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Probabilistic stabilizability certificates for a class of black-box linear systems

Filippo Fabiani, Kostas Margellos and Paul J. Goulart

Abstract— We provide out-of-sample certificates on the con-
trolled invariance property of a given set with respect to a
class of black-box linear systems. Specifically, we consider
linear time-invariant models whose state space matrices are
known only to belong to a certain family due to a possibly
inexact quantification of some parameters. By exploiting a set
of realizations of those undetermined parameters, verifying the
controlled invariance property of the given set amounts to a
linear program, whose feasibility allows us to establish an a-
posteriori probabilistic certificate on the controlled invariance
property of such a set with respect to the nominal linear time-
invariant dynamics. The proposed framework is applied to the
control of a networked system with unknown weighted graph.

I. INTRODUCTION

Guaranteeing the existence of a feedback control law

capable of enforcing state constraints is essential for many

control systems. A well-established paradigm in the systems-

and-control community requires one to verify the controlled

invariance property of a certain set, thus certifying the

existence of feasible control inputs that do not allow system

trajectories, initialized within the set, to escape from that set

(see, e.g., [1], [2] for a detailed discussion on the topic).

In contrast with traditional model-based approaches, data-

driven and learning techniques for control invariance and

stabilizability problems have recently been attracting signifi-

cant attention [3]–[5]. Among them, a certain line of research

leverages randomized methods for (controlled) invariance set

estimation and set-membership verification [6]–[14].

Specifically, a data-driven algorithm to approximate the

minimal robust control invariant set with respect to (w.r.t.)

an uncertain system, albeit without invariance guarantees for

unseen dynamics, was proposed in [6]. In [7], the Koopman

operator and the dynamic mode decomposition were used to

reconstruct invariant sets for nonlinear systems by relying on

a few data snapshots only. Following the same theme, data-

driven methods to compute either polyhedral or maximal

invariant sets with probabilistic guarantees for discrete-time

(DT) black-box systems were presented in [8], [9]. By rely-

ing on partial knowledge of the system model, [10] proposed

an optimization-based procedure to compute probabilistic

reachable sets for linear systems affected by stochastic

disturbances, while the concept of stochastic invariance for

control systems through probabilistic controlled invariant sets

was introduced and thoroughly investigated in [11]. Ran-

domized approaches to estimate chance-constrained sets with
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probabilistic guarantees, frequently encountered in control,

were discussed in [12], [13]. Finally, a scenario-based set

invariance verification approach for black-box systems was

proposed in [14], where the observation of system trajectory

snapshots allowed to compute almost-invariant sets enjoying

theoretical probabilistic invariance certificates.

Similarly to [14], we investigate a scenario-based approach

for the verification of the controlled invariance property of a

given set. Unlike the aforementioned literature, we consider

a DT linear time-invariant (LTI) system whose nominal

dynamics, described by the pair matrices (Ā, B̄), is unknown,

though belonging to a certain family {(A(δ), B(δ))δ∈∆}
due to a possibly inexact quantification of some parameters,

encoded by a vector δ ∈ ∆ (§III). By exploiting available

realizations of δ, we propose a data-based affine policy to

sample the space of feasible control inputs at the vertices of

the given set whose controlled invariance property is to be

verified. We are then able to translate the control invariance

property verification of the given set with a prescribed affine

policy into a linear program (LP) (§IV). The feasibility of

such an LP, along with known results in scenario theory [15],

[16], typically characterizing decision-making problems [14],

[17]–[19], allow us to establish an a-posteriori probabilistic

bound on the controlled invariance property of a given set

w.r.t. any LTI dynamics realized by unseen scenarios of δ,

including the nominal one (§V). We illustrate our approach

on a networked, multi-agent system with edge weights in the

underlying graph not deterministically known (§II, VI). To

the best of our knowledge, this work is the first to provide

data-driven probabilistic certificates for controlled invariance

verification for a class of black-box LTI systems.

