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A B S T R A C T

In the study of economic networks, econometric approaches interpret the traditional Gravity Model specifica-
tion as the expected link weight coming from a probability distribution whose functional form can be chosen
arbitrarily, while statistical-physics approaches construct maximum-entropy distributions of weighted graphs,
constrained to satisfy a given set of measurable network properties. In a recent, companion paper, we integrated
the two approaches and applied them to the World Trade Web, i.e. the network of international trade among
world countries. While the companion paper dealt only with discrete-valued link weights, the present paper
extends the theoretical framework to continuous-valued link weights. In particular, we construct two broad
classes of maximum-entropy models, namely the integrated and the conditional ones, defined by different
criteria to derive and combine the probabilistic rules for placing links and loading them with weights. In the
integrated models, both rules follow from a single, constrained optimization of the continuous Kullback–Leibler
divergence; in the conditional models, the two rules are disentangled and the functional form of the weight
distribution follows from a conditional, optimization procedure. After deriving the general functional form of
the two classes, we turn each of them into a proper family of econometric models via a suitable identification
of the econometric function relating the corresponding, expected link weights to macroeconomic factors. After
testing the two classes of models on World Trade Web data, we discuss their strengths and weaknesses.
1. Introduction

Over the last couple of decades, the growth of network science
has impacted several disciplines by establishing new, empirical facts
about many, real-world systems, in terms of the structural, network
properties that are typically found in those systems. In the context of
trade economics, the growing availability of data about import/export
relationships among world countries has prompted researchers to ex-
plore and model the architecture of the international trade network, or
World Trade Web (WTW) [1–12].

This approach has complemented, and in many ways enriched, the
traditional econometric exercise of modeling individual trade flows,
i.e. relating the volume of individual trade exchanges to the most rele-
vant covariates (generally, macroeconomic factors) they may depend
on. The earliest example of an econometric model for international
trade is the celebrated Gravity Model (GM) [13] that predicts that
the expected value ⟨𝑤𝑖𝑗⟩GM of the trade volume 𝑤𝑖𝑗 from country 𝑖 to
country 𝑗 can be expressed via the econometric function

⟨𝑤𝑖𝑗⟩GM = 𝑓 (𝜔𝑖, 𝜔𝑗 , 𝑑𝑖𝑗 |𝜓) = 𝜏𝜔𝛽1𝑖 𝜔
𝛽2
𝑗 𝑑

𝛾
𝑖𝑗 (1)

∗ Corresponding author.

where 𝜔𝑖 ≡ GDP𝑖∕GDP is the GDP of country 𝑖 divided by the arithmetic
mean of the GDPs of all countries, 𝑑𝑖𝑗 is the geographic distance
between (generally the capitals of) countries 𝑖 and 𝑗 and 𝜓 ≡ (𝜏, 𝛽1, 𝛽2, 𝛾)
is a vector of parameters (notice that 𝛽1 ≡ 𝛽2 when the direction of
the exchanges is disregarded, as we will, throughout the paper, and
𝜏 takes care of dimensional units). Eq. (1) has a long tradition in
successfully explaining the existing (i.e. positive) trade volumes between
pairs of countries. Outside economics, the gravity equation has also
been extensively employed in studies concerning transportation, mi-
gration [14] and the maximization of utility functions constrained to
satisfy requirements on the rate of information acquisition [15].

Although accurate in reproducing the positive trade volumes, the
traditional GM cannot replicate structural network properties, unless
the topology is completely fixed via a separate approach [16]. Indeed, if
𝐖 denotes the weighted adjacency matrix of the WTW, where the entry
𝑤𝑖𝑗 represents the trade volume from country 𝑖 to country 𝑗, Eq. (1)
predicts that the expected matrix ⟨𝐖⟩GM has no off-diagonal zeros,
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i.e. an expected positive trade relationship exists between all countries.
This means that, when interpreted as an expected value of a regression
with small, symmetric, zero-mean (e.g. Gaussian) noise, Eq. (1) predicts
a fully connected network: if 𝑎𝑖𝑗 denotes the generic entry of the binary
adjacency matrix 𝐀 = 𝛩[𝐖] (equal to 𝑎𝑖𝑗 = 1 if a positive trade
volume from country 𝑖 to country 𝑗 is present, i.e. 𝑤𝑖𝑗 > 0, and equal
to 𝑎𝑖𝑗 = 0 if a zero trade is, instead, observed, i.e. 𝑤𝑖𝑗 = 0), then
Eq. (1) predicts almost surely 𝑎𝑖𝑗 = 1, ∀ 𝑖 ≠ 𝑗. This result is in obvious
contrast with empirical data, which show that the WTW has a rich
topological architecture, characterized by a broad degree distribution,
(dis)assortative and clustering patterns and other properties [1–12].

In order to overcome such a limitation, the plain Gravity Model
needs to be ‘dressed’ with a probability distribution 𝑄(𝐖) that produces
⟨𝐖⟩GM as the expected value while, at the same time, accounts for null
outcomes as well (i.e. those entries reading 𝑤𝑖𝑗 = 0 and representing
missing links in the network) [17]. Clearly, the support W of the
probability 𝑄(𝐖) should not include matrices with negative numbers.
From the Sixties on, the GM has indeed been interpreted as the expected
value of a probability distribution whose functional form needs to be
determined.

Trade econometrics models the tendency of countries to establish
trade relationships relating it to accepted, macroeconomic determi-
nants (the so-called ‘factors’) such as GDP and geographic distance,
as in the expression of Eq. (1). Econometricians have considered in-
creasingly flexible distributions, the most recent versions of them being
capable of disentangling the estimation of the presence of a trade
exchange from the estimation of the traded amount. This has led
to the definition of two distinct classes of models, i.e. zero-inflated
models [18] and hurdle models [19]. Zero-inflated (ZI) models have
been introduced to model the following two scenarios: the possibility
of exchanging a zero amount of goods even after having established
a trade partnership (e.g. because of a limited trading capacity); the
possibility of establishing a very small amount of trade (in fact, so small
to be compatible with statistical noise and, as such, removed). A general
drawback of employing ZI models is that of predicting sparser-than-
observed network structures [20]; moreover, only discrete distributions
(specifically, either the Poisson or the negative-binomial one [18]) have
been considered, so far, to carry out the proper weight-estimation step.
Hurdle models, introduced to overcome the limitations affecting zero-
inflated models, can predict zeros only at the first step [19]: in any
case, the presence of links is established by employing either a logit or
a probit estimation step.

Network science has tackled the aforementioned inference problem
using techniques rooted in statistical physics. The most prominent
examples descend from the Maximum-Entropy Principle (MEP) [21–
23] applied to network ensembles [24,25], prescribing to maximize
Shannon entropy [26,27] in a constrained fashion to obtain the max-
imally unbiased distribution of networks compatible with a chosen
set of structural constraints. This approach is formally equivalent to
the construction of so-called Exponential Random Graphs (ERGs) for
social network analysis [28] but differs in the typical choice of the
constraints: in particular, when the enforced constraints are local, such
as the degree (number of links) and the strength (total link weight) of
each node, maximum-entropy network models have been shown to suc-
cessfully replicate both the topology and the weights of many economic
and financial networks, including the WTW [5,6,20,29–35]. The entire
framework can also accommodate possibly degenerate, discrete-valued,
single- or multi-edges [36].

Although maximum-entropy models have been also studied from
an economic perspective (see [37] for a discussion of the economic
relevance of the constraints defining the Poisson and the geometric
network models), it is only recently that progress has been made to
reconcile the above two approaches, allowing for economic factors
parametrizing the maximum-entropy probability distribution producing
links and weights [5,6,20,32–35] or by introducing network-related
2

statistics into otherwise purely econometric models [38]. On one hand,
the novel framework enriches the methods developed by network
scientists with an econometric interpretation; on the other, it enlarges
the list of candidate distributions usable for econometric purposes.

With this contribution, we refine the theoretical picture provided in
a companion paper [20], introducing models to infer the topology and
the weights of undirected networks defined by continuous-valued data.
In order to do so, we present a theoretical, physics-inspired framework
capable of accommodating both integrated and conditional, continu-
ous models, our goal being threefold: (1) testing the performance of
both classes of models on the WTW in order to understand which
one is best suited for the task; (2) offering a principled derivation
of currently available, conditional, econometric models; (3) enlarging
the list of continuous-valued distributions to be used for econometric
purposes. From an econometric point of view, our work moves along
the methodological guidelines defining the class of Generalized Linear
Models (GLMs) [39] while enriching it with distributions defined by
both econometric and structural parameters. From a statistical physics
point of view, our work expands the class of maximum-entropy net-
work models [24] or weighted ERGs [28] and endows them with
macroeconomic factors replacing certain model parameters.

The rest of the paper is organized as follows: in Section 2, after
introducing the basic quantities, we derive the class of conditional
models; in Section 3 we derive the class of integrated models; in
Section 4 we apply all models to the analysis of WTW data; in Section 5
we discuss the results and provide our concluding remarks.

2. Conditional models

Discrete maximum-entropy models can be derived by performing
a constrained maximization of Shannon entropy [21–23]. However,
unlike the companion paper [20], our focus, here, is on continuous
probability distributions. In such a case, mathematical problems are
known to affect the definition of Shannon entropy and the resulting
inference procedure. To restore the framework, one has to introduce the
Kullback–Leibler (KL) divergence 𝐷KL(𝑄||𝑅) of a distribution 𝑄 from a
prior distribution 𝑅 and re-interpret the maximization of the entropy
of 𝑄 as the minimization of 𝐷KL(𝑄||𝑅) from a given prior distribution
𝑅. In formulas, the KL divergence is defined as

𝐷KL(𝑄||𝑅) = ∫W
𝑄(𝐖) ln

𝑄(𝐖)
𝑅(𝐖)

𝑑𝐖 (2)

where 𝐖 is one of the possible values of a continuous random vari-
able (in our setting, an entire network with continuous-valued link
weights), W is the set of possible values that 𝐖 can take, 𝑄(𝐖) is the
(multivariate) probability density function to be estimated and 𝑅(𝐖)
plays the role of prior distribution, the divergence of 𝑄(𝐖) from which
must be minimized. Such an optimization scheme embodies the so-
called Minimum Discrimination Information Principle (MDIP), originally
proposed by Kullback and Leibler [40] and implementing the idea that,
given a prior distribution 𝑅(𝐖) and new information that becomes
available, an updated distribution 𝑄(𝐖) should be chosen in order to
make its discrimination from 𝑅(𝐖) as hard as possible. In other words,
the MDIP demands that new data produce an information gain that
is as small as possible. The use of the KL divergence is widespread
in the fields of information theory [26] and machine learning [41],
e.g. as a loss function within the Generative Adversarial Network (GAN)
scheme (the aim of the ‘generating’ neural network being that of
producing samples that cannot be distinguished from those constituting
the training set by the ‘discriminating’ neural network).

In order to introduce the class of conditional models, we write the
posterior distribution 𝑄(𝐖) as

𝑄(𝐖) = 𝑃 (𝐀)𝑄(𝐖|𝐀), (3)

where 𝐀 denotes the adjacency matrix for the binary projection of the
weighted network 𝐖. The above equation allows us to split the KL
divergence into the following sum of three terms
𝐷KL(𝑄||𝑅) = 𝑆(𝑄,𝑅) − 𝑆(𝑃 ) − 𝑆(𝑄⊥|𝑃 ) (4)
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where

𝑆(𝑃 ) = −
∑

𝐀∈A
𝑃 (𝐀) ln𝑃 (𝐀) (5)

is the Shannon entropy of the probability distribution describing the
binary projection of the network structure,

𝑆(𝑄⊥|𝑃 ) = −
∑

𝐀∈A
𝑃 (𝐀)∫W𝐀

𝑄(𝐖|𝐀) ln𝑄(𝐖|𝐀)𝑑𝐖 (6)

is the conditional Shannon entropy of the probability distribution of the
weighted network structure given the binary projection and

𝑆(𝑄,𝑅) = −
∑

𝐀∈A
𝑃 (𝐀)∫W𝐀

𝑄(𝐖|𝐀) ln𝑅(𝐖)𝑑𝐖 (7)

is the cross entropy quantifying the amount of information required
o identify a weighted network sampled from the distribution 𝑄(𝐖)

by employing the distribution 𝑅(𝐖). When continuous models are
considered, 𝑆(𝑄⊥|𝑃 ) is defined by a first sum running over all the
binary configurations within the ensemble A and an integral over all
the weighted configurations that are compatible with each, specific,
binary structure — embodied by the adjacency matrix 𝐀, i.e. such that
W𝐀 = {𝐖 ∶ 𝛩[𝐖] = 𝐀}.

