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This paper introduces a framework for analyzing a general class of uncertain nonlinear discrete-
time systems with given state-, control-, and disturbance constraints. In particular, we propose a
set-theoretic generalization of the concept of dissipativity for systems that are affected by external
disturbances. The corresponding theoretical developments build upon set based analysis methods and
lay a general theoretical foundation for a rigorous stability analysis of economic tube model predictive
controllers.
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1. Introduction

Dissipativity theory can be regarded as one of the most funda-
ental tools for analyzing the stability of control systems (Byrnes,

sidori, & Willems, 1991). Its origins can be traced to the work of
illems (1971, 1972), who analyzed the theoretical properties of
issipative systems and formalized the concepts of energy supply
nd energy storage for general control systems.
Recent work on dissipativity theory has focused on its applica-

ion to optimally operated control systems. For example, Angeli,
mrit, and Rawlings (2012) established a link between dissipativ-
ty of a control system and the existence of optimal steady-states.
n Faulwasser, Grüne, Müller, et al. (2018), a thorough review of
conomic model predictive control (MPC) schemes is presented.
nlike standard tracking problems, economic MPC controllers are
ased on objective functions which are, in general, not positive
efinite. For such controllers a number of stability conditions are
vailable (Angeli et al., 2012; Müller, Angeli, & Allgöwer, 2015;
üller & Grüne, 2016; Zanon, Grüne, & Diehl, 2017), which all

ely on dissipativity theory.
In order to understand why one may wish to develop a gen-

ralization of dissipativity for set-valued systems, one must be
ware of set-valued analysis (Aubin & Frankowska, 2009) and its
mportance in the development and analysis of robust control

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Franco
Blanchini under the direction of Editor Ian R. Petersen.
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methods (Bertsekas & Rhodes, 1971; Blanchini, 1999). Among the
various set-theoretic control methodologies, Tube model predic-
tive control strategies have been analyzed exhaustively during
the past two decades (Langson, Chryssochoos, Raković, & Mayne,
2004; Mayne, Seron, & Raković, 2005). Here, the main idea is
to replace trajectories by robust forward invariant tubes (RFITs),
i.e., set-valued functions in the state space enclosing all future
system states, independently of the uncertainty realization. A
great variety of methods for Tube MPC synthesis can be found
in the overview article (Raković, 2012).

Notice that there is a large body of work regarding the stabil-
ity of nominal (certainty-equivalent) MPC schemes (Chen & All-
göwer, 1998; Grüne, 2009; Rawlings & Mayne, 2009). Of course,
if a parameterized version of a Tube MPC problem can be written
as a standard MPC problem, such stability results can be applied.
For example, in the so-called Rigid Tube MPC (Raković, Munoz-
Carpintero, Cannon & Kouvaritakis, 2012; Zeilinger, Raimondo,
Domahidi, Morari, & Jones, 2014) one computes offline both the
tube cross-section as well as an ancillary feedback law in order to
add robustness margins to all constraints. Thus, in this case, the
robust reformulation is equivalent to a nominal MPC scheme with
tightened constraints and standard stability results for MPC can
be applied (Raković, 2012; Zeilinger et al., 2014). For Rigid Tube
MPC schemes with economic objectives, stability results can be
obtained using tools from the field of dissipativity theory (Bayer,
Müller, & Allgöwer, 2014, 2018; Broomhead, Manzie, Shekhar, &
Hield, 2015).

As rigid tubes may be rather conservative, multiple strategies
have been proposed to increase the accuracy of RFITs. These
include the use of homothetic (Raković, Kouvaritakis, & Cannon,
2013; Raković, Kouvaritakis, Findeisen & Cannon, 2012) and elas-
tic tube parameterizations (Raković, Levine, & Açıkmeşe, 2016),
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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which are based on polytopic sets with a constant, pre-specified
number of facets. The use of ellipsoidal parameterizations, Vil-
lanueva, Quirynen, Diehl, Chachuat, and Houska (2017), has also
been proposed for tube MPC. In general, the question of which set
parameterization is the best has no unique answer, as Tube MPC
formulations face an inherent tradeoff between computational
tractability and conservatism (Raković, 2012). Roughly, whenever
one attempts to increase the accuracy of the set representa-
tion, the computational procedures become more demanding in
terms of their memory and run-time requirements (Houska &
Villanueva, 2019).

In this context, one of the main contributions of this paper
is the development of a rigorous mathematical framework for
the stability analysis of a rather general class of set-valued con-
trol systems. Towards this aim, Section 2 introduces a set-based
generalization of cost-to-travel functions, which have originally
been developed for certainty-equivalent control systems (Houska
& Müller, 2017). Section 3 builds on this construction to propose
a set-theoretic generalization of dissipativity for a particular class
of storage functions. The practical applicability of these rather
abstract concepts is discussed in Section 4, which establishes
set-theoretic stability conditions for a large class of Tube MPC
controllers with possibly economic objectives and no assump-
tions on the feedback structure. These controllers can be based,
in the most general case, on parameterizations where the set-
valued cross-sections of the tube itself are free optimization
variables. The theoretical developments of this paper are illus-
trated throughout the paper using a series of academic examples.
Section 5 concludes the paper.