II. MOTIVATING EXAMPLE: NETWORKED MULTI-AGENT

SYSTEM WITH UNKNOWN WEIGHTED GRAPH

To motivate the control problem addressed throughout

the paper, we consider a static network of n entities that

exchange information locally according to a connected and

undirected graph G := (N , E ,W) with known topology. The

set N := {1, . . . , n} indexes the agents, which are assumed

to be associated with a scalar variable xi ∈ R, E ⊆ {(i, j) ∈
N 2 | i 6= j} denotes the information flow links, while

W ⊆ R
|E| the possible weights on the edges. We consider

an instance where the agents follow a weighted agreement

protocol that is also influenced by constrained external inputs

u ∈ U ⊆ R
m injected at m specific nodes. We can therefore

split the set N = NF ∪ NI into floating (NF , nF := |NF |)
and input nodes (NI , m := |NI |). By introducing col(·)
as the operator stacking its arguments in column vectors or

matrices, the incidence matrix D ∈ R
n×|E| associated to G
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can be partitioned as D = col(DF , DI), with DF ∈ R
nF ×|E|

and DI ∈ R
m×|E|, thus leading to the following (possibly

constrained) DT LTI dynamics characterizing the floating

node states xF := col((xi)i∈NF
) ∈ XF [20]

x+
F = AFxF +BFu, (1)

where AF := AF (w) = InF
−DFWD⊤

F , BF := BF (w) =
−DFWD⊤

I , u := col((xi)i∈NI
) and W := diag(w) ∈

R
|E|×|E|, with w ∈ W a vector of weights associated with the

links, whereby w̄ ∈ W characterizes their nominal values.

Particularly when the weights are allowed to be nonpos-

itive, the state evolutions generated by weighted consensus

protocols on a network as in (1) can be very rich, including

steady-state trajectories that are synchronized, clustered, or

even unstable [21], [22]. However, the nominal weights w̄ on

the links, especially when arising from a physical modelling,

are typically hard to quantify exactly, and hence we may

have available either a rough estimate of them, or some

measurements [21]–[24]. Therefore, within such a flexible

framework, establishing whether the unknown system in (1)

is stabilizable by means of suitable control inputs, i.e., if the

closed-loop trajectories of (1) satisfy xF (t) ∈ SF ⊆ XF ,

t ∈ N0 := N∪{0}, for a given set SF , becomes instrumental.

This essentially amounts to a control invariance problem [1],

which for this motivating example is formalized as follows.

Problem 1: Establish data-driven probabilistic certificates

of controlled invariance for given sets w.r.t. black-box DT

LTI systems as in (1), i.e., systems for which w is not a-

priori know, however, we have a finite number of scenarios

available belonging to the set W . �

III. PROBLEM FORMULATION

In this paper, we consider DT LTI systems in the form

x+ = Āx+ B̄u, (2)

where Ā ∈ R
n×n, B̄ ∈ R

n×m, while x ∈ X ⊆ R
n and

u ∈ U ⊆ R
m are the constrained vectors of state variables

and control inputs, respectively. Then, by defining a C-set

S ⊆ R
n as a convex, bounded set such that 0 ∈ int(S),

which reduces to a C-polytope if it is also polyhedral, we

make the following assumption on the sets X and U .

Standing Assumption 1: The set X is a C-set, while U

is a C-polytope. �

In the remainder, we use x(t), t ∈ N0, as opposed to x,

making the time dependence explicit, whenever necessary.

A. Stabilizability of discrete-time LTI systems

We start by recalling the following well-known definition:

Definition 1: (Controlled invariance) A set S ⊆ X is

a controlled invariant w.r.t. (2) if there exists a C1-class

feedback control law κ : Rn → R
m, κ(x(t)) ∈ U , t ∈ N0,

such that, for any x(0) ∈ S, the trajectory originating from

(2) with u(t) = κ(x(t)) satisfies x(t) ∈ S, for all t ∈ N. �

We next restate a fundamental result characterizing the

controlled invariance of a C-polytope S w.r.t. DT LTI sys-

tems as in (2), which will be key in the rest of the paper.

Lemma 1: ([2, Cor. 4.46]) A C-polytope S ⊆ X is

controlled invariant for the DT LTI system in (2) if and only

if, for all xi ∈ vert(S) (the set of vertices of S), there exists

a feasible control input u ∈ U such that Āxi + B̄u ∈ S. �

Verifying the controlled invariance of S therefore amounts

to checking the one-step controllability at each vertex of the

set. A commonly used feedback control law guaranteeing the

stabilizability of DT LTI systems inside S is the piecewise

vertex control law [25], [26]. Specifically, since any state

x ∈ S can be decomposed as x =
∑

i∈V γixi for the N
vertices {xi}i∈V of S, V := {1, . . . , N}, with 1

⊤
Nγ ≤ 1,

γi ≥ 0, i ∈ V , such a control law amounts to [26, Th. 2]

u(t) =
∑

i∈V

γ⋆
i (t)ui, (3)

where γ⋆(t) ∈ argminγ∈[0,1]N {1⊤
Nγ |

∑

i∈V γixi = x(t)}
depends on the current state x(t), while {ui}i∈V are arbitrary

admissible control values at the vertices of S, {xi}i∈V .