The expression for 𝑆(𝑄,𝑅) can be further manipulated as follows.
Upon separating the prior distribution itself into a purely binary part
and a conditional, weighted one, one can write

𝑅(𝐖) = 𝑇 (𝐀)𝑅(𝐖|𝐀) (8)

an expression that allows us to write 𝑆(𝑄,𝑅) as

𝑆(𝑄,𝑅) = −
∑

𝐀∈A
𝑃 (𝐀) ln 𝑇 (𝐀)

−
∑

𝐀∈A
𝑃 (𝐀)∫W𝐀

𝑄(𝐖|𝐀) ln𝑅(𝐖|𝐀)𝑑𝐖 (9)

which, in turn, allows the KL divergence to be rewritten as

𝐷KL(𝑄||𝑅) = −𝐷KL(𝑃 ||𝑇 ) −𝐷KL(𝑄⊥||𝑅⊥) (10)

i.e. as a sum of two terms, one of which involves conditional distribu-
tions; specifically,

𝐷KL(𝑃 ||𝑇 ) = −
∑

𝐀∈A
𝑃 (𝐀) ln 𝑃 (𝐀)

𝑇 (𝐀)
, (11)

KL(𝑄⊥||𝑅⊥) = −
∑

𝐀∈A
𝑃 (𝐀)∫W𝐀

𝑄(𝐖|𝐀) ln 𝑄(𝐖|𝐀)
𝑅(𝐖|𝐀)

𝑑𝐖 (12)

with 𝑇 (𝐀) representing the binary prior and 𝑅(𝐖|𝐀) representing the
conditional, weighted one. In what follows, we will deal with com-
pletely uninformative priors: this amounts at considering the somehow
‘simplified’ expression

𝐷KL(𝑄||𝑅) = −𝑆(𝑃 ) − 𝑆(𝑄⊥|𝑃 ) (13)

ith

𝑆(𝑃 ) = −
∑

𝐀∈A
𝑃 (𝐀) ln𝑃 (𝐀), (14)

(𝑄⊥|𝑃 ) = −
∑

𝐀∈A
𝑃 (𝐀)∫W𝐀

𝑄(𝐖|𝐀) ln𝑄(𝐖|𝐀)𝑑𝐖. (15)

The (independent) constrained optimization of 𝑆(𝑃 ) and 𝑆(𝑄⊥|𝑃 )
epresents the starting point for deriving the members of the class of
onditional models.

.1. Choosing the binary constraints

The functional form controlling for the binary part of conditional
odels can be derived by carrying out a constrained maximization of

he binary Shannon entropy

(𝑃 ) = −
∑

𝑃 (𝐀) ln𝑃 (𝐀) (16)
3

𝐀∈A
eading to a probability mass function reading

(𝐀) = 𝑒−𝐻(𝐀)
∑

A 𝑒−𝐻(𝐀) (17)

where the functional form of the Hamiltonian reads 𝐻(𝐀) =
∑

𝑖<𝑗 𝛼𝑖𝑗𝑎𝑖𝑗 .
This choice induces a factorization of the probability mass function
𝑃 (𝐀), which becomes

(𝐀) =
∏

𝑖<𝑗
𝑝
𝑎𝑖𝑗
𝑖𝑗 (1 − 𝑝𝑖𝑗 )

1−𝑎𝑖𝑗 (18)

.e. a product of a number of Bernoulli-like probability mass functions
ith 𝑝𝑖𝑗 = 𝑥𝑖𝑗

1+𝑥𝑖𝑗
, ∀ 𝑖 < 𝑗, where 𝑥𝑖𝑗 = 𝑒−𝛼𝑖𝑗 is the Lagrange multiplier

ontrolling for the generic entry of the adjacency matrix 𝐀.
In what follows, we will consider the specification of the tensor-

ike Hamiltonian introduced above reading 𝛼𝑖𝑗 = 𝛼𝑖 + 𝛼𝑗 , ∀ 𝑖 < 𝑗, a
hoice inducing the Undirected Binary Configuration Model (UBCM),
haracterized by the following, pair-specific probability coefficient

UBCM
𝑖𝑗 =

𝑥𝑖𝑥𝑗
1 + 𝑥𝑖𝑥𝑗

(19)

nd ensuring the entire degree sequence of the network at hand to be
eproduced.

The econometric reparametrization of the UBCM can be achieved
y posing 𝑥𝑖 ≡

√

𝛿𝜔𝑖, ∀ 𝑖, a choice inducing the so-called fitness model
(FM), characterized by the pair-specific probability coefficient

𝑝FM
𝑖𝑗 =

𝛿𝜔𝑖𝜔𝑗
1 + 𝛿𝜔𝑖𝜔𝑗

(20)

and requiring the estimation of a global parameter only, i.e. 𝛿. The
M represents a particular case of the logit model [42], being defined
y a vector of external properties (the ‘fitnesses’) that replace the
nformation provided by some kind of (otherwise) purely structural
roperties [5,43]: in fact, Eq. (20) can be equivalently rewritten as
ogit

[

𝑝FM
𝑖𝑗

]

≡ 𝑒𝑋⋅𝜙 with 𝑋 ≡ [1, ln(𝜔𝑖𝜔𝑗 )] and 𝜙 ≡ [ln 𝛿, 1]. The global
constant 𝛿 can be determined by imposing the total number of links
as the only constraint. Remarkably, the fitness model has been proven
to reproduce the (binary) properties of a wide spectrum of real-world
systems [6,29] as accurately as the UBCM, although requiring much
less information.

In what follows, we will consider both the UBCM and the FM
specifications.

2.2. Choosing the weighted constraints

The constrained maximization of 𝑆(𝑄⊥|𝑃 ) proceeds by specifying
the following set of weighted constraints

1 = ∫W𝐀

𝑃 (𝐖|𝐀)𝑑𝐖, ∀ 𝐀 ∈ A (21)

𝐶𝛼⟩ =
∑

𝐀∈A
𝑃 (𝐀)∫W𝐀

𝑄(𝐖|𝐀)𝐶𝛼(𝐖)𝑑𝐖, ∀ 𝛼 (22)

he first condition ensuring the normalization of the probability distri-
ution and the vector {𝐶𝛼(𝐖)} representing the ‘proper’ set of weighted
onstraints (weights are, now, treated as continuous random variables,
.e. 𝑤𝑖𝑗 ∈ R+

0 , ∀ 𝑖 < 𝑗). They induce the distribution reading

(𝐖|𝐀) =
⎧

⎪

⎨

⎪

⎩

𝑒−𝐻(𝐖)

𝑍𝐀
, 𝐖 ∈ W𝐀

0, 𝐖 ∉ W𝐀
(23)

where 𝐻(𝐖) =
∑

𝛼 𝜓𝛼𝐶𝛼 is the so-called Hamiltonian, listing the con-
trained quantities, and 𝑍𝐀 = ∫W𝐀

𝑒−𝐻(𝐖)𝑑𝐖 is the partition function,
onditional on the ‘fixed topology’ 𝐀.

The explicit functional form of 𝑄(𝐖|𝐀) can be obtained only once
he functional form of the constraints has been specified. In what
ollows, we will deal with the Hamiltonian reading

(𝐖) =
∑

𝑓 (𝑤𝑖𝑗 |𝛽𝑖𝑗 , 𝜉𝑖𝑗 , 𝛾𝑖𝑗 ) (24)

𝑖<𝑗
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with the Lagrange multipliers
(

𝛽𝑖𝑗 , 𝜉𝑖𝑗 , 𝛾𝑖𝑗
)

satisfying the following re-
quirements:

• 𝛽𝑖𝑗 ≡ 𝛽0 + 𝛽𝑖𝑗 , where 𝛽0 is the Lagrange multiplier associated with
the total weight ∑

𝑖<𝑗 𝑤𝑖𝑗 ≡ 𝑊1 and 𝛽𝑖𝑗 encodes the dependence
on purely econometric quantities;

• 𝜉𝑖𝑗 will be kept either in its dyadic form, to constrain the loga-
rithm of each weight, or in its global form, 𝜉𝑖𝑗 ≡ 𝜉0, to constrain
the sum of the logarithms of the weights, i.e. ∑𝑖<𝑗 ln(𝑤𝑖𝑗 ) ≡ 𝑊2;

• 𝛾𝑖𝑗 ≡ 𝛾0 plays the role of the Lagrange multiplier associated with
(a function of) the total variance of the logarithms of the weights,
i.e. ∑𝑖<𝑗 ln

2(𝑤𝑖𝑗 ) ≡ 𝑊3.

2.2.1. Conditional exponential model.
Let us start by considering the simplest, conditional model, defined

by the positions 𝛾𝑖𝑗 = 𝜉𝑖𝑗 = 0 and inducing the Hamiltonian

𝐻(𝐖) =
∑

𝑖<𝑗
𝑓 (𝑤𝑖𝑗 |𝛽0 + 𝛽𝑖𝑗 )

=
∑

𝑖<𝑗
(𝛽0 + 𝛽𝑖𝑗 )𝑤𝑖𝑗 ; (25)

inserting the expression above into Eq. (23) leads to the distribution

𝑄(𝐖|𝐀) =
∏

𝑖<𝑗
𝑞𝑖𝑗 (𝑤𝑖𝑗 |𝑎𝑖𝑗 )

=
∏

𝑖<𝑗

𝑒−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗
𝜁𝑖𝑗

=
∏

𝑖<𝑗
(𝛽0 + 𝛽𝑖𝑗 )𝑒

−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗 (26)

and each node pair-specific distribution induces a (conditional) ex-
pected weight reading

⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = 1
𝛽0 + 𝛽𝑖𝑗

. (27)

From a purely topological point of view, constraining each weight
and their total sum is redundant. However, this is no longer true
when turning the conditional, exponential model into a proper econo-
metric one. Its econometric reparametrization should be consistent
with the literature on trade, stating that the weights are monotoni-
cally increasing functions of the gravity specification, i.e. ⟨𝑤𝑖𝑗⟩GM =
𝜌+𝛽⋅ln(𝜔𝑖𝜔𝑗 )+𝛾⋅ln(𝑑𝑖𝑗 ) ≡ 𝑧𝑖𝑗 , ∀ 𝑖 < 𝑗 and with 𝑒𝜌 ≡ 𝜏; for this reason,
he link function usually associated with the exponential distribution
rescribes to identify the linear predictor with the inverse of the purely
conometric parameter of the model, i.e.

𝑖𝑗 ≡ 𝑧−1𝑖𝑗 , (28)

position that turns Eq. (27) into

𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = 1
𝛽0 + 𝑧−1𝑖𝑗

=
𝑧𝑖𝑗

1 + 𝛽0𝑧𝑖𝑗
; (29)

otice that the only structural constraint is, now, represented by the
otal weight (see also Appendix A).

.2.2. Conditional gamma model.
Let us, now, consider a different Hamiltonian, constraining each

eight, their total sum and the sum of their logarithms, i.e.

