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Abstract: Nocturnal sympathetic overdrive is an early indicator of cardiovascular (CV) disease,
emphasizing the importance of reliable remote patient monitoring (RPM) for autonomic function
during sleep. To be effective, RPM systems must be accurate, non-intrusive, and cost-effective. This
review evaluates non-invasive technologies, metrics, and algorithms for tracking nocturnal auto-
nomic nervous system (ANS) activity, assessing their CV relevance and feasibility for integration into
RPM systems. A systematic search identified 18 relevant studies from an initial pool of 169 publi-
cations, with data extracted on study design, population characteristics, technology types, and CV
implications. Modalities reviewed include electrodes (e.g., electroencephalography (EEG), electro-
cardiography (ECG), polysomnography (PSG)), optical sensors (e.g., photoplethysmography (PPG),
peripheral arterial tone (PAT)), ballistocardiography (BCG), cameras, radars, and accelerometers.
Heart rate variability (HRV) and blood pressure (BP) emerged as the most promising metrics for RPM,
offering a comprehensive view of ANS function and vascular health during sleep. While electrodes
provide precise HRV data, they remain intrusive, whereas optical sensors such as PPG demonstrate
potential for multimodal monitoring, including HRV, SpO2, and estimates of arterial stiffness and BP.
Non-intrusive methods like BCG and cameras are promising for heart and respiratory rate estimation,
but less suitable for continuous HRV monitoring. In conclusion, HRV and BP are the most viable
metrics for RPM, with PPG-based systems offering significant promise for non-intrusive, continuous
monitoring of multiple modalities. Further research is needed to enhance accuracy, feasibility, and
validation against direct measures of autonomic function, such as microneurography.

Keywords: remotepatient monitoring; nocturnal sympathetic overdrive; sleep; cardiovascular risk;
autonomic nervous system; cardiovascular health technologies

1. Introduction

The autonomic nervous system (ANS) primarily oversees the homeostatic balance of
the body through control centers located in the hypothalamus, brainstem, the spinal cord,
and peripheral ganglia [1,2]. Via reflexes, the ANS receives sensory inputs mainly from
thoracic and abdominal viscera and exerts its effects on nearly every tissue across the body,
fine-tuning all the involuntary physiological processes [3,4]. The ANS operates through the
complementary activity of its main branches, namely the sympathetic and the parasym-
pathetic nervous systems. In general, the sympathetic system activates organs or tissues
to facilitate strenuous physical activity, while the parasympathetic system predominates
during periods of rest [3]. Concerning the role of ANS in regulating the cardiovascular
(CV) functions, the sympathetic system elevates heart rate (HR) and blood pressure (BP)
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by increasing the force, and the rate of contraction (i.e., inotropic and chronotropic effects,
respectively) as well as by enhancing conduction (i.e., dromotropic effect) of the heart,
and synergistically reducing the diameter of arterioles at a peripheral level. On the other
hand, the parasympathetic system action decreases HR and, unlike sympathetic activity,
has minimal effect on myocardial contractility and on the size of small blood vessels [5].

In a physiological state, the sympathetic and parasympathetic branches work together
to maintain internal homeostasis according to a dynamic equilibrium between the two [6].
The disruption in this subtle dynamic equilibrium is termed a sympathovagal imbalance
and often arises in the form of an increased sympathetic tone and vagal withdrawal [7–9].
Importantly, a state of sympathetic overactivity seems to promote mechanical, inflam-
matory, and hemodynamic alterations in the heart and in the vascular system [10–13].
Therefore, a prolonged sympathetic overdrive has been recognized as a factor implicated
in the pathogenesis, progression and prognosis of different CV and metabolic diseases in-
cluding hypertension, myocardial infarction, cardiac arrhythmias, congestive heart failure,
obesity, and diabetes [14–26]. The determinants potentially contributing to this sympathetic
dysregulation are multiple and encompass alterations in autonomic reflex pathways [27],
central autonomic neuroanatomical sites [28] and hormonal control processes [29].

Despite its myriad implications, the early causes that induce a prolonged state of
sympathoexcitation and parasympathetic withdrawal remain elusive. Considering the
clinical implications of a sympathovagal imbalance [30], there is an urgency to develop
methods capable of monitoring and detecting prodromal autonomic alterations in real life.
An important principle that has been advocated is to focus on nocturnal autonomic activity,
leveraging the absence of many confounders to physiological autonomic activity (e.g., daily
living and work activities), and the ANS’s dominance over the central nervous system
during sleep [2,31,32].

During the night, ANS activity undergoes significant changes in association with sleep
stage transitions [33–35], as well as in correspondence to both physiological and patho-
logical sleep-related events able to trigger abrupt and transient sympathetic activations
(e.g., cortical arousal, apnea/hypopnea events, limb-movement) [36–38]. Specifically, sleep-
related disorders (i.e., insomnia, sleep breathing disorders or periodic leg movement syn-
drome) can induce a nocturnal autonomic over-stimulation [2,39,40], potentially resulting
in sustained modifications of daytime sympathetic nervous activity [17,41–43]. Importantly,
these sleep-related pathologies, characterized by a heightened sympathetic dominance, are
typically associated with cerebrovascular, CV, and metabolic disorders [12,39,44–47]. This
underscores the importance of identifying early states of nocturnal sympathetic overdrive,
during which mechanical and inflammatory changes typically observed in CV diseases
are not yet permanent and may be reversible with effective non-pharmacological and
pharmacological intervention strategies [30]. Further exploration in this direction should
commence with non-invasive, broad-spectrum assessments of sympathetic versus parasym-
pathetic activation levels. However, mapping nocturnal ANS function efficiently poses
theoretical and methodological challenges. Consequently, there is an urgent need for
technologies, including both hardware and algorithms, that enable continuous remote
patient monitoring (RPM) of sympathetic overactivity during sleep. These technologies
must ensure data accuracy, minimize sleep disruption, be cost-effective for widespread use,
and allow for continuous data collection. By collecting continuous data, RPM can identify
patterns in ANS activity, providing a more reliable assessment of changes over time [48].
This capability allows for the early detection of ANS dysregulation, which is linked to early
markers of CV pathologies, thereby possibly facilitating timely interventions [49,50].

The aim of this systematic review was threefold. First, we examined the literature
to categorize and describe current methods for monitoring ANS activity during sleep.
Secondly, we highlighted how alterations of nocturnal autonomic functions are linked to CV
implications in the context of clinically relevant monitoring systems. Finally, we evaluated
and compared the identified methods for their feasibility based on metric compatibility,
intrusiveness, data accuracy, continuity, and practical considerations.
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2. Materials and Methods

Guidelines according to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) were followed [51].

2.1. Systematic Literature Search and Article Selection

To identify the related publications the Population, Intervention, Comparator, Out-
come (PICO) framework was applied while searching through the titles and abstracts
in PubMed, SpringerLink, ACM Digital Library, Scopus, and IEEE Xplore, accessed on
21 December 2023, as shown in Figure 1 [52].

Search strategy:
("Cardiovascular" OR "Cardiac" OR "Heart") AND ("Monitoring" OR "Remote Monitoring"
OR "Telemonitoring") AND ("Autonomic Nervous System" OR "Sympathovagal" OR
"Sympathetic" OR "Parasympathetic") AND ("Sleep" OR "Nocturnal Monitoring" OR
"Sleep Monitoring" OR "Sleep Data Analysis") AND ("Polysomnography" OR "Sleep
Parameters" OR "Sleep Stage" OR "Sleep Architecture")

Figure 1. Search strategy to identify related publications following the PICOS specifications.