In case the pair (Ā, B̄), as well as the set U , is available,

the condition in Lemma 1 can be easily verified through an

LP, however, this poses several challenges if uncertainty is

present on the problem data. In this paper, we assume the

nominal pair (Ā, B̄) characterizing the behaviour of (2) to

be unknown, though belonging to a (possibly infinite) family

of matrices parametrized by a vector δ ∈ ∆ ⊆ R
ℓ, i.e.,

(Ā, B̄) ∈ {(A(δ), B(δ))δ∈∆}, (4)

where A : Rℓ → R
n×n and B : Rℓ → R

n×m. Specifically,

with (4) we mean that the system in (2) evolves according to

a predefined DT LTI dynamics, which however may differ

from the (unknown) nominal one due to a possibly inexact

quantification of some parameters, encoded by δ ∈ ∆. Thus,

we refer to (2) as a black-box DT LTI system since its

nominal dynamics, which can be associated with a specific

realization of δ, say δ̄ ∈ ∆, it is not revealed until runtime.

B. Stabilizability of LTI systems with unknown parameters

Since we assume that the system in (2) is a black-box,

we can not directly apply the control law in (3) to stabilize

it, despite the fact that the admissible control values at

the vertices, u := col((ui)i∈V) ∈ R
mN , are arbitrary in

U N . Let some C-polytope S ⊆ X be given. According to

Problem 1, we aim at providing out-of-sample certificates on

the controlled invariance of S w.r.t. the black-box system in

(2) by exploiting some observed realizations, i.e., scenarios,

of the parameter δ characterizing the inclusion in (4).

Formally, we assume the parameter δ to live in some

probability space (∆,D,P), where ∆ ⊆ R
ℓ is the support

set of δ, D is the associated σ-algebra and P is a (possibly

unknown) probability measure over D. We consider δK :=
{δ(j)}j∈K = {δ(1), . . . , δ(K)} ∈ ∆K , K := {1, . . . ,K},

as a finite collection of K ∈ N independent and identi-

cally distributed (i.i.d.) realizations of δ (also called a K-

multisample1). We note that to any realization δ ∈ ∆ is

1Every δK is defined over the probability space (∆K ,DK ,PK), result-
ing from the K-fold Cartesian product of the probability space (∆,D,P).



associated a pair of matrices (A(δ), B(δ)). Thus, we define

the set of admissible control values at the vertices {xi}i∈V

of S allowed by such a realization δ ∈ ∆ as

Uδ := {u ∈ U
N | A(δ)xi +B(δ)ui ∈ S, ∀i ∈ V}. (5)

According to Lemma 1, as long as Uδ 6= ∅, the set S is a

controlled invariant set for x+ = A(δ)x + B(δ)u, which is

stabilizable by means of the piecewise vertex control law (3)

with admissible control values contained in Uδ. Thus, aiming

to establish controlled invariance certificates to previously

unseen realizations of δ, we introduce the definition of

violation probability for a generic vector of input values u.

Definition 2: (Violation probability) The violation proba-

bility associated with the input values u ∈ U N is given by

V (u) := P{δ ∈ ∆ | u /∈ Uδ}. (6)

�

According to Lemma 1, V : U N → [0, 1] measures the

violation of the controlled invariance of the set S associated

with input values u w.r.t. an unseen pair (A(δ), B(δ)). In

other words, V (u) measures the realizations δ ∈ ∆ such that,

when these are drawn, u can not guarantee the controlled

invariance of S w.r.t. the system induced by (A(δ), B(δ)).

IV. DEALING WITH THE UNCERTAINTY

Note that, given any K-multisample δK ∈ ∆K , solving

an LP allows us to compute some vector of input values

u
⋆
K ∈ UδK

:= ∩j∈K Uδ(j) such that u⋆
K ∈ U N , and

∀j ∈ K : A(δ(j))xi +B(δ(j))u⋆
i,K ∈ S, ∀i ∈ V . (7)

We therefore wish to establish an a-posteriori bound on

the violation probability V (u⋆
K), to claim with high con-

fidence that the probability u
⋆
K guarantees the controlled

invariance of S w.r.t. the family {(A(δ(j)), B(δ(j)))j∈K} ∪
{(A(δ), B(δ))} is above a certain value. By Lemma 1, this is

equivalent to concluding that S is a controlled invariant for

the black-box system in (2), with the same high confidence.

