Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Advanced
Reduced Order
Methods and
Applications in
Computational
Fluid Dynamics



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Computational Science & Engineering

The SIAM series on Computational Science and Engineering publishes research monographs, advanced
undergraduate- or graduate-level textbooks, and other volumes of interest to an interdisciplinary CS&E community of
compumﬁonal mathematicians, computer scientists, scientists, and engineers. The series includes in'rroduc'rory volumes
aimed at a broad audience of mathematically motivated readers interested in understanding methods and applications
within computational science and engineering, monographs reporting on the most recent developments in the field,
and volumes addressed fo specific groups of professionals whose work relies extensively on computational science and

engineering.

SIAM created the CS&E series to support access to the rapid and farranging advances in computer modeling and
simulation of complex problems in science and engineering, to promote the interdisciplinary culture required to meet
these large-scale challenges, and to provide the means to the next generation of computational scientists and engineers.

Editor-in-Chief

Donald Estep, Simon Fraser University

Editorial Board
Ben Adcock

Simon Fraser University

Serkan Gugercin
Virginia Tech

Daniela Calvetti Jan S. Hesthaven

Case Western Reserve University

Omar Ghattas
University of Texas at Austin

Chen Greif
University of British Columbia

de Lausanne

Johan Hoffman

Series Volumes

Rozza, Gianluigi, Stabile, Giovanni, and Ballarin,
Francesco, Advanced Reduced Order Methods and
Applications in Computational Fluid Dynamics

Gatto, Paolo, Mathematical Foundations of Finite
Elements and Iterative Solvers

Adcock, Ben, Brugiapaglia, Simone, and

Webster, Clayton G., Sparse Polynomial Approximation
of High-Dimensional Functions

Hoffman, Johan, Methods in Computational Science

Da Veiga, Sébastien, Gamboa, Fabrice, looss, Bertrand,
and Prieur, Clémentine, Basics and Trends in Sensitivity
Analysis: Theory and Practice in R

Vidyasagar, M., An Introduction to Compressed Sensing

Antoulas, A. C., Beattie, C. A., and Gigercin, S.,
Interpolatory Methods for Model Reduction

Sipahi, Rifat, Mastering Frequency Domain Techniques
for the Stability Analysis of LTI Time Delay Systems

Bardsley, Johnathan M., Computational Uncertainty
Quantification for Inverse Problems

Hesthaven, Jan S., Numerical Methods for Conservation
Laws: From Analysis to Algorithms

Sidi, Avram, Vector Extrapolation Methods with
Applications

Borzi, A., Ciaramella, G., and Sprengel, M., Formulation
and Numerical Solution of Quantum Control Problems

Benner, Peter, Cohen, Albert, Ohlberger, Mario,
and Willcox, Karen, editors, Model Reduction and
Approximation: Theory and Algorithms

Kuzmin, Dmitri and Hémadaldinen, Jari, Finite Element

Methods for Computational Fluid Dynamics: A Practical
Guide

Ecole Polytechnique Fédérale

David Keyes
Columbia University

Ralph C. Smith
North Carolina State University

Karen Willcox
University of Texas at Austin

KTH Royal Institute of Technology

Rostamian, Rouben, Programming Projects in C for
Students of Engineering, Science, and Mathematics

Smith, Ralph C., Uncertainty Quantification: Theory,
Implementation, and Applications

Dankowicz, Harry and Schilder, Frank, Recipes for
Continuation

Mueller, Jennifer L. and Siltanen, Samuli, Linear and
Nonlinear Inverse Problems with Practical Applications

Shapira, Yair, Solving PDEs in C++: Numerical Methods
in a Unified Object-Oriented Approach, Second Edition

Borzi, Alfio and Schulz, Volker, Computational
Optimization of Systems Governed by Partial
Differential Equations

Ascher, Uri M. and Greif, Chen, A First Course in
Numerical Methods

Layton, William, Introduction to the Numerical Analysis of
Incompressible Viscous Flows

Ascher, Uri M., Numerical Methods for Evolutionary
Differential Equations

Zohdi, T. I., An Infroduction to Modeling and Simulation
of Particulate Flows

Biegler, Lorenz T., Ghattas, Omar, Heinkenschloss,
Matthias, Keyes, David, and van Bloemen Waanders,
Bart, editors, Real-Time PDE-Constrained Optimization

Chen, Zhangxin, Huan, Guanren, and Ma, Yuanle,
Computational Methods for Multiphase Flows in Porous
Media

Shapira, Yair, Solving PDEs in C++: Numerical Methods
in a Unified Object-Oriented Approach



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Advanced
Reduced Order
Methods and
Applications in
Computational
Fluid Dynamics

GIANLUIGI ROZZA

SISSA, International School for Advanced Studies
Trieste, ltaly

GIOVANNI STABILE

SISSA, International School for Advanced Studies
Trieste, ltaly

FRANCESCO BALLARIN

Catholic University of the Sacred Heart
Brescia, Italy

|
SIAML.
Society for Industrial and Applied Mathematics
Philadelphia



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Copyright © 2023 by the Society for Industrial and Applied Mathematics

10987654321

Al rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner
without the written permission of the publisher. For information, write o the Society for Industrial and Applied Mathematics, 3600 Market
Street, 6th Floor, Philadelphia, PA 19104-2688 USA.

No warranties, express or implied, are made by the publisher, authors, and their employers that the programs contained in this volume
are free of error. They should not be relied on as the sole basis to solve a problem whose incorrect solution could result in injury to person
or property. If the programs are employed in such a manner, it is at the user’s own risk and the publisher, authors, and their employers
disclaim all liability for such misuse.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context
only; no infringement of trademark is intended.

Publications Director Kivmars H. Bowling
Executive Editor Elizabeth Greenspan
Managing Editor Kelly Thomas
Production Editor David Riegelhaupt
Copy Editor Julia Cochrane
Production Manager Donna Witzleben
Production Coordinator Cally A. Shrader
Compositor Cheryl Hufnagle
Graphic Designer Doug Smock

Library of Congress Cataloging-in-Publication Data

Names: Rozza, Gianluigi, author. | Stabile, Giovanni, author. | Ballarin,
Francesco, author.

Title: Advanced reduced order methods and applications in computational
fluid dynamics / Gianluigi Rozza, Giovanni Stabile, Francesco Ballarin.

Description: Philadelphia, PA : Society for Industrial and Applied
Mathematics, 2022. | Series: Computational science and engineering ; 27
| Includes bibliographical references and index. | Summary: “This is the
first book dedicated to reduced order methods in computational fluid
dynamics. The book focuses on complex parametrization of shapes for
their optimization and applications. Advanced topics, such as
turbulence, stability of flows, inverse problems, optimization, and flow
control are included”- Provided by publisher.

Identifiers: LCCN 2022029194 (print) | LCCN 2022029195 (ebook) | ISBN
9781611977240 (paperback) | ISBN 9781611977257 (ebook)

Subijects: LCSH: Computational fluid dynamics. | Fluid
dynamics-Mathematics. | Estimation theory. | AMS: Partial differential
equations. | Fluid mechanics. | Partial differential equations -
Equations of mathematical physics and other areas of application - PDEs
in connection with fluid mechanics.

Classification: LCC TA357.5.D37 R69 2022 (print) | LCC TA357.5.D37
(ebook) | DDC 620.1/064-dc23/eng/20220919

LC record available at https://lccn.loc.gov/2022029194

LC ebook record available at https://lccn.loc.gov/2022029195

S..I.aJTL is a registered trademark.



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Y
N
To our families, to our younger collaborators,
to little Petra and Clara representing the future,
and to all people who contributed to and inspired this book



Azenud-swiey/Bio wes'sgnds//sdny sss yH1Adoo Jo 8susdl| INVIS 03 19810Nns uonnqLISIRY * #6°'€2°/7T°06 0} £2/62/S0 Pepeoiumod



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Contents

List of Contributors

List of Figures

List of Tables

List of Algorithms

Preface

1 Overview and Motivation

Martin W. Hess, Marco Tezzele, Gianluigi Rozza
1.1 Reduced Order Modeling . . . .. ... ...

1.1.1 Intrusive Approaches . . . . ..
1.1.2 Nonintrusive Approaches . . . .
1.2 Basic Principles . . . . . ... ... ... ..
1.2.1 Offline-Online Decomposition . .
1.2.2 Affine Parameter Dependency . .
1.2.3 POD and the Greedy Algorithm .
1.2.4 Stabilization . . . ... ... ..
1.3 More Advanced Principles . . . . . . ... ..
1.3.1 Parameter Space Reduction . . .
1.3.2 Advanced Geometrical Morphing
1.33 New Deep Learning Approaches
1.3.4 Digital Twins . . . . . . ... ..

| Finite Element—-Based ROMs

xvii

Xix

xxxiii

XXXV

XXXVvii

13

2 Finite Element-Based Reduced Basis Method in Computational Fluid Dynamics 15
Federico Pichi, Maria Strazzullo, Francesco Ballarin, Gianluigi Rozza

2.1 Introduction . . . . .. ... 15
22 The FEM . . . . . . . . 15
2.2.1 The Model Problem: The Poisson Equation . . . . . . ... .. 16
222 Galerkin Projection . . . . ... ... ... ... ... .. 17
223 A First Example in Fluid Dynamics: Stokes Equations . . . . . 21
2.2.4 A Nonlinear Model: Navier—Stokes Equations . . . . . .. .. 24

Vii



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

viii

Contents

23

24

2.5

ROMSs . . . e
2.3.1 RB Approximation . . . . . . . ... ... ...
232 Model Problem: Parametrized EllipticPDE . . . . . . ... ..
233 Space Generation: POD . . . . .. ... ... ...
2.3.4 Space Generation: Greedy Algorithm . . . . . . ... .. ...
2.3.5 Comparison between FE and RB Spaces . . . . .. ... ...
2.3.6 Model Problem: Geometrical Parametrization in Heat Transfer

2.3.7 Reduction of CFD Problems . . . . . ... ... ... .....
2.3.8 Supremizer Enrichment of the Velocity Space . . . . ... ..
239 Extension to the ParabolicCase . . . . . ... .........
A Posteriori Error Estimation for Certified RB Methods . . . . . .. .. ..
2.4.1 Error Estimator for an Elliptic Problem . . . . . ... ... ..
242 The min-6 Approach . . . . . . . ... ... ... .......
2.4.3 The Successive Constraint Method . . . . . .. ... ... ..
2.4.4 Error Estimator for Stokes Equations . . . . . . ... ... ..
24.5 Error Estimator for Parabolic Problems . . . . . ... ... ..
Nonaffine and Nonlinear Problems . . . . . ... ... ... ........
2.5.1 The EIM . . . . . . . . ... . .
2.5.2 Model Problem: Elliptic Problem with Gaussian Source . . . .

3 Certified Smagorinsky Reduced Basis Turbulence Model
Enrique Delgado Avila, Francesco Ballarin, Gianluigi Rozza

3.1
32

33

34

3.5

Introduction . . . . .. ...
RB Smagorinsky Turbulence Model . . . . . . . ... ... ... ......
3.2.1 FEProblem ... ... ... ... ... ... ... ... ..
322 Greedy Algorithm . . . . ... ... .. .00
323 Approximation of the Eddy Viscosity Term . . . . . . ... ..
324 Well-Posedness Analysis . . . . ... ... ..........
325 A Posteriori Error Estimator . . . . . . ... ... ... ...,
3.2.6 Numerical Results for the Smagorinsky Model . . . . . . . ..
RB VMS-Boussinesq Model . . . . ... ... ... ... .. .....
3.3.1 FEProblem ... ... ... ... ... ... ... ... ..
332 RBProblem . . ... ... ... ... .. ... 0 ...
333 Well-Posedness Analysis . . . . ... .............
334 A Posteriori Error Bound Estimator . . . . . . ... ... ...
335 Numerical Results for the VMS-Boussinesq Model . . . . . . .
Geometrical Parametrization . . . . . ... ... ... ... .. .....
34.1 Problem Setting . . . . . . ... ... oo
342 Numerical Results . . . . . .. ... ... ... ... .....
Conclusion . . . . . . . . ..