The search strategy was designed to minimize selection bias and ensure comprehensive
coverage of relevant studies. We followed the PICO framework, applying specific inclusion
criteria to ensure that the reviewed studies were directly relevant to our research objectives.
Studies were included based on the following criteria:

• Population (P): Research focused on measuring nocturnal ANS activity with direct
relevance to CV implications.

• Intervention (I): Studies utilizing novel or existing modalities, metrics, or algorithms
capable of being integrated into RPM systems.

• Comparison (C): Traditional RPM methods (e.g., spot measurements of weight, BP,
HR, or symptoms checklists) used as benchmarks.

• Outcome (O): Evaluation of new algorithms and technologies for identifying and
monitoring nocturnal sympathetic overdrive and its CV implications.

To ensure a robust and unbiased selection of studies for our review, two independent
reviewers (V.A.A.v.E. and I.L.J.d.L.) conducted a dual screening of all titles and abstracts.
Each reviewer independently assessed the studies, documenting their findings in an Excel
sheet, which included key information on the studies’ relevance based on the predefined
inclusion criteria. This method allowed the reviewers to maintain objectivity and trans-
parency throughout the process, minimizing potential bias during the selection of studies
for full-text review.

The criteria for study inclusion were explicitly defined to align with the study’s
objectives, focusing on non-invasive monitoring of the ANS, CV implications, and sleep-
related factors. Studies were excluded if they did not collect vital signs during sleep, used
invasive sensors, did not adequately consider the physiology of the ANS in relation to CV
implications, were not retrievable or accessible, or had limited clinical relevance due to
small sample sizes (e.g., n = 1). This systematic approach ensured that the studies included
in the review were relevant and met the specific aims of the research.

2.2. Data Extraction, Risk of Bias Assessment Tool and Quality Scales

Both reviewers extracted data using an electronic spreadsheet containing the following
categories:

• Brief description of the study design, population, and experimental setup.
• Vital signs measured including the metrics related to autonomic regulation.
• Technical details of the technology used including its modality, metrics, device location

during measuring, and the application in the related study.
• Consideration of ANS physiology related to CV implication.
• Primary and secondary outcomes.
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• Feasibility assessment for RPM integration.

In instances of disagreements during the extraction process, the two reviewers (V.A.A.v.E.
and I.L.J.d.L.) engaged in discussions until consensus was reached. If necessary, a third
reviewer was consulted. Regular quality checks were implemented to ensure consistency
between reviewers. Our methodology was crafted to uphold the integrity of the review
process, aiming to provide a comprehensive and unbiased assessment of technologies with
the potential for RPM of nocturnal autonomic regulation in an unobtrusive manner. This
approach is geared toward delivering clinically relevant information for CV risk assessment,
patient monitoring, and early interventions.

The evaluation of bias in studies is essential, as it can elucidate variations in the
outcomes of studies incorporated into a systematic review. The risk of bias was assessed
independently by both reviewers using Cochrane’s recommended tool for evaluating bias
and applicability in primary diagnostic accuracy studies within systematic reviews—the
QUADAS-2 tool [53]. Employing a domain-based assessment approach, evaluations were
conducted separately for four domains, namely: ‘Patient Selection’ (D1), ‘Index Test’ (D2),
‘Reference Standard’ (D3), and ‘Flow and Timing’ (D4). Ratings such as ‘low risk’, ‘high
risk’, ‘some concerns’, or ‘no information’ were assigned to each domain based on these
appraisals. The overall risk of bias was determined by aggregating the assessments across
the four domains.

3. Results
3.1. Study Selection

Figure 2 depicts the PRISMA four-phase flow diagram illustrating the sequential stages
involved in identifying and selecting the studies. A total of 177 abstracts were retrieved
from five databases. Following a manual search for duplicate records, eight instances were
identified and subsequently removed. After an initial screening of 169 articles based on
their titles and abstracts, 130 records were excluded, with details on titles, DOIs, and reasons
for exclusion provided in Table S1 in the Supplementary Materials. Upon conducting a
comprehensive analysis of the entire text of the 39 studies, 21 were excluded for various
reasons, such as not being retrieved, lacking clinical pertinent CV implications (e.g., studies
which were developing remote techniques for detecting falling asleep and awakening
time, not focusing on the CV track), having no direct link to nocturnal ANS activity (e.g.,
studies which created algorithms based on wakefulness measurements), presenting metrics
incompatible for integration into a RPM system (e.g., studies that were using high-density
EEG), and lacking clinical relevance due to being single-case-study in nature. In the end,
we included 18 articles for full-text screening.

A summary of the study characteristics, as well as an overview of all the technologies,
their applications and the associated CV implications, are presented in Table 1. Importantly,
besides the included cross-sectional and validation studies, there was one prospective
cohort study by Costa et al. (2021) [54], and three reviews by Matar et al. (2018) [55], Murali
et al. (2003) [56], and Park and Choi (2019) [57].
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Figure 2. The PRISMA [51] four-phase flow diagram delineating the procedure for the identification
and selection of studies included in the qualitative synthesis.

3.2. Technologies and Metrics for Non-Invasive Monitoring of Nocturnal Autonomic Nervous
System Activity

The included studies adopted diverse modalities and metrics for assessing noc-
turnal autonomic dysfunction. These ranged from more intrusive methods using elec-
trodes/sensors in direct contact with the body including electrocardiogram (ECG), photo-
plethysmography (PPG) and peripheral arterial tone (PAT), to less obtrusive options such
as smartwatches. Additionally, completely unobtrusive sensors, like ballistocardiography
(BCG) load cells affixed to the bed legs, optical fibers seamlessly integrated into the textile of
bed sheets or clothes, as well as complete contactless radars and cameras, were described.

3.2.1. Intrusive Modalities
Electrodes

Depending on the placement of electrodes on various body parts, different modalities
can be generated, such as electroencephalography (EEG), ECG, electrodermal activity
(EDA), electromyography (EMG), and electrooculography (EOG). These modalities provide
metrics related to neural activity, heart electrical activity, skin conductance, muscle electrical
activity, and eye movements, respectively. Polysomnography (PSG), which uses many
of the above mentioned techniques, is considered the gold standard for clinical sleep
monitoring, aiding in defining sleep stages and diagnosing disorders like sleep-related
breathing disorders [58]. While PSG may provide insights on autonomic dysfunction
activity in sleep disorders, it requires significant time, hospitalization, and qualified staff,
making it costly and less accessible. This limits its adoption in the clinical population
leading to a low detection rate of autonomic dysfunction during sleep, with undiagnosed
cases of moderate to severe sleep-related breathing disorders [59]. Therefore, there is a
need for a simple, fast, and inexpensive test for screening autonomic dysregulation during
the night.
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Table 1. Overview and summary of technologies compatible with remote monitoring systems from the included publications.