A. General control policies

Note the conservatism inherent in (7). For any vertex

i ∈ V , one would consider exactly the same admissible input

value, u⋆
i,K , for all the observed K samples. To alleviate

this conservativism, we introduce a policy for each vertex,

namely some (possibly multi-valued) functional πi : ∆ →
R

m, which maps any realization δ ∈ ∆ to some input

value in R
m. In fact, according to Lemma 1, on each

vertex it suffices to find an admissible control value for

every observed scenario δ(j), i.e., for every pair of matrices

(A(δ(j)), B(δ(j))), j ∈ K. Given a generic sample δ ∈ ∆,

let Πδ := {π : ∆ → R
mN | πi(δ) ∈ U , A(δ)xi +

B(δ)πi(δ) ∈ S, for all i ∈ V} be the set of mappings

π(·) := col((πi(·))i∈V) returning admissible inputs at the

vertices of S for the pair (A(δ), B(δ)). Note in addition that

Πδ 6= ∅ guarantees that S is controlled invariant for the DT

LTI system described by the specific matrices (A(δ), B(δ))
associated with the scenario δ. However, looking for an

element in Πδ amounts to an infinite dimensional problem,

as such a set contains all possible mappings π(·).

B. Affine control policies

To make the problem computationally tractable, we focus

on a family of mappings with finite parametrization, i.e.,

the affine ones. Thus, for each vertex i ∈ V , we define

πi(δ) := Ciδ + di, with Ci ∈ R
m×ℓ and di ∈ R

m,

which leads to π(δ) := Cδ + d, where C := col((Ci)i∈V)
and d := col((di)i∈V) belong to M := {(C,d) | Ci ∈
R

m×ℓ, di ∈ R
m}. Then, the set of admissible affine policies

for a given δ ∈ ∆ is Lδ := {(C, d) ∈ M | Ciδ + di ∈
U , A(δ)xi + B(δ)(Ciδ + di) ∈ S, ∀i ∈ V} ⊂ Πδ . The

fact that Lδ 6= ∅ ensures that S is a controlled invariant for

the system induced by (A(δ), B(δ)). Given K observations

δK ∈ ∆K , an optimal affine policy (C⋆
K ,d

⋆

K) ∈ LδK
:=

∩j∈K Lδ(j) satisfies, for all j ∈ K,C⋆
Kδ

(j) +d
⋆
K ∈ U N , and

A(δ(j))xi + B(δ(j))(C⋆
i,Kδ

(j) + d⋆i,K) ∈ S, ∀i ∈ V . (8)

For any vertex i ∈ V we now obtain a different admissible

input value depending on the sample δ(j) at hand, in contrast

with the conservative approach in (7). Moreover, unlike the

infinite dimensional problem introduced in §IV-A, computing

a pair (C⋆
K ,d

⋆
K) amounts to finding a feasible solution to an

LP. The C-polytopes S and U are S := {x ∈ R
n | Fx ≤

1p} and U := {u ∈ R
m | Hu ≤ 1q}, where F ∈ R

p×n and

H ∈ R
q×m have full column rank [2, §3.3]. Manipulating

the inclusions in (8) with x := col((xi)i∈V) leads directly to

LδK = ∩
j∈K

argmin
C,d

{0 | G(δ(j))(Cδ(j) + d) ≤ l(δ(j))}, (9)

where G(δ(j)) := col(H⊗IN , FB(δ(j))⊗IN ) and l(δ(j)) :=
col(1qN ,1pN − (FA(δ(j))⊗ IN )x). It follows that, for every

j ∈ K, (9) amounts to a feasibility problem defined over

(q + p)N linear constraints characterized by matrices F , H
and the pair matrices {(A(δ(j)), B(δ(j)))j∈K}. Via standard

manipulations, LδK can be compactly rewritten as in (10).