1.1. Notation and preliminaries

We use the symbols Kn and Kn
C to denote the sets of compact

and compact convex subsets of Rn, respectively. The Hausdorff
distance between two sets A, B ∈ Kn is denoted by

dH(A, B) = max
{
max
x∈A

min
y∈B

∥x − y∥, max
y∈B

min
x∈A

∥x − y∥
}

.

otice that (Kn, dH) is a metric space (Srivastava, 2008).
As this paper uses functions whose arguments are sets in Kn,

e introduce the following definitions.

efinition 1. Let the domain D ⊆ Kn be given. A function
: D → R is called

(1) continuous on D if there exists for every A ∈ D and every
ϵ > 0 a δ > 0 such that |L(A) − L(B)| < ϵ, for all B ∈ D
with dH(A, B) ≤ δ,

(2) lower semi-continuous on D if there exists for every A ∈ D
and every ϵ > 0 a constant δ > 0 such that L(B) > L(A)−ϵ,
for all B ∈ D with dH(A, B) ≤ δ, and

(3) monotonous if A ⊆ B implies L(A) ≤ L(B).

We also introduce the generalized Hausdorff distance,

H(D, E) = max
{
max
A∈D

min
B∈E

dH(A, B), max
B∈E

min
A∈D

dH(A, B)
}

,

which is defined for any D, E ⊆ Kn. The symbol Kn is used to
denote the topological space of all nonempty subsets of Kn that
are compact in 2K

n
—the power set ofKn. Recalling that dH induces

a metric in Kn, one can show that the generalized Hausdorff
distance H induces a metric in Kn (Rockafellar & Wets, 2005).

The following definition is useful for the analysis of difference
inclusions, as needed in the context of Tube MPC.
Definition 2. Consider the function F : Kn
→ Kn. It is called

continuous if there exists for every ϵ > 0 a δ > 0 such that

H(F (A), F (B)) < ϵ,

or all A, B ∈ Kn with dH(A, B) ≤ δ.

2. Set-based cost-to-travel functions

The main goal of this paper is to analyze uncertain discrete-
time control systems of the form

xk+1 = f (xk, uk, wk). (1)

Here, xk ∈ Rnx , uk ∈ Rnu , and wk ∈ Rnw denote the state, control,
and disturbance vectors at time k. The disturbance sequence w is
unknown, but assumed to take values in the given set W ∈ Knw .
The associated state- and control constraint sets, X ∈ Knx and
U ∈ Knu , are also assumed to be given.

Since (1) depends on an uncertain disturbance sequence, its
reachable set is, in general, not a singleton. Hence, Section 2.1
briefly reviews some concepts from robust forward invariance
(Blanchini, 1999), used for the analysis. Section 2.2 introduces
a novel set-theoretic generalization of cost-to-travel functions
(Houska & Müller, 2017), whose properties are analyzed in
Section 2.3.

2.1. Difference inclusions and robust invariance

Recalling that the focus of this paper is on set-based methods
for analyzing (1), we introduce the map F : Knx → Knx , given by

F (A) =

{
B ∈ Knx

⏐⏐⏐⏐⏐ ∀x ∈ A, ∃u ∈ U : ∀w ∈ W,

f (x, u, w) ∈ B

}
(2)

for all A ∈ Knx . This transition map F is the basis for the
construction of control invariant sets and tubes for (1).

Definition 3. A sequence X = (X0, X1, . . .) of compact sets is
called a robust forward invariant tube (RFIT) for (1) if it satisfies
the difference inclusion

∀k ∈ N, Xk+1 ∈ F (Xk) .

If X = (X⋆, X⋆, . . .) is a time-invariant RFIT, X⋆ is called a robust
control invariant (RCI) set.

Notice that F maps a set to a set of sets. This notation may
appear rather abstract on the first view, but it has the advantage
that we do not have to introduce notation for the underlying
possibly set-valued feedback law and the associated closed-loop
reachability sequences, which are parametric on the feedback
law.

2.2. Set-based cost-to-travel functions

Let D ⊆ Kn be a given domain and L : D → R a given
lower semi-continuous function on D. The cost-to-travel function
VD : D × D × N → R ∪ {∞} of (1) on D is given by

VD(A, B,N) = min
X∈DN+1

N−1∑
k=0

L(Xk)

s.t.