Study Design and Population Modality Metrics Device Location Application Cardiovascular
Implications

Baek and Cho, 2019 [60]
Experimental, n = 16
healthy sleep, n = 15

stress speech task, n = 5
free living 24 h

PPG

HRV index derived from
oscillation

equation-based
frequency algorithm

Wrist
Continuous HRV

monitoring, overcoming
motion artifacts

Monitoring risk of CV
disease based on

imaging continuous
ANS dynamics in daily

life

Cabiddu et al., 2015 [61]
Observational

cross-sectional, n = 18
obese, n = 20 healthy

Electrodes (ECG) HRV: SE, LZC, DFA Chest
Imaging of adaptive
capabilities and ANS

stability

Obesity associated with
decreased HRV
complexity and
sympathovagal

imbalance during NREM
sleep, posing CV risk

Carek and Holz, 2018
[62]

Experimental, n = 5
healthy sleep for 4 nights

Unobstructive BCG and
PPG PTT-based BP Legs

Continuous
non-invasive monitoring

of BP

Holistic assessment of
hypertension requires
24 h BP since patients

might exhibit nocturnal
hypertension without
signs during the day

Costa et al., 2021 [54] Prospective cohort,
n = 1858 Electrodes (ECG) HRF: PIP, ALS, PNNLS,

PNNSS Chest Imaging of abnormal
sinoatrial dynamics

HRF better predicts AF
than standard HRV

parameters, varies with
sleep stages and sympa-
thetic/parasympathetic

activities

Jung et al., 2016 [63]

Validation, n = 20
non-nocturnal

hypoxemia, n = 76
nocturnal hypoxemia

Unobstructive BCG

HRV: SDNN, RMSSD,
NN50, pNN50, LF, HF,

LF/HF, SD1, SD2,
SD1/SD2

Beneath bed’s legs (load
cell); under mattress at

dorsal surface (PVDF- or
EMFi film sensor)

Imaging of nocturnal
cardiac sympathetic

activation

LF component of HRV
highly predicts ODI,

reflecting sympathetic
modulation of HR

Lee et al., 2020 [64] Validation, n = 165 OSA,
n = 59 healthy

Electrodes (EEG, ECG),
PPG finger cuff

MLP neural network
trained on multiple

features

Head (EEG), chest
(ECG), finger (PPG)

Detection of
sleep-disordered
breathing with

sympathetic overdrive

MLP neural networks
classify sleep-disordered

breathing posing CV
risk, based on

SpO2mean, and
SpO2min
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Table 1. Cont.

Study Design and Population Modality Metrics Device Location Application Cardiovascular
Implications

Matar et al., 2018 [55] Review

IR- and RGB camera,
unobstructive BCG,

radar, optical fibers, EEG,
PPG

HR, HRV, RRV,
actigraphy, EDA

Sensor in pillow (EDA),
contactless at bedside
(camera, radar), wrist

(EDA, PPG), head (EEG)

Sleep staging, quality
check, and OSA

detection

Sleep stage changes
linked to neural

circulatory control,
hemodynamics

measured by HRV,
respiratory rate

Mayer et al., 2019 [65] Validation, n = 24
suspected OSA Electrodes (ECG), PPG HRV, PTT Chest (ECG), wrist (PPG)

Detection of
sleep-disordered
breathing with

sympathetic overdrive

Sympathetic overdrive
during sleep reflected in

EEG, ECG signals,
including HR

acceleration, PTT
decrease

Murali et al., 2003 [56] Review
Electrodes (EOG, EEG,

EMG, ECG), PPG finger
cuff

BP, HRV, EOG, EEG,
EMG, ECG, RR

Head (EEG, EOG, EMG),
chest (ECG), finger

(PPG)

Imaging of autonomic
functions during normal
and pathological sleep

Sleep, sleep stage, and
arousal linked to
changes in neural
circulatory control,

hemodynamics
measured by various

signals including BP, HR,
HRV

Nakayama et al., 2019
[66]

Validation, PhysioNet
apnea-ECG database Electrodes (ECG)

ML algorithm trained on
multiple HRV features

(meanNN, SDNN,
RMSSD, Total Power

NN50, pNN50, LF, HF,
LF/HF, LFnu, HFnu)

Chest Classification of OSA vs
non-OSA

HRV features in ML
algorithm detect OSA

with 76% sensitivity and
92% specificity, imposing

CV risk assessment

Ozegowski et al., 2007
[58]

Observational
cross-sectional, n = 74

suspected of
sleep-related breathing

disorders

Electrodes (ECG)

ML algorithm trained on
EDR features (mean EDR
amplitude, STD of EDR
amplitude, PSD of EDR

signal) and HRV features

Chest

Screening of
sleep-disordered

breathing by prediction
of AHI-index based on
ECG morphology and

HRV in home
environment

Early detection of
sleep-related breathing

disorders by monitoring
autonomic responses

might improve the
prognosis in patients

with CV disorders
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Table 1. Cont.

Study Design and Population Modality Metrics Device Location Application Cardiovascular
Implications

Park and Choi, 2019 [57] Review

Electrodes (ECG, EEG,
EMG, EDA), PPG, BCG,

PAT, accelerometer,
radar

HR, BP, RR, PAT, HRV,
actigraphy

Chest (ECG), wrist
(PPG), finger (PPG, PAT),
bedside (mobile phone,

camera), ear (EEG),
beneath bed’s legs (load
cell); under mattress at

dorsal surface (PVDF- or
EMFi film sensor)

Remote sleep monitoring
based on

sleep-stage-dependent
autonomic balance

modulation

Devices measure
sympathetic overdrive
related to AHI, aiding
cardiovascular health

assessment

Penzel et al., 2002 [67]

Observational
cross-sectional, n = 21

OSA and arterial
hypertension

PAT PAT amplitude Finger
Early diagnosis of

sleep-related breathing
disorders

Sympathetic overdrive
during sleep due to OSA,

arterial hypertension
detected by

hemodynamic changes:
BP, HR, arterial tone

Rahman and Morshed,
2021 [68]

Validation, n = 507
healthy, n = 303 mild

OSA, n = 190 severe OSA

Electrodes (ECG), PPG
finger cuff

AdaBoost classifier
trained on multiple

features

Chest (ECG), finger
(PPG)

Classification of OSA
severity

HRV and SpO2 features
estimate OSA severity,

aiding in cardiovascular
risk assessment during

sleep

Tong, 2022 [69] Validation, n = 15
healthy, n = 15 OSA PPG HRV: FuzzyEn, SDNN,

LF/HF Finger
Classification of

abnormal nocturnal ANS
related to OSA

OSA patients exhibit
lower FuzzyEn values in

HRV, indicating
sympathetic overdrive

during sleep and
potential cardiovascular

risks

Urbanik et al., 2019 [70]
Observational

cross-sectional, n = 71
suspected OSA

Electrodes (ECG)
HRT: TO, normal TO, TS,

normal TS, HRT0,
HRT1/2, HRT1, HRT2

Chest Prediction of AHI-index
based on HRT

HRT reflects sinus node,
baroreceptor reflex

variability, affecting ANS
balance, sympa-

thetic/parasympathetic
activities, pertinent to

CV health
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Table 1. Cont.

