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An Optimization-based Dynamic Reordering
Heuristic for Coordination of Vehicles in Mixed

Traffic Intersections
Muhammad Faris, Mario Zanon*, and Paolo Falcone

Abstract—In this paper, we address a coordination problem
for connected and autonomous vehicles (CAVs) in mixed traffic
settings with human-driven vehicles (HDVs). The main objective
is to have a safe and optimal crossing order for vehicles
approaching unsignalized intersections. This problem results in
a Mixed-Integer Quadratic Programming (MIQP) formulation
which is unsuitable for real-time applications. Therefore, we
propose a computationally tractable optimization-based heuristic
that monitors platoons of CAVs and HDVs to evaluate whether
alternative crossing orders can perform better. It first checks
the future constraint violation that consistently occurs between
pairs of platoons to determine a potential swap. Next, the costs
of Quadratic Programming (QP) formulations associated with
the current and alternative orders are compared in a depth-first
branching fashion. In simulations, we show that our heuristic
can be a hundred times faster than the original and simplified
MIQPs and yields solutions that are close to optimal and have
better order consistency.

Index Terms—Autonomous vehicles, heuristic, mixed traffic,
vehicle coordination.

I. INTRODUCTION

TRAFFIC intersections, along with other merging areas
such as on ramps or roundabouts, are widely recognized

as significant bottlenecks in the road network, contributing to
traffic-related issues that encompass both safety and inefficient
use of the infrastructure. Intersection areas are prone to a
considerable number of traffic accidents and fatalities [1].
To address safety concerns, strict traffic control measures
are implemented, such as traffic lights and signs. Addition-
ally, merging areas are characterized by frequent stop-and-
go patterns, and the traffic flow is typically reduced by
human drivers’ behavior. These inefficiencies further lead to
increased pollution and energy consumption [2]. Achieving
traffic efficiency while ensuring safety at all times poses a
significant challenge that requires innovative approaches.

Traffic lights have long been a popular conventional ap-
proach to coordinating human-driven vehicles (HDVs), using
a top-down perspective [3]. However, despite their widespread
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use, traffic lights alone often fail to fully resolve traffic prob-
lems and achieve the desired balance between traffic efficiency
and safety. One of the issues with traffic lights is their low
throughput, which leads to a build-up of vehicles waiting
for their turn to occupy the intersection, resulting in traffic
jams. Another issue is that human errors highly contribute to
accidents in signalized intersections [4].

To address these challenges and improve traffic manage-
ment, connected and autonomous vehicles (CAVs) play a vital
role [5]. They can leverage advanced communication and
sensing technologies to unlock new possibilities for a more
efficient traffic flow. By sharing real-time information and
coordinating their actions through vehicle-to-everything (V2X)
communication schemes, CAVs can ensure smoother traffic
operations and better adherence to traffic rules than HDVs.

As research on autonomous vehicles continues to grow, the
primary focus is on gradually replacing human drivers with
automation and enhancing overall traffic performance. In the
future, the development of CAVs is expected to enable the im-
plementation of unsignalized intersections, where coordination
between vehicles will replace traditional traffic signals [6].

The main challenge stemming from unsignalized intersec-
tions is priority assignment, i.e., selecting a crossing order
for the incoming vehicles. This problem can be formulated
as a Mixed-Integer Programming (MIP) problem and is NP-
hard [7]. This renders a real-time optimal application of such
problem impossible. As an alternative, First-Come, First-Serve
(FCFS) scheduling has been widely used due to its simplicity.
Unfortunately, this approach can be far from optimal [8].

Before achieving full market penetration of CAVs, transition
phases will take place, where HDVs and CAVs will share the
road and interact with each other. Despite a possible future
high penetration of CAVs, the presence of legacy HDVs cannot
be entirely ruled out. As a result, a specialized coordination
strategy for CAVs is essential to effectively handle interactions
with HDVs, particularly concerning occupancy at unsignalized
merging areas or intersections. This dedicated strategy must
ensure safe and efficient traffic flow in mixed traffic scenarios.

Accounting for the behavior of HDVs in coordination can be
very complex, as decisions such as determining the crossing
order and acceleration profile need continuous adaptation to
account for the uncertain HDV trajectories. The presence of
HDVs may trigger changes in order as the current order may
become inefficient or even infeasible. Continuously monitoring
and assessing the behavior of HDVs to close the control
loop can be computationally challenging if the conventional
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approach of resolving the MIP problem is applied.
To address these issues, this work proposes a heuristic

algorithm for vehicle crossing order problems in mixed traffic.
The main focus is on handling the dynamic reordering of
vehicles caused by changes in HDVs’ predicted trajectories.
The problem is first modeled and formulated as a Mixed-
Integer Quadratic Programming (MIQP), where HDVs are
grouped into mixed-platoons. The proposed heuristic is then
derived as an approximation of the MIQP, inspired by Branch-
and-Bound (B&B) strategies but specifically tailored to this
problem. Rather than performing a standard B&B search, we
exploit the knowledge of the problem to focus the expansion
of the decision tree on a very small subset of all possible
orders. This subset is selected based on potential future safety
constraint violations, i.e., by a consistency check. At each
time, an alternative crossing order that swaps two adjacent
platoons is compared to the current one. The new order is
retained if its cost is lower than that of the current order.

Our main contributions are the following:
• We formulate an MIQP optimal coordination problem

based on the platooning strategy;
• We propose an optimization-based heuristic to solve the

problem in computationally tractable way;
• We perform comprehensive numerical simulations that

demonstrate the effectiveness of our approach.
This paper is organized as follows. In Section II we provide

an extensive review of the literature related to the considered
problem. In Section III we define the problem and set the
premises for the formulation of optimal coordination, which
is provided in Section IV. In Section V, we introduce our
heuristic algorithm. All simulations and discussions on the per-
formance of the different algorithms are given in Section VI.
Finally, we conclude the work in Section VII.

II. LITERATURE REVIEW

Early research on vehicle coordination at unsignalized inter-
sections primarily focused on autonomous vehicles (AVs). In
[9], a coordination problem for AVs was proposed, suggesting
the use of a safety distance between conflicting vehicles for
collision avoidance. The occupancy priority was determined
based on arrival times at the intersection. A similar problem
was addressed by [10]. Both acknowledged the computational
complexity of the crossing order problem and proposed a
reachability-based heuristic method as an alternative to Mixed-
Integer Programming (MIP) formulation.

Several alternative heuristic methods have been utilized. The
reachability-based heuristic has been further developed into
a sequential priority decision-making method in [11], which
aimed at reducing the number of priority permutations. In [12],
a heuristic based on Mixed-Integer Quadratic Programming
(MIQP) was introduced as an approximation of vehicle coor-
dination using timeslots. Other trajectory optimization-based
methods using constraint programming can be found in [13],
[14], and [15]. To handle the complexity of NP-hard formu-
lations, tree search methods were applied in [16] and [17]
to explore possible crossing orders, finding optimal solutions
through multiple directed iterations, even in lane change appli-
cations. Rule-based heuristics combined with timeslot or exit

time minimization were developed in [18] and [19]. However,
these heuristics are not specifically designed for mixed traffic.

More recently, researchers have been extending their focus
to mixed traffic scenarios, in particular involving human-driven
vehicles (HDVs). Rule-based protocols were used alongside
traffic lights by [3] and [20]. In [21] the same problem was
addressed using the CAV-HDV platoon control method. Pla-
tooning strategies were also explored in [22] for intersection
cases and in [23] for specific controlled zones. A cooperative
maneuver technique was proposed by [6] for HDVs that are
connected and behave according to a specific model. The
crossing order was obtained through gradient-based optimiza-
tion, although safety was not a primary concern for HDVs.
A similar setting was considered in [24], albeit with First-
Come-First-Serve (FCFS) priority. Furthermore, [25] studied
the impact of involving HDVs on performance and safety,
emphasizing that uncertainty and prediction mismatches from
the HDVs may necessitate a change of order.

Some studies focus specifically on dynamic reordering or
reprioritization problems. For example, [26] implemented a
time-varying priority assignment by evaluating possible colli-
sions from each vehicle. In [27], a negotiation-based priority
approach was applied to coordinate CAVs, allowing rules to be
negotiated during the auction phase based on the current vehi-
cle states. Arrival/exit time minimization-based methods were
used in [28], [29], and [30] to handle changing traffic flow.
These methods sort the order based on individual assessments
relying on conservative assumptions, such as current states
only or maximum accelerations. However, they did not provide
comparisons of solution quality and/or did not specifically
address challenges in mixed traffic environments.