⎧⎪⎨⎪⎩
∀k ∈ {0, 1, . . . ,N − 1},
Xk+1 ∈ F (Xk)
Xk ⊆ X,

X0 = A, XN = B ,

(3)

which is defined for all sets A, B ∈ D and all N ∈ N. In order
to ensure that VD is well-defined, the following assumption is
needed.
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Assumption 1. The domain D and the functions f and L have the
following properties:

(1) the right-hand side function f is continuous in all of its
arguments,

(2) the set D ⊆ Knx is closed in the metric space (Knx , dH ), and
(3) the function L : D → R is lower semi-continuous and

monotonous on D, in the sense of Definition 1.

Proposition 1. Let Assumption 1 be satisfied. Then, the right-hand
side of (3) either admits a minimizer or has an empty feasible set.

Proof. First, notice that F is continuous in the sense of Defini-
tion 2. This is a direct consequence of the definition of F in (2), the
continuity of f as well as the compactness of U and W—see Aubin
and Frankowska (2009) for details. Since X is compact and D
closed, the feasible set of (7) is compact in (Knx , dH). Since L is
lower semi-continuous, the right-hand side of (3) either admits a
minimizer or has an empty feasible set. □

If the sets A and B are such that the right-hand side of (3)
is infeasible, we set VD(A, B,N) = ∞. This guarantees that the
function VD is well-defined for all A, B ∈ Knx .

Example 1. Let us consider a dynamic system given by

f (x, u, w) =

(
u

1
2x2 + u + w

)
,

with X = [−5, 5] × [−5, 5], U = [−5, 5], and W = [−1, 1].
Moreover we consider the 2-dimensional interval domain

D =

{
[a1, a2] × [a3, a4] ⊆ R2

⏐⏐⏐⏐⏐ a1, a2, a3, a4 ∈ R
(a1 ≤ a2) ∧ (a3 ≤ a4)

}
as well as the stage cost

L([a1, a2] × [a3, a4]) = 2a2 +
1
20

(
3a21 + a22 + 2a23 + a24

)
.

n this setting, the cost-to-travel function VD(·, ·, 1) can be con-
tructed explicitly. In fact, it is given by

VD(A, B, 1) =

{
L([a1, a2] × [a3, a4]) if (a, b) ∈ G
∞ otherwise.

or all intervals A = [a1, a2] × [a3, a4] ∈ D and all intervals
= [b1, b2] × [b3, b4] ∈ D. Here, we have used the shorthand
otation

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a, b) ∈ R4

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

∃v1, v2 ∈ [−5, 5] :

b3 ≤
1
2
a3 + v1 − 1

b4 ≥
1
2
a4 + v2 + 1

a4 ≥ 2(v1 − v2) + a3
b1 ≤ v1 ≤ b2
b1 ≤ v2 ≤ b2

−5 ≤ a1 ≤ a2 ≤ 5
−5 ≤ a3 ≤ a4 ≤ 5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

2.3. Properties of cost-to-travel functions

The following propositions summarize basic properties of the
cost-to-travel function VD .

Proposition 2 (Monotonicity). Let Assumption 1 be satisfied. Then,

VD(A, C,N) ≤ VD(A′, C,N) and VD(A, C,N) ≥ VD(A, C ′,N)
′ ′ ′ ′
for all sets A, A , C, C ∈ D with A ⊆ A and C ⊆ C and all N ∈ N.
Proof. As discussed above, Assumption 1 ensures that VD is
well-defined. The definition of F implies that

C ∈ F (A′) H⇒ C ∈ F (A)
C ∈ F (A) H⇒ C ′

∈ F (A)

hold for all sets A, A′, C, C ′
∈ D with A ⊆ A′ and C ⊆ C ′.

Moreover, Assumption 1 requires L to be monotonous; that is,

A ⊆ A′
H⇒ L(A) ⊆ L(A′). (4)

The statement of the proposition is a direct consequence of these
three implications recalling the definition of VD in (3). □

Proposition 3 (Continuity). Let Assumption 1 be satisfied. Then, the
function VD(·, ·,N) is lower semi-continuous on its domain

{(A, B) ∈ D × D | VD(A, B,N) < ∞} .

Proof. Assumption 1 ensures that F is continuous and L lower
semi-continuous. Since X is compact, it follows, from standard
arguments from set-valued analysis (Aubin & Frankowska, 2009),
that VD is lower semi-continuous. For example, one can use an
indirect argument, as follows.

If VD was not lower-semi-continuous, we could find a se-
quence of sets (Ai, Bi) with

VD(Ai, Bi,N) < VD(A, B,N) − ϵ ,

for some ϵ > 0 as well as a feasible pair (A, B), such that (Ai, Bi)
converges to (A, B) for i → ∞. But this means that there exists
a sequence of associated feasible points X i of (3) with A and B
replaced by Ai and Bi; and
N−1∑
k=0

L(X i
k) < VD(A, B,N) − ϵ .