4 Finite Element-Based Reduced Basis Method for Optimal Flow Control
Maria Strazzullo, Francesco Ballarin, Gianluigi Rozza

4.1
4.2

43

Introduction . . . . . . . . ... e
Linear OCP(p)s . . . . . o o o o e e e e
42.1 ROMs for Linear OCP()s . . . . . . . . . oo oo oL
422 Numerical Test: Pollutant Control in the Gulf of Trieste . . . .
ROMs for Nonlinear OCP(p)s . . . . . . . o o o v 0o v o e
4.3.1 Numerical Test: Weather Prediction through Quasi-geostrophic
Equations . . . ... ... ... ...

59

59
60
60
62
63
64
65
66
69
69
72
72
74
74
77
77
79
82

83



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Contents iX
4.4 ROMs for Space-Time OCP(u)s . . . . . . . . . o oo v v i oo o 91
4.4.1 Numerical Test: Graetz Flow Boundary Control . . . . . . .. 93
4.5 Conclusions . . . . . . . . .. 95

5 Reduced Basis Approaches to Bifurcating Nonlinear Parametrized Partial
Differential Equations 97

Federico Pichi, Francesco Ballarin, Gianluigi Rozza
5.1 Introduction . . . . . . ... 97
5.2 Nonlinear Analysis of PDEs and Bifurcation Problems . . . . . . .. .. .. 98
5.2.1 Mathematical Formulation . . . . . .. .. ... ... ..... 98
5.2.2 An Overview of Bifurcation Theory . . . . . .. ... ... .. 100
53 Numerical Approximation of Bifurcating Phenomena . . . . . ... .. .. 102
5.3.1 High-Fidelity Approximation . . . . .. ... ... ... ... 103
5.3.2 Reduced Basis Approximation . . . ... ... ........ 105
54 Von Karmén Equations for Structural Buckling of Plates . . . . . . . .. .. 109
5.4.1 Von KdrménModel . . . . . . . ... ... oo, 109
5.4.2 Weak Formulation and Its Approximation. . . . . . ... ... 110
5423 Numerical Investigation of Buckling Phenomena . . . . . . . . 110
5.5 Gross—Pitaevskii Equations in Bose-Einstein Condensates . . . . . . . . . . 112
5.5.1 Gross—PitaevskiiModel . . . . . . ... ... ... ... .. 112
5.5.2 Weak Formulation and Its Approximation. . . . . .. ... .. 112
553 Numerical Investigation of Quantum States . . . . . . ... .. 113
5.6 Hyperelastic Models for Bending Beams . . . . . .. ... ... ...... 115
5.6.1 A Continuum Mechanics Framework . . . . . ... ... ... 116
5.6.2 Weak Formulation and Its Approximation. . . . . . . ... .. 117
5.6.3 Numerical Investigation of Compressed Beams . . . . . . . . . 117
5.7 Navier—Stokes Flow and the Coandd Effect . . . . . . ... ... ... ... 119
5.7.1 NS Model ina Channel . . . .. ... ............. 120
5.7.2 Weak Formulation and Its Approximation. . . . . . . ... .. 120
5.7.3 Numerical Investigation of Wall-Hugging Behavior . . . . . . 121
6 Reduced Basis Stabilization for Convection-Dominated Problems 125
Enrigue Delgado Avila, Francesco Ballarin, Gianluigi Rozza

6.1 Introduction . . . . . . . ... 125
6.2 Advection-Diffusion Problem . . . . . .. ... ... 0oL 126
6.3 Steady Stokes Equations . . . . . . . ... ... Lo 127
6.3.1 Stabilized FE Problem . . . . . . ... ... .. ... .... 128
6.3.2 Stabilized RBProblem . . . . . .. ... ... ... ... .. 129
6.4 Steady Navier—Stokes Equations . . . . . .. ... ... ... .. ..... 129
6.4.1 Stabilized FE Problem . . . . . . . ... ... .. .. ..... 130
6.4.2 Stabilized RBProblem . . . . . .. ... ... ... ... ... 130
6.5 Stabilized VMS-Smagorinsky Turbulence Model . . . . . ... ... .. .. 131
6.5.1 FEProblem . . ... ... ... ... . ... ... ..... 131
6.5.2 RBProblem . .. .......... ... . ....... ... 133
6.5.3 Well-Posedness Analysis . . . . ... ............. 135
6.5.4 A Posteriori Error Bound Estimator . . . . . . ... ... ... 137
6.5.5 Numerical Results . . . . .. .. ... ... ... ... 138
6.6 Conclusions . . . . . . . .. 139



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Contents

11 Finite Volume, Spectral Element, and Discontinuous Galerkin-Based Reduced

Order Models 141
7 Finite Volume-Based Reduced Order Models for Laminar Flows 143
Matteo Zancanaro, Saddam Hijazi, Umberto Morelli, Giovanni Stabile, Gianluigi Rozza
7.1 Introduction . . . . . . ... 143
7.1.1 Literature Review . . . . . .. ... ... ... .. ..... 143
7.2 Computational Fluid Dynamics—Laminar NSEs . . . . . . . ... ... .. 144
7.2.1 Full-Order Model . . .. ... ... .. ... ......... 144
7.2.2 Segregated Pressure-Based Solvers for the Incompressible NSEs 146
7.2.3 Nonsegregated Finite Volume-Based ROMs . . . . . .. ... 150
7.2.4 Segregated Finite Volume-Based ROMs (SIMPLE-ROM) . . . 153
7.2.5 Treatment of Nonhomogeneous Dirichlet Boundary Conditions 154
7.2.6 Offline-Online Computation of Lift and Drag Forces . . . . . . 156
7.3 Numerical Experiments . . . . . . .. ... ... ... .. ... ... 157
7.3.1 Lid-Driven Cavity Problem . . . .. ... ... ... ..... 157
7.3.2 Flow around a Circular Cylinder . . .. ... ... ...... 160
7.3.3 CommentsontheResults . . . .. ... ... ......... 164
8 Finite Volume-Based Reduced Order Models for Turbulent Flows 165
Matteo Zancanaro, Saddam Hijazi, Michele Girfoglio, Andrea Mola, Giovanni Stabile,
Gianluigi Rozza
8.1 Introduction . . . . .. ... 165
8.2 RANS Equations . . . . . . . . . . .. .. 165
8.2.1 Closure Problem and Reynolds Averaging . . . ... ... .. 165
8.2.2 EVMs . . . . 167
8.3 LES . o 169
8.4 Hybrid Projection-Based/Data-Driven ROM for Turbulent Flows . . . . . . 171
8.4.1 Hybrid ROM with RBF Interpolation on the Time-Parameter
Values . . . . . . . . . 173
8.4.2 Hybrid ROM with RBF Interpolation on the Velocity Projec-
tion Coefficient Values . . . . . . ... ... ... ... .... 175
8.5 Turbulent ROMs Based on the Uniform-ROM and the PPE-ROM . . . . . . 178
8.5.1 Hybrid ROM Based on the PPE-ROM . . . . ... ... ... 180
8.6 Application of the H-SUP-ROM to Turbulent Problems . . . . . . ... .. 181
8.6.1 Steady Case . . . . .. ... .. e 181
8.6.2 UnsteadyCase . . . . . . .. ... i 187
9 Nonintrusive Data-Driven Reduced Order Models in Computational Fluid
Dynamics 203
Marco Tezzele, Nicola Demo, Giovanni Stabile, Gianluigi Rozza
9.1 Introduction . . . . . . ... 203
9.2 A General Framework for Nonintrusive Parametric ROMs . . . . . . . . .. 204
9.2.1 Database Creation . . . . . ... ... ... .......... 204
9.2.2 Linear Dimensionality Reduction . . . . . ... ... ... .. 204
9.2.3 Solution Manifold Approximation. . . . . ... ... .. ... 206
9.2.4 Computational Considerations . . . . . . .. ... ... .... 207
9.3 DMD for Time-Dependent Problems . . . . . .. ... .. ......... 207
9.3.1 Classical DMD Algorithm . . . . . . ... ... ... ..... 207

9.3.2 DMD Extensions . . . . . . . . . . . ... e 209



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Contents Xi

9.4 ApplicationsinCFD . . . . . . .. ... 212
94.1 A ROM Pipeline for Shape Optimization Problems . . . . . . . 212
942 Comparison between DMD and PODI for Hydroacoustics Prob-
lems . . ... .. 214
9423 A Parametric Viewof DMD . . . . . . ... ... ... 217
9.5 Conclusions and Future Perspectives . . . . . . ... ... ......... 222
10  Spectral Element Method-Based Model Order Reduction 223
Martin W. Hess, Gianluigi Rozza
10.1  Basic Notions and Functions of the SEM . . . . . . .. .. ... ... ... 223
10.1.1 Polynomials and Quadrature Rules . . . . . . ... ... ... 223
10.1.2 Expansion Functions . . . . . . ... ... ... .. ...... 225
10.2  Assembly of System Matrices . . . . . . . . ... ... 227
10.2.1 Method of Weighted Residuals . . . . . .. ... ... .... 227
10.2.2 Elemental Properties . . . . . . ... ... ... .. ...... 227
10.3  Reduced Order Modeling withthe SEM . . . . . .. ... ... ...... 228
10.3.1 Examples in Computational Fluid Dynamics . . . . . ... .. 229
10.3.2 Reduced Order Model . . . . . ... ... ... ........ 230
11  Discontinuous Galerkin-Based Reduced Order Models 233
Andrea Lario, Francesco Romor, Gianluigi Rozza
11.1  Introduction . . . . . . . . . . . . e 233
112 NodalDGM . . . . .. .. 234
11.2.1 Mapping from Physical to Master Elements . . . . . . . . ... 236
11.2.2 Interface Fluxes . . . .. ... ... .. ... ...... ... 238
11.3  Reduced Order Methods for DGM . . . . . ... ... ... ........ 239
11.3.1 OfflinePhase . . . . . ... ... ... ... ... . ..., 239
11.3.2 OnlinePhase . . . . . ... ... ... ... ... ..., 241
11.4  Projection of the Governing Equations . . . . . . ... ... ... ..... 241
11.4.1 Incompressible Navier-Stokes . . . . . . ... ... ... ... 241
11.4.2 Compressible Navier-Stokes . . . . . .. ... ... ..... 242
11.5 TestCaseandResults . . . . . .. ... ... ... ... .. ....... 244
11.5.1 Incompressible Flow around a Square-Based Cylinder . . . . . 244
11.5.2 Parametric Simulation of a Compressible Cavity Flow in a Duct 244
I Advances in Reduced Order Models for Computational Fluid Dynamics 249
12 Weighted Reduced Order Methods for Uncertainty Quantification 251
Davide Torlo, Maria Strazzullo, Francesco Ballarin, Gianluigi Rozza
12.1  Introduction . . . . . . . . . ... e 251
12.2  Stochastic PDEs and Discretized Approximations . . . . . . . . ... ... 252
123 Weighted ROMSs . . . . . . . .. .. o 253
12.3.1 WRBMethod . .. ... ... ... ... ... ... 253
12.3.2 wPOD . . .. 254
12.4  Sampling Strategies . . . . . . . . ... 255
125  Applications . . . . . . ... e 256
12.5.1 Averaging Uncertain Parameter Simulations for Heat Equation

and Stokes Problems . . . . . . ... ... ... ... ..., . 256



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Xii

Contents

12.5.2

12.5.3
12.6  Conclusions

Stabilization of Advection-Dominated Problems Conditioned
toParameters . . . . . . . . ... ...
wPOD for Optimal Control for Environmental Sciences . . .