In this paper, we deal with the challenges of dynamic
reordering in the context of mixed traffic. We first formulate
the coordination problem as an MIQP. Then, we propose an
optimization-based (QPs) heuristic to address the computa-
tional challenge. We extensively evaluate the methods’ per-
formance in mixed traffic reordering scenarios, e.g., including
when and which order to change. Moreover, comparisons with
the MIQPs and simpler heuristics are provided to assess the
quality of the solutions and computational tractability.

III. PROBLEM SETUP & MODELING

In this section, we introduce the problem setting and the
notation used to describe both the intersection and vehicles.

A. Types of Vehicles
We consider a set of N + M vehicles, where N and M

are, respectively, the numbers of connected and autonomous
vehicles (CAVs) and human-driven vehicles (HDVs). Each
vehicle is assigned an integer index, and we denote by N , M
the sets of indices relative to the CAVs and HDVs, respectively.

B. Vehicle Modeling
While any vehicle model can be used within our approach,

we assume for simplicity that vehicle i moves along its
predefined path as described by the double-integrator model

xi,k+1 = Axi,k +Bui,k, ∀i ∈ N ,M, (1)
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Figure 1. Mixed traffic of CAVs and HDVs at an intersection area

where k = ⌊t/∆t⌋ ∈ N is the discrete-time index, ∆t is the
periodic sampling time, t ∈ R+ is time, and

A =

[
1 ∆t
0 1

]
, B =

[
1
2∆t2

∆t

]
.

The state vector xi,k = [pi,k, vi,k]
⊤ contains the longitudinal

distance of vehicle i from its origin point and its velocity. Each
vehicle starts at k = 0 with given initial states

xi,0 = x0
i , ∀i ∈ N ,M (2)

and is subject to the following velocity and accelera-
tion/deceleration (input) bounds

vmin ≤ vi,k ≤ vmax, ∀i ∈ N ,M, (3a)

umin ≤ ui,k ≤ umax, ∀i ∈ N ,M, (3b)

with vmin > 0, as we assume that vehicles can not reverse.
Based on the concept discussed in [25], the HDVs’ behavior

is described by the following mixed of constant-velocity and
maximum acceleration/deceleration model

vi,k+1 = vi,k +∆tui,k, k > 0, ∀ i ∈M, (4)

where

ui,k =

{
0, ui,k−1 ≥ 0,

umin, ui,k−1 < 0,

in which umin is the deceleration limit. Note that, similar
to [31], [32], we chose the model above for the sake of
simplicity due to the assumption on the limited information
on HDVs behavior. Alternative HDV models exist and can
be used instead of the one we propose without any negative
impact on our method.

C. Conflict Zones

We call a Conflict Zone (CZ) any portion of an intersection
area where vehicles coming from different directions intersect
their paths, as illustrated in Figure 1.

For simplicity, we consider the case of a single CZ at the
center of the intersection area. The CZ is defined by the
pairs

(
pin, pout

)
denoting the entry and exit positions in each

direction, along each path. While having a single CZ here
can be conservative, we restricted to that setting for the sake
of simplicity. An extension to multiple CZs as in, e.g., [33],
will be considered in future work. Furthermore, for simplicity,
we consider the case of one lane per direction, which implies
that no overtaking is allowed between vehicles coming from
the same direction. To avoid lateral (side) collisions due to
conflicting paths, each vehicle must occupy the CZ exclusively
as we will discuss in more detail in Section IV.

D. Platoon roles
In this paper, we aim to exploit the presence of CAVs

to efficiently regulate the traffic at the intersection area. The
main idea is that, by adapting the speed of CAVs approaching
the intersection, the behavior of HDVs can be influenced to
optimize the overall intersection efficiency and safety.

As stated in Assumption 1, an autonomous Intersection
Manager (IM), i.e., a coordinator is present [34], [35], which
assigns a CAV i the role of platoon leader if it approaches
the intersection ahead of at least one HDV. In a practical
implementation, CAVs can coordinate in a fully distributed
setting to handle these tasks instead so that an IM is not
required. However, this requires extensions to the current
algorithm, which will be the subject of future work. Note
also that, with the advancement of wireless communication
techniques (5G, 6G), the IM need not be located in the
intersection but can be in the cloud.

We denote the last vehicle in each platoon i as tail m. The
platoon length li,k is defined as the position difference between
the positions of the platoon leader and tail vehicles:

li,k = pi,k − pm,k. (5)

Additionally, we assume that IM determines the member of the
platoon a priori based on, e.g., an inter-vehicle distance rule.
Additional rules can also be introduced to allow for further
flexibility such as, e.g., splitting a long platoon in case the IM
deems it useful. Finally, a CAV that is not followed by any
HDV forms a one-vehicle platoon, and an HDV that is not
preceded by any CAV is designated as a leader of itself.

As HDVs do not have connectivity, they are not assigned
an active role.

Assumption 1. HDVs cannot communicate with other vehicles
or the IM. Nevertheless, their current states and inputs can be
measured by the road infrastructure and are available to the
IM. Moreover, a platoon must remain intact when crossing the
intersection, i.e., no vehicle coming from other directions can
divide the platoon.

Finally, we assume that a high penetration of CAVs is
achieved, which we state as N >> M . This reduces the proba-
bility of having more leading HDVs coming to the intersection
that are not preceded by any CAV which can potentially
induce complicated situations. Note that this assumption is
not necessary for the theory, but just to guarantee that our
approach can yield some performance increase.
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IV. COORDINATION PROBLEM

A. Intersection Crossing Order
Let Ok = [o1,k, ..., on,k, ..., oN,k]

⊤ be a vector containing
the CAVs’ crossing orders at time k, where on,k = i ∈ N if
at time k CAV i is planned to cross at the n-th position. Note
that only the leading CAVs are ordered in Ok, while the HDVs
inherit the order assigned to the CAV leading their platoon.

As for the non-cooperative leading HDVs, they are not
assigned any order and each of them is considered as a one-
vehicle platoon. In order to guarantee safety, the IM can
impose additional safety constraints with the aim of avoiding
collisions, e.g., as in (14).

B. Safety Constraints
In the considered problem setup, the vehicles approaching

the intersection must avoid two types of collisions: lateral
(side) collisions, which can occur in the CZ; and rear-end
collisions, which can occur inside a platoon or between
platoons that move in the same direction.

1) Lateral collision avoidance: To avoid side collisions
within the CZ, the position gap between two platoons i, j ∈ N
that arrive from different directions must be greater than a
given constant dmin. This collision avoidance condition is
formulated within the following conditional constraint, which
also defines the crossing order

if toutj ≤ tini :

pj,k ≥ pi,k + dmin + l̄, k ∈ [
¯
kj , k̄i], (6a)

if touti ≤ tinj :

pi,k ≥ pj,k + dmin + l̄, k ∈ [
¯
ki, k̄j ], (6b)

where
¯
kc = min(k | tk ≥ tinc ), k̄c = max(k | tk ≤ toutc ), c ∈

{i, j} and tk = k∆t. Constant l̄ accounts for the change of
coordinates between platoons i and j, as illustrated in Figure 2
and inspired by the virtual platooning concept [36]. Note that
either (6a) or (6b) is active w.r.t. the selected sequence, i.e.,
toutj ≤ tini means j enters CZ before i and vice versa within
certain timeslots, i.e., [

¯
kj , k̄i] ∨ [

¯
ki, k̄j ], respectively.

The following conditions relate the timeslots to the pla-
toons i, j and CZ positions

pc,
¯
kc
≥ pin, pc,k̄c

≤ pout, (7a)

pc(t
in
c ) = pin, pc(t

out
c ) = pout. (7b)

As we consider platoons as single vehicles (Assumption 1),
this constraint must account for the platoon length li,k.