Since X is compact, this sequence must have a convergent sub-
sequence, whose limit sequence X∞ is feasible too, and satisfies
N−1∑
k=0

L(X∞

k ) ≤ VD(A, B,N) − ϵ .

This is a contradiction, as we have X∞

0 = A as well as X∞

N = B by
construction. Thus, VD(·, ·,N) is lower semi-continuous. □

The set-based cost-to-travel function VD , satisfies a functional
equation, as stated in the following proposition.

Proposition 4 (Functional Equation). Let Assumption 1 be satisfied.
Then, VD satisfies the functional equation

VD(A, C,M + N) = min
B∈D

VD(A, B,M) + VD(B, C,N)

for all A, C ∈ D and all M,N ∈ N.

Proof. This statement follows from the definition of VD and
Proposition 3. This ensures that, either a minimizer exists for the
optimization problem over B or that the expressions on both sides
of the functional equation are equal to ∞. □

3. A set-theoretic generalization of dissipativity

This section introduces a generalization of dissipativity in the
context of discrete-time set-valued inclusions.

Definition 4. System (1) is called set-dissipative on its domain
X × U × W with respect to a given supply rate S : D → R on D,
if there exists a nonnegative storage function Λ : D → R+ such
that the inequality

Λ(B) − Λ(A) ≤ S(A) ,
holds for all A, B ∈ D with A, B ⊆ X and B ∈ F (A).
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Notice that for the special case that W is a singleton and
D is the set of singletons in Knx , set-dissipativity is equivalent
to dissipativity for deterministic systems with control-invariant
supply rates, as introduced by Willems (1971, 1972). To explain
how set-dissipativity relates to the ongoing developments in this
paper, we introduce the following definition.

Definition 5. A set X⋆
∈ D is called an optimal robust control

invariant set, if

V ⋆
D = VD(X⋆, X⋆, 1) = min

A∈D
VD(A, A, 1) .

The following assumption is introduced to guarantee that V ⋆
D

is well-defined.

Assumption 2. The set {A ∈ D | A ∈ F (A), A ⊆ X} has a
non-empty interior in D.

Proposition 5. Let Assumptions 1 and 2 hold. Then, there exists at
least one optimal robust control invariant set X⋆

∈ D.

Proof. Assumption 2 implies that there exists at least one set
A ∈ D with A ⊆ X and A ∈ F (A), which ensures that the domain

{(A, A) ∈ D × D | VD(A, A, 1) < ∞}

is non-empty. Now, the statement of this proposition is a direct
consequence of Proposition 3 and Weierstrass’ theorem, which
can be applied here as X is compact. □

Example 2. Consider the setting from Example 1. Here, the
optimal robust control invariant set can be found by solving

min
(a,b)∈R4

L([a1, a2] × [a3, a4]) s.t.
{
(a, b) ∈ G

a = b.
(5)

Notice that (5) is a strictly convex quadratic program with an
unique minimizer a⋆

= b⋆
= (−1, −1, −4, 0)⊺. Thus, the optimal

robust control invariant set is given by the line segment X⋆
=

{−1} × [−4, 0] with V ⋆
D = −

1
5 .

efinition 6. The function VD(·, ·,N) is called separable on D if
t admits a non-negative separable lower bound W : D → R+

satisfying

∀A, B ∈ D, VD(A, B,N) − NV ⋆
D ≥ W (B) − W (A) .

The following theorem establishes the link between set-
issipativity and cost-to-travel functions.

heorem 1. Let Assumptions 1 and 2 be satisfied. System (1) is
et-dissipative on its domain X × U × W with respect to the supply
ate S(A) = L(A) − L(X⋆) on D if and only if VD(·, ·, 1) is separable
n D.

roof. Proposition 5 implies that the constant offset L(X⋆) =
⋆
D < ∞ is well-defined. If the system (1) is set dissipative and
and B are such that V (A, B, 1) < ∞, we have

D(A, B, 1) − V ⋆
D = L(A) − L(X⋆)

≥ Λ(A+) − Λ(A)

or all sets A+
∈ D with A+

∈ F (A) and A+
∈ X. In particular, this

nequality must hold for A+
= B, which implies

D(A, B, 1) − V ⋆
D ≥ Λ(B) − Λ(A) .

This inequality also holds whenever V (A, B, 1) = ∞. Therefore,
W = Λ is a non-negative separable lower bound of VD(·, ·, 1) on
D. Therefore, if (1) is set-dissipative on X × U × W with respect
to the supply rate L(·) − L(X⋆) on D, then VD(·, ·, 1) is separable
on the domain D.