(𝐖) =
∑

𝑖<𝑗
𝑓 (𝑤𝑖𝑗 |𝛽0 + 𝛽𝑖𝑗 , 𝜉0)

=
∑

𝑖<𝑗
[(𝛽0 + 𝛽𝑖𝑗 )𝑤𝑖𝑗 + 𝜉0 ln(𝑤𝑖𝑗 )]

=
∑

𝑖<𝑗
𝛽𝑖𝑗𝑤𝑖𝑗 + 𝛽0𝑊1 + 𝜉0𝑊2; (30)

it induces the distribution reading

𝑄(𝐖|𝐀) =
∏

𝑞𝑖𝑗 (𝑤𝑖𝑗 |𝑎𝑖𝑗 )
4

𝑖<𝑗
=
∏

𝑖<𝑗

𝑒−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗−𝜉0 ln(𝑤𝑖𝑗 )

𝜁𝑖𝑗

=
∏

𝑖<𝑗

𝑒−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗𝑤−𝜉0
𝑖𝑗

𝜁𝑖𝑗

=
∏

𝑖<𝑗

(𝛽0 + 𝛽𝑖𝑗 )1−𝜉0

𝛤 (1 − 𝜉0)
𝑒−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗𝑤−𝜉0

𝑖𝑗 ; (31)

ach node pair-specific distribution is characterized by a (conditional)
xpected weight reading

𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ =
1 − 𝜉0
𝛽0 + 𝛽𝑖𝑗

(32)

nd by a (conditional) expected logarithmic weight reading

ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ = 𝜓(1 − 𝜉0) − ln(𝛽0 + 𝛽𝑖𝑗 ) (33)

here the function 𝜓(𝑥) = 𝛤 ′(𝑥)∕𝛤 (𝑥) is the so-called digamma function.
Such a model can be turned into a proper, econometric one by

onsidering the inference scheme of the gamma model with inverse
esponse, which allows us to identify the linear predictor with the
nverse of the purely econometric parameter of the model, i.e.

𝑖𝑗 ≡ 𝑧−1𝑖𝑗 (34)

position that, in turn, leads to the expressions

𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ =
1 − 𝜉0
𝛽0 + 𝑧−1𝑖𝑗

=
(1 − 𝜉0)𝑧𝑖𝑗
1 + 𝛽0𝑧𝑖𝑗

(35)

allowing the conditional, exponential model to be recovered in case
0 = 0, i.e. when the constraint on the sum of the logarithms of the
eights is switched-off) and

ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ = 𝜓(1 − 𝜉0) − ln(𝛽0 + 𝑧−1𝑖𝑗 ) (36)

see also Appendix A).

.2.3. Conditional Pareto model.
Constraining a slightly more complex function of the weights,

.e. their logarithm, leads to the Hamiltonian

(𝐖) =
∑

𝑖<𝑗
𝑓 (𝑤𝑖𝑗 |𝜉𝑖𝑗 )

=
∑

𝑖<𝑗
𝜉𝑖𝑗 ln(𝑤𝑖𝑗 ) (37)

hich, in turn, induces the distribution

(𝐖|𝐀) =
∏

𝑖<𝑗
𝑞𝑖𝑗 (𝑤𝑖𝑗 |𝑎𝑖𝑗 )

=
∏

𝑖<𝑗

𝑒−𝜉𝑖𝑗 ln(𝑤𝑖𝑗 )

𝜁𝑖𝑗

=
∏

𝑖<𝑗

𝑤
−𝜉𝑖𝑗
𝑖𝑗

𝜁𝑖𝑗

=
∏

𝑖<𝑗

(𝜉𝑖𝑗 − 1)

𝑚
1−𝜉𝑖𝑗
𝑖𝑗

𝑤
−𝜉𝑖𝑗
𝑖𝑗 (38)

where 𝑚𝑖𝑗 is the minimum, node pair-specific weight allowed by the
model. Each node pair-specific distribution is characterized by a (con-
ditional) expected weight reading

⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ =
( 𝜉𝑖𝑗 − 1
𝜉𝑖𝑗 − 2

)

𝑚𝑖𝑗 . (39)

Such a model can be turned into a proper, econometric one by
considering the positions

𝜉𝑖𝑗 − 2 ≡ 𝑧−1𝑖𝑗 ,

𝑚𝑖𝑗 ≡ 𝑤𝑚𝑖𝑛 (40)
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ensuring that the expected weights are monotonically increasing func-
tions of the gravity specification and leading to the expression

⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = (1 + 𝑧𝑖𝑗 )𝑤𝑚𝑖𝑛 (41)

here 𝑤𝑚𝑖𝑛 is the empirical, minimum weight (see also Appendix A).
Let us explicitly notice that the derivation of the gamma and Pareto

istributions within the maximum-entropy framework has been already
tudied in [44]; here, however, we aim at making a step further,
y individuating a suitable redefinition of these models parameters
apable of turning them into proper, econometric ones.

.2.4. Conditional log-normal model.
Adding a global constraint on (a function of) the total variance of

he logarithms of the weights to the Hamiltonian defining the Pareto
odel leads to the expression

(𝐖) =
∑

𝑖<𝑗
𝑓 (𝑤𝑖𝑗 |𝛾0, 𝜉𝑖𝑗 )

=
∑

𝑖<𝑗
[𝜉𝑖𝑗 ln(𝑤𝑖𝑗 ) + 𝛾0 ln

2(𝑤𝑖𝑗 )]

=
∑

𝑖<𝑗
𝜉𝑖𝑗 ln(𝑤𝑖𝑗 ) + 𝛾0𝑊3; (42)

the Hamiltonian above induces a distribution reading

𝑄(𝐖|𝐀) =
∏

𝑖<𝑗
𝑞𝑖𝑗 (𝑤𝑖𝑗 |𝑎𝑖𝑗 )

=
∏

𝑖<𝑗

𝑒−𝜉𝑖𝑗 ln(𝑤𝑖𝑗 )−𝛾0 ln
2(𝑤𝑖𝑗 )

𝜁𝑖𝑗

=
∏

𝑖<𝑗

𝑒−𝜉𝑖𝑗 ln(𝑤𝑖𝑗 )−𝛾0 ln
2(𝑤𝑖𝑗 )

√

𝜋
𝛾0
𝑒
(𝜉𝑖𝑗−1)2

4𝛾0

; (43)

ach node pair-specific distribution is characterized by a (conditional)
xpected weight reading

𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = 𝑒
3−2𝜉𝑖𝑗
4𝛾0 , (44)

y a (conditional) expected, logarithmic weight reading

ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ =
1 − 𝜉𝑖𝑗
2𝛾0

(45)

and by a (conditional) logarithmic weight whose squared expectation
reads

⟨ln2(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ =
2𝛾0 + (1 − 𝜉𝑖𝑗 )2

4𝛾20
. (46)

Such a model can be turned into a proper, econometric one by
onsidering the position

− 𝜉𝑖𝑗 ≡ ln(𝑧𝑖𝑗 ) (47)

nsuring that the expected weights are monotonically increasing func-
ions of the gravity specification and leading to the expressions

⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = 𝑒
1+2 ln(𝑧𝑖𝑗 )

4𝛾0 , (48)

⟨ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ =
ln(𝑧𝑖𝑗 )
2𝛾0

, (49)

⟨ln2(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ =
2𝛾0 + ln2(𝑧𝑖𝑗 )

4𝛾20
(50)

see also Appendix A).

. Integrated models

MDIP can be also implemented in a straightforward way, by carry-
ng out a constrained optimization of 𝐷KL(𝑄||𝑅). In this second case,
he following set of constraints

1 = 𝑄(𝐖)𝑑𝐖, (51)
5

∫W
𝐶𝛼⟩ = ∫W
𝑄(𝐖)𝐶𝛼(𝐖)𝑑𝐖, ∀ 𝛼 (52)

an be specified, with obvious meaning of the symbols. Differentiating
he corresponding Lagrangian functional with respect to 𝑄(𝐖) and
quating the result to zero leads to

(𝐖) =
𝑅(𝐖)𝑒−𝐻(𝐖)

∫W 𝑅(𝐖)𝑒−𝐻(𝐖)𝑑𝐖
(53)

here 𝐻(𝐖) =
∑

𝛼 𝜓𝛼𝐶𝛼 is, again, the Hamiltonian and 𝑍 = ∫W 𝑒−𝐻(𝐖)

𝐖 is the ‘integrated’ partition function.
The explicit functional form of 𝑄(𝐖) can be obtained only once

he functional form of both the prior distribution and the constraints
as been specified as well. In what follows, we will deal with com-
letely uninformative priors, a choice that amounts at considering the
implified expression

(𝐖) = 𝑒−𝐻(𝐖)

∫W 𝑒−𝐻(𝐖)𝑑𝐖
; (54)

notice that the result above could have been also derived by carrying
out a constrained minimization of

𝐷KL(𝑄||𝑅) = ∫W
𝑄(𝐖) ln𝑄(𝐖)𝑑𝐖 ≡ −𝑆(𝑄) (55)

.e. of (minus) the functional named differential entropy into which the
L divergence ‘degenerates’ in case completely uninformative priors are
onsidered.

.1. Choosing the constraints

Let us, now, specify the functional form of the constraints. In what
ollows, we will deal with a specific instance of the generic Hamiltonian

(𝐖) =
∑

𝑖<𝑗
𝑓 (𝑤𝑖𝑗 |𝛼𝑖𝑗 , 𝛽𝑖𝑗 ); (56)

n particular, one could pose 𝛼𝑖𝑗 ≡ 𝛼0, a choice that would lead to
onstrain the total number of links, or 𝛼𝑖𝑗 ≡ 𝛼𝑖 + 𝛼𝑗 , a choice that
ould lead to constrain the whole degree sequence. If not specified
therwise, in what follows we will employ the second functional form
nd pose 𝛽𝑖𝑗 ≡ 𝛽0 + 𝛽𝑖𝑗 , where 𝛽0 is the Lagrange multiplier associated
ith the total weight and 𝛽𝑖𝑗 encodes the dependence on purely econo-
etric quantities. Our choices induce the Hamiltonian of the so-called
ntegrated exponential model, i.e.

(𝐖) =
∑

𝑖<𝑗
𝑓 (𝑤𝑖𝑗 |𝛼𝑖 + 𝛼𝑗 , 𝛽0 + 𝛽𝑖𝑗 )

=
∑

𝑖<𝑗
[(𝛼𝑖 + 𝛼𝑗 )𝑎𝑖𝑗 + (𝛽0 + 𝛽𝑖𝑗 )𝑤𝑖𝑗 ]

=
∑

𝑖
𝛼𝑖𝑘𝑖 +

∑

𝑖<𝑗
(𝛽0 + 𝛽𝑖𝑗 )𝑤𝑖𝑗

=
∑

𝑖
𝛼𝑖𝑘𝑖 +

∑

𝑖<𝑗
𝛽𝑖𝑗𝑤𝑖𝑗 + 𝛽0𝑊1

hat leads to the distribution

(𝐖) =
∏

𝑖<𝑗
𝑞𝑖𝑗 (𝑤𝑖𝑗 )

=
∏

𝑖<𝑗

(𝑥𝑖𝑥𝑗 )
𝑎𝑖𝑗 𝑒−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗

𝑍𝑖𝑗

=
∏

𝑖<𝑗

(𝑥𝑖𝑥𝑗 )
𝑎𝑖𝑗 𝑒−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗

1 + 𝑥𝑖𝑥𝑗 (𝛽0 + 𝛽𝑖𝑗 )−1
(57)

here 𝑥𝑖 ≡ 𝑒−𝛼𝑖 . The generic node pair-specific distribution induces a
robability for nodes 𝑖 and 𝑗 to be connected reading

𝑖𝑗 = 1 − 𝑞𝑖𝑗 (0) =
𝑥𝑖𝑥𝑗 (𝛽0 + 𝛽𝑖𝑗 )−1

1 + 𝑥𝑖𝑥𝑗 (𝛽0 + 𝛽𝑖𝑗 )−1

=
𝑥𝑖𝑥𝑗𝜁𝑖𝑗 ; (58)
1 + 𝑥𝑖𝑥𝑗𝜁𝑖𝑗
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besides, the corresponding expected weight reads

⟨𝑤𝑖𝑗⟩ =
𝑝𝑖𝑗

𝛽0 + 𝛽𝑖𝑗
. (59)

Eq. (58) clarifies why the models considered in the present sec-
tion are classified as ‘integrated’: each node pair-specific probability
of connection is a function of the parameters controlling for both
topological and weighted properties. Models of the kind are, thus,
capable of ‘integrating’ information concerning a network structure
with information concerning its weights, hence employing them in a
joint fashion to define both inference steps.