Accordingly, binary indicators ρini,j,k, ρ
out
i,j,k ∈ {0, 1} are

introduced to activate the constraint within the selected times-
lots, which rewrites the constraint as

(ρini,j,k − ρouti,j,k)(1− ri,j)(pj,k − lj,k − pi,k − dmin − l̄) ≥ 0,
(8a)

(ρini,j,k − ρouti,j,k)(ri,j)(pi,k − li,k − pj,k − dmin − l̄) ≥ 0,
(8b)

where ri,j ∈ {0, 1} is a binary variable defining whether i
crosses before j (ri,j = 1) or the converse (ri,j = 0).

The values of ρini,j,k, ρ
out
i,j,k depend on the times at which the

platoons occupy the CZ, i.e., they must satisfy these conditions

ρini,j,k ≤ 1 +
p̄ink − pin

Mb
, (9a)

ρini,j,k ≥
p̄ink − pin

Mb
, (9b)

ρouti,j,k ≤ 1 +
p̄outk − pout

Mb
, (9c)

ρouti,j,k ≥
p̄outk − pout

Mb
, (9d)

where,

p̄ink = ri,jpi,k + (1− ri,j)pj,k, (10)
p̄outk = ri,jpj,k + (1− ri,j)pi,k, (11)

and Mb is a sufficiently large constant value, i.e., Big-M [37].
Conditions (9a) and (9b) are used to set ρini,j,k to 0 when
either of the platoons i, j (OR condition) is before pin and
to 1 otherwise. Similarly, conditions (9c) and (9d) are used
to set ρouti,j,k to 0 or 1, respectively when both platoons
(AND condition) are before or after pout. The implication of
these conditions to constraint (8) is illustrated in Figure 3,
which displays the situation in which platoon i reaches the
intersection before j, such that the constraint (8) becomes
active first. After this time, we have ρini,j,k = 1. Similarly,
after both vehicles have exited the intersection, ρouti,j,k = 1 and
the collision avoidance constraint is not enforced anymore.

Avoiding the multiplication of integer variables in (8) is
convenient from a coordination problem formulation stand-
point [37], as shown next. Indeed, the conditions (8)-(11) can
be rewritten as follows

Mb(1− ρini,j,k + ρouti,j,k + 1− ri,j)+

pj,k − lj,k − pi,k − dmin − l̄ ≥ 0, (12a)

Mb(1− ρini,j,k + ρouti,j,k + ri,j)+

pi,k − li,k − pj,k − dmin − l̄ ≥ 0, (12b)
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Eq. (8)

Figure 3. Timing diagram of the safety constraint (8) activation/deactivation,
where the entry condition is based on OR logic of a pair of platoons i, j
positions w.r.t. CZ, while the exit condition is based on AND.

along with the position constraints (9), (11)

pi,k − pin ≤Mbρini,j,k, (13a)

pj,k − pin ≤Mbρini,j,k, (13b)

−2Mb(1− ri,j)− pi,k + pin ≤ −Mb(ρini,j,k − 1), (13c)

−2Mb(ri,j)− pj,k + pin ≤ −Mb(ρini,j,k − 1), (13d)

−2Mb(ri,j) + pi,k − pout ≤Mbρouti,j,k, (13e)

−2Mb(1− ri,j) + pj,k − pout ≤Mbρouti,j,k, (13f)

−pi,k + pout ≤ −Mb(ρouti,j,k − 1), (13g)

−pj,k + pout ≤ −Mb(ρouti,j,k − 1). (13h)

It can be verified that (13a), (13b) imply (9b),
while (13c), (13d) correspond to (9a). Similarly, (13g), (13h)
imply (9d), while (13g), (13h) correspond to (9c).

To maintain safety in case of leading HDVs, the IM can
impose a constraint similar to (6) to force the CAV-led platoons
to let the leading HDVs occupy the intersection first, i.e.,

(ρini,j,k − ρouti,j,k)(pj,k − pi,k − dmin − l̄) ≥ 0, (14)

where i, j are the indices of the CAV-led platoon and the lead-
ing HDV, respectively. Variables ρini,j,k, ρ

out
i,j,k are determined

according to (13).
2) Rear-end collision avoidance: Consider two adjacent

vehicles coming from the same direction, with platoon i
behind platoon j. To avoid rear-end collisions, the position
gap between the two platoons must be no smaller than dmin,

pj,k − lj,k − pi,k ≥ dmin. (15)

C. Objective Function

A CAV i ∈ N aims at following its reference speed profile
vrefi,k while also minimizing its acceleration/deceleration over
some prediction horizon Kpre ∈ N (or T pre ∈ R+). This can
be formalized by the cost function

Ji =

Kpre−1∑
k=⌊ t

∆t ⌋

qv(vrefi,k − vi,k)
2 + quu2

i,k + qv(vrefi,k − vi,k)
2,

(16)

where qv and qu are constant weights and

vrefi,k =

{
vm,k li,k−1 ≥ d̄,

vnom li,k−1 < d̄,
(17)

where m is the index of the HDV following the leading
CAV i and vnom ≥ vm,k is the i-th CAV’s preferred speed.
The reference speed in (17) aims at limiting the platoon
length li,k−1 in case the following m-th HDV is falling behind
and is set to be constant over Kpre steps.

D. Problem Formulation

The vehicle coordination problem can be formulated at the
time t as the following Mixed-Integer Quadratic Programming
(MIQP) constrained optimal control problem

ΦOMIQP(vrefk ,xxx0,ph) =

min
r,ρ,w

N∑
i

Ji(wi) (18a)

s.t. xi,k+1 = Axi,k +Bui,k, (18b)

xi,0 = x0
i , (18c)

vmin ≤ vi,k ≤ vmax, (18d)

umin ≤ ui,k ≤ umax, (18e)
Eq. (12), (13), (15), (18f)

ri,j , ρ
in
i,j,k, ρ

out
i,j,k ∈ {0, 1}, (18g)

where ph =
[
pi,0:Kpre , ..., pM,0:Kpre

]⊤
collects the predicted

trajectories of tail HDVs, which define the platoon length lpi,k
appearing in (12), and (15), xxx0 = [x1,0..., xN,0]

⊤, collects the
initial states of all CAVs, r = [r1,2, ..., ri,j , ..., rN−1,N ]

⊤,
ρin =

[
ρin1,2,0, ..., ρinN−1,N,Kpre

]⊤
, ρout =[

ρout1,2,0, ..., ρoutN−1,N,Kpre

]⊤
, ρ =

[
(ρin)⊤, (ρout)⊤

]⊤
collects the binary variables encoding the crossing order and

safety constraints timing. Further, vref
k =

[
vref1,k, ..., vrefN,k

]⊤
collects the reference velocities, and the continuous optimiza-
tion variables are lumped in w = [w1, ..., wi, ..., wN ]

⊤,
where wi = [wi,1, ..., wi,k, ..., wi,Kpre ]

⊤ ∈ Rnw×1 with
wi,k = [xi,k, ui,k]

⊤ lumping together the states and control
inputs of vehicle i. Note that the number of platoons that
are scheduled to cross after platoon i ∈ {i,N − 1} can be
obtained as

∑
j ri,j , ∀j ∈ {i+ 1, N}, and the crossing order

Ok can be constructed from r directly.
When solving MIQP (18) above, by setting ri,j to either

0 or 1, the solver selects which of the two (complementary)
conditions in (12) will be enforced to define the optimal order.
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To avoid infeasibility in case the initial position difference
between platoons is lower than dmin, a slack variable ηi,j,k ≥ 0
is added to the equations

Mb(1− ρouti,j,k + ρini,j,k + 1− ri,j)+

pj,k − lj,k − pi,k − dmin − l̄ + ηi,j,k ≥ 0, (19a)

Mb(1− ρouti,j,k + ρini,j,k + ri,j)+

pi,k − li,k − pj,k − dmin − l̄ + ηi,j,k ≥ 0, (19b)

and a linear term is introduced in the cost to penalize this
relaxation so that Problem (18) is reformulated as

ΦOMIQP(vrefk ,xxx0,ph) =

min
r,ρ,w,η

N∑
i

Ji(wi) +

N−1∑
i=1

N∑
j=i+1

Je(ηi,j)

(20a)
s.t. xi,k+1 = Axi,k +Bui,k, (20b)

xi,0 = x0
i , (20c)

vmin ≤ vi,k ≤ vmax, (20d)

umin ≤ ui,k ≤ umax, (20e)
Eq. (19), (13), (15), (20f)

ri,j , ρ
in
i,j,k, ρ

out
i,j,k ∈ {0, 1}, (20g)

where,

Je =

Kp−1∑
k=⌊ t

∆t ⌋

qe,lηi,j,k +

Kp−1∑
k=⌊ t

∆t ⌋

qe,q(ηi,j,k)
2. (21)

Variable ηi,j =
[
ηi,j,0 ... ηi,j,Kpre

]
collects the slacks for

each pair i ∈ {1, N − 1}, j ∈ {i+1, N}, i ̸= j for all k, and
qe,l, qe,q are constants weights for linear and quadratic terms,
respectively. The quadratic term is in principle not needed, but
we add it to the cost to introduce some positive curvature that
can help the solver converge faster. From this point on, we
denote MIQP (20) as the Original MIQP (OMIQP).