In order to establish the converse implication, we use the fact
that L(A) = V (A, B, 1) for all A, B ∈ X with A, B ⊆ X and B ∈ F (A).
Hence, for all such A, B we obtain

W (B) − W (A) ≤ VD(A, B, 1) − V ⋆
D = L(A) − L(X⋆),

which implies that (1) is set-dissipative with storage function
Λ = W , as long as VD(·, ·, 1) is separable on D with separable
lower bound W . □

Example 3. Here, we continue discussing Examples 1 and 2. In
this setting, the function

W ([a1, a2] × [a3, a4]) =

{
16 +

8
5 (a3 − a2) if A ⊆ X

0 otherwise

appens to be a non-negative separable lower bound on
D(·, ·, 1). Here, the offset 16 ≥

8
5a2 − a3 is chosen such that

W is non-negative on X = [−5, 5] × [−2, 2]. To verify that W is
indeed a separable lower bound, we can compute the minimum
of the right-hand side of the inequality

VD(A, B, 1) − V ⋆
D − W (B) + W (A) ≥ 0 (6)

over the domain of VD(A, B, 1). Here, we notice that the minimum
of the convex quadratic program

min
a,b,v1

L([a1, a2] × [a3, a4]) −
8
5
(b3 − b2) +

8
5
(a3 − a2)

s.t.

⎧⎨⎩ b3 ≤
1
2
a3 + v1 − 1

v1 ≤ b2 , a1 ≤ a2 ,

is −
1
5 , with unique minimizer given by (a⋆)⊺ = (−1, −1, −4, 0)⊺,

(b⋆)⊺ = (0, 3, 0, 0)⊺ and v⋆
1 = 3. Since we have V ⋆

D = −
1
5 , the

nequality (6) must be satisfied on the domain of VD(·, ·, 1).

Definition 7. The function VD(·, ·,N) is called strictly separable
on D if it is separable and the point (X⋆, X⋆) is the unique
minimizer of

min
A,B∈D

(
VD(A, B,N) − NV ⋆

D − W (B) + W (A)
)

.

Notice that VD(·, ·, 1) is strictly separable if and only if (1) is
set-dissipative with respect to the supply rate S(A) = L(A)−L(X⋆)
and the storage function Λ is such that

Λ(B) − Λ(A) < S(A)

for all A, B ∈ D with A, B ⊆ X, B ∈ F (A), and (A, B) ̸= (X⋆, X⋆).
In this sense, one may state that strict separability of VD(·, ·, 1) is
equivalent to ‘‘strict dissipativity’’ of (1).

4. Set-dissipativity and stability of tube MPC

4.1. Tube model predictive control

Tube MPC methods proceed by solving, in a receding-horizon
manner, optimal control problems of the form

min
X∈DN+1

E(X0) +

N−1∑
k=0

L(Xk) + M(XN )

s.t.

⎧⎨⎩
∀k ∈ {0, 1, . . . ,N − 1},
Xk+1 ∈ F (Xk) , z ∈ X0,

Xk ⊆ X , XN ⊆ T

(7)

with z ∈ Rnx being the current state-measurement and T ∈ D a
terminal set. Here, E : D → R, L : D → R, and M : D → R
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denote lower semi-continuous initial, stage, and terminal costs,
respectively. It is well-known (Rawlings & Mayne, 2009) that this
tube MPC controller (7) is recursively feasible if T ∈ F (T ) and
T ⊆ X.

Remark 1. If one is interested in adding a decoupled control
penalty to the objective of the MPC controller, one can always
introduce discrete-time states that satisfy

x̃k+1 = uk ,

and append them to the state vector, such that the next state is
equal to the current control input. In this sense, it is not restrictive
to assume that the objective in (7) does not explicitly depend on
the control input.

Remark 2. There is a close relation between the tube MPC
problem (7) and set-based cost-to-travel functions. In particular,
as a direct consequence of Proposition 4, (7) can be equivalently
written as

min
X∈DN+1

E(X0) +

N−1∑
k=0

VD(Xk, Xk+1) + M(XN )

s.t. y ∈ X0 , XN ⊆ T .

.2. Tube MPC feedback law

Notice that, any feasible point X of (7) is an RFIT. Thus, we can
construct a control law, µ[X] : N × Rnx → U, associated to this
RFIT such that the state of any closed-loop system

∀k ∈ Z, xk+1 = f (xk, µ[X](k, xk), wk)

satisfies the implication

xk ∈ Xk H⇒ xk′ ∈ Xk′

for all k′
≥ k with k, k′

∈ {0, 1, . . . ,N}. This is implication is a
irect consequence of the definition of the transition map F .

emark 3. Consider an RFIT X = (X0, X1, . . .) as well as point
∈ Xk. One can evaluate the feedback law µ[X](k, z) by solving

he robust feasibility problem

in
uk

0 s.t. f (z, uk, w) ∈ Xk+1, ∀w ∈ W

n particular, the signal µ[X](k, z) = u⋆
k—with u⋆

k being a solution
f the above feasibility problem, will drive z to Xk+1 regardless of
he uncertainty realization.