Study Design and Population Modality Metrics Device Location Application Cardiovascular
Implications

Yang et al., 2005 [71]
Observational

cross-sectional, n = 65
OSA

Electrodes (ECG) HRV: SDNN, pNN50, LF,
HF, LF/HF, RMSSD Chest

HRV analysis for risk
assessment of sleep

apnea severity

Apnea-induced
sympathetic activation

linked to cardiovascular
risk during

sleep-disordered
breathing

Yilmaz et al., 2023 [72]
Observational

cross-sectional, n = 78
male healthy

PPG

PPG pulse waveform
features: PD, Rt, ∆T, Sys

Amp, and Dias Amp,
Rslope, RI, ∆T_norm, SI

Finger Imaging of nocturnal
vascular health

Nocturnal variation in
PPG waveform

corresponds to changes
in HRV and BP,

indicating
cardiovascular

modulation during sleep
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The most common method for monitoring autonomic activity is the analysis of heart
rate variability (HRV), which can be derived from inter-beat intervals (IBIs) estimated from
heart activity. For this purpose, ECG is considered the clinical gold standard modality [73].
HRV metrics are associated with CV clinical profiles and are strong, independent predictors
of survival in heart failure. This underscores the clinical relevance and interventional
potential of HRV analysis for managing CV conditions [74].

The analysis of HRV in both the time and frequency domain are the most commonly
used methods, as demonstrated in the study by Yang et al. (2005) [71]. They computed
metrics in both the time domain (SDNN, SDANN, RMSSD, pNN50) and frequency domain
(VLF, LF, HF, LFnu, HFnu, LF/HF). Additionally, they adopted Heart Rate Turbulence
(HRT), a phenomenon related to baroreflex-mediated HR adjustments that serves as a
counter-mechanism to premature ventricular contractions. HRT involves a brief acceler-
ation in HR, followed by a gradual return to the baseline rate, quantified by turbulence
onset (TO), reflecting the initial acceleration of HR, and turbulence slope (TS), describing
the subsequent deceleration of HR. The study established HRT as a more reliable marker
for sympathovagal balance compared to general HRV-based metrics, as evidenced by a
significant inverse relationship between nighttime TS and the severity of sleep-disordered
breathing, generally associated with an heightened sympathetic overdrive [71]. This obser-
vation was substantiated by Urbanik et al. (2019), who used the same features to predict
imbalances in ANS activity, particularly characterized by sympathetic overdrive, as seen in
obstructive sleep apnea (OSA) [70].

To assess the adaptive capabilities and stability of the ANS function, Cabiddu et al.
(2015) utilized non-linear complexity metrics of HRV, including Sample Entropy (SE),
Lempel–Ziv Complexity (LZC), and Detrended Fluctuation Analysis (DFA). These metrics
were applied to IBIs derived from the ECG signal obtained from the chest and compared in a
group of healthy subjects and obese patients, respectively [61]. Their findings indicated that
a decrease in these parameters among the obese group, compared to the healthy controls,
was linked to increased sympathetic overdrive, with the most pronounced reduction
occurring during the NREM sleep phase [61].

Similarly, Costa et al. (2021) employed ECG electrodes on the chest but focused on
Heart Rate Fragmentation (HRF) metrics [54]. Unlike standard HRV metrics, HRF was
sensitive to frequent changes in HR acceleration, and it was suggested as a potential indica-
tor of neuro-autonomic and electrophysiological anomalies of the cardiac control system.
The extracted HRF metrics included: (1) the percentage of inflection points (PIP), reflect-
ing changes in heart acceleration sign, (2) the average length of accelerative/decelerative
segments (ALS), (3) the overall percentage of normal-to-normal (NN) intervals in long seg-
ments (PNNLS), and (4) the overall percentage of NN intervals in short segments (PNNSS).
In their study, Costa and colleagues found that HRF metrics improved prediction of atrial
fibrillation (AF) under sympathovagal imbalance as compared to standard HRV parameters,
and that these measures reflected autonomic changes in each sleep stage [54]. Mayer et al.
(2019) employed a receiving operating characteristic curve to identify changes in heart
rate acceleration (HRa), extracted from the ECG [65]. In addition, they determined the
pulse transit time (PTT), which represents the time taken for the pulse pressure waveform
to travel from the aortic valve to a peripheral site (i.e., the finger) where the PPG sensor
was attached. Both HRa and PTT parameters were able to effectively capture sympathetic
overdrive associated with cortical arousal induced by breathing alterations during sleep.
Although promising, the PTT metric requires at least two sensors attached to the body to
calculate the time delay of the pulse wave travel, which is a potential drawback in RPM
systems for daily use [65]. Moreover, solely looking at HRV metrics obtained from the
ECG, the study of Ozegowski et al. (2007) also analyzed the slow modulation of the ECG
amplitude which corresponds to the frequency of the breathing cycle. Herewith they were
able to obtain an ECG-derived respiration rate (EDR) [58].
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Optical Sensors

Signals obtained from optical sensors such as the PPG, and the PAT allow continuous
monitoring of pulsatile variations in peripheral blood flow, offering an indirect measure of
successive IBIs. Moreover, since the ANS controls blood vessel dilation and constriction,
which affects blood vessel tone, these changes can also be an indirect measure of ANS
function as well as endothelial function [72,75].

For the PAT sensor there is a unified pressure field incorporated (typically with a
cuff around the fingertip). Herewith, the distention of the veins is prevented allowing
to assess the arterial tone and volume changes in the peripheral arteries, and therefore
is able to assess the arterial stiffness [67]. This approach was explored in the research
conducted by Penzel et al. (2002) [67]. Their study revealed that, beyond alterations in HR
and BP associated with arterial hypertension, sympathetic overdrive could also be detected
through characteristics in PAT amplitude [67]. Furthermore, Yilmaz et al. (2023) extended
this physiological rationale to analyze signal changes in the PPG waveform, paralleling
variations in HRV and BP, which are indirect measures of arterial elasticity [72]. Similarly to
Mayer et al. (2019), the study by Carek and Holz (2018) used the PPG signal in combination
with BCG on the femoral artery to measure PTT [62,65]. They utilized PTT to estimate
continuous BP by applying the rationale of the Moens–Korteweg equation [76], which links
arterial stiffness directly to pulse wave velocity.

The PPG signal enables the extraction of various HRV metrics. However, as noted
by Baek and Cho (2019), continuous measurement during daily activities, where frequent
movement occurs, can lead to inaccurate HRV readings due to motion artifacts [60]. While
PPG is reliable for measuring HR in beats per minute, this represents an average over a
minute, making it less affected by movement. In contrast, accurate HRV analysis requires
detecting IBIs with at least 1-second precision, making it more sensitive to motion distur-
bances. To address this challenge, Baek and Cho developed a novel HRV metric using
a frequency-tracking algorithm based on oscillation equations, allowing HRV analysis
even in noisy PPG signals. This method enables the extraction of metrics reflecting ANS
modulation, offering a more detailed analysis than average HR measurements in wearable
devices [60].

3.2.2. Non-Intrusive Modalities

In addition to obtaining the metrics reflecting ANS from the above-mentioned wear-
able modalities, the study by Jung et al. (2016) demonstrated the feasibility of extracting
these parameters from non-intrusive modalities. They introduced contact-free BCG sensors
integrated into the bed [63]. BCG captures the repetitive motions of the human body result-
ing from the abrupt ejection of blood into the vessels within each heartbeat. Consequently,
it becomes feasible to calculate IBIs, representing the time between these blood pulses, and
extract HRV from a non-contact BCG system. The study compared systems incorporating
load cells beneath the four bed legs, as well as film sensors positioned beneath the mattress
at the dorsal surface of the sleeping subject. Jung et al. (2016) demonstrated that HRV met-
rics in the time (SDNN, RMSSD, NN50, pNN50), frequency (LF, HF, LF/HF) and nonlinear
( SD1, SD2, SD1/SD2) domains could be extracted successfully [63]. However, challenges
arose in signal acquisition due to motion artifacts. Additionally, the study highlighted
that in the frequency domain, the LF-power spectrum exhibited the highest predictive
power for the oxygen desaturation index (ODI) in a population of subjects with nocturnal
and non-nocturnal hypoxemia, suggesting its association with underlying sympathetic
overdrive [63].