The OMIQP is executed in a closed-loop fashion according
to Algorithm 1, lines 4-5. With respect to a standard closed-
loop implementation, in this case, we need to account for
the fact that vehicles will eventually reach the intersection’s
entry, such that the definition of an order will eventually
become meaningless. To address that issue, we apply a simple
strategy of not updating the crossing order once the vehicles
are too close to the intersection. Accordingly, the fixed-order
counterpart of MIQP (20), given in (25), is solved on lines
7-8 to keep yielding CAVs control input.

In the context of continuous traffic flow, our algorithm can
be readily modified to take into account the incoming platoons
and subsequently coordinate their order and trajectories. Once
a platoon reaches the entry, we can fix its sequence and
exclude it from the MIQP problem. For simplicity, we do not
consider this scheme for now and instead use a static number
of platoons.

E. Lower-complexity/Simplified MIQP

Solving the OMIQP (20) which imposes the safety con-
straints (19) in a closed-loop way can be computationally

Algorithm 1 Original MIQP (OMIQP)
Input: vrefk ,xxx0,ph

Output: Ok, w
1: for k ∈ R+ do
2: Obtain vrefk ,xxx0,ph ▷ Parameter
3: if pi,k ≤ pin, ∀i ∈M,N then
4: Solve OMIQP ΦU (20) / (23)
5: Obtain Ok from r
6: else
7: Set Ok = Ok−1 and obtain r
8: Solve fixed-order QP (25)
9: end if

10: Apply w to CAVs of platoons
11: end for

heavy as the timing binaries ρ are strictly upper- and lower-
bounded at each time k, as shown by conditions (13). However,
the mechanism illustrated in Figure 3 can still be realized
without (13c)-(13f). This is because they are used to deactivate
constraint (19), i.e., by setting ρini,j,k = 0 & ρouti,j,k = 1, which
implies less restriction on the solution space and potentially
produces solutions with lower costs. Therefore, the solver will
try to achieve it without the presence of (13c)-(13f) anyway.

Accordingly, we can propose the following simplified con-
ditions

pi,k − pin ≤Mbρini,j,k, (22a)

pj,k − pin ≤Mbρini,j,k, (22b)

−pi,k + pout ≤ −Mb(ρouti,j,k − 1), (22c)

−pj,k + pout ≤ −Mb(ρouti,j,k − 1), (22d)

ρini,j,k ≤ ρini,j,k+1, (22e)

ρouti,j,k ≤ ρouti,j,k+1. (22f)

Additionally, we introduce less complex conditions (22e)-
(22f) to prevent activation of (19) at time k before k + 1 is
active by exploiting the fact that vmin > 0, i.e., vehicles are
closer to the intersection in each time t.

As we will demonstrate in the simulations part, i.e., Sec-
tion VI, this simplification yields an MIQP that can be solved
much faster than the original one and converges within the im-
posed solver iterations limit. The Simplified MIQP (SMIQP)
is formulated as follows

ΦSMIQP(vrefk ,xxx0,ph) =

min
r,ρ,w,η

N∑
i

Ji(wi) +

N−1∑
i=1

N∑
j=2

Je(ηi,j) (23a)

s.t. xi,k+1 = Axi,k +Bui,k, (23b)

xi,0 = x0
i , (23c)

vmin ≤ vi,k ≤ vmax, (23d)

umin ≤ ui,k ≤ umax, (23e)
Eq. (19), (22), (15), (23f)

ri,j , ρ
in
i,j,k, ρ

out
i,j,k ∈ {0, 1}. (23g)

As this problem is an alternative to MIQP (20), we will also
adopt the closed-loop strategy described in Algorithm 1.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 7

V. HEURISTIC APPROACH

As mentioned before, we aim to develop a heuristic al-
gorithm to avoid solving MIQP (20) or (23) for closed-loop
applications. As we will show, this allows us to significantly
reduce the computational burden.

The heuristic we propose exploits the structure of the
problem. In particular, if the current crossing order Ok is either
leading to a potential accident or is no longer beneficial, a safe
coordination can be obtained by selecting a different order.

At every time step, we monitor the safety constraints to
check whether they will be violated or not in the future. If any
platoon consistently violates the constraint, we try to swap its
order with an adjacent platoon; we compare the cost of the
two (current and alternative) orders; and we retain the order
with the lowest cost. To evaluate multiple alternative orders,
a depth-first branching strategy [37] as illustrated in Figure 4
is applied for the cost comparison.

The complete pseudocode for the proposed heuristic is given
in Algorithm 2, which we explain in detail next.

A. One-Time MIQP

During initialization, we obtain the first crossing orderOk=0

by solving the MIQP (23), which is then designated as the
initial current order O0, see line 3 of Algorithm 2. The MIQP
is solved only once in the beginning so that the order used by
the platoons to start with is guaranteed to be both feasible and
optimal. Also, the resulting position trajectories are used to
approximate timing parameter ρ̂, which we then use to solve
the QP (25) for the next time t. This will be discussed in detail
in cost comparison part V-C.

As an alternative to solving the MIQP, one may opt
for heuristic methods, such as, e.g., First-Come, First-Serve
(FCFS) or predicted arrival time to intersection, to reduce
the computational burden. Future research will aim at finding
alternative approaches to address this problem.

B. Consistency Check

A change of order may be necessary when the position gap
between two adjacent platoons becomes too small. To that end,
we perform the following consistency check:

a) Step 1: at each time step k > 0, we check the collision
avoidance constraints (12)-(13) over Kpre for each pair of
platoons i, j (see lines 8-16 in Algorithm 2). In particular, this
check is applied to any pair whose preceding one is (currently)
a mixed platoon as it contains HDV(s) which may considerably
change their trajectories. Hence, the following platoons are
collected in the set N T

k (lines 4 and 23).
To perform the check we construct the vector

hs
i =



dmin − pj,0 + lj,0 + pi,0 + l̄,
.
.

dmin − pj,k + lj,k + pi,k + l̄,
.
.

dmin − pj,Kpre + lj,Kpre + pi,Kpre + l̄,


, ∀i ∈ NT

k ,

(24)

where lj,k are computed from predicted HDV trajectories
using (4) (line 6) and the optimal position of the CAVs
pi,k, pj,k are obtained from the solution of (25) at the previous
time k − 1 (line 9).

b) Step 2: A (predicted) violation is obtained if any of
the components of hs

i becomes positive. We keep track of how
many constraint violations occur by the scalar si (line 11).
We use this variable to trigger a potential reorder whenever
si = nmax, where nmax is a fixed parameter (line 13).

Setting nmax > 1 allows us to robustify against false
positive triggers, i.e., a reordering that is then followed by
another reordering that restores the original order, which might
be due to, e.g., noise, and which can cause chattering behavior.

c) Step 3: Whenever si = nmax for some i, we add i to
set Ek (lines 13 - 15). This set will be used next to restrict the
reordering procedure to only consider potential swaps between
platoon i and the preceding one j, i.e., only i ∈ Ek will be
considered in the cost comparison step explained next.

C. Cost Comparison

The reordering procedure is guided by the set Ek, such
that we only consider specific sets of platoons that have
been consistently violating (24) (Algorithm 2, line 17). For
each platoon i ∈ Ek, the algorithm compares the cost of
the current and alternative (swapped) order, given the current
measurements/parameter at time tk.

