover, we have stressed that these results, pre-
sented in a statistical physical framework, have exper-
imental consequences in the field of photonics as these
models describe also the interaction between electro-
magnetic modes is passive mode locking lasers. In prin-
ciple, they cover a broad range of experimental circum-
stances in which the modes are subject to a nonlinear
quartic interaction and to a stochastic drift. In the case
of laser formation the drift is induced by the sponta-
neous emission, considered as an effective thermal bath,
and the different light regimes are associated to dif-
ferent resulting thermodynamic phases of the statisti-
cal model. This is well established in the case of the
mode locking transition of a closed cavity laser, which
is solvable by mean field theory in the so-called narrow-
band approximation.5,44 The present work goes beyond
mean field and allows to take into account frequency
correlations. Our results not only account for general
features of discontinuous transitions observed in mode
locking experiments, but also predicts a variety of phe-
nomenology as the vanishing of two-mode correlations,
the carrier phase delay of electromagnetic pulses or the
non-equipartite condensation, which presumably lies at
the origin of the experimental observations of Ref. 47,
and in this paper we determine the conditions under
which these phenomena arise. The model under analy-
sis invites to establish further links between the present
results and other quantities measured in laser experi-
ments, as there are further quantities provided by the
Monte Carlo analysis that are experimentally accessible
(intensity and phase correlations and intensity spectra,
hysteresis of the energy curve).

This setup allows for an analysis with additional novel
ingredients as quenched interaction disorder,18 and any
type of interaction topology. This freedom is sufficient
to enlarge the spectrum of experimental situations that
may be effectively described in the statistical approach.
It is a challenging problem that of going beyond the
passive mode locking transition in establishing the link
between optics and statistical physics. In other words,
in which circumstances a Hamiltonian formulation is
possible and what are the properties of the couplings
appearing in Eq. (26) describing a given experimen-
tal condition. Such a query is indeed a big theoretical
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challenge which has motivated an intense research in the
last years, see Ref. [21] for a review of the state of the
art. In random laser phenomena there is no closed cav-
ity and this fact poses several theoretical difficulties in
the treatment, as the very definition of lasing mode;56,57

the presence of dissipative, outer-radiative modes, and
their effective influence in the set of lasering modes;58

the possible existence of an imaginary part in the cou-
pling interaction; the existence of correlations in the
coupling disorder and, possibly, in the noise.21,59

Besides the direct photonic interpretation, the Hamil-
tonian Eq. (5) is quite general, and the form of topo-
logical correlations (introduced as the FMC constraint,
Eq. (8)) is a very natural way of selecting the degrees of
freedom which effectively interact. For this reason, we
believe that the physical consequences of the present
study are not limited to optics, but are possibly rele-
vant in more general situations described by a scalar
field subject to a nonlinear interaction.
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Appendix A: The mean field solution of the
ferromagnetic model

Consider the fully connected ferromagnetic model

H = − 1

N3

1,N∑

jklm

ajaka
∗
l a
∗
m ,

with
∑

j

|aj |2 = εN . (A1)

Defining aj = σj + iτj the partition function is

Z =

∫

S

exp


 β

N3

∑

jklm

(σjklm + τjklm + ϕjklm)


dσdτ ,

where the subscript S means that the integral is evalu-
ated over the hyper-sphere Eq. (A1) and

ϕ1234 =
1

3
(ψ12,34 + ψ13,24 + ψ14,23) ,

ψ12,34 = σ12τ34 + σ34τ12 ,

and we are using the shortening

σ12...k = σ1σ2 · · ·σk .

Introducing the magnetizations

mσ =
1

N

∑

j

σj , mτ =
1

N

∑

j

τj ,

the partition function is written as

Z =

∫
Dm e−NβF (m)

with

βF (m) = −β
(
m2
σ +m2

τ

)2 − log
[
π
(
ε−m2

σ −m2
τ

)]
− 1 .

Solving the integral over the magnetizations with the
saddle point method leads us to consider

β
dF

dmσ,τ
= 2mσ,τ

[
−2β

(
m2
σ +m2

τ

)
+

1

ε−m2
σ −m2

τ

]
= 0 .

The paramagnetic (PM) case with mσ = mτ = 0 is
always a solution. For

ε2β > 1 → T < ε2 (A2)

also a ferromagnetic (FM) solution appears with

m2
σ +m2

τ =
ε

2

(
1 +

√
1− 1

ε2β

)
.

The average energy is

〈H〉 = − ∂

∂β
logZ = −ε2

(
m2
σ +m2

τ

)2
+O

(
1

N

)
,

and it is zero for the PM solution and

〈H〉
N

= −ε
4

4

(
1 +

√
1− 1

ε2β

)2

, (A3)

for the FM solution.
The hessian of the functional F yield the stability

properties of the previous solutions. The paramagnetic
solutionmσ = mτ = 0 is associated with two degenerate
positive eigenvalues, so the PM solution is always stable.
The FM solution has a null eigenvalue and a positive
eigenvalues, then, in the region where the FM solution
exists, it is always marginally stable.

Then, in the region of the phase diagram given by
Eq. (A2) the stable PM and the marginal FM solutions
coexist. The equilibrium transition is at the point

ε2βc = 2.455408 . . .

where the free energy of the two solutions are equal.
At lower temperature Ffm < Fpm and the PM solution
becomes metastable.
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Appendix B: Energy scaling in the disordered
Spherical Model

We suppose a Gaussian distribution of couplings
P (J), with average J0 and variance σ. In this case,
we can write an n-replicated partition function:

Zn =

∫ N∏

j=1

daj da
∗
j

∫ ∏

[jklm]

J
(4)
[jklm]P (J[jklm])

× exp

{
−β

n∑

b=1

HJ [{a(b)}]
}

=

=
√

2πσ2

∫ N∏

j=1

daj da
∗
j

× exp

{
1,N∑

[jklm]

[
J0β

n∑

b=1

abja
b∗
k a

b
la
b,∗
m

+
1

2
σ2β2

(∑

b

abja
b,∗
k abla

b,∗
m

)2]
,

where [jklm] points out at distinct interacting quadru-
plets. Unlike the fully connected case, in a diluted case
the “spatial” index of the modes is not removed. How-
ever, just for scaling purposes, one can try and use a
mean-field approximation for the diluted case, as well,

assuming that
∑
N4
∼ (N4/N

4)
∑
jklm, where the sum

runs over all indices. In this way one can rewrite the
exponent in terms of the overlap matrices and magne-
tizations as usual, so to obtain (cf. Ref. 19)

E

N
=− 1

N

d

dβ
logZ = − 1

N

d

dβ
lim
n→0

Zn − 1

n
=

=− 1

2

∑

b

g(Qb1, Rb1)− k(mσ,mτ ) ,

where (a1 ≡ σ1 + iτ1)

Qab =
∑

1

σa1σ
b
1 + τa1 τ

b
1

2N
,

Rab =
∑

1

σa1σ
b
1 − τa1 τ b1
2N

,mσ =
1

N

∑

1

σ1

g(Qab, Rab) = β(Q2
ab +R2

ab)

[
1

9
σ2

4(Q2
ab +R2

ab)
N4

N

]
,

k(ma
σ,m

a
τ ) =

1

2

[
(ma

σ)2 + (ma
τ )2
]

{
1

12
J

(4)
0

[
(ma

σ)2 + (ma
τ )2
] N4

N

}
.

In the case of equipartition, one has O(N) spins of am-
plitude O(1), so all the overlap matrices and magneti-
zations are O(1). Then the extensive energy in both
cases results as in Eq. (12).
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