The recipe for the econometric reparametrization of the integrated
exponential model can read as the one of its conditional counterpart,
i.e.

𝛽𝑖𝑗 ≡ 𝑧−1𝑖𝑗 (60)

a position that turns Eq. (59) into

⟨𝑤𝑖𝑗⟩ =
𝑝𝑖𝑗

𝛽0 + 𝑧−1𝑖𝑗
(61)

where

𝑝𝑖𝑗 =
𝑥𝑖𝑥𝑗

𝑥𝑖𝑥𝑗 + 𝛽0 + 𝑧−1𝑖𝑗
(62)

(see also Appendix B).

4. Results

The effectiveness of the two classes of models considered in the
present paper to reproduce the topological properties of the World
Trade Web has been tested on two different datasets, i.e. the Gleditsch
one (covering 11 years, from 1990 to 2000 [45]) and the BACI one
(covering 11 years, from 2007 to 2017 [46]). To carry out our analyses,
we have built the ensemble induced by each model as follows. First,
the presence of a link connecting any two nodes 𝑖 and 𝑗 is established
with probability 𝑝𝑖𝑗 . Numerically, a real number 𝑢 is drawn from the
uniform distribution 𝑈 [0, 1] with unit support and compared with 𝑝𝑖𝑗 :
f 𝑢 ≤ 𝑝𝑖𝑗 , then 𝑖 and 𝑗 are linked, otherwise they are not. Once the
resence of a link is established, it is loaded with a weight by employing
he inverse transform sampling technique: another random variable 𝜂,
niformly distributed between 0 and 1, is set equal to the value of the
omplementary cumulative distribution

(𝑣𝑖𝑗 ) = ∫

𝑣𝑖𝑗

0
𝑞(𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1)𝑑𝑤𝑖𝑗 (63)

nd, inverting the equation 𝐹 (𝑣𝑖𝑗 ) = 𝜂, one obtains the value of the
andom variable 𝑣𝑖𝑗 to be assigned as link weight to the pair 𝑖 < 𝑗. Each
nsemble is sampled repeatedly to obtain 104 configurations. The error
ccompanying the estimate of any quantity of interest is quantified via
he confidence intervals (CI) induced by the ensemble distribution of
he quantity itself.

.1. Model selection via statistical indicators

Let us consider two measures of goodness-of-fit, i.e. the reconstruc-
ion accuracy RA𝑠𝑚 and the Kolmogorov–Smirnov (KS) compatibility
requency 𝑓 𝑠𝑚: while RA𝑠𝑚 is defined as the percentage of node-specific
alues of the statistic 𝑠 falling within the CIs, induced by model
, at the significance level of 5%, 𝑓 𝑠𝑚 measures the percentage of

times the distribution of a given, expected statistics 𝑠, under model
𝑚, is compatible with the empirical one, according to the two-sample
Kolmogorov–Smirnov test; for example, a value 𝑓 𝑠𝑚 = 0.8 would indicate
that the distribution of the expected values of the statistics 𝑠, under
model 𝑚, is found to be compatible with the empirical one on the 80%
6

of the years in the dataset, at the significance level of 5%.
Table 1
Compatibility between the distributions of the expected values of the statistics output
by the models considered in the present work and their empirical counterparts for
the Gleditsch and the BACI datasets. A large value of 𝑓 𝑠𝑚 indicates a large percentage
f years for which the distribution of the network statistic predicted by model 𝑚 is
ompatible with the empirical one. While all models seem to perform quite well in
eproducing the binary statistics on the Gleditsch dataset, this is no longer true when
onsidering the BACI dataset, on which the UBCM outperform the FM — a result that
eads us to prefer the former as the ‘first step-algorithm’ of our conditional models.
or what concerns the set of weighted statistics, the models constraining 𝑊1 (i.e. the
ntegrated exponential model, the conditional exponential model and the conditional
amma model) clearly outperform the others.
Dataset Model 𝑓 𝑘𝑖 𝑓 𝑘𝑛𝑛 𝑓 𝑐𝑖

Gleditsch I-Exp 1 1 1
Gleditsch UBCM 1 1 1
Gleditsch FM 1 1 1

Dataset Model 𝑓 𝑘𝑖 𝑓 𝑘𝑛𝑛 𝑓 𝑐𝑖

BACI I-Exp 1 0.09 0.09
BACI UBCM 1 0.09 0.09
BACI FM 0.09 0.09 0.09

Dataset Model 𝑓 𝑠𝑖 𝑓 𝑠𝑛𝑛 𝑓 𝑐𝑤

Gleditsch I-Exp 1 1 0.18
Gleditsch C-Exp 1 1 0.18
Gleditsch C-Pareto 0 0 0
Gleditsch C-Gamma 1 1 0.27
Gleditsch C-Lognormal 1 0 0

Dataset Model 𝑓 𝑠𝑖 𝑓 𝑠𝑛𝑛 𝑓 𝑐𝑤

BACI I-Exp 1 1 1
BACI C-Exp 1 1 1
BACI C-Pareto 0 0 0
BACI C-Gamma 1 1 1
BACI C-Lognormal 0 0 0

The network statistics for which the values RA𝑠𝑚 and 𝑓 𝑠𝑚 have been
omputed are the degree sequence

𝑖 =
𝑁
∑

𝑗(≠𝑖)=1
𝑎𝑖𝑗 , ∀ 𝑖 (64)

(which gives information about the tendency of node 𝑖 to connect to
other trade partners), the average nearest neighbors degree

𝑘𝑛𝑛𝑖 =

∑𝑁
𝑗(≠𝑖)=1 𝑎𝑖𝑗𝑘𝑗

𝑘𝑖
, ∀ 𝑖 (65)

which gives information about the degree correlations), the clustering
oefficient

𝑖 =

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1 𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖

𝑘𝑖(𝑘𝑖 − 1)
, ∀ 𝑖 (66)

(which counts the percentage of node 𝑖’s partners that are also part-
ners themselves). For what concerns the weighted statistics, we have
considered the strength sequence

𝑠𝑖 =
𝑁
∑

𝑗(≠𝑖)=1
𝑤𝑖𝑗 , ∀ 𝑖 (67)

(which gives information about the trade flow of a country), the
average nearest neighbors strength

𝑠𝑛𝑛𝑖 =

∑𝑁
𝑗(≠𝑖)=1 𝑎𝑖𝑗𝑠𝑗

𝑘𝑖
, ∀ 𝑖 (68)

(which gives information about the strength correlations), the weighted
clustering coefficient

𝑐𝑤𝑖 =

∑𝑁
𝑗(≠𝑖)=1

∑𝑁
𝑘(≠𝑖,𝑗)=1𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖
𝑘𝑖(𝑘𝑖 − 1)

, ∀ 𝑖 (69)

(that weighs the closed triangular patterns that node 𝑖 establishes with

other trade partners).
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Fig. 1. Reconstruction accuracy for the statistics of interest, calculated as the percentage of node-specific values of the statistics 𝑠 falling within the CI, induced by model 𝑚, at
he significance level of 5%; yearly percentages are, then, averaged. The whiskers represent the 2.5 and 97.5 percentiles of each RA𝑠

𝑚 distribution, across different years. Overall,
ll models perform quite well in reproducing the degrees, with the only exception of the FM — whence our choice of employing the UBCM as the ‘first step-algorithm’ of our
onditional models. For what concerns higher-order, binary statistics, both the UBCM and the I-Exp perform quite well while the performance of the FM is much poorer — a result
hat holds true for both the Gleditsch (left panels) and the BACI (right panels) dataset. For what concerns the weighted statistics, only the average nearest neighbors strength is
atisfactorily recovered — however, only by the (integrated and conditional) exponential models and the conditional gamma one.
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.1.1. KS compatibility frequency
Table 1 lists the values of 𝑓 𝑠𝑚 for both binary and weighted net-

ork statistics. For what concerns the binary statistics, we report the
erformance of three different models, i.e. the UBCM, the FM and the
ntegrated exponential model (denoted as I-Exp).

For what concerns the Gleditsch dataset, compatibility is observed
or every year; for what concerns the BACI dataset, instead, this is no
onger true: in fact, the FM outputs predictions that are not compatible
ith the empirical values for a large number of years and irrespectively

rom the considered quantity; the UBCM and the I-Exp (i.e. the models
onstraining the degrees), instead, output predictions whose compat-
bility depends on the considered quantity: higher-order statistics are
he ones for which the two aforementioned models ‘fail’ to the larger
xtent. Overall, these results lead us to prefer the UBCM as the ‘first
tep-algorithm’ of our conditional models.

Let us, now, comment on the performance of our models in repro-
ucing weighted statistics. As it can be appreciated upon looking at
able 1, the only models outputting predictions whose distributions are
ompatible with the empirical analogues are the integrated exponential
ne, the conditional exponential one and the conditional gamma one.
n the other hand, employing only logarithmic constraints (as for the
onditional Pareto model and the conditional log-normal model) does
ot help improving the accuracy of the description of the system at
and.

.1.2. Reconstruction accuracy
So far, we have inspected the compatibility of the distributions of

he empirical values of each network statistics with the ones of their
xpected values under each of our models. Let us, now, quantify the
7

i

xtent to which each model is able to recover node-wise information
y computing the RA𝑠𝑚 values. Fig. 1 shows the temporal average of
he latter ones (i.e. across the years covered by our datasets), with the
hiskers representing their variation, i.e. an indication of the stability
f each model performance.

For what concerns the binary statistics (see Fig. 1a), both the UBCM
nd the I-Exp perform quite well in reproducing them; on the other
and, the performance of the FM is much poorer. For what concerns
he weighted statistics (see Fig. 1b), only the average nearest neighbors
trength is satisfactorily recovered by the (integrated and conditional)
xponential models and the conditional gamma one. Still, they are
ound to perform poorly on the other statistics, i.e. the strength, that
s only recovered in distribution on both datasets, and the weighted
lustering coefficient, that is only recovered in distribution on the BACI
ataset. For what concerns the lognormal model, it performs better than
ompetitors in reproducing the strength and the weighted clustering
oefficient on the Gleditsch dataset but worse on the BACI dataset,
ausing its behavior to be dataset-dependent.