1) Subproblem A: Solve OCP (20) / (23) with the fixed,
current order, i.e., platoon i follows the platoon j. We
introduce the order with this fixed sequence as O

i|j
k−1,

with the superscript notation here indicating the specific
sequences of i, j. The rest of the sequences in O

i|j
k−1

are copied from the previous crossing order and left
unchanged. As the order is fixed, the binaries ri|j are
also fixed and become parameters. To further reduce
computational complexity, the timing binaries ρ̂ are
approximated by using the predicted trajectory w from
the previous time k − 1 (lines 3 and 29). Since all the
binary decision variables have become parameters, we
obtain the following fixed-order QP (FOQP)

ΦFOQP
i|j (vref

k ,xxx0,ph,ri|j , ρ̂) = (25a)

min
w,η

N∑
i

Ji(wi) +

N−1∑
i=1

N∑
j=i+1

Je(ηi,j)

(25b)
s.t. xi,k+1 = Axi,k +Bui,k, (25c)

xi,0 = x0
i , (25d)

vmin ≤ vi,k ≤ vmax, (25e)

umin ≤ ui,k ≤ umax, (25f)
Eq. (19), (15). (25g)

2) Subproblem B: The sequence of the pair i, j is reversed
in Ok, such that CAV j follows CAV i. This defines an
alternative order Oj|i

k−1. Using this new order, we solve
FOQP (25) ΦFOQP

j|i (vrefk , xxx0, ph, rj|i, ρ̂), where the
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Figure 4. Branching process of the current and alternative (reversed) sub-
problems performed in the proposed heuristic

difference here is that we replace ri|j with rj|i to account
for the different order. Note that the same timing binaries
as in Subproblem A are applied here. Consequently,
the lateral collision avoidance constraint will only be
enforced approximately. In practice, this does not create
safety concerns, as large safety margins need to be
introduced anyway by allowing the change of order only
before the platoons are close to the intersection; Also,
the cost estimate is only approximate.

Once both subproblems are solved, we compare their costs
on lines 18−19. If there exists more than one platoon in Ek, a
depth-first sequential branching for the cost comparison here
is performed, as illustrated in Figure 4. Thus the next current
crossing order might be updated at each iteration (level) of the
branching (line 20). Finally, the new order Ok will be the one
associated with the subproblem yielding the lowest cost.

Note that, if any change of order (line 22) takes place at time
tk, the set that contains the platoons that immediately comes
after the mixed-platoons NT

k needs to be updated (lines 23).
Furthermore, as previously in Algorithm 1, the order is

allowed to change as long as no platoon is close to the CZ
(line 7), otherwise it is frozen. The current order is kept when
the order is frozen or Ek is empty. In case Ek is empty, i.e.,
no cost comparison takes place at time tk, then (25) is solved
to generate the CAVs control input (lines 26− 27).

VI. NUMERICAL SIMULATIONS & EVALUATION

In this section, we perform numerical simulations to evalu-
ate the performance of our proposed heuristic (H) and compare
it to the performance of the Original MIQP (OMIQP) (20) and
the Simplified MIQP (SMIQP) (23) along with other heuris-
tics, i.e., Time-To-Intersection (TTI) and the First-Come, First-
Serve (FCFS) methods. The last two methods are explained
in VI-A.

In all simulations, we consider a static number of vehicles
approaching a single symmetric four-junction intersection for
the sake of simplicity. Two main different scenarios are
compared: the first one is the nominal case, where all leading
vehicles are CAVs, schematized in Figure 5; the second one,
schematized in Figure 9, is the low disturbance case, where

Algorithm 2 Heuristic (H)
Input: vrefk ,xxx0,ph, r, ρ̂
Output: Ok,w

1: Obtain xxx0,ph ▷ Initial states and prediction
2: Solve one-time MIQP (23) ΦSMIQP

3: Obtain ρ̂ and O0 from r
4: Initialize NT

0 ▷ For CAVs behind mixed-platoons
5: for k ∈ R+ do
6: Obtain xxx0,ph ▷ Current states and prediction
7: if pi,k ≤ pin, ∀i ∈M,N then
8: for i ∈ NT

k do
9: Retrieve w from k − 1 and compute hs

i

10: if ∀k : ∃ hs
i > 0 then ▷ Any cons. violation

11: si = si + 1 ▷ Violation counter
12: end if
13: if si == nmax then ▷ Consistency check
14: Set Ek ← i ▷ Set of violating vehicles
15: end if
16: end for
17: for i ∈ Ek do
18: Obtain the alternative order
19: Solve and compare Φ̂FOQP

i|j and Φ̂FOQP
j|i

20: Update Ok+1 based on the cost
21: end for
22: if Ok+1 ̸= Ok then ▷ Any change of order
23: Update NT

k+1

24: end if
25: else
26: Set Ok = Ok−1 and obtain r
27: Solve FOQP (25)
28: end if
29: Approximate ρ̂
30: Apply w to CAVs of platoons
31: end for

one of the leading vehicles is an HDV. Furthermore, a third
configuration with high disturbance, i.e., N < M is briefly
discussed in the end.

In the nominal case, all HDV trajectories can be partially
regulated by the leading CAVs, which are able to slow them if
necessary. In the disturbance cases, the platoons coordination
is subject to noise stemming from uncertain human behavior,
as the CAVs do not have any influence over the leading HDV.
This allows us to evaluate the performance of our heuristic in
realistic and non-ideal situations.

For each of the two cases above, we perform two different
simulations. In the first one, we compare the heuristics with
the MIQPs in terms of evaluation metrics, e.g., closed-loop
cost, computation times, etc. as discussed in subsection VI-B,
executed once due to their high computational burden. In
the second one, we simulate the heuristics ten times with
different HDV input bounds to evaluate how consistent their
performance can be. All simulations are subject to HDVs with
additive normally distributed input noise ∆uk with average
µ = 0 and standard deviation σ = 0.1. The sampling
time ∆t = 0.1 s, while the duration of the simulations is
T sim = 8 s/Ksim = 80 steps and 10 s (100 steps) for the
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nominal and disturbance cases, respectively. The simulation
takes longer for the latter because of the presence of the
additional leading HDV.

Furthermore, we set the constraint relaxation weights qe,q =
1, qe,l = 103 when the order is fixed. To increase coordination
safety, we introduce enlarged positions of the intersection
within the vicinity of the CZ where the lateral collision
avoidance constraints (19) are active, i.e., the constraint is
applied between pin − δin and pout + δout. The values of
δin, δout and all remaining constants are given in Table I.

All simulations are carried out using MATLAB with the
CasADi framework [38] on a laptop with an Intel Core-i5
processor and 16 GB of RAM. BONMIN [39] is used to
solve the MIQPs, while the continuous-relaxed QP problem
and the fixed-order parametric versions (Subproblems A/B) in
our heuristic are solved by IPOPT [40].

In these experiments, we utilize the fact that the HDV model
prediction (4) is not exact [25]; To account for this notion, we
define a different simulation model that switches between car-
following and reference velocity tracking as follows

um,k =

{
ua ∆pm,k ≥ d̄, ∀m ∈M,

ub ∆pm,k < d̄,
(26)

with

ua = kv(vm,k − vrefm,k) + ∆uk, (27a)

ub = kp(∆pm,k − dref) + kd(vm,k − vi,k) + ∆uk, (27b)

where kv, kp, kd are weighting gains and we define ∆pm,k :=
pi,k − pm,k. Finally, pi,k, vi,k are the position and velocity
of the vehicle immediately in front of the HDV m, and ∆uk

is an additive noise that represents uncertainty in the human
driver’s behavior.

A. Alternative Heuristics

Let us introduce next two alternative simple heuristics that
have been proposed in the literature: the First-Come, First-
Serve (FCFS) heuristic as described in [24] and the Time-
To-Intersection (TTI) heuristic [30]. Despite the difference in
the names, the two approaches are very similar to each other.
FCFS is obtained by sorting the platoons priority based on the
order of entering the intersection area, which translates to Ok.
Afterwards, the crossing order remains fixed until all vehicles
clear the intersection, i.e., its current order Ok = Ok−1 is kept
the same as before at time k − 1.