13  Reduced Basis, Embedded Methods, and Parametrized Level-Set Geometry
Efthymios N. Karatzas, Giovanni Stabile, Francesco Ballarin, Gianluigi Rozza
13.1  Introduction and Overview . . . . . . . . ... . ...

13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.1.7

Heat Exchange Model Problem . . . . . ... ... ... ...
Shifted Nitsche Boundary Weak Formulation . . . . . . .. ..
The Parametrized Thermal-Heat Exchange Model . . . . . . .
Model Reduction Methodology . . . . .. ... ... .....
POD . . . . .
The Projection Stage and ROM Generation . . . . . ... ...
Numerical Experiments (Heat Exchange/SBM) . . . . . . . ..

13.2  Parametrized Steady Stokes Equations . . . . . . ... ... ... .. ...

13.2.1
13.2.2

POD AdaptedtoFlows . . . . ... ... ... ........
Steady Stokes Numerical Experiments (SBM) . . . ... . ..

13.3  Looking for a Better ROM with CwtFEM . . . . . . . ... ... .. .. ..
13.4  ROM and a Fourth-Order Evolutionary Nonlinear System . . . . . .. . ..
13.5  Conclusions and Future Developments . . . . . . ... ... .. ......

14  Reduced Order Methods for Fluid-Structure Interaction Problems
Monica Nonino, Francesco Ballarin, Gianluigi Rozza

14.1 Introduction

142 Dynamics of FSI Problems . . . . . ... ... ... ... . ........

14.2.1

The ALE Formulation . . . . . ... ... ...........

143 Approaches to FSI Problems . . . . . ... ... ... ... ... . ...

14.3.1
14.3.2

Partitioned Algorithms . . . . . . .. ... ... ... ...
Monolithic Algorithms . . . . . .. ... ... ... ...,

14.4  Partitioned RBM . . . . . . .. ...

14.4.1
14.4.2
14.4.3
14.4.4

Test Case: Leaflets Bending under the Influence of a Fluid . . .
Offline Computational Phase . . . . . . ... ... ... ...
OnlinePhase . . . . . ... ... ... ... ... ...,
Numerical Results . . . . . ... ... ... ... .......

14.5 A Monolithic RBM for a Transport-Dominated FSI Problem . . ... . ..

14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6
14.5.7

The Kolmogorov n-Width . . . . ... ... . ... ......
Nonlinear Model Reduction by Transport Maps . . . . . . . .
A Multiphysics Problem . . . . . .. .. ... ... ...
OfflinePhase . . . . .. ... ... ... ... ... . ...,
OnlinePhase . . . . . ... ... ... ... ... ...,
Numerical Results . . . . . ... ... ... ... ......
Conclusions . . . . . ... ... Lo

15 Reduced Order Models for Bifurcating Phenomena in Fluid-Structure
Interaction Problems
Moaad Khamlich, Federico Pichi, Gianluigi Rozza

15.1 Introduction

15.2  Problem Formulation . . . .. . ... . ... . ... ... ... . ...

15.2.1

. 261

263

265

265
265
266
267
267
268
268
269
271
272
272
276
280
282

283

283
284
284
286
286
287
287
287
290
293
295
296
297
298
299
303
305
308
310

311



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Contents Xiii
15.2.2 Lagrange Multipliers Method . . . . . . ... ... ... ... 315
15.2.3 Branchwise Reduced Basis Approximation . . . . . ... ... 315
15.3  Application to the Coandd Effect . . . . . ... ... ... ... ...... 317
15.3.1 Preliminaries . . . . . . . . ... .. ... 317
15.3.2 FSI Problem with Linear Elasticity . . . ... ... ...... 318
15.3.3 RBMResults . . . . ... ... ... ... ... 320
154  Model Comparison . . . . . . . . . . vt e e e 322
v Further Advances, Perspectives, and Applications 325
16 Reduction in Parameter Space 327
Marco Tezzele, Francesco Romor, Gianluigi Rozza
16.1 Introduction . . . . . . . . . . ... 327
16.2  AS-Based Methods . . . . ... ... ... ... .. ... .. .. 328
16.2.1 Active Subspaces . . . . .. ... 328
16.2.2 Kernel-Based Active Subspaces . . . . . . ... ... ..... 329
16.2.3 Local Active Subspaces . . . . . .. ... ... ... ..., 333
16.2.4 Multifidelity Regression . . . . . . . ... ... ... ..... 334
16.2.5 Gradient-Free Extensions . . . . . .. ... ... ....... 336
16.3  Other Nonlinear Techniques . . . . . . . . . . . ... ... ... ...... 337
16.3.1 Nonlinear Level-Set Learning . . . . . .. ... ... ..... 337
16.3.2 Active Manifolds . . . . . . ... ... L oo 337
164 Applications . . . . . . . ... e 338
16.4.1 Response Surface Design . . . . .. ... ... ... ..... 338
16.4.2 Regression . . . . . ... ... ... . 338
16.4.3 Sensitivity Analysis . . . . .. ... 340
16.4.4 Optimization . . . . . . . . ... . e 340
16.4.5 Inverse Problems . . . . . . ... ... ... L. 341
16.4.6 Coupling with Other Reduced Order Methods . . . . . . . .. 342
16.5 Conclusions . . . . . . . .. ... 342
17  Geometrical Parametrization and Morphing Techniques with Applications 345
Andrea Mola, Nicola Demo, Marco Tezzele, Gianluigi Rozza
17.1  Introduction . . . . . . . . . .. .. 345
17.2  Parametrization Techniques . . . . . . . ... ... ... ... ... .... 347
17.2.1 General Purpose Shape Parametrization Algorithms . . . . . . 347
17.2.2 Object-Specific Shape Parametrization Algorithms: Some
Examples . . . . . . . . ... 351
17.3  Application to Different Geometry Specifications . . . . . ... ... ... 356
17.3.1 Geometric Model Parametrization . . . . . . ... ... . ... 356
17.3.2 Computational Domain Parametrization. . . . . . ... .. .. 361
17.3.3 The Use of RBF to Extend Boundary Deformation to Internal
GridNodes . . . . . ... ... 361
17.4  Conclusions and Future Perspectives . . . . . . ... ... ... ...... 363
18 Reduced Order Methods for Hemodynamics Applications 365
Zakia Zainib, Pierfrancesco Siena, Michele Girfoglio, Martin W. Hess,
Francesco Ballarin, Gianluigi Rozza
18.1 Introduction . . . . . . . . . ... e 365



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Xiv Contents
182 CABGS. . . . . e 366
18.2.1 Problem Statement . . . . . ... ... ... ... ... ... 366
18.2.2 ROM . . . 367
18.2.3 Numerical Results . . . . ... ... ... .......... 367
18.3  Coandd Effectin Mitral Valves . . . . . . ... ... ... .. ...... 370
18.3.1 Physical Principles . . . . . . .. ... ... ... 370
18.3.2 Mathematical Modeling . . . . .. ... ... ... ..... 372
18.3.3 ROM . . . . 373
184 LVAD . . . . . e 374
18.4.1 High-Fidelity Problem . . . . . . .. ... ... ... .... 374
18.4.2 ROM . . . . 375
18.4.3 Numerical Results . . . . . ... ... ... ... ..... 375
19  Scientific Software Development and Packages for Reduced Order Models in

20

Computational Fluid Dynamics
Nicola Demo, Marco Tezzele, Giovanni Stabile, Gianluigi Rozza

19.1  Scientific Open-Source Software for Reduced Order Models . . . . . . . .

19.1.1 RBICS . . o oot e
19.1.2 ITHACA-FV . . . .. .
19.1.3 ITHACA-SEM . . . . . .o,
19.1.4 ITHACA-DG . . . .ot
19.1.5 EZYRB . . . oo oot
19.1.6 PyDMD . . o o otoe e
19.1.7 ATHENA . . . .o

19.1.8 PyGeM . . . . . . .
19.1.9 BladeX . . . . . . . ...
19.2  Best Practices for Scientific Programming . . . . .. ... ... .. ...

19.2.1 CodeQuality . . . . ... ... ...
19.2.2 Testing . . . . . ...
19.2.3 Documentation . . . . . . . . . .. .. ... .o

A Deep Learning Approach to Improving Reduced Order Models
Laura Meneghetti, Nirav Shah, Michele Girfoglio, Nicola Demo, Marco Tezzele,

Andrea Lario, Giovanni Stabile, Gianluigi Rozza

20.1 Introduction . . . . . . . . . ...

20.2  ANNS . . . e e
20.3 NN Topologies . . . . . . . . . o i
20.3.1 Feedforward Neural Network . . . . . .. ... ... ....
20.3.2 Recurrent Neural Network . . . . . .. ... ... ......
20.3.3 Convolutional Neural Network . . . . ... ... ......
20.34 Autoencoder . . . . . . ... e
20.4  NNs to Improve POD-Based Models . . . . ... .. ... ........
20.4.1 The POD-ANN Approach . . . . . ... ... ........
20.4.2 The NNsPOD Approach . . . . . ... ... ... .....

20.5 A PINN for Solving Parametric PDEs . . . . . . ... ... ........
20.6 A Reduced Approachfor CNNs . . . . . ... ... .. ... .......
20.6.1 Reduction Strategies for CNNs . . . . . .. ... ... ...
20.6.2 Reduced ANNs . . . ... ... ... ... ... ...
20.6.3 Numerical Results . . . . ... ... ... ... ... ...



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Contents xv
20.7 A Future Perspective on ROMs for Digital Twin . . . . . . ... ... ... 410
20.7.1 Introduction to Digital Twins . . . . . . ... ... ... ... 410

20.7.2 The Role of Modeling and Simulation in Digital Twin . . . . . 410

20.7.3 ROMs for Digital Twin . . . . . . ... ... ... ... ... 411

20.7.4 Next Developments and Challenges . . . . ... ... ..... 413
Bibliography 415
Index 461



Azenud-swiey/Bio wes'sgnds//sdny sss yH1Adoo Jo 8susdl| INVIS 03 19810Nns uonnqLISIRY * #6°'€2°/7T°06 0} £2/62/S0 Pepeoiumod



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

List of Contributors

Francesco Ballarin
Department of Mathematics and Physics, Catholic University of the Sacred Heart,
Brescia, Italy

Enrique Delgado Avila
Department of Differential Equations and Numerical Analysis, University of Seville,
Spain

Nicola Demo
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Michele Girfoglio
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Martin W. Hess
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Saddam Hijazi
Institute of Mathematics, University of Potsdam, Germany

Efthymios N. Karatzas
Department of Mathematics, Aristotle University of Thessaloniki, Greece

Moaad Khamlich
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, ltaly

Andrea Lario
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Laura Meneghetti

mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, ltaly

XVii



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

XViii List of Contributors

Andrea Mola
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Umberto Morelli
Departamento de Matematica Aplicada, Universidade de Santiago de Compostela,
Spain

Monica Nonino
Department of Mathematics, University of Vienna, Austria

Federico Pichi ]
Chair of Computational Mathematics and Simulation Science, Ecole Polytechnique
Fédérale de Lausanne, Switzerland

Francesco Romor
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Gianluigi Rozza
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Nirav Shah
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Pierfrancesco Siena
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Giovanni Stabile
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Maria Strazzullo
Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Italy

Marco Tezzele
Oden Institute for Computational Engineering and Sciences, University of Texas at
Austin, USA

Davide Torlo
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy

Zakia Zainib
Technische Universitat Dortmund, Germany

Matteo Zancanaro
mathLab, Mathematics Area, SISSA, Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

2.1
2.2
23
24

25

2.6

2.7
2.8

29
2.10

2.11

2.12

2.13

2.14
2.15

2.16

3.1

32
33

List of Figures

Left: example of a triangulation over the unit square resulting from Listing
2.1. Right: highlighted edges for the application of boundary conditions.