Finally, let us inspect the reconstruction accuracy of our models
or what concerns the link weights of our networks. Specifically, let
s define RA𝑤𝑚 , i.e. the percentage of empirical weights falling within
he CI, induced by model 𝑚, at the significance level of 5% [47].
ere, we have proceeded numerically, i.e. by considering the 2.5 and

he 97.5 percentiles induced by the ensemble distribution of each
ode pair-specific weight. As Fig. 2 shows, all models perform quite
ell in reproducing the weights (across all years, on both datasets)
ith the only exception of the conditional Pareto model. Overall,

he best-performing model on the Gleditsch dataset is the integrated
xponential one while the best-performing model on the BACI dataset
s the conditional gamma model.
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Fig. 2. Reconstruction accuracy RA𝑤
𝑚 for the Gleditsch dataset (left panel) and the BACI dataset (right panel). All models perform quite well in reproducing the weights (across all

years, on both datasets) with the only exception of the conditional Pareto model. Overall, the best-performing model on the Gleditsch dataset is the integrated exponential while
the best-performing model on the BACI dataset is the conditional gamma model.
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4.1.3. Confusion matrix
The UBCM and the integrated exponential model perform similarly

in reproducing the binary statistics, on both datasets. Let us, now,
compare them in reproducing the four indicators composing the so-
called confusion matrix, i.e. the true positive rate ⟨TPR⟩ = ⟨TP⟩∕𝐿 =
𝑖<𝑗 𝑎𝑖𝑗𝑝𝑖𝑗∕𝐿 (measuring the percentage of links correctly recovered by
given reconstruction method), the specificity ⟨SPC⟩ = ⟨TN⟩∕(𝑁(𝑁 −
)∕2 − 𝐿) =

∑

𝑖<𝑗 (1 − 𝑎𝑖𝑗 )(1 − 𝑝𝑖𝑗 )∕(𝑁(𝑁 − 1)∕2 − 𝐿) (measuring the per-
entage of zeros correctly recovered by a given reconstruction method),
he positive predictive value ⟨PPV⟩ = ⟨TP⟩∕⟨𝐿⟩ =

∑

𝑖<𝑗 𝑎𝑖𝑗𝑝𝑖𝑗∕⟨𝐿⟩
measuring the percentage of links correctly recovered by a given re-
onstruction method with respect to the total number of links predicted
y it) and the accuracy ⟨ACC⟩ = (⟨TP⟩+ ⟨TN⟩)∕𝑁(𝑁 − 1)∕2 (measuring
he overall performance of a given reconstruction method in correctly
lacing both links and zeros).

The results are reported in Table 2, that shows the increments of
he four indicators, defined as 𝛥𝑋 = ⟨𝑋⟩I-Exp − ⟨𝑋⟩UBCM with 𝑋 =
PR, SPC, PPV, ACC. Notice that each entry of the table is posi-
ive, a result signaling that the integrated exponential model steadily
erforms better than the UBCM. This is further confirmed by the (non-
arametric) Wilcoxon rank-sum test on the ensemble distributions of
he statistics to compare: all increments are significant, at the 1% level.

.2. Model selection via statistical tests

Let us now rigorously test if constraining the entire degree sequence
𝑘𝑖}𝑁𝑖=1 leads to a significantly better description of our data than that
btainable by just constraining the total number of links 𝐿.

Upon solving the model constraining the entire degree sequence
nd the one constraining the total number of links, we are able to
onstruct a vector reading (𝑋𝑚

𝑖 , 𝑌
𝑚
𝑖 ) where 𝑋𝑚

𝑖 is either RA𝑠𝑚 or 𝑓 𝑠𝑚 for
the 𝑖th statistics under the ‘𝐿-constrained version’ of model 𝑚; on the
other hand, 𝑌 𝑚𝑖 is either RA𝑠𝑚 or 𝑓 𝑠𝑚 for the 𝑖th statistics under the ‘𝑘-
constrained version’ of model 𝑚 — naturally, both values have been
onsidered for the same year, keeping the same set of weighted con-
traints. Pairing statistics as described above allows us to employ the
non-parametric) Wilcoxon signed-rank test for testing the hypotheses
A𝑠𝑘 ≤ RA𝑠𝐿 and 𝑓 𝑠𝑘 ≤ 𝑓 𝑠𝐿, i.e. that the models just constraining 𝐿
erform better, in reproducing the statistics 𝑠, than those constraining
he entire degree sequence.

Our results let us conclude that, for both datasets, constraining the
egree sequence leads to a significant improvement, at the level of 5%,
f the reconstruction accuracy of the average nearest neighbors degree,
he clustering coefficient, the strengths and the average nearest neigh-
ors strength; on the other hand, constraining the degree sequence
oes not lead to any significant improvement of the reconstruction
ccuracy of the weighted clustering coefficient. For what concerns the
S compatibility frequency, a significant improvement, at the level of
%, is observed in the description accuracy of the average nearest
eighbors degree, the clustering coefficient and the average nearest
eighbors strength.
8

a

Table 2
Increments of the four indicators composing the confusion matrix, i.e. the true positive
rate (TPR), the specificity (SPC), the positive predicted value (PPV) and the accuracy
(ACC) when passing from the UBCM to the integrated exponential model for the
Gleditsch and the BACI datasets. All increments are significant at the 1% level,
according to the (non-parametric) Wilcoxon rank-sum test on the ensemble distributions
of the statistics to compare.

Dataset 𝛥TPR 𝛥SPC 𝛥PPV 𝛥ACC

Gleditsch 90 0.017 0.026 0.017 0.020
Gleditsch 91 0.016 0.020 0.016 0.018
Gleditsch 92 0.015 0.019 0.015 0.017
Gleditsch 93 0.015 0.019 0.015 0.017
Gleditsch 94 0.013 0.018 0.013 0.015
Gleditsch 95 0.013 0.019 0.013 0.016
Gleditsch 96 0.012 0.019 0.012 0.015
Gleditsch 97 0.013 0.022 0.013 0.016
Gleditsch 98 0.013 0.022 0.013 0.016
Gleditsch 99 0.013 0.023 0.014 0.017
Gleditsch 00 0.014 0.023 0.014 0.017

Dataset 𝛥TPR 𝛥SPC 𝛥PPV 𝛥ACC

BACI 07 0.007 0.037 0.007 0.012
BACI 08 0.006 0.035 0.006 0.010
BACI 09 0.005 0.031 0.005 0.009
BACI 10 0.005 0.032 0.005 0.009
BACI 11 0.005 0.029 0.006 0.008
BACI 12 0.005 0.033 0.005 0.009
BACI 13 0.005 0.034 0.005 0.009
BACI 14 0.005 0.031 0.005 0.008
BACI 15 0.005 0.028 0.005 0.008
BACI 16 0.003 0.021 0.004 0.006
BACI 17 0.004 0.028 0.004 0.007

4.3. Model selection via information criteria

Let us, now, compare the performance of our models in a more
general fashion. To this aim, let us consider the Akaike Information
Criterion (AIC) [48], reading

AIC𝑚 = 2𝑘 − 2𝑚 (70)

where 𝑘 is the number of free parameters of the model and 𝑚 is its
og-likelihood, evaluated at its maximum.

The purely binary log-likelihood induced by model 𝑚 is readily
btained from Eq. (18) and reads
(𝑏)
𝑚 = ln𝑃 (𝐀) =

∑

𝑖<𝑗

[

𝑎𝑖𝑗 ln(𝑝𝑖𝑗 ) + (1 − 𝑎𝑖𝑗 ) ln(1 − 𝑝𝑖𝑗 )
]

(71)

here 𝑎𝑖𝑗 is the generic entry of the empirical adjacency matrix and
𝑖𝑗 is the model-dependent probability that node 𝑖 and node 𝑗 estab-
ish a connection. The ‘binary’ AIC values (normalized by the yearly
aximum, across models, for better visualization) are reported in

ig. 3a: the integrated exponential model outperforms the others, across
ll years, for both datasets. This result suggests that the information
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Fig. 3. AIC values for the binary and the ‘full’ log-likelihood, normalized by the yearly maximum, across models, for better visualization, for the Gleditsch (left panels) and the
BACI (right panel) datasets: a lower AIC value is associated to a better performance. Our plots clearly show that constraining the degree sequence increases a model performance
in reproducing a network topology: moreover, the integrated exponential model steadily outperforms the UBCM, signaling that the information gain due to inclusion of economic
variables does not affect the parsimony of its description. For what concerns the capability of our models in reproducing weighted properties, the conditional log-normal and
gamma models compete, outperforming the other ones.
gained by including economic factors into the connection probabilities
predicted by it does not affect the parsimony of its description, allowing
it to perform better than the UBCM.

When, instead, the ‘full’ log-likelihood is considered, reading

(𝑓 )
I-𝑚 = ln𝑄(𝐖) =

∑

𝑖<𝑗
ln(𝑞𝑖𝑗 (𝑤𝑖𝑗 )) (72)

for integrated models and

(𝑓 )
C-𝑚 = ln𝑃 (𝐀) + ln𝑄(𝐖|𝐀)

=
∑

𝑖<𝑗
[𝑎𝑖𝑗 ln(𝑝𝑖𝑗 ) + (1 − 𝑎𝑖𝑗 ) ln(1 − 𝑝𝑖𝑗 )

+ ln(𝑞𝑖𝑗 (𝑤𝑖𝑗 |𝑎𝑖𝑗 ))] (73)

for conditional models (see Fig. 3b), the conditional log-normal and
gamma models compete, outperforming the other ones — although
the performance of the first one in predicting the network statistics
of interest, on the BACI dataset, was less remarkable than that of the
competing models (see Fig. 2b).

4.4. The Shannon-Fisher plane

We now complement the analysis of model performance, given in
terms of realized likelihood, with an investigation of model ‘sensitivity’,
given in terms of the variability of the likelihood across network con-
figurations sampled from the model. To this end, for each conditional
model we build the so-called Shannon-Fisher plane [49], which is a
technique that has acquired some popularity in the study of time-
series. For instance it has been employed to understand ordinal pat-
terns [50], quantify the degree of stochasticity [51], classify financial
stock markets [52] and build indicators of economic efficiency [53].
9

Within our context, we can use the Shannon-Fisher technique to
project a given model onto a plane by assigning two coordinates to
each connected dyad, i.e. to each pair of nodes (𝑖, 𝑗) with 𝑎𝑖𝑗 = 1, where
𝑎𝑖𝑗 is taken from the empirical adjacency matrix of the network. The 𝑦
coordinate in the plane is the Shannon entropy

𝑆𝑖𝑗 = −∫ 𝑑𝑤 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗=1) ln 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1)

= ∫ 𝑑𝑤 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1)[𝐻𝑖𝑗 (𝑤) + ln 𝜁𝑖𝑗 ]

= ⟨𝐻𝑖𝑗⟩ + ln 𝜁𝑖𝑗 , (74)

which quantifies the degree of uncertainty encoded in the link weight.
Note that, since the above entropy is constructed from a continuous
pdf, it can attain negative values. This is a well-known problem that
can be regularized by introducing the Kullback–Leibler divergence with
respect to a continuous uniform pdf, however the result will only
consist in an overall shift and rescaling of the 𝑦 coordinate that are
inessential for our discussion below.

The 𝑥 coordinate in the plane is the Fisher Information Measure
(FIM), defined as

𝐹𝑖𝑗 = ∫ 𝑑𝑤 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1)
( 𝜕 ln 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1)

𝜕𝑤

)2

(75)

= ∫ 𝑑𝑤 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1)
( 𝜕[−𝐻𝑖𝑗 (𝑤) − ln 𝜁𝑖𝑗 ]

𝜕𝑤

)2

(76)

= ∫ 𝑑𝑤 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1)
( 𝜕𝐻𝑖𝑗 (𝑤)

𝜕𝑤

)2

(77)

= ∫ 𝑑𝑤 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1)
(

𝐻 ′
𝑖𝑗 (𝑤)

)2
(78)

= ⟨(𝐻 ′ )2⟩ (79)
𝑖𝑗
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and quantifying the (average) change in probability induced by small
changes in the value of the link weight. Notice that the presence of
the derivative requires that 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1) is continuous throughout the
domain of integration, and this is why we consider only conditional
models with 𝑎𝑖𝑗 = 1 so that there is no ‘jump’ in the unconditional
𝑞𝑖𝑗 (𝑤) from 𝑤 = 0 to 𝑤 > 0. The expression 𝐹𝑖𝑗 = ⟨(𝐻 ′

𝑖𝑗 )
2
⟩ captures

the ‘sensitivity’ of the dyadic probability distribution with respect to
small changes in the corresponding random variable. Note that this
sensitivity is not captured by Shannon entropy, which is indifferent
to any reordering of the values of the random variable, provided each
value retains its probability.