TTI sorts the platoons by their estimated time to reach the
intersection entry, defined as

tTTI
i,k =

pin − pi,k
vi,k

. (28)

The platoon with the shortest time is put first in Ok. This step
is executed in lines 4-5 of Algorithm 3. Similar to what we
do in our heuristic, TTI updates the crossing order until the
front vehicle becomes too close to the intersection, see line 7.
The main difference with respect to FCFS is that, while TTI
updates the crossing order throughout the simulation, FCFS
keeps it fixed. For both FCFS and TTI, at time k = 0 the
binaries r are computed by solving (25) without enforcing

safety constraint (12). For k > 0, variables r are obtained
from the previously computed trajectory, as we do in our
heuristic (see line 9 of Algorithm 3). The resulting Ok, r are
then passed to (25) to get an optimal acceleration/deceleration
profile (line 10). Both FCFS and TTI are relatively simple and,
hence, computationally fast.

Algorithm 3 Time-To-Intersection (TTI)
Input: vrefk ,xxx0,ph, r, ρ̂
Output: Ok, w

1: for k ∈ R+ do
2: Obtain vref

k ,xxx0,ph ▷ Parameter
3: if pi,k ≤ pin, ∀j ∈M,N then
4: Compute tTTI

i,k

5: Sort tTTI
i,k to obtain Ok and r

6: else
7: Set Ok = Ok−1 and obtain r
8: end if
9: Approximate ρ̂ from previous trajectory

10: Solve fixed-order QP (25)
11: end for

B. Evaluation Metrics

The following metrics are introduced to evaluate the closed-
loop performance of the aforementioned methods, which are
presented in Figures 6-11 and Tables II-V.

• Crossing order We monitor the crossing order Ok and its
evolution over the simulation time T sim.

• Cardinality and timing of reordering We record the
times at which the crossing order is changed (reorder-
ing/switching), i.e., Ok ̸= Ok−1 are recorded in vector
τOMIQP = [τOMIQP

1 , τOMIQP
2 , ...], τ SMIQP, τH for

the OMIQP, SMIQP, and heuristic, respectively. Their
respective cardinality is expressed as |τ |.

• Closed-loop cost We record the closed-loop total objec-
tive function (cost) values from all N CAVs over the
simulation duration T sim s or in Ksim steps

Φcl := Φcl,SI +

Ksim∑
k=0

N−1∑
i=1

N∑
j=i+1

Je(ηi,j,k), (29)

Φcl,SI :=

Ksim∑
k=0

N∑
i=1

qv(vrefi,k − vi,k)
2 + quu2

i,k. (30)

Note that we also define the closed-loop cost without the
slack terms Φcl,SI to evaluate the cost of the applied state
and input reference tracking.

• Maximum constraint violation We record the worst-case
slack from each pair of platoons used to relax the
constraint (19) within the safety margins pin − δin and
pout + δout over T sim

ηmax := max
k,j,i

ηi,j,k (31a)

s.t. k ∈ {0, . . . ,Ksim}, (31b)

i, j ∈ {1, . . . , N}2, (31c)
i ̸= j. (31d)



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 10

Table I
CONSTANT VALUES

Constant Value Constant Value

Tpre / Kpre 2.6 or 3.5 s / 26 or 35 dref 9 m
qv 10 l̄ 2 m
dmin 4 m vnom 40 km/h
qu 1 nmax 3
qe,l 10 or 1000 kv 1
Mb 1000 kp 2
∆t 0.1 s kd 1
T sim / Ksim 8 or 10 s / 80 or 100 d̄ 7 m
vmin/max 3.6− 70 km/h pin/out ±2
umin/max ±3 m/s2 δin 13 m
qe,q 1 δout 8 m

Note that this only accounts for the current slack and not
the future violation.

• RMS of acceleration We record the root mean square
(RMS) of the acceleration & deceleration of the CAVs,
i.e., control input. This metric shows the average amount
of control actions injected into each CAV at each time tk

uRMS :=

√√√√ 1

N ×Ksim

N∑
i=1

Ksim∑
k=0

u2
i,k (32)

• Computation time We record the worst-case computation
time, over T sim in seconds (s) required for solving the
crossing order problem at a single time step tk, i.e.,

tmax := max
tk

tcomp, (33)

where tcomp is a vector collecting the computation times
from a single simulation.

Remark 1. Note that for the sake of simplicity, we chose a
scenario in which qv and qu are the same for all vehicles.
Consequently, FCFS and TTI can be expected to perform
well. In case these cost parameters were different among the
vehicles, we would observe a much better performance of our
heuristic, as it explicitly accounts for this, while FCFS and
TTI cannot. As we will detail below, even in this unfavorable
comparison setting, our heuristic performs well compared to
FCFS and TTI.

C. Nominal Scenario

We consider now the case in which all the leading vehicles
are CAVs, as shown in Figure 5, where the three CAVs are
colored blue and the two HDVs are colored red. Platoon 2 is
composed of CAV 2 and HDV 4; Platoon 3 is composed of
CAV 3 and HDV 5; and CAV 1 is a one-vehicle platoon.

The first vehicle on the line is CAV 2, which starts at a
distance of 53 m from the center of CZ. The rest of the vehicles
in the line, with the sequence of HDV 4 - CAV 3 - HDV 5 -
CAV 1, are placed with a gap of 7.5 m between each other.
The initial speed of all vehicles is v0i = 50 km/h (13.89 m/s),
and the nominal reference speed is vnom = 60 km/h (16.67
m/s). In order to force a switch in the crossing order, HDV
4 is set to slow down to 23 km/h (6.39 m/s). The reordering

CAV 1

CAV 3

CAV 2HDV 4

HDV 5

 
 

Figure 5. Vehicle configuration for nominal case

problem is solved in a closed loop until CAV 1 has reached
the CZ, and the order is fixed after that time.

1) Simulation against MIQPs: We first compare the two
MIQP formulations, i.e., OMIQP (20), SMIQP (23). To solve
the MIQPs within a reasonable time, we limit their iterations
to 1.7 × 104 and perform only a single simulation. To make
a fair comparison between the MIQPs and the heuristics, the
consistency check is not used here, i.e., nmax = 0.

Figure 6 shows the crossing order (Subfigure 6a,b) and
cost (Subfigure 6c,d) generated by the simulation. It can
be observed that all vehicles begin to move in the cross-
ing order dictated by their initial positions, i.e., Ok=0 =
[o1,0, o2,0, o3,0]

⊤ = [2, 3, 1]⊤. In Subfigure 6a, it can be
observed that both MIQPs yield crossing orders that chatter
between different orders until the order finally settles. This
issue is the consequence of the additive perturbation, which,
in case two orders have very similar costs, makes the MIQP
solvers alternate between one order and the other.

As one can see in Subfigure 7c,d, HDV 4 is set to slow
down, such that platoons 2 and 3 also have to slow down, until
the order is changed by swapping platoons 2 and 3. SMIQP
eventually settles at Ok = [3, 2, 1]⊤ at time τSMIQP

6 = 1.3
s (Subfigure 6a). Our heuristic follows the same reordering
at τH1 = 1.5 s (Subfigure 6b) without any chattering. The
difference in the switching time between the methods is caused
by the approximate nature of the timing binaries ρ used by
our heuristic. When solving the FOQPs (25) relative to the
current and alternative orders in our heuristic, ρ̂ are parameters
approximated from the predicted trajectories at the previous
time tk, while in SMIQP they are decision variables. OMIQP
eventually also yields the same order at a later time τOMIQP

4 =
2.0 s. This is due to the higher complexity of the OMIQP
formulation, which entails that the optimal solution cannot be
obtained within the imposed iteration limit.

The same pattern repeats also for the next switching time,
which occurs at time τSMIQP

7 = 1.5 s for SMIQP and at
time τH2 = 1.9 s for our heuristic. They converge to the final
order Ok = [3, 1, 2]⊤. The final order is also obtained by
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Figure 6. Crossing order (Subfigures 6a,6b), closed-loop cost evolution, and constraint violation (Subfigures 6c,6d) from the nominal test for all methods.
The Subfigure 6a shows the crossing order of the benchmark simplified MIQP (SMIQP) (dashed lines), and the original MIQP (OMIQP) (solid lines), while
6b is from TTI and our heuristic (H.) (solid lines). The line colors represent the index inside Ok , e.g., blue is the first, i.e., o1,k and so on, and it can be
time-varying. FCFS is omitted here to maintain readability but its order remains the same all the time, i.e., Ok = [2, 3, 1]⊤. Similarly, the Subfigure 6c
shows the closed-loop SI costs from all methods, while the Subfigure 6d displays the constraint violation.
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Figure 7. Position/trajectory (Subfigures 7a,7b) and velocity (Subfigures 7c,7d) profiles from the nominal test for all methods. Subfigure 7a is relative to
the benchmark SMIQP (solid lines), and OMIQP (dashed lines), while 7b is relative to TTI and heuristic. Similarly, Subfigure 7c shows the velocity of the
MIQPs, while 7d is from TTI and our heuristic. The legends are applied to all subfigures. FCFS is omitted here to maintain readability. The vertical green
dashed and solid lines in each subfigure indicate reordering timings τ of OMIQP/TTI, and SMIQP/heuristic, respectively.