Now, in contrast to this control law µ[X] associated to the
FIT, the Tube MPC feedback law ν : X → U is time-invariant

and given by

ν(z) = µ[Ξ ](0, z). (8)

Here, Ξ (z) denotes a minimizing sequence of (7) as a function
of the current measurement z. In the following, we use y =

y0, y1, . . .) to denote the closed-loop state recursion of the Tube
PC controller (7), given by

k+1 = f (yk, ν(yk), wk) (9)

ith k ∈ N. That is, we first set z = yk, solve (7), update the
ystem using the feedback (8), and repeat. In the next section we
resent an analysis of the stability properties of this closed-loop
equence using set-dissipativity.
4.3. Stability analysis

The goal of this section is to analyze stability of Tube MPC in
the enclosure sense. Our definition of stability is motivated by the
fact that the closed-loop trajectory y, given by (9), depends on the
uncertainty sequence w.

Definition 8. The closed-loop state sequence y is said to admit
stable enclosure, if there exists a sequence Y = (Y0, Y1, . . .) of
ompact sets, Yk ∈ Knx , such that

(1) yk ∈ Yk for all k ∈ N, and
(2) the sequence dH(Yk, X⋆) is stable (in the sense of Lyapunov).

f, additionally,

lim
→∞

dH(Yk, X⋆) = 0 ,

hen y admits an asymptotically stable enclosure Y .

emark 4. Notice that Y is not necessarily an RFIT, since the
et sequence Y is only required—under the above definition—to
ontain the actual closed-loop sequence y.

The following theorem establishes a stability result for the
ube MPC controller (7) under the assumption that the initial
ost function E is a strictly separable lower bound of VD(·, ·, 1).
quivalently, E must be a storage function that establishes strict
issipativity of (1) on D with respect to the supply rate S(A) =

(A)−L(X⋆). The statement is based on the additional assumption
hat the strictly separable lower bounding function E is also lower
emi-continuous. At this point it has to be mentioned that a
recise characterization of dissipative systems for which such a
ower semi-continuous storage function exists, is still an open
roblem. However, there exist sufficient conditions under which
ne can assert the existence of continuous storage functions (Po-
ushin & Marquez, 2002)—at least for nominal (not set-valued)
ystems.

heorem 2. Let Assumptions 1 and 2 be satisfied. Let the terminal
egion be an optimal robust control invariant set, T = X⋆, and let y0
e such that (7) is feasible for y = y0. If (1) is strictly set-dissipative
n X × U × W with respect to the supply rate S(·) = L(·) − L(X⋆)
n D with E being an associated lower semi-continuous storage
unction and M = 0, then the closed-loop sequence y of the tube
PC controller (7) admits an asymptotically stable enclosure.

roof. We start the proof by constructing a sequence of compact
ets, Y = (Y0, Y1, Y2, . . .), as follows.
For all j ∈ N:

(a) Measure the state, yj
(b) Set X j

= Ξ (yj), where Ξ (yj) is the optimal solution se-
quence of the jth tube MPC problem

min
X∈DN+1

E(X j
0) +

N−1∑
k=0

VD(X j
k, X

j
k+1, 1)

s.t. yj ∈ X j
0 , X j

N = X⋆ .

(c) Set Yj = X j
0

(d) Evaluate ν(yj), cf. Remark 3, send the feedback signal to the
system, and go to (a).

or the construction in Step (b), we recall the relation between
he tube MPC problem (7) and cost-to-travel functions in
emark 2.
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Since yj ∈ X j
0 holds, the relation yj ∈ Yj also holds by

construction. In order to show that the sets Yj are well defined,
we introduce the shifted sequence

Xj =

(
X j
1, X

j
2, . . . , X

j
N−1, X

⋆, X⋆
)

∈ DN+1 .

Since the inclusion yj+1 ∈ X j
1 holds independently of the uncer-

tainty realization, the sequence X̃j is a feasible point of the (j+1)th
Tube MPC problem. Thus, recursive feasibility holds and Yj is well
defined.

Let RD : D × D → R denote the rotated cost-to-travel
function, defined by

RD(A, B) = E(A) − E(B) + VD(A, B, 1) − V ⋆
D

for all A, B ∈ D. Thus, the tube MPC problem in Step (b) can be
ritten in the equivalent form

min
j∈DN+1

N−1∑
k=0

RD(X j
k, X

j
k+1) s.t.

{
yj ∈ X j

0

X j
N = X⋆.

The key idea of this proof is to establish the claim that the
function LD : DN+1

→ R, given by

Z ∈ DN , LD(Z) =

N−1∑
k=0

RD(Zk, Zk+1) ,

can be used as a Lyapunov function for the iterates X j of the tube
MPC controller.