P! and P2 element types for two- and three-dimensional cells in (a), (b) and
(c), (d), respectively. . . . . . . . ..
Basis function ¢; and its support highlighted inpink. . . . . . ... ... ...
Solution of the system (2.10), with F' = sin(u[0]x) cos(p[1]y), for several
values of p. Here, x and y indicate the spatial coordinates of the spatial do-
main. Left: g = (27, 27). Center: p = (2w, 7). Right: p = (w, 7). . .. ..
Flow past a cylinder: solution of the system (2.23) with a parabolic inlet on the
left boundary. Velocity and pressure fields from left to right, respectively. No-
slip conditions on the bottom and top walls and on the cylinder and Neumann
boundary conditions on the rightoutflow. . . . . . .. ... ... ... ....
Flow past a cylinder: solution of the system (2.25) with a parabolic inlet on the
left boundary and velocity and pressure fields from left to right, respectively.
No-slip conditions on the bottom and top walls and on the cylinder and Neu-
mann boundary conditions on the right outflow. The solution is represented
for several valuesof Re. . . . . . . . . . . . ... ..
Solution manifold at the discrete level represented by the snapshots. . . . . . .
Two-dimensional domain, composed of two subdomains, for the steady heat
conduction problem. . . . . . ... L L
Snapshots and basis for the thermal block problem. . . . . . . ... ... ...
FE (369 nonzero elements) and RB (225 nonzero elements) structures of the
assembled systems, respectively leftand right. . . . . ... ... ... .. ..
Left: parametric domain €,(ut). Right: reference domain Q. . . . . . . .. ..
Top: Stokes flow in deformable channels (RBniCS tutorial 12). Bottom:
Backward-facing step for moderate Reynolds, Navier—Stokes equations (RB-
niCS tutorial 17). . . . . . . . . .
Velocity and pressure reduced solution for the Navier—Stokes equations in the
backward-facing step channel, varying the number of supremizers Ng. . . . . .
Reduced manifold MV-X for time-dependent problem. . . . . ... ... ..
Left: RB temperature solution. Right: computational mesh for = (—1,1)?
with EIM interpolation points. . . . . . . . . . . . ... ... ... ...
Convergence of the RB method for the elliptic problem with Gaussian source,
with respect to the number of basis functions, for EIM (left) and RB (right). . .

Domain 2 with the different boundaries identified. . . . . ... ... ... ..
Convergence of the EIM algorithm. . . . . .. ... ... ... ........
Convergence of the greedy algorithm (left) and the value of Ay, (p) and the

exact error between the FE solution and the RB solution (right). . . . . .. ..

Xix

23

68



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

XX List of Figures
3.4 FE solution (left) and RB solution (right) for p = 4521. . . .. ... ... .. 68
35 Unit square cavity domain €2, with the different boundaries identified, for

problem (3.30). . . . . .. L 75
3.6 FE solution, velocity magnitude (top) and temperature (bottom), for pu =
4523, p = 55732, and p = 642639 (left toright). . . . . . . .. ... ... .. 76
3.7 Error evolution for the EIM for 1 € [10%,10°] (left) and p € [105,10] (right). 76
3.8 Evolution of the a posteriori error bound in the greedy algorithm for 1 €
[10%,105] (left) and p € [10°,106] (right). . . . . . . . ... L. 77
3.9 A posteriori error bound for N = Ny, for g € [103,10°] (left) and p €
[105,106] (right). . . . . . . o oo 77
3.10  FE snapshots for p1, = 0.5 (top left), g = 1 (bottom left), iy = 1.5 (middle),
and g = 2 (right). . . . . .. ..o 79
3.11  Error evolution for the EIM and for the Boussinesq VMS-Smagorinsky model
with o € [103,10%] x [0.5,2]. . . . . o oo oo 80
3.12  Evolution of the a posteriori error bound in the greedy algorithm for only the
geometrical parameter (left) and for both physical and geometrical parameters
(right) . . . . . 80
3.13 A posteriori error bound for only the geometrical parameter (left) and for both
physical and geometrical parameters (right), for NV = Npyax. - . . . . . . . .. 81
4.1 Graphical representation of the OCP(u) pipeline. . . . . . ... ... ... .. 84
4.2 Left: zoom of the mesh overlapping satellite images (Trieste harbor). Right:
subdomains and boundaries. Orange: observation domain {2,,s. Green: con-
troldomain £2,,. . . . . . ... 88
43 Left and center: optimal FE and ROM state pollutant concentration for p =
(1.,—1.,1.), representing the Bora wind action. Right: averaged relative log-
error for the variables. . . . . . . ... ... o oo 88
44 Left: zoom of the mesh overlapping satellite images (Florida peninsula). Right:
triangulation of the spatial domain €2, representing the North Atlantic Ocean,
from the Florida peninsula to northern Europe. . . . . . . .. ... ... ... 90
4.5 Top: comparison between desired state, FE and ROM solutions for ;1 =
(107%,0.073, 0.0452), representing the Gulf Stream. Bottom: averaged rel-
ative log-error for all the variables. . . . . . .. ... ... ... ... ... 91
4.6 Domain 2. Observation domain: Q4(u3) = Q3(ps) U Q4(ps). Control do-
main: T'¢(us) (red solid line). Blue dashed line: Dirichlet boundary condi-
tions. The reference domain 2 is givenby 3 =1. . . . . .. ... ... ... 93
4.7 Left: FE state solutions for t = 1, 2's, 3 s for u = (12.0,2.5,2.0). Right:
ROM state solutions fort = 1,2, 3 s for p = (12.0,2.5,2.0). . .. .. .. 94
4.8 Averaged relative log-error for the variables. . . . . .. ... ... ... ... 94
5.1 A beam subject to a load and its buckled configuration. . . . . . ... .. ... 100
5.2 An elastic and rectangular plate compressed along the edges parallel to the y
direction. . . . . . ... 109
5.3 Left: high-fidelity bifurcation diagram for the rectangular plate with L = 2.
Right: high-fidelity displacements linked to the five branches at p = 65. . . . . 111
54 Left: RB error on P for the first branch. Right: RB contour error plot of the
displacementwat p =65. . . . . . . . ... 111
5.5 Left: RB bifurcation diagram for the multiparameter test case with infinity

norm of the density as output. The black dotted line shows the critical values
of u. Right: RB error on P for density in the L2- and H}-norms for 7 = 0.18. 114



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

List of Figures XXi

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

5.15

6.1

6.2

6.3

7.1
7.2

7.3

7.4

Left: RB density functions at = 0.8 with 7 € {0.15,0.25} for the first three
branches. Right: RB bifurcation diagram for the multiparameter test case with
infinity norm of the density as output. The blue dashed lines show the critical
values of u for both branching phenomena. . . . . ... ... ... ... ... 115
Left: error between the branches of the bifurcation diagram computed with
FE and RB with EIM/DEIM in the u-Npg plane. Right: high-fidelity and RB
real part ¢ of the solution X for the 1-dark soliton stripe branch, left and right,
respectively,at t = 0.5. . . . . . Lo 115
Left: RB bifurcation diagrams for the SVK unforced beam. Right: high-
fidelity zeroth and second mode displacement u for the SVK beam with B =
(0,0)at =102, . . . ... 118
Left: RB bifurcation plot for SVK beam with B = (0, —1000) for five random
pairs (E,v) € [10°,107] x [0.25,0.42]. Right: RB bifurcation plot for SVK
beam with B = (0, —1000) and l € [0.5,1]. . . . . . . . . ... ... ... 119
Left: RB bifurcation diagram for tubular unforced geometries with [ € [10, 20].
Right: representative solutions of the three-dimensional SVK model with [ €

{2,20}. . . o 119
Domain €2, which represents a straight channel with a narrow inlet. . . . . . . 120
Left: RB bifurcation diagram for the NS system. Right: velocity magnitude
of the asymmetric branch varying the viscosity p. . . . . . . . . ... .. ... 122
Representative solutions for the NS system at ;» = 0.5, velocity and pressure
fields, lower and middle branch, top and bottom respectively. . . . . . . . . .. 122
RB errors with respect to u € P for the velocity and pressure of the asymmet-
ricbranch. . . . ... 123
Eigenvalues of the state eigenproblem in the complex plane for the NSE: stable
and unstable solutions, left and right panels, respectively. . . . . . . ... ... 123

Comparison of the stabilization with/without supremizer (left) and evolution

of the error in the EIM (right). . . . . . . ... ... . ... ... ....... 138
Evolution of the error in the greedy algorithm (left) and a posteriori error esti-

mator for N = 16, with error (right). . . . . ... ... ... .. ... ..., 138
FE (left) and RB (right) solution for 4 =2751. . . . . .. ... ... .. ... 139
Sketch of a finite volume in two dimensions. . . . . . . . ... ... ... .. 145
Sketch of the mesh for the lid-driven cavity problem together with the bound-

ary subdivisions and boundary conditions. . . . . . . ... ... ... ... 157

Error analysis for the velocity field. The L2-norm of the relative error is plot-
ted over time for three different models: with supremizer stabilization (USUP,
continuous red line), with PPE stabilization (UPPE, dotted blue line), and
without stabilization (PNOS, dashed green line). The ROMs are obtained with
10 modes for velocity, pressure, and supremizer. . . . . . ... ... ..... 158
Comparison of the velocity and pressure fields for high-fidelity (UHF, column
1; PHF, column 4), SUP-ROM (USUP, column 2; PSUP, column 5), and PPE-
ROM (UPPE, column 3; PPEE, column 6). The fields are depicted for different
time instants equal tot = 0.2 5,0.5 s, 1 s, and 5 s, respectively, and increasing
in the image from top to bottom. The ROM models are obtained with 10
modes for velocity and pressure and for the SUP-ROM only with 10 additional
supremizer modes. The velocity and pressure magnitudes are shown in the
image legends. . . . . . . ... 159