In principle, two dyads with the same Shannon entropy can exhibit
very different values of the FIM. This difference is captured by the
Shannon-Fisher plane in terms of different positions along the 𝑥-axis.
In general, since different connected dyads are described by a proba-
bility distribution with different parameters, scattering all connected
dyads in the plane provides an overall representation of the model
identified by 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1). Different models are described by different
probability distributions and hence have different projections in the
Shannon-Fisher plane. In Appendix D we compute the explicit values
of 𝑆𝑖𝑗 and 𝐹𝑖𝑗 for all the conditional models considered. Using these
calculations we obtain the results shown in Fig. 4 for an illustrative pair
of datasets. We see that both the conditional exponential model and the
conditional log-normal model follow a decreasing pattern. However,
the conditional exponential model is, on average, characterized by a
smaller FIM, i.e. smaller ‘sensitivity’ to variations of the related random
variable. On the other hand, the conditional Pareto model collapses
onto a single point in the Shannon-Fisher plane while the conditional
gamma model is characterized by a diverging FIM (because of the
divergence of the first two negative moments, see Appendix D).

It is interesting to notice that, if we consider the sum of the 𝑦 values
of all the connected dyads (a sort of ‘area under the curve’) for a given
model, we obtain the Shannon entropy for the entire weighted network,
conditional on the empirical binary adjacency matrix 𝐀:

𝑆 = −∫W𝐀

𝑄(𝐖|𝐀) ln𝑄(𝐖|𝐀)𝑑𝐖 =
∑

𝑖<𝑗|𝑎𝑖𝑗=1
𝑆𝑖𝑗 (80)

(note that the dyadic entropy of 𝑞(𝑤𝑖𝑗 |𝑎𝑖𝑗 = 0) is zero, because if 𝑎𝑖𝑗 = 0
then 𝑤𝑖𝑗 = 0 deterministically). The above expression also coincides
with minus the average likelihood of weighted network configurations
sampled from the model (given the empirical binary structure), hence
providing an average (inverse) ‘goodness of fit’ of the weighted model.
Similarly, summing the 𝑥 values of all the connected dyads gives an
overall value of the FIM, hence the average change in likelihood of
different weighted configurations sampled from the model. The results
shown in Fig. 4 therefore indicate that while different models (except
the Pareto) are characterized by similar values of the overall entropy
and goodness of fit, the conditional exponential model has minimum
overall FIM, thereby producing the most stable outcome (in terms of
likelihood of realized configurations) when used to sample weighted
networks.

5. Discussion and conclusions

In a companion paper [20] the performance of discrete economet-
ric models in reproducing the structural patterns of the WTW was
compared with that of discrete, maximum-entropy ones. The analysis
carried out there led to identify the zero-inflated Poisson model as the
one performing best among the econometric models; still, it was also
found to be largely disfavored by information criteria such as AIC and
BIC. This dilemma has been solved upon looking at a different class of
statistical models, i.e. the physics-inspired ones: the latter have been
found to outperform the purely econometric ones for reconstruction
purposes, the reason lying in the higher accuracy achieved by them
10

in estimating the topological structure of networks.
With this contribution, we extend the work carried out in [20]
by, first, introducing models to infer the topology and the weights
of (undirected, weighted) networks defined by continuous-valued data
and, then, turning them into proper, econometric ones. In order to do
so, we present a theoretical, physics-inspired framework based upon the
constrained minimization of the KL divergence – hence, implementing
the Minimum Discrimination Information Principle, that generalizes
the Maximum-Entropy Principle – and capable of accommodating both
integrated and conditional (continuous) models.

The main difference between the models belonging to these classes
lies in the way the estimation of the topology is carried out; while
conditional models disentangle the purely binary step from the (condi-
tional) weighted one, integrated models do not, letting both topological
and weighted constraints determine all relevant, structural features of
a network. An example of integrated model is provided by the En-
hanced Configuration Model (ECM), defined by constraints such as the
degree and the strength sequences and described by a mixed Bernoulli-
geometric [31,54] (also called Bose-Fermi [55]) distribution; examples
of continuous, conditional models are provided by the CReMA and
the CReMB [47]. From a more econometric perspective, hurdle models
are conditional in nature while zero-inflated models can be thought
as integrated, the estimation steps being carried out by selecting a
distribution out of a basket of available ones.

Our analysis leads to several conclusions: (1) constraining the entire
degree sequence leads to a statistically significant improvement in
the reconstruction accuracy of the WTW. In particular, the integrated
exponential model, described by the Hamiltonian 𝐻(𝐖) =

∑

𝑖 𝛼𝑖𝑘𝑖 +
∑

𝑖<𝑗 𝛽𝑖𝑗𝑤𝑖𝑗 + 𝛽0𝑊1, provides a very accurate, structural reconstruction
while being favored by information criteria: although it is defined by
𝑁 + 1 purely topological constraints, AIC reveals them as ‘irreducible’,
i.e. necessary to provide a satisfactory explanation of the network
generating process; (2) when considering weighted quantities, the con-
ditional gamma model is the one performing best (although it competes
with the integrated exponential one in reproducing properties such
as the weights, on some of the temporal snapshots covered by our
datasets), according to information criteria. To be noticed, however,
that if strengths are not explicitly constrained – jointly with the degrees
– maximum-entropy models recover them only ‘in distribution’ while
failing to reproduce their exact values. The same consideration holds
true for the weighted clustering coefficient.

Coming to comparing the models belonging to the classes consid-
ered in the present work, the two, best-performing ones are the inte-
grated exponential model and the conditional gamma model, i.e. the
ones constraining the total weight (although the conditional exponen-
tial model constrains the total weight as well, it is outperformed by the
conditional gamma one within the class of conditional model): hence,
𝑊1 seems to constitute a somehow fundamental quantity to be necessar-
ily accounted for in order to achieve a good reconstruction accuracy.
From an economic point of view, the parameter 𝛽0 constraining the
total weight can be interpreted as a sort of ‘shadow price’ to be paid
by everyone to exchange goods.

Additional information is provided by our analysis of the Shannon-
Fisher plane, which combines Shannon entropy, i.e. the (inverse) likeli-
hood of a model, with the Fisher Information Measure, i.e. the average
variability of the likelihood itself across different sampled configura-
tions. The conditional exponential model turns out the be the least
variable in likelihood, hence the most stable. It is worth noticing at this
point that our maximum-entropy approach is formulated for canonical
ensembles, i.e. for ‘soft constraints’, which implies that different realiza-
tions of the network have fluctuating values of the weighted sufficient
statistics. These fluctuations are the origin of the FIM. By contrast, if we
were to formulate microcanonical models with ‘hard constraints’, then
the sufficient statistics would not fluctuate and the overall FIM would
be zero. Therefore the Shannon-Fisher plane shows that, among the
canonical models considered here, the conditional exponential is the

closest to the ‘least soft’ extreme, while the conditional gamma is at the
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Fig. 4. Shannon-Fisher plane for each conditional model considered in the present paper. For each pair of nodes (𝑖, 𝑗) that are connected in the real network (𝑎𝑖𝑗 = 1), we consider
the conditional weight distribution 𝑞𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1) and plot the corresponding differential Shannon entropy (𝑦-axis) versus the Fisher Information Measure (𝑥-axis). The results shown
correspond to the year 2000 of the Gleditsch dataset (left panel) and to the year 2017 of the BACI dataset (right panel). The dyads of both the conditional exponential and the
conditional log-normal model follow a decreasing trend, those of the conditional Pareto model collapse onto a single point, while those of the gamma model are characterized by
a diverging Fisher Information Measure independently of their entropy (symbolically depicted as a vertical line at the right edge of the plot). The results show that, while different
models (except the Pareto) produce similar values of the entropy, their Fisher measure can be very different (note the logarithmic scale of the 𝑥-axis). The conditional exponential
is the model for which, for a given value of the entropy, the Fisher measure is the minimum one, corresponding to the minimum variability in likelihood across different sampled
configurations.
opposite ‘softest’ extreme where the FIM diverges. As a question left for
future research, it would be interesting to relate the behavior of the FIM
to the phenomenon of inequivalence of canonical and microcanonical
ensembles of networks [56].

Overall, we believe the framework proposed in this contribution
to have the potential of reconciling the approach adopted by network
scientists for reconstructing economic networks, and focusing on the
purely structural aspects of a network formation, with the approach
characterizing econometrics, tailored to inform these same models
with macro-economic quantities — in all cases considered here, purely
bilateral ones such as the GDPs and the geographic distances. From
an operative point of view, our (classes of) models combine the pros
of both approaches: the importance of purely structural information
(highlighted by physics-inspired models) can be accounted for by con-
straining the entire degree sequence; on top of that, a second step
is needed to estimate a network weighted structure. Although the
information provided by the total weight cannot be discarded without
affecting the overall performance of a model, such an estimation can
rests upon econometric considerations driving the reparametrization of
otherwise purely structural models.

6. The DyGyS Python package

As an additional result, we release a Python package named ‘DyGyS-
DYadic GravitY regression models with Soft constraints’ and containing
routines to implement all models considered in the present work as
well as those considered in the companion paper [20]. The package is
available at the following URL: https://github.com/MarsMDK/DyGyS.
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Appendix A. Conditional models

Any member of the class of conditional models is described by the
expression

𝑄(𝐖|𝐀) = 𝑒−𝐻(𝐖)

∫WA
𝑒−𝐻(𝐖)𝑑𝐖

(81)

the single instances being characterized by different expressions of the
Hamiltonian. Since, however, each Hamiltonian considered here is a
sum over the node pairs, the result

𝑄(𝐖|𝐀) = 𝑒−
∑

𝑖<𝑗 𝐻𝑖𝑗 (𝑤𝑖𝑗 )

−
∑

𝑖<𝑗 𝐻𝑖𝑗 (𝑤𝑖𝑗 )
∫WA
𝑒 𝑑𝐖

https://github.com/MarsMDK/DyGyS
http://www.sobigdata.eu
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∏

𝑖<𝑗

𝑒−𝐻𝑖𝑗 (𝑤𝑖𝑗 )
[

∫ +∞
𝑚𝑖𝑗

𝑒−𝐻𝑖𝑗 (𝑤𝑖𝑗 )𝑑𝑤𝑖𝑗
]𝑎𝑖𝑗

=
∏

𝑖<𝑗

𝑒−𝐻𝑖𝑗 (𝑤𝑖𝑗 )

𝜁
𝑎𝑖𝑗
𝑖𝑗

(82)

olds irrespectively from the specific functional form of𝐻𝑖𝑗 (𝑤𝑖𝑗 ). Notice
hat 𝑚𝑖𝑗 is the minimum, pair-specific weight allowed by the model. The
dentifications

𝑖𝑗 (𝑤𝑖𝑗 ) ≡ 𝑓 (𝑤𝑖𝑗 |𝜃, 𝑧𝑖𝑗 (𝜓)) (83)

nd

≡ ln𝑄(𝐖|𝐀) (84)

ead to estimate parameters by solving the (coupled) systems of purely
tructural equations 𝜕

𝜕𝜃 = 0 and econometric-like equations 𝜕
𝜕𝜏 = 0, i.e.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑖<𝑗|𝑎𝑖𝑗=1

[

𝜕𝑓 (𝑤𝑖𝑗 |𝜃,𝑧𝑖𝑗 (𝜓))
𝜕𝜃 + 1

𝜁𝑖𝑗

( 𝜕𝜁𝑖𝑗
𝜕𝜃

)

]

= 0,

∑

𝑖<𝑗|𝑎𝑖𝑗=1

[

𝜕𝑓 (𝑤𝑖𝑗 |𝜃,𝑧𝑖𝑗 (𝜓))
𝜕𝑧𝑖𝑗

+ 1
𝜁𝑖𝑗

(

𝜕𝜁𝑖𝑗
𝜕𝑧𝑖𝑗

)]

𝜕𝑧𝑖𝑗
𝜕𝜓 = 0.

(85)

Notice that the estimation of the parameters carried out by maxi-
mizing the conditional likelihood, and letting only the positive weights
to be accounted for, is perfectly consistent with the theory of hurdle
models [57,58]: although alternative estimation procedures can be
devised (see, for example, [47]), in the present paper, we will stick
to the proper, econometric one — which has been already employed in
our companion paper [20], to estimate the parameters of conditional,
discrete-valued models.