V. A-POSTERIORI PROBABILISTIC CERTIFICATES OF

CONTROLLED INVARIANCE

A. Main result

In case LδK 6= ∅, an optimal pair (C⋆
K ,d

⋆

K) may not be

unique since (10) is a feasibility problem. We henceforward

assume that a tie-break rule guaranteeing the uniqueness of

the solution to (10) is in place. This allows us to introduce a

single-valued mapping ΘK : ∆K → M that, given any δK ∈
∆K , satisfies ΘK(δK) := (C⋆

K ,d
⋆
K). We next recall the key

definition of support subsample to establish our probabilistic

certificate of controlled invariance for a given C-polytope S.

Definition 3: (Support subsample, [16, Def. 2]) Given any

δK ∈ ∆K , a support subsample S ⊆ δK is a p-tuple of unique

elements of δK , S := {δ(i1), . . . , δ(ip)}, with i1 < . . . < ip,

that gives the same solution as the original K-multisample,

i.e., Θp(δ
(i1), . . . , δ(ip)) = ΘK(δ

(1), . . . , δ(K)). �

Then, let ΥK : ∆K ⇒ K be any algorithm returning a

p-tuple i1, . . . , ip, i1 < . . . < ip, such that {δ(i1), . . . , δ(ip)}
is a support subsample for δK , and let sK := |ΥK(δK)|. In

this case, a support subsample for δK can be identified as

the subset of samples that generates a minimal representation

for the polyhedral feasible set of (10). The following result



LδK = argmin
C,d

{

0
∣

∣ diag((G(δ(j)))j∈K)((C ⊗ IK)col((δ(j))j∈K) + d⊗ 1K) ≤ col((l(δ(j)))j∈K)
}

. (10)

characterizes the violation probability of the optimal pair

(C⋆
K ,d

⋆
K), and therefore establishes a probabilistic certificate

for the controlled invariance property of the set S w.r.t. the

black-box linear system in (2), thus addressing Problem 1.

Theorem 1: Fix β ∈ (0, 1) and, for any K ∈ N, let

ε : K ∪ {0} → [0, 1] be a function such that ε(K) = 1
and

∑K−1

h=0
(K

h ) (1 − ε(h))K−h = β. Given any C-polytope

S ⊆ X , K-multisample δK ∈ ∆K with associated ma-

trices {(A(δ(j)), B(δ(j)))j∈K}, assume that LδK in (10) is

nonempty. Then, for any ΘK , ΥK and P, it holds that

P
K{δK ∈ ∆K | V (C⋆

Kδ + d
⋆

K) > ε(sK)} ≤ β, (11)

namely, the probability that S is a controlled invariant set

w.r.t. the black-box system in (2) is at least 1− ε(sK) with

confidence greater than or equal to 1− β. �

Proof: Given any polyhedral C-set S and K-

multisample δK ∈ ∆K with associated pairs of matrices

{(A(δ(j)), B(δ(j)))j∈K}, assuming that LδK 6= ∅ implies

that an optimal pair (C⋆
K ,d

⋆

K) solving (10) exists and,

assuming some tie-break rule, it is also unique. Therefore, we

have (C⋆
K ,d

⋆

K) ∈ LδK , which clearly entails the inclusion

(C⋆
K ,d

⋆

K) ∈ Lδ(j) , for all j ∈ K. By construction, this means

that, for every δ(j) ∈ δK , C
⋆
Kδ

(j) + d
⋆

K ∈ UδK (see (5)),

and hence that C⋆
Kδ

(j) + d
⋆

K ∈ Uδ(j) , for all j ∈ K. These

inclusions correspond to the so-called consistency condition

stated in [16, Ass. 1] and, together with the uniqueness

of the solution, we can rely on [16, Th. 1] to obtain the

probabilistic bound in (11), i.e., PK{δK ∈ ∆K | V (C⋆
Kδ +

d
⋆

K) > ε(sK)} ≤ β. In view of Lemma 1, we recall that

(C⋆
K ,d

⋆

K) ∈ LδK is a necessary and sufficient condition

for the affine sampling policy to return feasible input values

guaranteeing the controlled invariance property of S w.r.t.

the observed collection of DT LTI systems originated by the

pairs {(A(δ(j)), B(δ(j)))j∈K} ⊆ {(A(δ), B(δ))δ∈∆}, since

A(δ(j))xi+B(δ(j))(C⋆
Kδ

(j)+d
⋆

K) ∈ S, for all i ∈ V , j ∈ K.

Thus, the bound in (11) certifies that, with confidence at least

1 − β, V (C⋆
Kδ + d

⋆

K) = P{δ ∈ ∆ | C⋆
Kδ + d

⋆

K /∈ Uδ} ≤
ε(sK), and therefore it turns out that P{δ ∈ ∆ | C⋆

Kδ+d
⋆

K ∈
Uδ} ≥ 1−ε(sK) with the same (arbitrarily high) confidence.