Matar et al. (2018) reviewed technologies for unobtrusive sleep monitoring, focusing
on cardiac, respiratory, and movement activities to extract features like HRV, respiration
rate (RR), and posture patterns [55]. They examined the use of infrared and color cameras
to capture body posture, detect arousal, and generate remote PPG (rPPG) signals for non-
intrusive heart rate measurement. The study also explored the potential of smartwatch
designs with integrated PPG and accelerometry for similar data collection. A key trade-off
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was identified: while cameras offered unrestricted sleep monitoring, the smartwatch’s PPG
sensor functioned even when skin was covered, though it provided less detailed posture
information. Both approaches struggled with motion artifacts in pulse signals [55].

Radar technology for HR extraction and unobtrusive BCG, discussed by Jung et al.
(2016), encountered difficulties in signal processing and motion artifacts [63]. These tech-
nologies were applied for sleep staging, based on sleep-stage-dependent variations in
autonomic function, assessing sleep quality, and detecting breathing-related issues associ-
ated with heightened sympathetic drive. Matar et al. emphasized the appeal of contactless
measures while acknowledging limitations in detectable motion range and sensitivity to
noise. They also underscored the need to validate novel systems against gold standard clin-
ical devices, such as ECG for HRV estimation, in comparison with signals from emerging
technologies like PPG, rPPG, BCG, etc. [63].

Similarly to Matar et al. (2018), Park and Choi (2019) reviewed the latest technolog-
ical advancements in remote sleep-monitoring. In their review they not only took into
account the previously mentioned unobtrusive measures but also considered additional
systems, providing a comprehensive overview of the strengths and weaknesses of devices
designed to measure sympathetic overdrive during sleep [55,57]. Despite exploring various
modalities, the review found that the most accurate results were consistently achieved
with IBI-based metrics (e.g., HRV, HRT, HRF) obtained through ECG. This underscores
the ongoing necessity to enhance signal acquisition in other modalities that lean towards
unobtrusiveness [55,57].

3.2.3. Multiple Modalities and Artificial Intelligence

In addition to acquiring metrics from a single modality, Lee et al. (2020), and Rah-
man and Morshed (2021) demonstrated the capability of training ML models to identify
autonomic dysregulation based on metrics from multiple modalities [64,68]. In particular,
Lee et al. (2020) employed a neural network trained on various metrics (mean, min, max,
and std) derived from the six-channel EEG positioned on the head, HRV metrics in the
frequency domain (LF, HF, and LF/HF) obtained from the ECG on the chest, and mean and
min Peripheral Oxygen Saturation (SpO2) values from a pulse-oximeter on the finger [64].
This study showcased the potential of utilizing AI models to integrate multiple peripheral
biosignals, providing a more comprehensive understanding of ANS regulation during sleep.
The neural networks, trained on these features, successfully classified sleep-disordered
breathing with an increased efficiency in respect to using only SpO2 signal and the derived
apnea hypopnea index (AHI), demonstrating their ability to finely distinguish between
normal ANS regulation and cases with sympathetic overdrive. This finding suggests that
the use of an obtrusive EEG cap is no longer essential for classifying sleep disorders. This
view was empowered by Rahman and Morshed (2021) who trained a ML model (AdaBoost
classifier) on features obtained from the pulse-oximeter sensor, including HRV metrics and
SpO2 saturation, and showed their discriminating power to classify OSA severity using an
everyday wearable [64,68].

Despite the advantages of ML-based algorithms in interpreting various metrics and
modalities, Tong (2022) acknowledged the limited computing power of some smart de-
vices [69]. Consequently, Tong developed a method that circumvents the need for AI
networks to classify abnormal autonomic responses. This approach involved applying
a Fuzzy Entropy (FuzzyEn) algorithm to the IBIs. Tong validated that a lower FuzzyEn
value indicates a lower degree of confusion or higher repetition patterns in HRV signals,
reflecting sympathetic overdrive during sleep. As a result, this method could effectively
distinguish between OSA and healthy sleep [69].

In addition to exploring various modalities and metrics for monitoring autonomic
responses during sleep, the review by Murali et al. (2003) emphasized the impact of
sleep, sleep stages, and arousals on neural circulatory control, consequently influencing
the measured ANS response both in physiological and pathological sleep [56]. The study
employed standard polysomnography (PSG) modalities, including EEG, ECG, EOG, and
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EMG, along with PPG and blood pressure measurements. It compared signal metrics
across different sleep stages and wakefulness, revealing significant variations in the signals
during these states. This suggests that accounting for these effects and extracting measures
specific to different sleep stages can have significant implications in RPM and its CV
implications. Additionally, comparing ANS responses during wakefulness versus sleep, or
across different sleep stages, may provide new insights into mapping physiological versus
pathological ANS function [56].

3.3. Alterations of Nocturnal Autonomic Function and CV Implications

Sleep is a natural, periodic suspension of consciousness during which processes of rest
and restoration occur. The cognitive, reparative, and regenerative functions of sleep are
essential for maintaining health and homeostasis [56]. Dysfunction in autonomic CV regu-
lation can impact sleep physiology [77]. Moreover, sleep disorders can result in autonomic
dysfunctions and impaired CV control, as observed in OSA [78]. Studies reviewed indicated
that CV dysfunction and sleep disturbances are frequently associated, highlighting a poten-
tial downward spiral. Understanding the mechanisms of this interplay and the underlying
autonomic dysregulation may potentially lead to effective intervention strategies.

3.3.1. Sleep-Related Breathing Disorders and Autonomic Dysfunction

As mentioned earlier, sleep disorders can lead to autonomic dysfunctions and impaired
CV control, as seen in sleep-related breathing disorders like OSA. This review found broad
agreement among the included studies that patients with OSA are at increased risk of
CV diseases. The heightened sympathetic drive is considered one of the underlying
mechanisms and is linked to various CV pathologies, including coronary artery disease,
myocardial ischemia, chronic heart failure, cardiac arrhythmias, diabetes mellitus, and
stroke (Jung et al. (2016), Lee at al. (2020), Mayer et al. (2019), Nakayama et al. (2019),
Ozegowski et al. (2007), Park and Choi (2018), Penzel et al. (2002), Rahman and Morshed
(2021), Tong (2022), Urbanik et al. (2019), and Yang et al. (2005)) [57,58,63–71]. However,
the pathophysiological mechanisms leading to CV diseases in OSA are complex and not
fully understood. It is believed that increased sympathetic nervous system activity due to
breathing disruptions during sleep alters cardiac autonomic regulation, contributing to the
development of CV diseases.