A.1. Conditional exponential model

The conditional exponential model is defined by the expression

𝐻𝑖𝑗 (𝑤𝑖𝑗 ) = (𝛽0 + 𝛽𝑖𝑗 )𝑤𝑖𝑗 (86)

that induces the following node pair-specific partition function

𝜁𝑖𝑗 = ∫

+∞

0
𝑒−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗 𝑑𝑤𝑖𝑗 =

1
𝛽0 + 𝛽𝑖𝑗

. (87)

After the econometric reparametrization, according to which 𝛽𝑖𝑗 ≡
𝑧−1𝑖𝑗 , the log-likelihood function of the conditional exponential model
reads

 =
∑

𝑖<𝑗
(𝑎𝑖𝑗=1)

[−(𝛽0 + 𝑧−1𝑖𝑗 )𝑤𝑖𝑗 − ln(𝜁𝑖𝑗 )]; (88)

hence, its maximization leads to the system of equations
{

∑

𝑖<𝑗|𝑎𝑖𝑗=1[⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ −𝑤𝑖𝑗 ] = 0
∑

𝑖<𝑗|𝑎𝑖𝑗=1[⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ −𝑤𝑖𝑗 ]𝜕𝛼(𝑧−1𝑖𝑗 ) = 0
(89)

where ⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = 𝑧𝑖𝑗
1+𝛽0𝑧𝑖𝑗

. Notice that we have a condition on the
parameters, reading 𝛽0 + 𝛽𝑖𝑗 > 0.

A.2. Conditional gamma model

The conditional gamma model is defined by the expression

𝐻𝑖𝑗 (𝑤𝑖𝑗 ) = (𝛽0 + 𝛽𝑖𝑗 )𝑤𝑖𝑗 + 𝜉0 ln(𝑤𝑖𝑗 ) (90)

and induces the following node pair-specific partition function

𝜁𝑖𝑗 = ∫

∞

0
𝑒−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗𝑤−𝜉0

𝑖𝑗 𝑑𝑤𝑖𝑗

=
𝛤 (1 − 𝜉0)

(𝛽0 + 𝛽𝑖𝑗 )1−𝜉0
. (91)
12
After the econometric reparametrization, according to which 𝛽𝑖𝑗 ≡
𝑧−1𝑖𝑗 , the log-likelihood function of the conditional gamma model reads

 =
∑

𝑖<𝑗
(𝑎𝑖𝑗=1)

[−(𝛽0 + 𝑧−1𝑖𝑗 )𝑤𝑖𝑗 − 𝜉0 ln(𝑤𝑖𝑗 ) − ln(𝜁𝑖𝑗 )]; (92)

hence, its maximization leads to the system of equations

⎧

⎪

⎨

⎪

⎩

∑

𝑖<𝑗|𝑎𝑖𝑗=1[⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ −𝑤𝑖𝑗 ] = 0
∑

𝑖<𝑗|𝑎𝑖𝑗=1[⟨ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ − ln(𝑤𝑖𝑗 )] = 0
∑

𝑖<𝑗|𝑎𝑖𝑗=1[⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ −𝑤𝑖𝑗 ]𝜕𝛼(𝑧−1𝑖𝑗 ) = 0

(93)

here ⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = 𝑧𝑖𝑗 (1−𝜉0)
1+𝛽0𝑧𝑖𝑗

and ⟨ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ = 𝜓(1 − 𝜉0) −

ln(𝛽0 + 𝑧−1𝑖𝑗 ). Notice that we have conditions on the parameters, reading
0 + 𝛽𝑖𝑗 > 0 and 𝜉0 < 1.

.3. Conditional Pareto model

The conditional Pareto model is defined by the expression

𝑖𝑗 (𝑤𝑖𝑗 ) = 𝜉𝑖𝑗 ln(𝑤𝑖𝑗 ) (94)

hat induces the following node pair-specific partition function

𝑖𝑗 = ∫

+∞

𝑚𝑖𝑗
𝑒−𝜉𝑖𝑗 ln(𝑤𝑖𝑗 )𝑑𝑤𝑖𝑗

= ∫

+∞

𝑚𝑖𝑗
𝑤

−𝜉𝑖𝑗
𝑖𝑗 𝑑𝑤𝑖𝑗

=
𝑚
1−𝜉𝑖𝑗
𝑖𝑗

𝜉𝑖𝑗 − 1
. (95)

After the econometric reparametrization, according to which 𝜉𝑖𝑗 −
2 ≡ 𝑧−1𝑖𝑗 and 𝑚𝑖𝑗 ≡ 𝑤𝑚𝑖𝑛, the log-likelihood function of the conditional
Pareto model reads

 =
∑

𝑖<𝑗
(𝑎𝑖𝑗=1)

[−(2 + 𝑧−1𝑖𝑗 ) ln(𝑤𝑖𝑗 ) − ln(𝜁𝑖𝑗 )]; (96)

ence, its maximization leads to the system of equations
∑

<𝑗|𝑎𝑖𝑗=1
[⟨ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ − ln(𝑤𝑖𝑗 )]𝜕𝛼(𝑧−1𝑖𝑗 ) = 0 (97)

where ⟨ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ = ln(𝑤𝑚𝑖𝑛)+
𝑧𝑖𝑗

1+𝑧𝑖𝑗
. Notice that we have conditions

on the parameters, reading 𝑤𝑚𝑖𝑛 > 0 and 𝜉𝑖𝑗 > 2.

A.4. Conditional log-normal model

The conditional log-normal model is defined by the expression

𝐻𝑖𝑗 (𝑤𝑖𝑗 ) = 𝜉𝑖𝑗 ln(𝑤𝑖𝑗 ) + 𝛾0 ln
2(𝑤𝑖𝑗 ) (98)

hat induces the following node pair-specific partition function

𝑖𝑗 = ∫

+∞

0
𝑒−𝜉𝑖𝑗 ln(𝑤𝑖𝑗 )−𝛾0 ln

2(𝑤𝑖𝑗 )𝑑𝑤𝑖𝑗

= ∫

+∞

−∞
𝑒(1−𝜉𝑖𝑗 )𝑡𝑖𝑗 𝑒−𝛾0𝑡

2
𝑖𝑗 𝑑𝑡𝑖𝑗

=
√

𝜋
𝛾0
𝑒
(𝜉𝑖𝑗−1)2

4𝛾0 (99)

result that is readily obtained by putting 𝑡𝑖𝑗 = ln(𝑤𝑖𝑗 ) and exploiting

he relationship ∫ +∞
−∞ 𝑒−𝑎𝑥2+𝑏𝑥+𝑐𝑑𝑥 =

√

𝜋
𝑎 𝑒

𝑏2
4𝑎 +𝑐 .

After the econometric reparametrization, according to which 1 −
𝜉𝑖𝑗 ≡ ln(𝑧𝑖𝑗 ), the log-likelihood function of the conditional log-normal
model reads

 =
∑

𝑖<𝑗
[(ln(𝑧𝑖𝑗 ) + 1) ln(𝑤𝑖𝑗 ) − 𝛾0 ln

2(𝑤𝑖𝑗 ) − ln(𝜁𝑖𝑗 )]; (100)

(𝑎𝑖𝑗=1)
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hence, its maximization leads to the system of equations
{

∑

𝑖<𝑗|𝑎𝑖𝑗=1[⟨ln
2(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ − ln2(𝑤𝑖𝑗 )] = 0

∑

𝑖<𝑗|𝑎𝑖𝑗=1[⟨ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ − ln(𝑤𝑖𝑗 )]𝜕𝛼 ln(𝑧𝑖𝑗 ) = 0
(101)

where ⟨ln2(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ = 2𝛾0+ln2(𝑧𝑖𝑗 )
4𝛾20

and ⟨ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ = ln(𝑧𝑖𝑗 )
2𝛾0

.
Notice that we have a condition on the parameters, reading 𝛾0 > 0.

ppendix B. Integrated models

Any member of the class of integrated models is described by the
xpression

(𝐖) = 𝑒−𝐻(𝐖)

∫W 𝑒−𝐻(𝐖)𝑑𝐖
(102)

he single instances being characterized by different expressions of the
amiltonian. Since, however, each Hamiltonian considered here is a

um over the node pairs, the result

(𝐖) = 𝑒−
∑

𝑖<𝑗 𝐻𝑖𝑗 (𝑤𝑖𝑗 )

∫W 𝑒−
∑

𝑖,𝑗 𝐻𝑖𝑗 (𝑤𝑖𝑗 )𝑑𝐖

=
∏

𝑖<𝑗

𝑒−𝐻𝑖𝑗 (𝑤𝑖𝑗 )
∑

𝑎𝑖𝑗=0,1 ∫𝛩[𝑤𝑖𝑗 ]=𝑎𝑖𝑗 𝑒
−𝐻𝑖𝑗 (𝑤𝑖𝑗 )𝑑𝑤𝑖𝑗

=
∏

𝑖<𝑗

𝑒−𝐻𝑖𝑗 (𝑤𝑖𝑗 )

𝑍𝑖𝑗
(103)

olds irrespectively from the specific functional form of 𝐻𝑖𝑗 (𝑤𝑖𝑗 ). The
dentifications

𝑖𝑗 (𝑤𝑖𝑗 ) ≡ 𝑓 (𝑤𝑖𝑗 |𝜃, 𝑧𝑖𝑗 (𝜓)) (104)

nd

≡ ln𝑄(𝐖) (105)

ead to estimate parameters by solving the (coupled) systems of purely
tructural equations 𝜕

𝜕𝜃 = 0 and econometric-like equations 𝜕
𝜕𝜓 = 0, i.e.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑖<𝑗

[

𝜕𝑓 (𝑤𝑖𝑗 |𝜃,𝑧𝑖𝑗 (𝜓))
𝜕𝜃 + 1

𝑍𝑖𝑗

( 𝜕𝑍𝑖𝑗
𝜕𝜃

)

]

= 0,

∑

𝑖<𝑗

[

𝜕𝑓 (𝑤𝑖𝑗 |𝜃,𝑧𝑖𝑗 (𝜓))
𝜕𝑧𝑖𝑗

+ 1
𝑍𝑖𝑗

(

𝜕𝑍𝑖𝑗
𝜕𝑧𝑖𝑗

)]

𝜕𝑧𝑖𝑗
𝜕𝜓 = 0.

(106)

The integrated exponential model we have considered in the present
aper is defined by the expression

𝑖𝑗 (𝑤𝑖𝑗 ) = (𝛼𝑖 + 𝛼𝑗 )𝑎𝑖𝑗 + (𝛽0 + 𝛽𝑖𝑗 )𝑤𝑖𝑗 (107)

hat induces the following node pair-specific partition function

𝑖𝑗 =
1
∑

𝑎𝑖𝑗=0
∫𝛩[𝑤𝑖𝑗 ]=𝑎𝑖𝑗

𝑒−(𝛼𝑖+𝛼𝑗 )𝑎𝑖𝑗−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗 𝑑𝑤𝑖𝑗

= 1 + 𝑒−(𝛼𝑖+𝛼𝑗 ) ∫

+∞

0
𝑒−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗 𝑑𝑤𝑖𝑗

= 1 + 𝑒−(𝛼𝑖+𝛼𝑗 )

𝛽0 + 𝛽𝑖𝑗
. (108)

After the econometric reparametrization, according to which 𝛽𝑖𝑗 ≡
𝑧−1𝑖𝑗 , the log-likelihood function of the exponential model reads

 =
∑

𝑖<𝑗
[−(𝛼𝑖 + 𝛼𝑗 )𝑎𝑖𝑗 − (𝛽0 + 𝑧−1𝑖𝑗 )𝑤𝑖𝑗 − ln(𝑍𝑖𝑗 )]; (109)

hence, its maximization leads to the system of equations

⎧

⎪

⎨

⎪

⟨𝑘𝑖⟩ − 𝑘𝑖 = 0, ∀ 𝑖
⟨𝑊 ⟩ −𝑊 = 0
∑ −1

(110)
13

⎩ 𝑖<𝑗 [⟨𝑤𝑖𝑗⟩ −𝑤𝑖𝑗 ]𝜕𝛼(𝑧𝑖𝑗 ) = 0
here 𝑘𝑖 =
∑

𝑗(≠𝑖) 𝑎𝑖𝑗 is the empirical degree of node 𝑖, 𝑤𝑖𝑗 is the
mpirical, pair-specific weight and 𝑊 =

∑

𝑖<𝑗 𝑤𝑖𝑗 is the empirical, total
eight; ⟨𝑘𝑖⟩ =

∑

𝑗(≠𝑖) 𝑝𝑖𝑗 , ⟨𝑤𝑖𝑗⟩ and ⟨𝑊 ⟩ =
∑

𝑖<𝑗⟨𝑤𝑖𝑗⟩ are their expected
ounterparts.