Again, in view of Lemma 1, this means that the affine

policy computed in (10) returns feasible input values at

the vertices of S that guarantee the controlled invariance

property of S w.r.t. the DT LTI system originated by the pair

of matrices (A(δ), B(δ)) associated to any possible unseen

scenario δ ∈ ∆, and hence concludes the proof.

Remark 1: Note that Theorem 1 certifies the controlled

invariance property of some C-polytope S not only w.r.t.

the nominal dynamics of (2) generated by (Ā, B̄), but w.r.t.

any DT LTI system originated by the pair of matrices

(A(δ), B(δ)) associated to an unseen scenario of δ. �

The following result, which follows directly from The-

orem 1, allows us to characterize in terms of probabilistic

stabilizability guarantees the vertex control law in (3).

Corollary 1: Under the same conditions of Theorem 1,

the probability that the vertex control law in (3), with input

at vertices {C⋆
i,K δ̄+d

⋆
i,K}i∈V , makes the given C-polytope S

controlled invariant w.r.t. the DT LTI system in (2) is at least

1− ε(sK) with confidence greater than or equal to 1− β. �

Proof: From Theorem 1, if (10) is feasible, then

for any unobserved sample δ ∈ ∆, the probability that

the affine policy π(δ) = C
⋆
Kδ + d

⋆
K returns admissible

control values at the vertices of S is at least 1 − ε(sK)
with confidence 1 − β. Therefore, with the same confi-

dence, u(t) =
∑

i∈V γ
⋆
i (t)(C

⋆
i,K δ̄ + d⋆i,K), with γ⋆(t) ∈

argminγ∈[0,1]N {1⊤
Nγ |

∑

i∈V γixi = x(t)}, stabilizes the

system (2) with at least the same probability 1− ε(sK).
Following Remark 1, the vertex control law enjoys the

stabilizability guarantees in Corollary 1 for any unobserved

sample δ ∈ ∆, i.e., with confidence at least 1− β and input

at vertices {C⋆
i,Kδ + d⋆i,K}i∈V , the control in (3) stabilizes

x+ = A(δ)x +B(δ)u with probability at least 1− ε(sK).
Remark 2: At computation time, i.e., when solving (10),

the unobserved sample δ ∈ ∆ is not known, while at runtime

of the control law in (3) it is available and time-invariant. �

B. On the nonemptiness of LδK

The probabilistic certificate in Theorem 1 and, specifically,

the bound in (11), strongly depends on the feasibility of

each LP in (9), namely LδK 6= ∅. However, in case the data

matrices at hand can not guarantee the nonemptiness of LδK ,

we can not conclude on the controlled invariance property of

S w.r.t. the black-box system in (2). In fact, the LP in (10)

builds upon a specific choice for the sampling policy, i.e.,

the affine one π(δ) = Cδ+d, and this allows us to explore

only a portion of the space of feasible control values U NK .

We characterize next the feasibility of the LP in (9),

obtained with K = 1, in terms of problem data. To simplify

notation, in the statement and related proof, we omit the

dependency on δ in G and l. In what follows, we denote

with (P )i (resp., yi) the i-th row (element) of a generic

matrix (vector) P ∈ R
n×m (y ∈ R

n). Given a set of indices

I ⊆ {1, . . . , n}, we indicate with PI (resp., yI) a submatrix

(subvector) obtained by selecting the rows (elements) in I.

Lemma 2: Let n ≥ m, K = 1 and δ ∈ ∆ be any given

sample with associated pair of matrices (A(δ), B(δ)). Given

any C-polytope S ⊆ X , the set Lδ in (9) is nonempty if

and only if, for all i ∈ V , there exists an invertible submatrix

GQ∪P ∈ R
m×m of G, with row indices Q ⊂ {1, . . . , q},

P ⊂ {1, . . . , p}, and related subvector lQ∪P of l, such that
{

(H)kG
−1
Q∪P lQ∪P ≤ 1, ∀k ∈ Q̄

(FB(δ))kG
−1
Q∪P lQ∪P ≤ 1− (FA(δ)xi)k, ∀k ∈ P̄

(12)

with Q̄ := {1, . . . , q} \ Q, and P̄ := {1, . . . , p} \ P . �

Proof: See Appendix.