The studies of Yang et al. (2005) and Urbanik et al. (2019) tried to obtain a better
understanding by using HRT, an important prognostic indicator of the autonomic dys-
function in CV diseases reflecting perturbations of arterial BP after ventricular premature
contractions [70,71]. Both studies were finding that alterations in nighttime HRT correlate
with the severity of sleep-related breathing disorders like OSA [70,71]. The studies of
Jung et al. (2016), Nakayama et al. (2019), Ozegowski et al (2007), Rahman and Morshed
(2021), and Tong (2022) all used different analysis methods of the HRV, showing that OSA
is related to increased repetition patterns between heartbeats during the night indicating
a sympathetic overdrive [58,63,66,68,69]. Moreover, using these analyses could allow for
classification of the AHI, and therefore serve as an efficient and more accessible approach
to detect sleep-related breathing disorders compared to the PSG which requires much time,
qualified staff and the necessity of the patient’s hospitalization, which makes it costly;
however, herewith potentially allowing for early detection and redirecting the developing
course of CV risk. This topic has also been discussed in the review of Park and Choi (2019)
where they see that the autonomic modulation during sleep involving the EEG during the
PSG could be recorded using several less obtrusive CV measurements including the ECG,
PPG, BCG, and PAT making sleep monitoring easier and simpler [57].

3.3.2. Altered Nocturnal Autonomic Modulation Reveals Cardiovascular Risk

As highlighted in the reviews by Murali et al. (2003) and Matar et al. (2018), sleep-
related changes in CV function result from a complex interplay between central autonomic
influences and CV reflexes [55,56]. Sympathetic control of CV function progressively de-
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creases from wakefulness to deep non-rapid eye movement (NREM) sleep, while parasym-
pathetic tone remains in general dominant throughout most of the sleep period [55,56].
Different studies highlighted how this nocturnal modulation of autonomic activity can be
altered in the clinical population. Therefore, targeting specific metrics during different sleep
stages could be an effective strategy for identifying early markers of CV disease progression.

Murali et al. (2003) described multiple mechanisms of nocturnal autonomic dysfunc-
tions and CV activity, including the following points [56]: (1) Coronary circulation and
sleep: physiological changes during rapid eye movement (REM) sleep may be severely
disrupted in individuals with pre-existing coronary artery stenosis, which could explain
the association between REM sleep and nocturnal cardiac ischemia; (2) HR control during
sleep after myocardial infarction: normally, HR accelerates with inspiration and decelerates
with expiration to accommodate increased venous return during lung expansion. This
variability, indicative of good cardiac health, causes a decrease in the LF/HF ratio of the
RR interval in NREM sleep. However, in post-myocardial infarction patients, the expected
NREM-related decrease in the LF/HF ratio is absent and actually increases, followed by a
further increase during REM sleep, indicating inappropriate sympathetic dominance and a
loss of sleep-related vagal activation; (3) BP and sleep: in healthy normotensive individuals,
BP typically declines by 10–20%, a phenomenon known as ‘dipping’. However, emerging
evidence shows that the absence of nocturnal BP decline ‘non-dipping’, often seen in obese
and OSA patients, or an excessive nocturnal BP decline ‘extreme dipping’, has significant
CV implications linked to central ischemia [56]. Cabiddu et al. (2015) demonstrated de-
creased HRV complexity during NREM sleep, indicating sympathetic overactivity in these
patients [33]. Monitoring during NREM sleep is crucial to assess baroreflex function, where
baroreflex sensitivity should increase to help maintain a slow HR despite the decrease in
BP. Additionally, Costa et al. (2021) demonstrated that monitoring fragmented sinoatrial
dynamics using HRF during sleep is associated with the incidence of atrial fibrillation [54].
This emphasizes the importance of sleep-stage-specific ANS monitoring to identify and
understand the early markers and mechanisms of CV disease.

3.3.3. Importance of Continuous Monitoring

Monitoring in the home environment can give a more complete picture of heart health,
and potentially detect masked dysfunctions like hypertension, which is only evident
outside the clinic. As mentioned by Carek and Holz (2018), the most common form of
home monitoring of the HR and the BP involves an oscillometry-based BP cuff which the
user needs to attach multiple times a day while holding still as the cuff self-inflates [62].
The cuff measures the systolic and the diastolic BP as well as the HR. It is an inexpensive,
accurate, and patient-friendly form of RPM. However, this method is limited to tracking of
spot measurements during the day, when this obtrusive method of tracking is tolerable.
Moreover, it is not possible to map the complete circadian rhythm where in a healthy person
the BP tends to dip during the night (10–20% below daytime values), while extreme dipping
or non dipping is associated with CV events as mentioned earlier. Herewith highlighting
the advances of continuous monitoring in achieving a holistic understanding of the subject,
its cardiac autonomic regulation, and e.g., hypertension management.

In the studies by Carek and Holz (2018) and Yilmaz et al. (2023), an initial technical
approach to continuous BP monitoring was made by correlating optical reflections from
the pulse wave using an optical sensor, such as the PPG [62,72]. This method measures
the pulse wave as it propagates across the body, utilizing the PTT. Simultaneously, they
were collecting HR and HRV metrics to obtain a broader understanding of the continuous
cardiac autonomic regulation. The study of Penzel et al. (2002) did not apply the PTT, but
integrated a continuous pressure field around the finger and used the PAT signal to correlate
this to the BP [67]. Additionally they used the optical sensor to detect changes in HR to
detect hemodynamic changes related to arterial hypertension. However, as highlighted in
the study of Baek and Cho (2019), the optical sensors still have a technical challenge where
they need to cope with motion artifacts [60]. However, they propose an algorithm more
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robust to obtain a more accurate pulse wave signal. Therefore, current developments in the
field are promising towards continuous cardiac autonomic monitoring.

3.4. Feasibility Assessed by Metric Compatibility, Obtrusiveness, Data Accuracy, Continuity, and
Practical Considerations

This review assessed various modalities and metrics for RPM of nocturnal ANS activity.
Table 2 compares different modalities based on metric compatibility, obtrusiveness, data
accuracy, continuity, and practical aspects crucial for long-term monitoring, such as patient
comfort, compliance, and economic costs.

Table 2. Feasibility of different modalities for physiological monitoring of autonomic regulation
assessed by compatibility, obtrusiveness, data accuracy, continuity, and practical considerations.

Modality Compatible
Metrics Obtrusiveness Data Accuracy Continuity

Patient
Comfort and
Compliance

Economic Cost

Electrodes
HRV, skin

conductance,
neural activity

High (skin
contact) High Continuous

Low
(discomfort,

skin irritation)

Moderate (for
consumables)

PPG sensor HRV, SpO2,
pulse waveform

Low (wrist or
finger contact)

Moderate to
high (prone to

motion
artifacts)

Continuous High (wearable,
non-invasive)

Low (widely
available)

PAT HRV, PAT
amplitude

Moderate (cuff
pressure)

Moderate to
high Interval Low (pressure

discomfort)

High
(specialized
equipment)

BCG HR, RR, body
movements

Low (no
contact)

Moderate
(prone to
artifacts)

Interval
High

(embedded in
environment)

High
(infrastructure

cost)

RGB camera HRV, RR, body
movements

None
(contactless)

Moderate
(lighting

conditions,
artifacts)

Interval
High

(contactless,
non-invasive)

Moderate to
high

(equipment)

IR camera HR, RR, body
movements

None
(contactless)

Low (limited by
single-channel

processing)
Interval

High
(contactless,

non-invasive)

Moderate to
high

(equipment)

Radar HR, RR, body
movements

None
(contactless)

Moderate
(affected by

motion,
interference)

Interval
High

(contactless,
non-invasive)

High (advanced
technology)