Notice that we have a condition on the parameters, reading 𝛽0+𝛽𝑖𝑗 >
.

ppendix C. Turning structural models into econometric models

So far, we have derived two classes of models, by explicitly solving
he constrained maximization of a number of functionals derived from
he KL divergence. As the functional form of the probability distribu-
ions belonging to the two classes (solely) depends on the enforced
onstraints, such models ‘are born’ as purely structural ones.

In order to turn them into candidate models to be employed for
conometric purposes, we need to properly transform (some of) the
agrange multipliers into functions of the econometric quantities of
elevance for the problem at hand. In this respect, the theory of GLMs
rovides helpful suggestions about how to proceed; besides, one can
igure out some (sets of) basic requirements such a transformation
hould satisfy:

• the transformation should turn the expected values ⟨𝑤𝑖𝑗⟩ and
⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ into positive, monotonically increasing functions of
𝑧𝑖𝑗 ;

• the transformation should not violate the mathematical require-
ments to have well-defined (first and second) distribution mo-
ments.

In what follows, we will focus on the conditional models.
Conditional exponential model. It is characterized by the expression

𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = 1
𝛽0 + 𝛽𝑖𝑗

(111)

hat can be turned into an econometric one by posing

𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = 1
𝛽0 + 𝛽𝑖𝑗

≡ 𝑔(𝑧𝑖𝑗 ) (112)

ccording to the prescription informing the so-called generalized linear
odels (GLMs). Before specifying the functional form of 𝑔, let us

onsider that the dyadic parameter 𝛽𝑖𝑗 must be decreasing in 𝑧𝑖𝑗 – a
equirement that can be justified upon identifying 𝛽𝑖𝑗 as the ‘shadow
rice’ that countries 𝑖 and 𝑗 have to pay to trade a unity of goods [59];
nalogously, 𝛽0 can be interpreted as modeling a global tax that every-
ne has to pay to exchange goods – independently of its trade ‘capacity’.
hese considerations lead us to impose 𝛽𝑖𝑗 ≡ 𝑧−1𝑖𝑗 , a choice inducing the
xpression

𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = 1
𝛽0 + 𝑧−1𝑖𝑗

=
𝑧𝑖𝑗

1 + 𝛽0𝑧𝑖𝑗
(113)

which violates none of the requirements listed at the beginning of the
section.

Conditional gamma model. It is characterized by the expressions

⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ =
1 − 𝜉0
𝛽0 + 𝛽𝑖𝑗

, (114)

ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ = 𝜓(1 − 𝜉0) − ln(𝛽0 + 𝛽𝑖𝑗 ) (115)

where 𝜓(𝑥) = 𝛤 ′(𝑥)∕𝛤 (𝑥) is the digamma function) that can be turned
nto econometric ones by posing 𝛽𝑖𝑗 ≡ 𝑧−1𝑖𝑗 , according to considerations
hich are analogous to those driving the econometric reparametriza-

ion of the conditional, exponential model. This choice induces the
xpressions

⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ =
1 − 𝜉0
𝛽0 + 𝑧−1𝑖𝑗

=
(1 − 𝜉0)𝑧𝑖𝑗
1 + 𝛽0𝑧𝑖𝑗

, (116)

ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ = 𝜓(1 − 𝜉0) − ln(𝛽0 + 𝑧−1𝑖𝑗 ); (117)
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notice that the conditional, exponential model is recovered in case
𝜉0 = 0 (i.e. when the constraint on the sum of the logarithms of weights
is switched-off).

Conditional Pareto model. It is characterized by the expression

⟨𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ =
( 𝜉𝑖𝑗 − 1
𝜉𝑖𝑗 − 2

)

𝑚𝑖𝑗 (118)

hat can be turned into an econometric one by posing

𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ =
( 𝜉𝑖𝑗 − 1
𝜉𝑖𝑗 − 2

)

𝑚𝑖𝑗 ≡ 𝑔(𝑧𝑖𝑗 ) (119)

according to the prescription informing the GLMs. Upon considering
that (1) the (conditional) expected value is well defined only if 𝜉𝑖𝑗 −2 >
0 and that (2) a linear relationship between the former and 𝑧𝑖𝑗 would
be desirable, a suitable reparametrization may read 𝜉𝑖𝑗 − 2 ≡ 𝑧−1𝑖𝑗 and
𝑖𝑗 ≡ 𝑤𝑚𝑖𝑛, in turn leading to

𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ = (1 + 𝑧𝑖𝑗 )𝑤𝑚𝑖𝑛 (120)

hich violates none of the requirements listed at the beginning of the
ection.
Conditional log-normal model. It is characterized by the expressions

⟨ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ =
1 − 𝜉𝑖𝑗
2𝛾0

, (121)

ln2(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ =
2𝛾0 + (1 − 𝜉𝑖𝑗 )2

4𝛾20
. (122)

Upon considering that the logarithm of weights can admit negative
alues, i.e. when 𝑤𝑖𝑗 ∈ (0, 1), and that there are no theoretical restric-
ions on the sign of ⟨ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩, a suitable reparametrization may
ead 1 − 𝜉𝑖𝑗 ≡ ln(𝑧𝑖𝑗 ), in turn leading to

⟨ln(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ =
ln(𝑧𝑖𝑗 )
2𝛾0

, (123)

⟨ln2(𝑤𝑖𝑗 )|𝑎𝑖𝑗 = 1⟩ =
2𝛾0 + ln2(𝑧𝑖𝑗 )

4𝛾20
(124)

hich violate none of the requirements listed at the beginning of the
ection.

ppendix D. The Shannon-Fisher plane

Here, starting from the conditional probability density function
𝑖𝑗 (𝑤|𝑎𝑖𝑗 = 1), for each connected dyad we compute explicitly the
ontinuous Shannon entropy 𝑆𝑖𝑗 and the Fisher Information Measure
FIM) 𝐹𝑖𝑗 needed to construct the Shannon-Fisher plane introduced in
ection 4.4. We do so for each model separately.

.1. Conditional exponential model

The conditional exponential model is defined by the probability
istribution

𝑖𝑗 (𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1) = (𝛽0 + 𝛽𝑖𝑗 )𝑒
−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗 (125)

inducing a Shannon entropy reading

𝑆𝑖𝑗 = ⟨𝐻𝑖𝑗⟩ + ln 𝜁𝑖𝑗 = 1 − ln[𝛽0 + 𝛽𝑖𝑗 ] (126)

nd a FIM reading

𝑖𝑗 = ⟨(𝐻 ′
𝑖𝑗 )

2
⟩ = (𝛽0 + 𝛽𝑖𝑗 )2; (127)

s the value of the parameter 𝛽0 + 𝛽𝑖𝑗 increases, Shannon entropy
14

ecreases while Fisher Information Measure increases as well. e
.2. Conditional gamma model

The conditional gamma model is defined by the probability distri-
ution

𝑖𝑗 (𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1) =
(𝛽0 + 𝛽𝑖𝑗 )1−𝜉0

𝛤 (1 − 𝜉0)
𝑤−𝜉0
𝑖𝑗 𝑒−(𝛽0+𝛽𝑖𝑗 )𝑤𝑖𝑗 (128)

nducing a Shannon entropy reading

𝑖𝑗 = ⟨𝐻𝑖𝑗⟩ + ln 𝜁𝑖𝑗

= − ln[𝛽0 + 𝛽𝑖𝑗 ] + 𝜉0𝜓(1 − 𝜉0) + ln𝛤 (1 − 𝜉0) + (1 − 𝜉0) (129)

nd a FIM reading

𝑖𝑗 = ⟨(𝐻 ′
𝑖𝑗 )

2
⟩ = (𝛽0 + 𝛽𝑖𝑗 )2

+ 2𝜉0(𝛽0 + 𝛽𝑖𝑗 )⟨𝑤−1
𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ + 𝜉20⟨𝑤

−2
𝑖𝑗 |𝑎𝑖𝑗 = 1⟩

= (𝛽0 + 𝛽𝑖𝑗 )2
[

1 + 2𝜉0
𝛤 (−𝜉0)
𝛤 (1 − 𝜉0)

+ 𝜉20
𝛤 (−1 − 𝜉0)
𝛤 (1 − 𝜉0)

]

; (130)

the expression above does not diverge for the values of the parameter
𝜉0 ensuring that the (first) two, negative moments, ⟨𝑤−1

𝑖𝑗 |𝑎𝑖𝑗 = 1⟩ and
𝑤−2
𝑖𝑗 |𝑎𝑖𝑗 = 1⟩, of the (conditional) gamma distribution do not diverge

s well, i.e. 𝜉0 < −1.

.3. Conditional Pareto model

The conditional Pareto model is defined by the probability distribu-
ion

𝑖𝑗 (𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1) =
𝜉𝑖𝑗 − 1

𝑚
1−𝜉𝑖𝑗
𝑖𝑗

𝑤
−𝜉𝑖𝑗
𝑖𝑗 (131)

inducing a Shannon entropy reading

𝑆𝑖𝑗 = ⟨𝐻𝑖𝑗⟩ + ln 𝜁𝑖𝑗 =
( 𝜉𝑖𝑗
𝜉𝑖𝑗 − 1

)

− ln[𝜉𝑖𝑗 − 1] + ln𝑚𝑖𝑗 (132)

nd a FIM reading

𝑖𝑗 = ⟨(𝐻 ′
𝑖𝑗 )

2
⟩ =

𝜉2𝑖𝑗
𝑚2

( 𝜉𝑖𝑗 − 1
𝜉𝑖𝑗 + 1

)

; (133)

the expression above holds true for the values of the parameter 𝜉𝑖𝑗
nsuring that the Pareto distribution exists, i.e. 𝜉𝑖𝑗 > 1. Besides, the
onvergence of the second, negative moment of the (conditional) Pareto
istribution ensures that its FIM does not diverge as well.

.4. Conditional log-normal model

The conditional log-normal model is defined by the probability
istribution

𝑖𝑗 (𝑤𝑖𝑗 |𝑎𝑖𝑗 = 1) = 𝑒−𝜉𝑖𝑗 ln(𝑤𝑖𝑗 )−𝛾0 ln
2(𝑤𝑖𝑗 )

√

𝜋
𝛾0
𝑒
(𝜉𝑖𝑗−1)2

4𝛾0

(134)

inducing a Shannon entropy reading

𝑆𝑖𝑗 = ⟨𝐻𝑖𝑗⟩ + ln 𝜁𝑖𝑗 =
1 − 𝜉𝑖𝑗
2𝛾0

+ 1
2

[

1 + 1
2
ln
(

𝜋
𝛾0

)]

(135)

and a FIM reading

𝐹𝑖𝑗 = ⟨(𝐻 ′
𝑖𝑗 )

2
⟩ = 𝑒𝜉𝑖𝑗∕𝛾0 (1 + 2𝛾0 + 𝜉𝑖𝑗 + 𝜉2𝑖𝑗 ); (136)

he expression above holds true for the values of the parameter 𝛾0
nsuring that the log-normal distribution exists, i.e. 𝛾 > 0.
0
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