Extending the conditions established in Lemma 2 to the

general case of K ∈ N is, however, nontrivial. In fact, from



Fig. 1. Graph topology with nominal weights on the edges (black lines).
The blue dots denote the floating nodes, while the red dots the input ones.

(10) it is evident that, with the same pair (C,d), one has

to satisfy the inequality G(δ(j))(Cδ(j) + d) ≤ l(δ(j)) for

all j ∈ K, and therefore (C ⊗ IK)col((δ(j))j∈K) + d ⊗
1K ∈

∏

j∈K Uδ(j) ⊆ U NK . In terms of data matrices, the

following statement provides necessary conditions only for

the existence of an optimal pair (C⋆
K ,d

⋆

K) ∈ LδK , for some

K ∈ N, as they essentially guarantee that
∏

j∈K Uδ(j) 6= ∅.

Proposition 1: Let n ≥ m, K ∈ N and δK ∈ ∆K be

any given K-multisample with associated pairs of matrices

{(A(δ(j)), B(δ(j)))j∈K}. Given any C-polytope S ⊆ X , the

set LδK in (10) is nonempty only if, for all (i, j) ∈ V ×
K, there exists an invertible submatrix GQ∪P ∈ R

m×m of

G(δ(j)), with row indices as in Lemma 2, and subvector

lQ∪P of l(δ(j)), satisfying the conditions in (12). �

Proof: See Appendix.

Proposition 1 is only necessary for LδK 6= ∅. In

fact, if some ũ := col((uj)j∈K) ∈ R
mNK satisfying

diag((G(δ(j)))j∈K)ũ ≤ col((l(δ(j)))j∈K) exists, say ũ
⋆, then

this does not imply that we are able to find a pair (C⋆
K ,d

⋆

K)
such that (C⋆

K ⊗ IK)col((δ(j))j∈K) + d
⋆

K ⊗ 1K = ũ
⋆.

To generalize Theorem 1 to the case where LδK might be

empty and K ≥ 1, let FK := {δK ∈ ∆K | LδK 6= ∅}. The

bound in (11) holds then with FK in place of ∆K , implying

that, if the resulting LP is feasible, then the probability of

violation is at least ε(sK) with confidence at most β [15],

[17]. In other words, FK is the restriction of ∆K to the

K-multisamples for which the LP in (10) is feasible.

VI. MOTIVATING EXAMPLE REVISITED

We illustrate our findings on a numerical instance of the

control problem introduced in §II. Specifically, we consider

the graph topology represented in Fig 1, involving n = 6
agents, with NF = {1, 3, 5, 6}, NI = {2, 4}, and |E| = 12
edges with nominal weights w̄ specified on each link. In

this case, the autonomous dynamics in (1) associated to the

nF = 4 floating nodes (i.e., with BF = 0) is characterized

by eig(AF ) = {−1.34,−0.01, 0.46, 0.81}, hence unstable.

Additionally, we constraint m = 2 control inputs to the set

U = {u ∈ R
2 | ‖u‖∞ ≤ 1}. For simplicity, S is taken

Fig. 2. Time evolution of the Minkowski function associated to the C-
polytope S , obtained from each closed-loop trajectory of the nominal dy-
namics in (1) originating from 103 randomly chosen initial conditions inside
S , and control law in (3) with admissible inputs {C⋆

i,600w̄ + d⋆i,600}i∈V .

as the convex hull of random points in ±[0.1 2], sampled

individually on each axis of R4, leading to a C-polytope with

N = 8 vertices. By assuming that the entire vector of weights

is not deterministically known, i.e., ℓ = |E|, we treat w as

a random vector and draw K = 600 samples according to a

uniform distribution supported on W = [0.6 1.4]× w̄ ⊂ R
12,

i.e., a degree of uncertainty on w̄ up to the 40%, and we

compute an optimal pair (C⋆
600,d

⋆

600) by solving (10) with

cost function ‖C‖2
F + ‖d‖2. The greedy algorithm designed

in [16, §II] returns a support subsample of cardinality s600 =
29, and therefore, with β = 10−6, from Theorem 1 the

probability that S is a controlled invariant for the floating

dynamics in (1) is at least 0.7911, with confidence greater

than or equal to 1 − 10−6. The function ε(·) in Theorem 1

is analytically obtained by splitting β evenly among the 600
terms within the summation, thus obtaining ε(29) = 0.2089.