Our first goal is to show that the sequence X j is stable and
converges to the limit point

X⋆
= (X⋆, X⋆, . . . , X⋆) ∈ DN+1 .

Let us establish the following properties of the candidate Lya-
punov function LD .

P1 The function LD is lower semi-continuous (in the sense of
Definition 1).

P2 The function LD is positive definite, i.e., it satisfies LD(Z) = 0
if and only if Z = X̂⋆ and LD(Z) > 0 otherwise.

P3 The sequence X j satisfies

LD
(
X j+1) < LD

(
X j)

for all j, whenever X j
0 ̸= X⋆.

Notice that P1 follows from Proposition 3. Moreover, P2 follows
from the definition of LD and the assumption that VD(·, ·, 1) is
strictly separable with non-negative and strictly separable lower
bound E. Thus, it remains to establish P3. As discussed above, the
proposed tube MPC controller is recursively feasible. This implies
that

LD
(
X j+1)

≤ LD
(̂
X j+1)

= LD
(
X j)

− RD

(
X j
0, X

j
1

)
< LD

(
X j)

whenever X j
0 ̸= X⋆. Here, we have used our assumption that

VD(·, ·, 1) is strictly dissipative, which implies that

RD

(
X j
0, X

j
1

)
> 0 whenever X j

0 ̸= X⋆.

These properties are sufficient to conclude that LD is a Lya-
punov function proving asymptotic stability of X j to X̂⋆ with
respect to the Hausdorff metric. This implies that the sequence
Y is an asymptotically stable enclosure of y, converging to X∗. □
Similar to existing results for economic MPC (see Faulwasser
et al., 2018 and references therein), Theorem 2 establishes asymp-
totic stability for the proposed Tube MPC controller under a
dissipativity condition. But—in contrast to nominal, certainty-
equivalent, economic MPC schemes—the storage function E is not
only needed for analysis purposes. In fact, the proposed Tube MPC
controller makes explicit use of the initial cost E, as the initial
tube is not fixed but an optimization variable.

Remark 5. Theorem 2 specializes—for simplicity of presentation
—on the case T = X⋆ and M(A) = 0. However, a generalization of
this stability result for any terminal region T ∈ D with T ⊆ X is
possible under the additional assumption that the function M is
lower semi-continuous and satisfies the condition

∀A ⊆ T , ∃B ∈ F (A),{ A, B ∈ D
B ⊆ T
M(B) − E(B) ≤ M(A) + L(A) − E(A) ,

see also Angeli et al. (2012) for details. An in-depth discussion
on how to construct such set-based terminal costs is, however,
beyond the scope of this paper.

Example 4. Let us return to the setting from Examples 1 and 2—
recalling that the optimal RCI set is given by X⋆

= {−1}×[−4, 0].
Let us attempt to set up a robust MPC controller without initial
cost and N = 2, i.e.

min
X∈D3

L(X0) + L(X1) s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∀k ∈ {0, 1}
Xk+1 ∈ F (Xk)

Xk ⊆ X
z ∈ X0

X2 = X⋆ .

(10)

Using the notation from Examples 1 and 2, the optimization
problem (10) can be formulated as the strictly convex parametric
quadratic program

min
a,b,c∈R4

L([a1, a2] × [a3, a4]) + L([b1, b2] × [b3, b4])

s.t.
{
(a, b) ∈ G , (b, c) ∈ G

c⊺ = x⋆ , z ∈ [a1, a2] × [a3, a4]

(11)

with (x⋆)⊺ = (−1, −1, −4, 0)⊺. Having Remark 3 in mind, we can
introduce a decision variable u0 ∈ [−5, 5] and augment (10) with
the constraints

∀w ∈ [−1, 1], f (z, u0, w) ∈ [b1, b2] × [b3, b4] ,

which hold, whenever

b1 ≤ u0 ≤ b2 ,

b3 ≤
1
2
z2 + u0 − 1 , and b4 ≥

1
2
z2 + u0 + 1

(12)

old.
Now, the parametric optimizer of (10) (augmented with (12))

s a piecewise linear function defined on 22 critical regions (non-
verlapping interval boxes).
Let us consider the region [−5, 0]×[−4, 0], containing X⋆. An

ssociated parametric optimal set sequence is given by

0(z) = {z1} × [z2, 0] , Ξ1(z) =

{
−

1
2
z2 − 3

}
× [−4, 0] ,

and Ξ2(z) = X⋆, for all z ∈ [−5, 0]×[−4, 0]. An optimal feedback
law in this region is given by

∀z ∈ [−5, 0] × [−4, 0], ν(z) = u⋆(z) = −
1
z2 − 3 .
0 2
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Fig. 1. Component u0 of the parametric optimizer of (14). The region [−5, 5]×
−4, 0] is shown hatched while the set X⋆ is shown as a red solid line. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