Accelerometer Body
movements Low (wearable) Moderate Continuous

High
(integrated in

wearables)

Low (widely
available)

3.4.1. Electrodes

Electrodes, particularly ECG systems, provide the most accurate and continuous data
for HRV evaluation and other measures. However, their direct skin contact and requirement
for precise positioning make them the most obtrusive option, often causing discomfort or
skin irritation during long-term use. While high data accuracy is beneficial, the invasiveness
reduces patient compliance over time unless integrated into more wearable forms like bands
or earpieces. The trade-off is that dry electrodes have lower conductance, resulting in poorer
data quality [79]. Recent advancements in wearable electrode technology are focused
on improving materials and AI integration for better performance [80]. Economically,
electrodes can be cost-effective when used in clinical settings, but repeated usage in home
environments might incur ongoing costs for consumables (e.g., adhesive patches).
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3.4.2. PPG

PPG sensors, commonly worn on the wrist or finger, offer a balance between accuracy
and comfort. They provide HRV, SpO2, and pulse waveform measures with moderate accu-
racy, especially when movement artifacts are minimized [81]. Liu et al. (2021) demonstrated
that PPG-derived features can distinguish between various ANS activation patterns with
an 80% classification accuracy [75]. The non-intrusive nature of PPG makes it suitable for
long-term monitoring, though wrist placement can cause motion artifacts. Economic costs
are relatively low since PPG is widely integrated into consumer devices like smartwatches,
but maintaining accuracy may require advanced algorithms [82].

3.4.3. PAT

PAT sensors measure arterial pulsatile volume changes with good accuracy for HRV-
related metrics, but they require a cuff that applies uniform pressure, which can be un-
comfortable for long-term use. Penzel et al. (2002) highlighted that while the PAT signal
correlates with BP, it cannot replace invasive BP measurements [67]. The cuff’s discomfort
makes PAT less suitable for continuous RPM, particularly during sleep, and its cost is
higher due to the specialized equipment required [67].

3.4.4. Unobtrusive BCG

BCG sensors are embedded into objects like beds or chairs, providing an unobtrusive
option for long-term monitoring. They measure HR, RR, and body movements with moder-
ate accuracy but face challenges in precise HRV measurement due to motion artifacts [83].
BCG sensors are suitable for continuous nighttime monitoring, but data is typically collected
in intervals. These sensors are integrated into furniture, resulting in high upfront costs, but
they ensure high patient compliance due to their non-intrusive nature [55,57,62,63].

3.4.5. Cameras

Both RGB and IR cameras offer contactless monitoring, enhancing patient comfort
and compliance. RGB cameras can provide accurate HR measures under good lighting
conditions and limited subject movements [84]. IR cameras are less accurate due to single
channel processing [85,86]. Both camera types are suitable for interval monitoring during
sleep but are limited by motion artifacts. The cost of camera-based systems varies depend-
ing on the technology, but they offer a feasible solution for patients requiring contactless
monitoring [26].

3.4.6. Radar

Radar technology enables non-contact measurements of HR and RR, even when the
subject is covered by a blanket, unlike cameras that require skin exposure. This makes radar
a promising option for unobtrusive monitoring. However, its accuracy can be influenced
by environmental factors and motion artifacts [87,88]. Radar is particularly suitable for
nighttime monitoring with limited movement, but it tends to be more expensive.

3.4.7. Accelerometer

Accelerometers, typically integrated into wearable devices, provide accurate data on
body movements and sleep patterns. Park and Choi (2019) note that actigraphy, which uses
accelerometer data, is widely accepted for sleep assessment but has limitations in detecting
wakefulness due to motion inactivity [57]. While effective for monitoring nighttime arousals
through body movements, these devices do not measure direct autonomic responses.
However, they are economically feasible and highly compliant due to their integration into
consumer-grade devices like smartwatches.

3.5. Comparison of Metrics for Autonomic Dysregulation Detection and
Cardiovascular Monitoring

When monitoring CV health and detecting autonomic dysregulation, each metric
(HR, HRV, pulse waveform (PPG/PAT), BP, SpO2, RR, body movements, and EEG-derived
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neural activity) offers distinct advantages and challenges. These metrics differ in terms
of accuracy, reliability, and feasibility for continuous, non-invasive monitoring, especially
when used to detect subtle autonomic changes linked to sleep-related CV dysfunctions such
as OSA, hypertension, or heart failure. Below is a comparative analysis of each metric’s
role in this context.

3.5.1. Heart Rate

Accuracy: HR, when measured using ECG, is highly accurate, providing reliable time-
varying information about cardiac function. PPG-based HR measurements are also accurate
but more sensitive to motion artifacts [89]. Reliability: As a fundamental metric, HR has
high clinical reliability for assessing CV health and autonomic dysregulations [89]. Auto-
nomic Relevance: While HR changes reflect autonomic shifts (e.g., increased sympathetic
activity), it provides limited insight into parasympathetic tone without HRV analysis.

3.5.2. Heart Rate Variability

Accuracy: HRV is the gold standard for assessing ANS function in a non-invasive
way, particularly when derived from ECG. PPG-derived HRV has moderate accuracy but
can suffer from decreased precision due to motion artifacts or poor signal quality [90].
Reliability: HRV reliably reflects shifts between sympathetic and parasympathetic activity,
making it essential for monitoring autonomic dysregulation during sleep, stress, or recovery
phases [90]. Autonomic Relevance: HRV is directly linked to ANS modulation. Reduced
HRV is a strong indicator of sympathetic overdrive, especially in sleep disorders like OSA.

3.5.3. Pulse Waveform (PPG and PAT)

Accuracy: PPG accurately measures HR and SpO2 but struggles with motion artifacts.
PAT, which measures arterial stiffness and serves as a proxy for BP, has moderate accuracy
in detecting peripheral vascular changes linked to autonomic regulation [91]. Reliabil-
ity: PPG and PAT are reliable for continuous HR and BP estimates. However, artifacts
from movement and ambient light can reduce consistency [91]. Autonomic Relevance:
Pulse waveforms, both PPG and PAT, reflect vascular tone and BP regulation, making
them useful in identifying autonomic dysfunctions such as non-dipping BP patterns or
sympathetic activation.

3.5.4. Blood Pressure

Accuracy: Cuff-based BP measurements offers highly reliable readings of systolic and
diastolic BP. Cuff-less methods (e.g., PAT) provide moderate accuracy but are improving
with advances in algorithms [92]. Reliability: BP is a cornerstone in CV monitoring. The
absence of a normal nocturnal BP dip or the presence of extreme dipping patterns is a strong
marker of autonomic dysregulation, particularly in hypertensive or OSA patients [92].
Autonomic Relevance: BP regulation, particularly dipping patterns during sleep, is directly
influenced by autonomic function, specifically sympathetic activity at night.

3.5.5. SpO2

Accuracy: SpO2 is generally accurate when measured using PPG, though it can be
affected by motion artifacts or poor sensor placement [93]. Reliability: SpO2 is highly
reliable for detecting oxygen saturation, which is critical for diagnosing and monitoring
OSA and other sleep-related breathing disorders [93]. Autonomic Relevance: SpO2 levels
reflect respiratory and cardiovascular coupling. Drops in SpO2 during sleep (desaturation
events) often signal autonomic dysregulation.