Moreover, according to Corollary 1, the vertex control

law in (3), with input at the vertices {C⋆
i,600w̄ + d⋆i,600}i∈V ,

also enjoys the same probability certificate of S. Figure 2

shows the evolution over time of the Minkowski function

[1, §3.3] associated to the C-polytope S, formally defined

as ψS(xF ) := minλ≥0 {λ | xF ∈ λS}. By randomly

drawing 103 initial points in S, we compute ψS(xF (t)),
where xF (t) is the closed-loop trajectory originating from

each initial state with control law in (3) and admissible inputs

{C⋆
i,600w̄ + d⋆i,600}i∈V . The fact that ψS(xF (t)) ≤ 1, for all

t ∈ N and initial condition, indicates that S is not only

invariant2, but also a contractive set for the dynamics in (1).

VII. CONCLUSION AND OUTLOOK

By combining results in system theory and the scenario

approach, we provide out-of-sample certificates on the con-

trolled invariance property of a given set with respect to a

black-box LTI system whose nominal parameters may not be

determined with certainty. We propose a data-based sampling

2This would suffice for any xF (0) ∈ vert(S), where ψS(xF (0)) = 1.



procedure to select feasible inputs at the vertices of the

given set, which allows us to verify the controlled invariance

property of such a set through an LP. If the LP is feasible,

we establish probabilistic bounds on the controlled invariance

property of the given set w.r.t. the nominal LTI system.

Directions for future work include considering different

sampling policies and extending the controlled invariance

property verification of given sets w.r.t. broader classes of

systems, such as linear systems with polytopic uncertainty.

APPENDIX

Proof of Lemma 2: The Kronecker product in the matrix G
in (9) induces a decoupled structure that allows us to focus

on a single vertex i ∈ V at a time: the generalization to the

entire set S follows readily. For some v ∈ vert(S), consider

G = col(H,FB(δ)) ∈ R
(q+p)×m and l = col(1q,1p −

FA(δ)v) ∈ R
q+p. Since H and F are full column rank

matrices, we also have rank(G) = m, as m < q + p, and

the vertical concatenation does not alter the rank (note that

rank(FB(δ)) ≤ m, as n ≥ m). From [27], a system of

inequalities Gu ≤ l, with rank(G) = m, admits a solution

if and only if G has a minor θm = det(GI) 6= 0 of order

m, with GI ∈ R
m×m being full rank submatrix of G with

row indices I ⊂ {1, . . . , q + p} =: A, such that

−
1

θm
det

([

GI lI
(G)k lk

])

≤ 0, ∀k ∈ A \ I. (13)

Since GI is a full rank matrix, the determinant of the

augmented matrix in (13) can be rewritten as det(GI) ×
det(lk − (G)kG

−1
I lI) [28]. This then implies that (13)

amounts to verify (G)kG
−1
I lI ≤ lk, ∀k ∈ A \ I. Note

that such inequalities guarantee the existence of some u⋆

that solves Gu⋆ ≤ l. In case K = 1, this is equivalent

to guaranteeing the existence of some pair (C, d) satisfying

G(Cδ+d) ≤ l, since C = 0 and d = u⋆ is always a feasible

solution. This consideration holds for each v ∈ vert(S), as

C := col((Ci)i∈V) and d := col((di)i∈V). Therefore, in view

of the structure of G, we can rewrite the set of row indices as

I := Q∪P , with Q ⊂ {1, . . . , q} and P ⊂ {1, . . . , p}. Then,

GI = col(HQ, FBP) and lI = col(1|Q|,1|P|−(FA(δ)v)P),
for any v ∈ vert(S). Finally, the conditions in (12) follow by

splitting inequalities (G)kG
−1
I lI ≤ lk, ∀k ∈ A \ I, between

the two sets Q and P , and noting that (G)k = (H)k and

lk = 1 for any k ∈ {1, . . . , q} \ Q, while (G)k = (FB(δ))k
and lk = 1− (FA(δ)v)k), for any k ∈ {1, . . . , p} \ P �

Proof of Proposition 1: With ũ := col((uj)j∈K) ∈ R
mNK ,

a solution to diag((G(δ(j)))j∈K)ũ
⋆ ≤ col((l(δ(j)))j∈K) ex-

ists if one can find an individual u⋆
j ∈ R

mN for each LP in

(9). Then, the proof follows the same considerations adopted

in the one for Lemma 2, for each sample δ(j) ∈ δK . �
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