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

XXii

List of Figures

7.5

7.6

7.7

7.8

7.9

7.10

7.11

8.1

8.2

8.3

The figure shows a general overview of the mesh with dimension and bound-
aries (upper left), a table with the imposed values at the boundaries (bottom),
and a zoom of the mesh near the cylinder (upper right). . . . . . . . ... ... 160
Kinetic energy relative error in the cylinder example for v = 0.005 and
v = 0.005625. The kinetic energy relative error is plotted over time for the
two values of viscosity and for the two different models: with supremizer sta-
bilization (USUP and PSUP) and PPE stabilization (UPPE and PPPE). The
ROM solutions are obtained with 15 modes for velocity, 10 modes for pres-
sure, and 12 modes for supremizers. The time window in this case is wider
than the one used to generate the RB spaces (AT =10s). . . . ... ... .. 161
First four basis functions for velocity (first row), pressure (second row), and
supremizers (thirdrow). . . . . . . .. ... L 161
Comparison of the velocity field for high-fidelity (UHF, first row), supremizer
stabilized ROM (USUP, second row), and PPE stabilized ROM (UPPE, third
row). The fields are depicted for different time instants equal to ¢ = 195 s,
200 s, 230 s, and 270 s and increasing from left to right. The ROM solu-
tions are obtained with 15 modes for velocity and 10 modes for pressure, and
for the SUP-ROM only with 12 additional supremizer modes. The velocity
magnitude is shown in the image legends. . . . . . . . ... .. ... .. ... 162
Comparison of the pressure field for high-fidelity (PHF, first row), supremizer
stabilized ROM (PSUP, second row), and PPE stabilized ROM (PPPE, third
row). The fields are depicted for different time instants equal to ¢ = 195 s,
200 s, 230 s, and 270 s and increasing from left to right. The ROM solu-
tions are obtained with 15 modes for velocity and 10 modes for pressure, and
for the SUP-ROM only with 12 additional supremizer modes. The pressure
magnitude is shown in the image legends. . . . . . . . . ... ... ... ... 162
Error analysis for the velocity (left plot) and pressure (right plot) fields in
the cylinder example with v = 0.005625. The L?-norm of the relative error
is plotted over time for the two different models: with supremizer stabiliza-
tion (USUP and PSUP, continuous red line) and PPE stabilization (UPPE and
PPPE, dot-dashed blue line). The ROM solutions are obtained with 15 modes
for velocity, 10 modes for pressure, and 12 modes for supremizers. . . . . . . 163
Error analysis for the velocity (left plot) and pressure (right plot) fields in the
cylinder example with v = 0.005 and v = 0.005625. The L2-norm of the
relative error is plotted over time for the two values of viscosity and for the
two different models: with supremizer stabilization (USUP and PSUP) and
PPE stabilization (UPPE and PPPE). The ROMs are obtained with 15 modes
for velocity, 10 modes for pressure, and 12 modes for supremizers. The time
window is in this case wider than the one used to generate the RB spaces
(AT =108). . o o 163

The computational domain used in the numerical simulations; all lengths are
described in terms of the characteristic length D, whichisequalto 1 m. . . . . 181
Cumulative ignored eigenvalue decay. In the plot, the solid black line refers to
the velocity eigenvalues, the dashed magenta line indicates the pressure eigen-
values, and the dash-dotted blue line refers to the eddy viscosity eigenvalues. . 182
k-€ turbulence model case, velocity fields for the value of the parameter U =
7.0886 m/s: (a) shows the FOM velocity, while in (b) one can see the U-ROM
velocity, and finally in (c) we have the H-SUP-ROM velocity. . . . ... . .. 183



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

List of Figures XXiii

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

k-e turbulence model case, pressure fields for the value of the parameter U =
7.0886 m/s: (a) shows the FOM pressure, while in (b) one can see the U-ROM
pressure, and finally in (c) we have the H-SUP-ROM pressure. . . . . . . . . . 183
k-€ turbulence model case, eddy viscosity fields: (a) shows the FOM eddy
viscosity, while in (b) one can see the U-ROM eddy viscosity, and finally in
(c) we have the H-SUP-ROM eddy viscosity. . . . .. ... ... ... .... 184
SST k-w turbulence model case, velocity fields for the value of the parameter
U = 7.0886 m/s: (a) shows the FOM velocity, while in (b) one can see the
U-ROM velocity, and finally in (c) we have the H-SUP-ROM velocity. . . . . . 184
SST k-w turbulence model case, pressure fields for the value of the parameter
U = 7.0886 m/s: (a) shows the FOM pressure, while in (b) one can see the
U-ROM pressure, and finally in (c) we have the H-SUP-ROM pressure. . . . . 185
SST k-w turbulence model case, eddy viscosity fields: (a) shows the FOM
eddy viscosity, while in (b) one can see the U-ROM eddy viscosity, and finally
in (c) we have the H-SUP-ROM eddy viscosity. . . . . . .. ... ... .... 185
The pressure fields obtained using both k-e and SST k-w turbulence models
and the H-SUP-ROM ones for the value of the parameter U = 7.0886 m/s.
The plot is for the pressure value along the 1 direction, keeping the value of
xo fixed at half the maximum height. . . . ... ... ... ... ... ... 186
The mean of the L? relative errors for all the online samples versus the num-
ber of modes used in the online stage. The convergence analysis is done for
both H-SUP-ROM models obtained with two different turbulence models at
the full-order level, which are k-e and SST k-w. The errors are reported in
percentages—in (a) we have the mean error of the velocity fields, while in (b)
we have the mean error of the pressure fields. . . . . . ... ... ....... 186
(a) The OpenFOAM mesh used in the simulations for the unsteady case of the
flow around a circular cylinder. (b) A picture of the mesh zoomed near the
cylinder. . . . . . . e 187
The lift coefficient curve for parameter sample Uy, = 10m/s. . . . . ... .. 188
Cumulative ignored eigenvalue decay. In the plot, the solid black line refers to
the velocity eigenvalues, the dashed magenta line indicates the pressure eigen-
values, and the dash-dotted blue line refers to the eddy viscosity eigenvalues. . 189
Velocity fields for the parameter value U;, = 7.75 m/s at t = 2.8 s: (a)
shows the FOM velocity, while in (b) one can see the U-ROM velocity with
N, = 14, and finally in (c) we have the H-SUP-ROM velocity with NV, = 20
and Ny =Ng=N,, =10. .. ... ... ... ... . ... .. 191
Pressure fields for the parameter value U,;,, = 7.75 m/s at t = 2.8 s: (a)
shows the FOM pressure, while in (b) one can see the U-ROM pressure with
N, = 14, and finally in (c) we have the H-SUP-ROM pressure with V,, = 20
and N, =Ng=N,, =10. . ... ... ... ... ... .. ... .. ... . 192
Eddy viscosity fields for the parameter value U;,, = 7.75 m/s att = 2.8 s:
(a) shows the FOM eddy viscosity, while in (b) one can see the U-ROM eddy
viscosity with IV, = 14, and finally in (c) we have the H-SUP-ROM eddy
viscosity with N, =20and N, = Ng =N, =10. .. ... ... .. .... 192
The time evolution of the L? relative errors of the velocity-reduced approx-
imations for both the U-ROM and the H-SUP-ROM. The curves correspond
to the case run with the parameter value U;,, = 7.75 m/s: (a) shows the er-
ror curve for the U-ROM, while (b) depicts the case of the H-SUP-ROM. The
error values in both graphs are in percentages. . . . . . . . . . ... ... ... 193



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

XXiv

List of Figures

8.18

8.19

8.20

8.21

8.22

8.23

The time evolution of the L? relative errors of the pressure-reduced approx-
imations for both the U-ROM and the H-SUP-ROM. The curves correspond
to the case run with the parameter value U;, = 7.75 m/s: (a) shows the er-
ror curve for the U-ROM, while (b) depicts the case of the H-SUP-ROM. The
error values in both graphs are in percentages. . . . . . . . . . . ... ... ..
Lift coefficient curves for the cross-validation test done for the parameter value
Uin = 7.75 m/s for the time range [0, 8] s; the figure shows the FOM, the
U-ROM, and the H-SUP-ROM lift coefficient histories: (a) the full range is
shown, and (b) the last 2sof Cyisshown. . . . . . . . .. ... ... .....
The graph of the L? relative errors for the lift coefficient curve versus the
number of modes used in the online stage in the U-ROM and the H-SUP-ROM.
The curves correspond to the case run with the parameter value U;,, = 7.75
m/s. The error is computed between the lift coefficient curve obtained by the
FOM solver and the one reconstructed from both the U-ROM and the H-SUP-
ROM for the time range [0, 8] s: (a) shows the error curve for the U-ROM,
where N, is the number of modes used in the online stage for all variables (by
construction of the U-ROM, it is not possible to choose a different number of
online modes for the reduced variables). (b) depicts the case of the H-SUP-
ROM, where one can see the error values by varying the number of modes used
for the pure velocity, with different fixed settings for the three other variables
(the pressure, the supremizers, and the eddy viscosity). The error values in
both graphs are in percentages. . . . . . . . . ... oo
The graph of the peak relative errors for the lift coefficient curves for varied
values of the number of modes used in the online stage in the U-ROM and the
H-SUP-ROM. The curves correspond to the case run with the parameter value
Uin, = 7.75 m/s. The error is computed between the peak values of the lift
coefficient curve obtained by the FOM solver and the ones reconstructed from
both the U-ROM and the H-SUP-ROM for the time range [0, 8] s: (a) shows
the error curve for the U-ROM, where N, is the number of modes used in the
online stage for all variables (by construction of the U-ROM it is not possible
to choose a different number of online modes for the reduced variables). (b)
depicts the case of the H-SUP-ROM. The error values in both graphs are in
PEICENAZES. . . . . . . . e e
Lift coefficient curves for the cross-validation test done for the parameter value
Uin = 7.75m/s for the time range [0, 8] s. The figure shows the FOM, the SU-
PPE-ROM, and the H-PPE-ROM lift coefficient histories: (a) the full range is
shown, and (b) the last 2sof Cyisshown. . . . . . .. ... .. ... .....
The graph of the L? relative errors for the lift coefficient curve versus number
of modes used in the online stage in the SU-PPE-ROM and the H-PPE-ROM.
The curves correspond to the case run with the parameter value U;,, = 7.75
m/s. The error is computed between the 1ift coefficient curve obtained by the
FOM solver and the one reconstructed from both the U-ROM and the H-PPE-
ROM for the time range [0, 8] s: (a) shows the error curve for the SU-PPE-
ROM, where N, is the number of modes used in the online stage for both the
velocity and the eddy viscosity, while [V, is the number of modes used for the
pressure field. (b) depicts the case of the H-PPE-ROM, where one can see the
error values varying the number of modes used for the velocity (including the
lifting velocity mode) with different fixed settings for the two other variables
(the pressure and the eddy viscosity). The error values in both graphs are in
PEICENAZES. . . . . . . e e e e e e e e e e e e



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

List of Figures XXV

8.24

8.25

8.26

8.27

8.28

9.1

9.2

9.3

94

9.5

9.6

9.7

9.8

9.9

The graph of the peak relative errors for the lift coefficient curves for varied
values of the number of modes used in the online stage in the SU-PPE-ROM
and the H-PPE-ROM. The curves correspond to the case run with the param-
eter value U;,, = 7.75 m/s. The error is computed between the peak values
of the lift coefficient curve obtained by the FOM solver and the ones recon-
structed from both the SU-PPE-ROM and the H-PPE-ROM for the time range
[0, 8] s: (a) shows the error curve for the U-ROM, where N, is the number
of modes used in the online stage for both the velocity and the eddy viscosity,
while NV, is the number of modes used for the pressure field. (b) depicts the
case of the H-PPE-ROM. The error values in both graphs are in percentages. . 199
The time evolution of the L? relative errors of the velocity-reduced approxima-
tions for both the SU-PPE-ROM and the H-PPE-ROM. The curves correspond
to the case run with the parameter value U;, = 7.75 m/s: (a) shows the er-
ror curve for the SU-PPE-ROM. (b) depicts the case of the H-PPE-ROM. The
error values in both graphs are in percentages. . . . . . . . .. ... ... ... 199
The time evolution of the L? relative errors of the pressure-reduced approxi-
mations for both the SU-PPE-ROM and the H-PPE-ROM. The curves corre-
spond to the case run with the parameter value U;,, = 7.75 m/s: (a) shows the
error curve for the SU-PPE-ROM. (b) depicts the case of the H-PPE-ROM.
The error values in both graphs are in percentages. . . . . . .. ... ... .. 200
Lift coefficient curves for the cross-validation test done for the parameter value
Uin = 11.75 m/s for the time range [0, 10] s. The figure shows the FOM and
the H-SUP-ROM lift coefficient histories: (a) the full range is shown; (b) the
last 3-s history of Cyisshown. . . . . . . ... ... ... .. 201
The lift coefficient curves obtained using both the k-¢ and SST k-w turbulence
models and the H-SUP-ROM ones. The case considered is nonparametrized,
with U;,, = 10 m/s corresponding to Re = 10°. The plot is for the time
range ¢ € [6,8]; the H-SUP-ROM achieved relative L? errors (over the range
t €[0,8]) lessthan 5% inbothcases. . . . .. ... ... ... ... ...... 202