This feedback law is recursively feasible, but unstable in the
nclosure sense. Consider a closed-loop sequence with initial
ondition y0 = (−1, −2)⊺. The initial condition is in the optimal
CI set and Y0 = Ξ (y0) = {−1} × [−3, 0] ⊂ X⋆. Now, at the next
ime instance we have, by construction of the RFIT, y1 ∈ Ξ1(y0) =

−2} × [−4, 0]—regardless of the uncertainty realization. Notice
hat Ξ1(y0) ∩ X⋆

= ∅. Since y1 ∈ Y1 must hold by construction,
o matter how the uncertainty is realized, the closed-loop system
ust be unstable in the enclosure sense.
This instability issue can be fixed by adding the initial cost

erm E = W from Example 3. Now, the robust MPC formulation
s given by

min
X∈D3

E(X0) +

1∑
k=0

L(Xk) s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∀k ∈ {0, 1}
Xk+1 ∈ F (Xk)

Xk ⊆ X
y ∈ X0

X2 = X⋆ .

(13)

Again, we can formulate this as the quadratic program

min
a,b,c∈R4

W ([a1, a2] × [a3, a4]) + L([a1, a2] × [a3, a4])

+ L([b1, b2] × [b3, b4])

s.t.
{
(a, b) ∈ G , (b, c) ∈ G

c⊺ = x⋆ , y ∈ [a1, a2] × [a3, a4]

(14)

ugmented with the decision variable u0 ∈ [−5, 5] and the con-
traints (12). The optimizer is, again, a piecewise affine function
efined over 24 critical regions. Fig. 1 shows the component u0
f the parametric optimizer.
The tube MPC feedback law ν, leading to the minimal stage

ost, is given by

(z) = u⋆
0(z) =

⎧⎨⎩
−

1
2 z2 − 3 if z2 ∈ [−5, −4]

−1 if z2 ∈ [−4, 0]
−

1
2 z2 − 1 otherwise ,

(15)

for all y ∈ [−5, 5] × [−5, 5]. This feedback law is not only re-
cursively feasible, but also asymptotically stable in the enclosure
sense.

Notice that the region [−5, 5] × [−4, 0] – depicted with a
hatched pattern in Fig. 1 – is forward reachable in at most one
step, for any initial feasible initial condition and any w ∈ W.
0
Fig. 2. Closed-loop behavior under the feedback law (15). The figure shows the
closed-loop sequences y = (y0, y1, y2) (blue dots joined by blue dotted lines),
and the optimal sequences Ξ (y0) (gray) starting from two initial conditions. The
boundaries of their asymptotically stable enclosures are shown as blue dashed
lines. The terminal set is shown as a red solid line. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Moreover, any closed-loop sequence satisfies yk+1 ∈ X⋆, when-
ever yk ∈ [−5, 5] × [−4, 0]—irrespective of wk. Since we have
Yk ⊆ X⋆ for all k ≥ 0, any closed loop sequence admits a
stable enclosure. In addition, the associated optimal set sequence
is given by

Ξ0(z) =

⎧⎨⎩
[z1, −4] × [−4, 0] if z1 ∈ [−5, −4]

{z1} × [−4, 0] if z1 ∈ [−4, 0]
[0, z1] × [−4, 0] otherwise ,

and Ξ1(z) = Ξ2(z) = X⋆ for all z ∈ [−5, 5] × [0, 4]. Based on the
previous reachability argument, it is clear that any closed loop
sequence under the feedback law (15) admits an asymptotically
stable enclosure.

Fig. 2 depicts closed-loop sequences (blue dots with blue dot-
ted lines) starting from the lower right and upper left corners –
(5, −5)⊺ and (−5, 5)⊺ respectively – of the constraint set X. The
disturbance sequence has been constructed so as to maximize
the cost. The gray sets denote the optimal sequences Ξ (y0),
while the blue dashed lines denote the boundary of the enclosure
sequences Y . Notice the closed-loop system reaches the region
[−5, 5] × [−4, 0] (hatched), in at most 1 step, and the terminal
set (red continuous line) in at most 2 steps—remaining there, as
predicted.

5. Conclusions

This paper has introduced a set theoretic generalization of
dissipativity in order to establish stability conditions for a general
class of Tube MPC controllers (cf. Theorem 2). Here, the focus has
been on robust MPC controllers, whose compact set-valued states
are either entirely free optimization variables, or belong to a
finite dimensional, parametric subset D of all compact sets in the
state space. The analysis has shown why the usual requirements
for asymptotic stability of certainty-equivalent MPC controllers—
namely invariance of the terminal region, a strict dissipativity
condition and feasibility of the initial point—are not sufficient to
guarantee asymptotic stability (see the first part in Example 4).
In fact, Example 4 shows that a tube MPC controller requires an
initial cost term, which corresponds to the storage function in the

set-dissipativity condition.
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