Table II
PERFORMANCE COMPARISON FOR NOMINAL SCENARIO

Methods |τ | Total cost
Φcl

SI cost
Φcl,SI ηmax [m] uRMS [m/s2] tmax [s] Times faster

than OMIQP
OMIQP 7 133812 18531 13.21 2.37 234.03 N/A
SMIQP 6 47279 35545 9.27 2.16 156.50 1.49
FCFS 0 633800 146809 14.38 2.13 0.16 1464.92
TTI 2 62037 27787 17.05 1.97 0.06 3440.45
Heuristic 2 73117 27853 15.85 1.95 1.24 189.01
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Figure 8. Cost-to-go evolution of the current and alternative QPs solved inside
our heuristic

OMIQP at a later time τOMIQP
5 = 4.4 s. The motivation for the

reordering decisions is illustrated in Figure 8, which presents
the cost-to-go comparison run inside our heuristic between
the QPs of current (first) and alternative orders. If the current
order were kept, the cost would continue to increase, so that a
reordering yields a lower cost. TTI updates the crossing order
similarly to our heuristic, with two reordering events having
the same pair-swaps, though at a slightly later time compared
to our heuristic. No chattering is therefore present, as shown
in Subfigure 6b. Consequently, all the evaluation metrics yield
similar values for TTI and our heuristic.

In Table II, one can see that the sum of the closed-loop state
reference tracking and input (SI) cost Φcl,SI of our heuristic
is higher than the one of OMIQP, but lower than the one
of SMIQP. SMIQP yields the highest Φcl,SI here because it
needs to minimize future constraint violations. Consequently,
it triggers reordering early, which requires larger inputs and
deviations from the reference speed. One can see that CAV 2
significantly decelerates, as shown in Figure 7. In Subfigure 6c,
we see that this results in the Φcl,SI of SMIQP being the
highest around t = 3.4− 4 s. On the other hand, it yields the
lowest maximum constraint violation ηmax, which, as depicted
in the left subfigure of Figure 7, occurs around the entrance
safety margin δin and before CZ hence practically safe. The
early reorderings also imply that the SMIQP Φcl is the lowest.

In Subfigure 6c, it is seen that our heuristic and TTI yield
an evolution of Φcl,SI similar to SMIQP, but slightly delayed.
This yields lower Φcl,SI w.r.t. SMIQP, which is due to the
lower use of inputs and reference deviation for swapping at
later times, but consequently, ηmax and Φcl are higher than
those of SMIQP.

Further, we can see that OMIQP has the lowest Φcl,SI. This
is due to the fact that the platoons are trying to swap order even
though reordering decisions come late because the solver does
not reach convergence. Hence, it can be seen in Subfigure 6c,
that in around t = 1 − 3 s, OMIQP has the highest Φcl,SI,
but the required inputs and reference deviation for swapping
later are eventually the lowest. Furthermore, this decision
results in more use of slacks that significantly contribute to
the Φcl resulting in the OMIQP having the highest Φcl, as

in Subfigure 6d. Due to its fixed order policy, we can see in
Subfigure 6c that FCFS yields a high cost.

With regard to the average (RMS) control input uRMS

exhibited by each CAV, it can be observed that the gap between
the SMIQP and our heuristic or TTI is much smaller than
the gap in the cost. Due to the imposed iteration bound, as
expected, OMIQP yields the largest uRMS, worse than FCFS.

Figure 7 presents the positions and velocities obtained by
MIQPs and our heuristic. One can observe from the velocity
curves in Subfigure 7c,d that SMIQP and our heuristic force
platoon 3 to only marginally slow down until reordering is
executed. It is noteworthy to observe that SMIQP and our
heuristic yield very similar position and velocity profiles. Due
to later reordering times, OMIQP forces CAV 3 and 1 to slow
down for a longer time and, consequently, aside from platoon
2, all platoons enter the CZ at a later time, compared to SMIQP
and our heuristic. As Ok yielded by our heuristic and TTI are
very close, their position and velocity profiles are almost the
same.

The main advantage of our heuristic over MIQPs is shown
in the (worst-case) computation time tmax reported in Table II:
our heuristic is about 189 times faster to solve than OMIQP
and also about a hundred times faster than SMIQP. SMIQP
is about 1.5 times faster than OMIQP, but that does not
make any significant difference in the context of time-tractable
coordination. FCFS and TTI are up to a thousand times faster
than OMIQP thanks to their simplicity.

2) Simulation with random HDV input bounds: In this sec-
ond set of simulations, random HDV input bounds are sampled
from a uniform distribution within 10% of the nominal ones
(±3 m/s2). The consistency check is used with nmax = 3,
as detailed in Table I. As mentioned before, MIQPs are not
executed here due to their long computation times, which
means only FCFS, TTI, and our heuristic are considered.

We provide in Table III the values of the metrics averaged
over ten simulations. One can see that even though the input
bounds are different in each simulation, our heuristic, and
TTI perform reordering only twice. The consistency check
plays an important role here, as it makes sure that an order
swap only occurs when it is advantageous enough, therefore
mitigating the chattering behavior of the MIQPs as observed
in the previous part VI-C1. The values of ηmax, Φcl, and
Φcl,SI are slightly higher for our heuristic than in the previous
simulation VI-C1, but the average acceleration remains almost
the same. In terms of tmax, one can see that the FCFS, TTI, and
our heuristic are consistently faster compared to the MIQPs
in the previous simulations. Our heuristic has a lower Φcl and
approximately the same Φcl,SI compared to TTI. FCFS is the
worst method in all aspects except ηmax and tmax.

D. Low Disturbance Scenario

This scenario includes an additional leading HDV 6 along-
side existing vehicles, as shown in Figure 9, acting as a
disturbance to the platoons’ coordination. Without any CAV
in front that can regulate HDV 6, all CAVs are imposed an
additional safety constraint by the intersection manager (IM):
HDV 6 must occupy the intersection first. HDV 6 tracks a
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Table III
AVERAGE PERFORMANCE FOR NOMINAL SCENARIO WITH DIFFERENT INPUT BOUNDS

Methods |τ | Average
τ

Total cost
Φcl

SI cost
Φcl,SI ηmax [m] uRMS [m/s2] tmax [s]

FCFS 0 N/A 417662 149077 11.09 2.11 0.10
TTI 2 2.33 247608 30017 13.66 1.90 0.07
Heuristic 2 1.96 106286 30187 12.25 1.97 2.42

Table IV
PERFORMANCE COMPARISON FOR DISTURBANCE SCENARIO

Methods |τ | Total cost
Φcl

SI cost
Φcl,SI ηmax [m] uRMS [m/s2] tmax [s] Times faster

than SMIQP
SMIQP 14 160883.32 106109.15 19.83 2.42 752.64 N/A
FCFS 0 202020.83 131094.95 8.7 2.48 0.083 6770.35
TTI 2 407715.49 41222.23 19.73 2.34 0.085 6598.52
Heuristic 2 157617.62 84268.94 12.43 2.37 1.97 281.17

CAV 1

CAV 3

CAV 2HDV 4

HDV 5

HDV 6

 
 

Figure 9. Vehicle configuration for disturbance case

constant speed vref
i = 60 km/h and is initially positioned at

86, 25 meters from the center of the CZ with an initial velocity
of 50 km/h. It is also modeled using the switching model (4).
The initial position of CAV 2 is shifted to 60 m from the
center of the CZ, and the rest of the vehicles are configured
with the same sequence from CAV 2 as in the previous nominal
case, also with 7.5 m gap each. Here, HDV 4 does not slow
down and instead follows vnom. The prediction and simulation
horizon are selected as T pre = 3.5 s and T sim = 10 s. Finally,
we select d̄ = 8 m and dref = 10 m.