First three POD modes obtained from the resolution of a parametrized Navier—
Stokes problem, describing the flow pastacylinder. . . . . . ... ... .... 206
In the left column are the eigenvalue positions with respect to the unit circle,
and in the right column are the corresponding DMD modes. From top to
bottom we have a stable, a convergent, and a divergent mode, corresponding
to an eigenvalue on the unit circle, inside it, and outside it, respectively. . . . . 209
On the left is the initial dataset containing features at different time scales.
In the middle is the DMD reconstruction, and on the right is the mrDMD

FECONSIIUCHION. . . . . . v v v vt it bttt e e e e e e 210
On the left is the initial dataset, in the middle is the DMD reconstruction, and
on the right is the cDMD reconstruction. . . . . . . . . .. ... ... .... 211
Computational savings of cDMD with respect to the exact DMD for an in-
creasing dimension of the snapshot matrix. . . . . ... ... ... .. .... 211
Representation of the computational pipeline used for the shape optimization
problem. . . . ... e e 212
Example of bulbous bow deformations using the FFD method. . . . . . . . . . 213

Comparison of the average relative L? error of the ROM in a naval shape opti-
mization problem as a function of the number of modes (left) and the number
of snapshots used (right). . . . . . . . . .. .. ... . 213
Flowchart of the FOM/ROM procedure. . . . . . . .. .. ... ... ..... 214



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

XXVi

List of Figures

9.10

9.11
9.12

9.13

9.14

9.15

9.16
9.17

9.18

9.19

9.20

9.21

10.1

10.2

10.3

11.1
11.2
11.3
11.4
11.5

Sketch of the computational domain used for the FOM. The sphere diameter is
D = 0.01 m. Successive mesh refinement layers (R2, R3, R4) are performed
using the cell splitting approach until the finest grid spacing 0.001D is reached
intheregion R5. . . . . . . . . . e 215
Normalized singular values for streamwise velocity and pressure snapshots. . . 216
Isosurfaces of the DMD modes (left) at a value of —15 x 1075 m/s versus
the isosurfaces of POD modes (right) at a value of 6.5 m/s for the streamwise
velocity field. Modes: 1,2,8,and36. . . . ... ... ... ... ....... 216
Isosurfaces of the DMD modes (left) at a value of —5 x 10~% Pa versus the
isosurfaces of POD modes (right) at a value of 300 Pa for the pressure field.
Modes: 1,2,8,and 36. . . . . . . . ... e 217
Relative error percentage in the Frobenius norm for velocity and pressure (top
and bottom, respectively) fields, where half-sample-rate snapshots are used to
train the reduced model, DMD (left) or PODI (right), for a particular trun-
cation (r) while predicting the intermediate snapshots. Plots show only the
snapshotwise prediction error, while disregarding errors in the training set,
whichare almostnull. . . . . .. ... ... o 217
Linear dipole (top) and nonlinear quadrupole (bottom) terms of FWH equa-
tion evaluated from LES data and compared to corresponding DMD (left) and
PODI (right) reduced models at different truncation ranks (r). . . . ... ... 218
Flowchart representing the proposed computational pipeline. . . . . . . . . .. 218
Sketch of the computational domain used to solve the fluid dynamics problem
in its reference configuration. The left plot is a zoom on the mesh near the
wing. The right picture is a schematic view of the domain with the main
geometrical dimensions. . . . . ... ... 219
The temporal evolution of the lift coefficient from 1 s to 30 s for nine different
PATAMEerS. . . . . . .t e e e e e e e e e e e e e e e e e e e 220
Airfoil shape functions with respect to the profile abscissa. The leading edge
corresponds to z = 0. The bump functions are rescaled by a factor of 0.2 for
illustrative Teasons. . . . . . . . ... L. e e 220
On the left is the sufficiency summary plot for the lift coefficient at times
t = 10.0,14.0,18.0 s (top to bottom). On the right are the first eigenvector
components at the corresponding parameters. . . . . . . . . . ... ... ... 221
The relative error of the approximated outputs at different times. The relative
error is computed on 100 test samples, using the high-fidelity lift coefficient
to train the regression for ¢ < 20 s, while for ¢ > 20 s the DMD forecasted
states are used for the training. . . . . . . . ... ... 222

Full-order, steady-state solution for v = 10: velocity in the z direction (top)
and y direction (bottom). . . . . . . ... L. 231
Full-order, steady-state solution for v = 0.05: velocity in the x direction (top)
and the y direction (bottom). . . . . . . . ... ... o 232
Mean and maximum relative L? () error in the velocity with increasing basis



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

List of Figures XXVii

11.6
11.7
11.8
11.9
11.10
11.11

12.1
12.2

12.3
12.4

12.5

12.6

12.7

12.8

13.1
13.2

13.3
13.4
13.5

13.6

13.7

Reduced order solution for N, =5, N, =8, N, =10,and N, =12. . . . . . 245
Absolute error (velocity). . . . . . . ... 245
Absolute error (Pressure). . . . . . ..o i e e e e e e e e e e 245
Meshofthedomain. . . . . . . . . ... ... ... .. ... .. ... ..., 246
First four modes (velocity). . . . . . . . . . . .. ... ... 246
Comparison between FOM (top) and ROM (bottom) solutions. . . . . . . . . . 247
Comparison of multivariate quadrature rules with order of accuracy 15. . . . . 256

Heat transfer problem: error decay with respect to the number of reduced ba-
sis functions, comparison between weighted and not weighted algorithms and
between uniform and Beta(20,10) distributed training samples. Left: POD;
right: greedy algorithm. . . . . ... ... ... L o L 257
Reference domain D. The reference parameter is = (1.,1.5,1., 1.5, 14). . . 258
Stokes problem: error decay with respect to the number of RB functions,
comparison between unweighted (left) and weighted (right) algorithms and
between the Smolyak, tensor product, uniform, and Beta(75,75) distributed
training samples. For the weighted algorithm, the Smolyak rule, the tensor
product rule, and Beta(75,75) sampling coincide. . . . . . .. ... ... ... 259
Graetz problem: error decay with respect to the number of RB functions,
and comparison between weighted and unweighted algorithms and between
uniform and Beta(5,3) distributed training samples. With online stabilization
(left), without online stabilization (right). POD algorithm (top), greedy algo-
rithm (bottom). . . . . . . . . . . e 260
Graetz problem: weighted algorithms and Beta(5,3) distributed training sam-
ples. Error of stabilized and nonstabilized online with respect to the advection
parameter p. Comparison with selective online strategy. Left: POD; right:

Greedy. . . . . . . e 260
Domain D, the Gulf of Trieste. Orange: Miramare reserve D,,s. Pollutant
spill Dy o o o 262

Optimal control problem: error decay with respect to the number of RB func-
tions; comparison between state variable (left) and control variable (right) with
an unweighted POD algorithm between uniform, Beta(20, 5), Beta(5, 5), and
Beta(75,75) distributed training samples. . . . . ... ... ... 263

Embedded FEM geometrical tools for (i) CatFEM and (ii) SBM. . . . .. .. 267
(i) Parametrized geometry. (ii) Some RB components for 4 € [—0.5,0.5]
parametrized geometry. (iii) The full/reduced order solution and the absolute

error (u=—0.015). . . . . ... 269
Heat exchange problem: (i) eigenvalue decay and (ii) mean relative errors. . . 270
Stokes with SBM experiment: sketch of the mesh, the embedded domain, and
the parameters considered in the numerical examples. . . . . ... ... ... 272
Stokes system ROM-SBM POD velocity and pressure components for (i) z41
geometry and (ii) (po, f41) GEOMELTY. . . . . . . . ... 273

Stokes SBM: the full and the reduced solution and the absolute error for
velocity and pressure for the (i) one-dimensional and (ii) two-dimensional
parametrization Case. . . . . . . . . . .. ua e e e e e 274
Stokes (SBM) parametrization: (i) pu; geometry, with the relative errors for
velocity and pressure in (i), and the execution times in (i)p; (ii) (uo, 11) ge-
ometry, with the velocity and pressure fields with and without supremizer sta-
bilization. . . . . . . . .. e e 275



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

XXViii

List of Figures

13.8

13.9
13.10

13.11
13.12
13.13

13.14

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

14.10

14.11

Shape parametrization with large deformations and a zoom into the embedded
cylinder visualizing the extended solution. . . . . . . . ... .. ... .. ... 277
Six classical (i) and six improved (ii)) POD modes. . . . . . .. ... .. ... 278
(i) Poisson system (CutFEM): eigenvalue decay and error analysis between
reduced order and high-fidelity approximations with and without transport;
(ii) steady Stokes (CutFEM): relative errors with and without transport. . . . . 279
Circular embedded geometry (parametrized). . . . . . . ... ... ... ... 280
Cahn—Hilliard (CutFEM): ROM basis results, the first six modes. . . . . . . . 281
Results for the embedded circle geometrical parametrization p = 0.4261 and
t=1028,36,46,100]dt. . . . . . ... 281
Cahn-Hilliard (CutFEM): the FOM mass evolution with respect to time, to-
gether with its RB approximation and the conservation of mass. . . . . . . .. 282

Example: domain reference configuration Q) (left) and domain configuration
at time ¢, Q(t) (right). In blue we have the fluid domain; in orange the solid
domain. In green is the fluid-structure interface I' g7 in the reference config-
Uration. . . . . . . v it e e e e 285
Original configuration at time ¢. Blue domain: the original fluid configuration
Q(t). Orange leaflets: the original solid configuration Q(¢). T'2: the part of
the leaflets thatdoesnotmove. . . . . . . .. ... ... oL, 287
Domains: reference configuration Q (top left), parametrized reference config-
uration Q(,ug) (top right), and original configuration (¢; 14) (bottom). . . . . 295
Reduced order solid displacement d2¥ (). Comparison of different behaviors
of the material, for different values of the geometrical and physical parameters.
From left to right: same leaflet length 11, = 0.8 cm and increased shear mod-
ulus (ps = 100000, 800000); same leaflet length 1, = 1 cm and increased
shear modulus (1, = 100000, 800000); increased leaflet length (1, = 0.8,
1.0 cm), and same shear modulus ps = 100000. . . . ... ... ... .... 296
Physical domain (reference configuration): fluid subdomain (blue) and struc-
ture subdomain (orange). The fluid-structure interface coincides with the struc-
ture in our case; the structure has been magnified for visualization purposes. . . 300
Fluid pressure behavior: the solution is pictured here at times ¢ = 0.001,
t = 0.005, and t = 0.015. The peak of the wave is propagating into the
domain, creating a transport phenomenon. . . . . . . ... ... 303
Vertical component of fluid displacement behavior: again the solution is pic-
tured at times ¢ = 0.001, ¢ = 0.005, and t = 0.015. The peak of the wave is
still very small at the beginning, it grows for some time, and then it starts to
PIOPagate. . . . . . . .. e e e e e e e e e e e e 304
Decay of the eigenvalues for the POD on the fluid pressure (blue line), fluid
displacement (green line), and fluid velocity (magenta line). . . . .. ... .. 304
Top: comparison between the rate of decay of the eigenvalues for the pressure
with and without preprocessing. Bottom: retained energy as a function of the
number N of PODmodes. . . . . . ... ... ... ... . ... ...... 306
Top: comparison between the rate of decay of the eigenvalues for the displace-
ment with and without preprocessing. Bottom: retained energy as a function
of the number N of PODmodes. . . ... ... ... ... .......... 306
Original snapshots for p; at times ¢ = 0.001, ¢ = 0.005, and ¢ = 0.015 (left
column) and corresponding preprocessed snapshots (right column). . . . . . . 307



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

List of Figures XXiX

14.12

14.13

14.14

14.15

15.1
15.2
15.3
15.4

15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15

16.1

16.2

16.3

16.4

16.5

Pressure snapshots (left column) at time ¢ = 0.005 (top) and final time ¢ =
0.015 (bottom). Reduced order pressure simulation (right column) at time
t = 0.005 and time ¢ = 0.015. The reduced simulation was obtained with
N = 4 basis functions for each component of the solution of the FSI problem. 309
Displacement snapshots (left column) at time ¢ = 0.005 (top) and final time
t = 0.015 (bottom). Reduced order displacement simulation (right column)
at time ¢ = 0.005 and time ¢ = 0.015. The reduced simulation was obtained
with N = 4 basis functions for each component of the solution of the FSI
problem. . . . ... 309
Analysis of the behavior of the relative error for the fluid pressure approxima-
tion. Dashed lines were obtained by employing the preprocessing procedure,
continuous lines were obtained using a standard model order reduction. . . . . 309
Behavior of the mean relative error for the fluid pressure, depending on the
number NN of basis functions employed, with preprocessing (red) and without

preprocessing (blue). . . . . . . ... 310
Reference configuration for the FSI problem. . . . . . . ... ... ... ... 314
Computational domain. . . . . . . . . . . ... ... 317
Velocity and pressure snapshots. . . . . . . . ... ... 0oL 319
Solid’s deformation snapshots: the solutions are given in a spatial frame using

thedymap. . . ... ... 319
Global displacement (d¢,dg) forp=2.0. . ... ... ... ... ... ... 319
Bifurcation diagram for the fluid phase. . . . . . . ... ... ... ... ... 320
Bifurcation diagram for the solid phase. . . . . . . ... ... .. ... .... 320
Retained energy. . . . . . . . . . .. ... 321
Decay of the normalized eigenvalues. . . . . . ... ... ... .. ...... 321
Average reconstruction error in logarithmic scale. . . . . . . . ... ... ... 321
Average projection error in logarithmic scale. . . . . . . ... ... ... ... 321
Relative reconstruction error with N, =16. . . . . .. . ... ... ... .. 322
Maximum displacement for the SVK and the linear models. . . . . . ... .. 323
Solid’s bifurcation diagram for the linear and the SVK model. . . . . . . . .. 323
Comparison of the bifurcation diagram for the fluid phase for the different test

CASES. & v v v v e e e e e e e e e 323

Ilustration of the inactive variable sampling strategy. Successive steps are
depicted all at once. We highlight the Chebyshev center, the selection of the
next sample using the hit and run method, and the polytope defined by (16.8). . 329
lustration of the design of a response surface using KAS and Gaussian pro-

cess regression (GPR). The factorization through an RKHS is emphasized. . . 331
Ilustration of the global AS direction, highlighted in orange in the left panel.
On the right is the corresponding sufficient summary plot. . . . . .. ... .. 333

Comparison between K-means, K-medoids, and hierarchical top-down clus-
tering using the AS-induced distance metric for the quartic example of Fig-
ure 16.3. . . L e 334
Ilustrative scheme of a multifidelity regression procedure that employs AS
as a low-fidelity model. The function to be approximated is the hyperbolic
paraboloid from (16.16). Starting from 10 high-fidelity data points (depicted
in blue and in white) we construct as a low-fidelity model a response surface
which is constant along the inactive subspace. . . . . . . .. ... ... .... 336



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

XXX

List of Figures

16.6

16.7

16.8

16.9

17.1
17.2

17.3

17.4

17.5

17.6

17.7

17.8

NLL application two-dimensional example. On the left we have the target
function against the first transformed coordinate, in the middle the loss func-
tion decay, and on the right the transformed parameter space. . . . . . . . . . .

On the y-axis: basic reproduction number R of the SEIR model for the Ebola
epidemic. Left: GPR on the one-dimensional AS. Middle: GPR on the one-
dimensional KAS. Right: GPR on the one-dimensional active variable of the
NLL method. In the plots are also represented the 200 training points used to
find the reduced parameter space and build the GPRs. . . . . . . . ... .. ..

Each one of the six plots represents the GPR on the reduced space of one
out of six partitions of the parameter space found with LAS. On the y-axis is
the basic reproduction number R of the SEIR model for the Ebola epidemic.
On the z-axis is the reduced one-dimensional AS of the relative cluster. In
the plots are also represented the 200 training points scattered among all six
clusters and used to find the partition of the parameter space with hierarchical
top-down clustering and build the GPRs. . . . . . . .. ... ... ... ...

ASGA scheme. The main steps of the classical GA are depicted from top to
bottom. Projections onto and from a lower-dimension AS are highlighted with
yellow boxes, which are specificto ASGA. . . . .. ... ... ... .....

Sketch of the three deformation maps which compose the FFD morphing.

Interpolations corresponding to six different RBFs. The exact function is de-
picted with a red dashed line. The parameter € is equal to the inverse of the
average distance between the sampling points. . . . . . . ... ... .. ...

Interpolation error for different types of RBFs. Refer to Figure 17.2 for the
actual interpolations. . . . . . . . . ...

Front view (top) and side view (bottom) of a planing hull featuring a double
chine line and substantially straight walls above the chine line. . . . ... ..

Vertical section of a planing hull perpendicular to its longitudinal axis. The
bottom vertex of the section is the intersection of the section plane and the keel
line. The intersections of the two chine lines are also visible on the bottom left
side of the section. The first step of the parametrization strategy is a rigid
rotation of the bottom part of the section around the keel intersection. This is
combined with a rigid translation of the chine and wall surface sections needed
to keep the top part of the section in contact with the displaced bottom part.

Front view (left) and lateral view (right) of a ship propeller. In both images,
one of the five propeller blades’ surface is transparent, and a set of airfoil cylin-
drical sections is indicated in red to show how the blade surface is generated
as the envelope surface of the single sections. . . . . ... ... ... ....

The airfoil section pitch as a function of relative radial coordinate. The plot
shows both an initial pitch distribution (red continuous line) and the control
points associated with its B-spline interpolation (red piecewise linear line). A
new, smooth pitch radial distribution (blue continuous line) is then obtained
using a displaced set of pitch control points (blue piecewise linear line).

FFD application to the STL triangulation representing the bulbous bow of a
cruise ship hull. The left panel, which represents the original bow geometry,
also displays the FFD undeformed control point lattice. On the right, the vis-
ible displacement of the control point results in a deformed STL geometry.

341

. 348

. 353

. 355



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

List of Figures XXXi

17.9

17.10

17.11

17.12

17.13

17.14

17.15

17.16

17.17

18.1

18.2

18.3

18.4
18.5
18.6

Two examples of a triangulated surface of a carotid artery deformed with RBF.
The original geometry is emphasized by the blue dots, while the RBF control
points are depicted in red (the deformed ones) and in green (the undeformed

A simplified two-dimensional example of the application of FFD to a NURBS
curve. On the left, the procedure starts by placing an FFD lattice (red dots)
on top of a NURBS curve. On the right, the displacement of the FFD control
points is used to modify the position of the NURBS control points (black dots).
The modified control polygon results in the morphed NURBS curve displayed
ontheright. . . . . ... ... 358
An application of the FFD algorithm to the NURBS surface specified by an
IGES file. A front view of the DTMB-5415 navy combatant hull featuring a
modified and enlarged bow is displayed on the left; the original hull surface is
displayed on the right for reference. . . . . . . ... ... ... ... ... 359
A side view of the IGES geometry of the DTMB-5415 navy combatant hull
shown in Figure 17.11. The top picture depicts the CAD surface of the hull,
modified via FFD. The bottom picture shows the original hull surface. . . . . 359
Representation of a family of ship propellers generated with bottom-up con-
struction. The different propellers are obtained in this case by scaling the skew
angle curve. In particular, in the image an original propeller blade shape is pre-
sented along with two modifications resulting from scaling the skew curve by
factors of 0.8 and 1.1, respectively. . . . ... ... ... ... .. . ..... 360
Examples of computational domain deformation using FFD: the first picture
(left) shows the edges of the original mesh, while the others illustrate two
deformed domains. . . . ... ... o o 361
The application of RBF shape parametrization to the Ahmed body and the
surrounding volumetric mesh for CFD simulations. In the test illustrated, the
inclination of the diagonal surface at the rear end of the Ahmed body is modi-
fied to investigate its effect on aerodynamic performance. Two configurations,
including a vertical cut of the volumetric mesh, are shown in the top images.
For reference, path lines of mean velocity field resulting from the correspond-
ing unsteady RANS simulations are shown in the bottom pictures. . . . . .. 362
Example of computational domain deformation applied to a propeller design
problem, seen at the radial plane. The blue edges refer to the original mesh,
whereas the red ones show the deformed grid. . . . . . ... ... ...... 363
A sectional view of a volumetric grid deformation carried out using RBFs in
a naval engineering problem. The blue lines denote the original volumetric
mesh edges, while the red lines indicate the deformed configuration. . . . . . 364

CABG: Boundary control magnitude (mm2 / s2) (left) and eigenvalue reduc-

tion (right). . . . . . . . e 369
CABG: Simulation velocity v: comparison between FE approximation (left)
and ROM approximation (right). . . . . . . . .. .. ... ... ... ... 369

CABG: Average error between FE and POD-Galerkin approximation of § =
v, p,u,w,q (top left); total error between Galerkin FE and POD-Galerkin
approximations (top right); and error between FE and POD-Galerkin reduction

of J (bottom). . . . . . . . . . e e 370
The horizontal velocity of a jet stream entering a channel. . . . . . . ... .. 371
The velocity inthe channel. . . . . .. ... ... ... ..... . ...... 371

The velocity in the channel, zoomed in to the wall attachment region. . . . . . 371