In these simulations, we drop OMIQP as the scenario is
more complex than before, and the solver does not manage
to converge in a reasonable time. For SMIQP, the imposed
iteration limit is 104.

1) Simulation against SMIQP: As shown in Subfig-
ures 10a,b and 11a,b the initial order is dictated by the initial
positions of the vehicles, that is, O0 = [2, 3, 1]⊤. Due to the
additional safety constraint against HDV 6, this causes the
platoons to gradually decelerate, except for platoon (CAV) 1.
In the beginning, platoon 2 has the highest deceleration as it
is the closest to the intersection and needs to slow down to let

HDV 6 cross first.
As platoons 2 and 3 slow down, the tail HDVs behind

them are also forced to decelerate. This action is necessary
to prevent the possibility that HDVs 4 and 5 occupy the CZ
at the same time as HDV 6, which can result in a potential
collision. Platoon 1 (which is a one-vehicle platoon) is then
given the opportunity to overtake both of them gradually, as
can be seen in Figure 11.

In Subgfigure 10a, it can be observed that SMIQP chatters
between Ok = [2, 3, 1]⊤ and Ok = [2, 1, 3]⊤ starting at
τSMIQP
1 = 0.3 s. The order eventually settles to the latter at
τSMIQP
9 = 2.2 s. Instead, our heuristic requires only a single

order swap at τH.
1 = 0.7 s. Finally, the crossing order is further

modified to Ok = [1, 2, 3]⊤ by both approaches. In this case,
SMIQP switches last, with some chattering as well, which is
due to the imposed iteration limit as observed in the solver
outputs. As in the previous case VI-C, TTI and our heuristic
can avoid chattering without consistency check. TTI has two
reorderings at τTTI

1 = 2.8 s and τTTI
2 = 3.5 s. However, their

final order is different as TTI converges to Ok = [3, 1, 2]⊤.
In Table IV, Φcl,SI Φcl,SI yielded by our heuristic are lower

than those of SMIQP, but the opposite is true for Φcl. This
indicates the same trade-off observed in the previous scenario,
where the early reordering performed by SMIQP yields lower
constraint violation at the price of slightly higher Φcl,SI and
uRMS. This is displayed in Figure 10 where the cost evolution
is initially similar for all approaches, but starts to differ around
t = 4.5 s where, due to the early reordering, the cost is
slightly higher for SMIQP. Due to the subsequent reorderings,
our heuristic has a slightly higher constraint violation from
t = 5 s. Additionally, one can see that the worst-case ηmax of
SMIQP is slightly higher than that of our heuristic, due to the
iteration limit which hinders convergence for SMIQP. TTI has
the lowest Φcl,SI, at the expense of the highest Φcl and ηmax,
due to a different final crossing order which causes higher
violation. Finally, FCFS has the highest Φcl,SI and uRMS due
to its fixed order, although it has the lowest ηmax.

As seen in the previous scenario VI-C1, the approximation
of timing binaries in our heuristic leads to differences in re-
ordering. However, our heuristic is shown to yield significantly
smaller tmax, making it about 280 times faster than SMIQP,
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Figure 10. Crossing order (Subfigures 10a,10b) and closed-loop SI cost evolution (Subfigures 10c,10d) from the disturbance test for all methods. Subfigure
10a shows the crossing order of SMIQP (dashed lines) and FCFS (solid lines), while Subfigure 10b is relative to TTI (dashed lines) and our heuristic (solid
lines). Subfigure 10c shows the costs while Subfigure 10d displays the constraint violations from the all four methods.
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Figure 11. Position/trajectory (Subfigures 11a,11b) and velocity (Subfigures 11c,11d) profiles from the disturbance test for all methods. Subfigure 11a is
relative to SMIQP and FCFS, while Subfigure 11b is relative to TTI and heuristic. Similarly, Subfigure 11c shows the velocity of the benchmark, while
Subfigure 11d is relative to our heuristic (H). The color and lines from the legends are applied to all subfigures. The solid and dashed-dotted vertical green
lines indicate reordering timings τ that are relative to SMIQP/TTI and heuristic, respectively.

with a better consistency of the crossing order and close to
optimal trajectories. FCFS and TTI remain the fastest methods
here, even though their Φcl or ηmax can be far from optimal.

2) Simulation with random HDV inputs: In this com-
parison, we further conduct ten different simulations with
randomized HDV input bounds, with a similar setting as in the
previous simulation VI-D1. The input bounds are generated
analogously to those of VI-C2. The consistency check is
applied here with nmax = 3. SMIQP is not executed here
due to its exceedingly long computation time.

The resulting values of the metrics averaged over the
simulations are presented in Table V. One can see that both
TTI and our heuristic consistently yield 2 reordering events in
each simulation, such that chattering is avoided. Regarding
ηmax, one can see that our heuristic outperforms TTI and

FCFS, even though TTI has the lowest Φcl,SI. FCFS has the
worst Φcl,SI but the lowest ηmax. Finally, tmax and uRMS of
all methods remain small. In general, the pattern is similar to
that of the nominal case in VI-C2.

E. High Disturbance Scenario

As a last comparison, we test our algorithm in a scenario
with a lower ratio of CAVs against HDVs. In addition to
the vehicles in Figure 9, two additional leading HDVs 7 and
8 are inserted in front of CAVs 1 and 3, respectively. The
number of CAVs N remains the same to allow for direct
comparison with the previous scenarios, while now M = 5.
As before, due to the presence of leading HDVs, the CAVs
have to satisfy additional safety restrictions. This increases the
problem complexity, which rules out the use of MIQPs. Ten
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Table V
AVERAGE PERFORMANCE COMPARISON FOR DISTURBANCE SCENARIO WITH DIFFERENT INPUT BOUNDS

Methods |τ | Average
τ

Total cost
Φcl

SI cost
Φcl,SI ηmax [m] uRMS [m/s2] tmax [s]

FCFS 0 N/A 193124.29 146061.89 13.32 2.45 0.28
TTI 2 3.20 257279.56 55646.11 21.68 2.11 0.31
Heuristic 2 1.32 142941.34 78513.10 15.50 2.39 1.89

simulations are carried out with different input bounds and
averaged as in VI-C2.

From the simulation with the three methods (FCFS, TTI,
and our heuristic), we see that the higher presence of the
HDVs makes coordinating the platoons more difficult, as
the leading HDVs trajectories cannot be controlled. Con-
sequently, the CAVs have to decelerate so that all leading
HDVs occupy the intersection first. This increases the Φcl,SI

of TTI and our heuristic, which are, averaged over the 10
simulations, 135140.92 and 105608.29, respectively. FCFS
Φcl,SI is 134251.47, which is slightly smaller than TTI.

Both for TTI and our heuristic, we observe that reordering
still occurs between the CAV-led platoons in an attempt to
maintain feasibility and minimize the cost. The overall results
here show that the algorithm performance may degrade with
lower CAV penetrations. This is to be expected, due to the
increased uncertainty and decreased control authority.

VII. CONCLUSIONS

We proposed a heuristic algorithm designed to coordinate
both CAVs and HDVs at unsignalized intersections. Our
algorithm is able to efficiently handle dynamic reordering
problems that may arise due to changes in HDVs’ trajecto-
ries. Obtaining the optimal crossing order and acceleration
profiles requires solving computationally expensive MIQPs,
which are not real-time feasible. Our heuristic overcomes this
challenge by combining a problem-tailored future constraint
violation/consistency check and a cost comparison strategy.
The consistency check allows us to restrict reordering actions
to a smaller subset of platoons, therefore mitigating subprob-
lems branching complexity. The cost comparison eventually
decides whether an order change takes place or not.

Simulation results from several scenarios demonstrate that
our heuristic is orders of magnitude faster than solving MIQPs
and has better order consistency, at the price of a marginal
performance degradation. Also, our heuristic generally has
better solutions compared to the FCFS and TTI results in
unfavorable settings. Additionally, we see that the SI cost
generally increases when the CAV penetration rate decreases.

Future work will further develop numerical aspects of
our heuristic to improve its performance while addressing
more challenging and practical scenarios, e.g., involving a
continuous flow of vehicles simulated using traffic simulators
or the use of learning-based methods.
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