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

XXXii List of Figures
18.7  The mitral valve between the left atrium and the left ventricle produces the
Coanddeffect. . . . . . . . . . . . 371
18.8  Scheme forthe LVAD. . . . . . . .. .. ... ... 374
18.9  LVAD: comparison of the FOM/ROM p (mmHg) at PF = 3.451/min. . . . . 376
18.10 LVAD: comparison of the FOM/ROM WSS (Pa) at PF = 3.451/min. . . . . 377
18.11 LVAD: comparison of the FOM/ROM u (m/s) at PF = 3.451/min. . . . . . 377
19.1  Thelogos of the ROM packages.. . . . . . ... ... ... ... ....... 380
19.2  Example of EZyRB prediction on an automotive benchmark. . . . . . . . . .. 382
19.3  Example of PyDMD application to a toy problem. . . . . .. ... ... ... 383
19.4  Sketch of the techniques implemented in ATHENA for parameter space reduc-
HOM. . . o o v e o e e e e e e e 384
19.5  Example of PyGeM deformation on an automotive testcase. . . . . . . . . .. 385
19.6  Example of blade deformation using BladeX. . . . . . ... .. ... ... .. 385
20.1  Schematic structure of an ANN. . . . . . . .. .. ... ... ... 390
20.2  The forward pass on the left calculates y as a function f(x1,x2) using the
input variables z; and xo. The right side of the figure shows the backward
pass. Receiving dL/dy, the gradient of the loss function with respect to y
from above, the gradients of x; and x5 on the loss function can be calculated
by applying the chain rule, as shown in the figure.. . . . . .. ... ... ... 392
20.3  Schematic structureof an FNN. . . . . . .. .. ... ... ... ... ... 393
204  Schematic structureof an RNN. . . . . . . ... ... ... ... ... 394
20.5 Schematicstructureof aCNN. . . . . . . ... ... ... ... ... .. ... 394
20.6  Illustration of a single convolutional layer. . . . . . . .. ... ... ...... 395
20.7  Ilustration of a pooling layer. . . . . . . ... ... ... ... .. ... ... 396
20.8  Schematic structureof an AE. . . . . . ... . L 396
20.9  Example of POD enhancement thanks to the shifting of the snapshots. A Gaus-
sian impulse advancing in time is a simple advection problem which shows
the limitations of POD in these contexts: the singular values obtained by the
decomposition of the snapshots are not able to individuate any reduced di-
mension (top). By shifting the snapshots, POD is able to detect the dimension
needed to linearly represent the solution manifold, as highlighted by the single
nonzero singular value (bottom). . . . . . . . ... ... Lo 400
20.10 Example of NNsPOD applied to an advection problem in a two-dimensional
domain. The green lines represent the contour levels of the field, the blue ones
refer to one of the snapshots of the database, and the red ones refer to the same
snapshot after the shift. The plots at incremental epochs show that the network
is able to self-learn the optimal transformation. . . . . . .. ... ... .. .. 400
20.11 Example of a PINN solution for a Poisson problem with parametric forcing
term. The two rows show the field of interest for two different parametric
configurations, while in the columns the analytical solution, the PINN approx-
imation, and the absolute error are sketched (from left to right). . . . ... .. 402
20.12 Graphical representation of the reduction method proposed for an ANN. . . . . 404
20.13  Graphical representation of the VGG-16 architecture. . . . . . . ... ... .. 407
20.14 Example of a structural model in the naval engineering field. On the left is the
entire hull, while on the right is a sectional view. . . . . ... ... ... ... 412
20.15 A modern cruise ship example of displacement field for the hogging loading

condition. . . . . . ... e 412



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

2.1

3.1

32

33

34

6.1

7.1

7.2

7.3

8.1
8.2

List of Tables

Approximation accuracy for the ROM with respect to the number of suprem-
izersexploited. . . . . ... L. 40

Computational time for FE solution and RB online phase, with the speedup

and therelative error. . . . . . . . .. ... 68
Computational time for FE and RB solutions, with the speedup and the error,
for problem (3.30): Ra € [103,10%] (top) and Ra € [105,10°] (bottom) . . . . 78
Computational time for FE and RB solutions, with the speedup and the error,
for the Boussinesq VMS-Smagorinsky model with i, € [0.5,2]. . . . . . . . . 81

Computational time for FE and RB solutions, with the speedup and the error,
for the Boussinesq VMS-Smagorinsky model with g € [10%,10%] x [0.5,2]. . 81

Computational time for FE solution and RB online phase, with the speedup
andtheerror. . . . . . . . ... 139

The table contains the cumulative eigenvalues for the lid-driven cavity test.
The first, second, and third columns report the cumulative eigenvalues for the
velocity, pressure, and supremizer fields, respectively. The last column con-
tains the value of the inf-sup constant, in the supremizer stabilization case, for
different numbers of supremizer modes and with a fixed number of velocity
and pressure modes (10 modes for velocity and 10 modes for pressure). . . . . 158
The table contains the cumulative eigenvalues for the cylinder problem. In
the first, second, and third columns are reported the cumulative eigenvalues
for the velocity, pressure, and supremizer fields, respectively, as a function of
the number of modes. In the last column is reported the value of the inf-sup
constant for the supremizer stabilization case for different numbers of suprem-
izer modes with a fixed number of velocity and pressure modes (15 modes for
velocity and 10 modes for pressure). . . . . . . . . . .. ... 161
The table contains the computational time for the supremizer (SUP) and the
PPE stabilization techniques. In the cavity experiment, the SUP-ROM is ob-
tained with 10 modes for velocity, pressure, and supremizers, while the PPE-
ROM is obtained with 10 modes for pressure and supremizers. In the cylinder
experiment, the SUP-ROM is obtained with 15 modes for velocity, 10 for pres-
sure, and 12 for supremizers, while the PPE-ROM is obtained with 15 modes

for velocity and 10 for pressure. . . . . . . . .. ... 164
Offline parameter samples and the corresponding snapshotdata. . . . . . . . . 190
Summary of the accuracy and the efficiency results for the ROMs considered

in the problem of flow around acylinder. . . . . . ... ... ... .. .... 200

XXXiii



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

XXXV List of Tables
12.1  Tables for the selective stabilization approach. Given a certain threshold ad-
vection coefficient €, we obtain the mean error by computing only a percentage
of all the stabilizationterms. . . . . . . . . . ... ... ... ... ... .. 261
13.1  Heat exchange problem: relative errorresults. . . . . . . ... ... ... ... 270
13.2  Heat exchange problem: execution time, savings, and speedup. . . . . . . . .. 271
13.3  Stokes (SBM): relative errors between the full-order solution and the RB so-
lution, one-dimensional geometrical parametrization. . . . . . . . . . ... .. 273
13.4  Execution time, at the reduced order level, for the case with one-dimensional
geometrical parametrization. . . . . . . . ... L. 274
13.5  Stokes SBM (uyg, 111) geometry: Supremizer basis enrichment and the relative
CITOL.  © . v v v v e e e e e e e e e e e 276
14.1  Physical and geometrical constants and parameters for the geometrically and
physically parametrized leaflets testcase. . . . . . . ... ... ... ..... 296
14.2  Problem data for the test case of a flow in a channel with deformable walls. . . 303
15.1  Energy retained by the firstmode. . . . . . .. ... ... ... ..., 320
15.2  Values of Young’s modulus and Poisson’s ratio used for the test cases. . . . . . 323
16.1  Parameter ranges for the Ebola model. Data taken from [167]. . . . . . . . .. 339
16.2  Comparison of the R? scores of the response surfaces for the Ebola model
built with the AS, KAS, LAS, and NLL methods. . . . ... ... ... .... 340
18.1  L?-norm relative errors for pressure p, WSS, and velocity components ., t,,
andu, for PF =3.451/min. . . ... ... .. .. . o ... 376
18.2  L2%-norm relative errors for pressure p, WSS, and velocity components z, y,
andu, for PF =4.351/min. . ... ... ... ... .. .. .. ... ... 376
19.1  Summary table for all the packages. . . . . . . ... ... ... ... ..... 380
20.1  Results obtained for the reduced net POD+FNN (7) trained on CIFAR10 with
different structures forthe FNN. . . . . . . .. ... ... ... ... ... . 408
20.2  Results obtained with CIFAR10 dataset. . . . . . . . . ... .. ... ..... 409
20.3  Results obtained with a custom dataset. . . . . . .. ... ... .. ...... 409



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Algorithm 2.1
Algorithm 2.2
Algorithm 2.3
Algorithm 2.4
Algorithm 2.5
Algorithm 2.6
Algorithm 2.7
Algorithm 2.8
Algorithm 2.9
Algorithm 2.10
Algorithm 5.1
Algorithm 7.1
Algorithm 7.2
Algorithm 7.3
Algorithm 12.1
Algorithm 12.2
Algorithm 12.3
Algorithm 12.4
Algorithm 15.1

List of Algorithms

The prototype greedy algorithm . . . . . . ... ... ... ..... 31
The actual greedy algorithm . . . . . .. ... ... ......... 31
The Gram-Schmidt orthonormalization . . . . ... ... ... ... 32
Greedy algorithm for Stokes . . . . . . ... ... ... .. ... .. 38
POD algorithm for Stokes . . . . . .. .. ... ... ... ..... 38
Greedy algorithm with supremizer enrichment for Stokes . . . . . . . 40
POD algorithm with supremizer enrichment for Stokes . . . . . . . . 40
POD-greedy algorithm for parabolic problems . . . . . . . ... ... 42
Greedy selectionforCy . . . . . . . . . ... L 51
EIM . . . 56
A pseudocode for the branchwise procedure . . . . . . ... ... .. 105
The SIMPLE algorithm . . . . . ... ... ... ........... 149
The PISO algorithm . . . . . .. .. ... ... ... ... .... 150
The reduced order SIMPLE algorithm . . . . ... ... ... .... 153
(Deterministic) greedy algorithm . . . . . . .. .. ... ... .. .. 253
Weighted greedy algorithm . . . . . . ... ... ... ... ..... 254
POD . . . . . 254
wPOD . . . . . 255
Branchwise reduced order reconstruction . . . . . .. ... ... .. 317

XXXV



Azenud-swiey/Bio wes'sgnds//sdny sss yH1Adoo Jo 8susdl| INVIS 03 19810Nns uonnqLISIRY * #6°'€2°/7T°06 0} £2/62/S0 Pepeoiumod



Downloaded 05/29/23 to 90.147.23.94 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Preface

Reduced order modeling is an important and fast-growing research field in computational sci-
ence and engineering, motivated by several reasons, of which we mention just a few: parametric
computing, repetitive computational environments, real-time computing, increasing complexity
of scenarios with uncertainties, and better computational performance in optimization, control,
and inverse problems. This book deals with recent developments in model order reduction in
fluid dynamics, including challenging topics such as turbulence, optimal control, flow stability,
aerodynamics, shape optimization, inverse problems, multiphysics, and uncertainty quantifica-
tion. We present here an integrated, reduced, parametric computational framework characterized
by a wide portability to be embedded in the most modern computational pipelines, including
automatic learning and digital twin developments.

After this preface and an overview and motivation in Chapter 1, the first part is concerned
with finite element—based reduced order modeling with a focus on laminar computational fluid
dynamics (Chapter 2), then with the introduction of a simple turbulent pattern (Chapter 3), and
then with the optimal flow control framework (Chapter 4). In Chapter 5, bifurcation problems
are studied, while in Chapter 6 the focus is on transport-dominated problems.

The second part of the book deals with finite volume and spectral element methods and
discontinuous Galerkin-based reduced order modeling. Chapters 7 and 8 deal with finite volume—
based reduced order modeling in computational fluid dynamics (CFD) from laminar to turbulent
flows. In Chapter 9 we deal with nonintrusive data-driven reduced order models. Chapter 10
introduces spectral element method—based reduced order modeling, while Chapter 11 deals with
discontinuous Galerkin—based reduced order modeling.

The third part deals with advanced reduced order modeling in CFD. Chapter 12 deals with
weighted reduced order modeling for uncertainty quantification, Chapter 13 with model order
reduction for embedded methods and level-set geometries, Chapter 14 with multiphysics prob-
lems (fluid-structure interaction), and Chapter 15 with bifurcations in parametric multiphysics
settings.

The fourth part is concerned with perspectives and applications. In Chapter 16 we deal with
reduction in parameter space, and Chapter 17 deals with geometrical parametrization and appli-
cations. Hemodynamics applications are introduced as examples in Chapter 18. In Chapter 19
we introduce our scientific computing open-source libraries and Python tools. Last, but not least,
Chapter 20 provides perspectives and current preliminary development to improve model reduc-
tion by automatic learning, concluding with the digital twin concept.

We accompany this book with our open-source software collection and worked problems,
available at mathlab.sissa.it/cse-software

We acknowledge all the chapter contributors (SISSA mathLab current members and past
members) as listed in the frontmatter and at the beginning of each chapter. We acknowledge our
long-lasting national and international research collaborations, without which this work would
not exist.
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Trieste, Italy, 20 April 2022 Gianluigi Rozza, Giovanni Stabile, Francesco Ballarin
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