3.5.6. Respiration Rate

Accuracy: RR can be accurately measured with PPG, PAT, or accelerometers, but
indirect methods may offer lower precision [94]. Reliability: Continuous monitoring of RR
is reliable, though body movement can reduce accuracy [94]. Autonomic Relevance: RR is
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closely linked to autonomic function, with abnormalities potentially indicating autonomic
dysregulation, respiratory, or cardiovascular issues.

3.5.7. Neural Activity (EEG)

Accuracy: EEG offers around 85% sensitivity in detecting autonomic dysfunctions [95].
Reliability: EEG is reliable for short-term monitoring, but long-term use can be affected
by artifacts. It is less commonly employed for continuous autonomic monitoring [95].
Autonomic Relevance: EEG detects autonomic dysregulation by tracking changes in brain
activity patterns, relevant to conditions like epilepsy and sleep disorders.

3.5.8. Body Movements

Accuracy: Accelerometers and gyroscopes achieve around 95% accuracy in detecting
body movements [96]. Reliability: Continuous monitoring of body movements is highly
reliable, although accuracy depends on sensor placement and calibration [96]. Autonomic
Relevance: Body movements provide indirect insights into autonomic function, particularly
in detecting sleep disorders and physical activity levels.

3.5.9. Summary

In autonomic function monitoring with a focus on CV implications, HRV (via ECG)
and BP emerge as the most reliable metrics, offering both high accuracy and direct relevance
to autonomic function. While EEG provides valuable insights into sleep-stage-specific
autonomic shifts, it is less practical for continuous home monitoring. PPG and PAT sensors
are more user-friendly for continuous home use, though their accuracy can be affected
by motion artifacts. A combined multimodal approach that integrates HRV (measured
via ECG or PPG), BP, and SpO2 monitoring offers a comprehensive solution for assessing
autonomic regulation of the heart, vascular tone, and respiratory function. This integration
is especially valuable for detecting autonomic dysregulation and CV risks. A visualization
of each metric, evaluating its accuracy in measuring the target physiological variable,
reliability for continuous monitoring, and relevance to ANS function is provided in Table 3.

Table 3. Comparison of metrics for ANS dysregulation detection and cardiovascular monitoring.

Metric Accuracy Reliability Autonomic Relevance

HR High (ECG), Moderate (PPG,
motion-sensitive)

High (Clinically reliable for CV
health)

Moderate (Reflects autonomic shifts,
but limited without HRV analysis)

HRV Gold standard (ECG), moderate
(PPG) High (Reliable for ANS shifts)

High (Strong indicator of
autonomic modulation, especially

sympathetic overdrive)

Pulse Waveform (PPG/PAT) Accurate (PPG for HR, SpO2),
Moderate (PAT for BP)

Moderate (Affected by motion
artifacts)

Moderate (Reflects vascular tone
and BP regulation)

BP High (Cuff-based), Moderate
(Cuff-less)

High (Cornerstone for CV
monitoring)

High (BP dipping patterns strongly
reflect autonomic activity)

SpO2 High (PPG, but motion-sensitive) High (Critical for respiratory
disorders like OSA)

Moderate (Desaturation events
linked to autonomic dysregulation)

RR High (PPG, PAT, or accelerometers) Moderate (Affected by body
movement)

Moderate (Linked to autonomic
control of respiratory and CV

systems)

Neural Activity (EEG) Moderate ( 85% sensitivity for
autonomic dysfunctions)

Moderate (Reliable but affected by
artifacts)

Moderate (Tracks brain-autonomic
links in conditions like epilepsy,

sleep disorders)

Body Movements High (Accelerometers/gyroscopes,
95%)

High (Depends on sensor
calibration/placement)

Low (Indirect insights into
autonomic function through activity

levels and sleep)
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3.6. Risk of Bias Assessment and Quality Appraisal

The summary of the risk of bias, as illustrated in Figure 3, adheres to the revised
Cochrane risk of bias tool for primary diagnostic accuracy studies within systematic reviews
(QUADAS-2) [53]. It is important to note that, in the case of the included review studies by
Matar et al. (2018) [55], Murali et al. (2003) [56], and Park and Choi (2019) [57], the option
’No information’ was applied across all four domains. This decision was made because
these studies do not qualify as primary diagnostic accuracy studies.

Figure 3. Evaluating trial quality and reporting on the studies by Baek and Choi (2019) [60],
Cabiddu et al. (2015) [61], Carek and Holz (2018) [62], Costa et al. (2021) [54], Jung et al. (2016) [63],
Lee et al. (2020) [64], Matar et al. (2018) [55], Mayer et al. (2019) [65], Murali at al. (2003) [56],
Nakayama et al. (2019) [66], Ozegowski et al. (2007) [58], Park and Choi (2019) [57], Penzel et al.
(2002) [67], Rahman and Morshed (2021) [68], Tong (2022) [69], Urbanik et al. (2019) [70], Yang et al.
(2005), and Yilmaz et al. (2023) [72]. Risk of bias assessment using the QUADAS-2 tool [53] for
primary diagnostic accuracy studies within systematic reviews across four domains.

Notably, two studies [69,70] demonstrated a high risk of bias for the index test and the
flow and timing, respectively. Conversely, three studies [58,65,66] revealed a low risk of
bias across all four domains, signaling reliable research. For the remaining studies, there
were only some concerns and low risks distributed across the domains, presenting no
alarming risks overall, as depicted in Figure 3.

The overall risk of bias, illustrated in Figure 4, predominantly indicates some concerns,
primarily attributed to the high percentage of concerns in D3 ’Reference standard’. This
might be due to the absence of a standardized reference for sympathovagal balance mea-
surements in RPM systems or technologies compatible with RPM modalities. This suggests
a moderate variation in the quality of conduct and reporting.
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Figure 4. Overview of risk of bias assessment using QUADAS-2 tool [53] across four domains in the
included primary diagnostic accuracy studies [54–57,61,63–72].

4. Discussion

This systematic review’s objective was threefold: (i) screening the literature to catego-
rize and describe current modalities and metrics for nocturnal ANS activity monitoring;
(ii) emphasizing potential CV implications associated with alterations in the nocturnal
autonomic function; (iii) assessing the feasibility of the identified modalities for daily life
applications in respect to metric compatibility, obtrusiveness, data accuracy, continuity, and
practical considerations. As such, literature was examined to review all the potential modal-
ities and metrics capable of continuously assessing nocturnal autonomic function, trying to
provide an integrated framework encompassing their integrability in RPM systems as well
as their potential implications in CV risk assessment. Herewith distinguishing itself from
the other reviews included in this study that were focusing on advancements in unobtru-
sive sleep monitoring, comparing traditional PSG methods with novel approaches as was
performed by Matar et al. (2018) and Park and Choi (2019) on the sole understanding of the
mechanisms linking nocturnal autonomic function and CV physiology and pathology, but
disregarding the necessity of remote monitoring technologies as was examined by Murali
et al. (2003) [55–57].

The key findings of this study can be summarized as follows: (1) Various modalities
for monitoring nocturnal ANS activity were identified, including electrodes (EEG, ECG,
PSG), optical sensors (PPG and PAT), non-intrusive BCG, cameras (RGB and IR), radars,
and accelerometers. (2) Among different metrics compatible with the observed modalities,
those based on HRV as well as those influenced by arterial tone, such as BP, are the most
frequently and successfully used for characterizing nocturnal autonomic and vascular dys-
regulation. (3) Sleep disorders like OSA lead to autonomic dysfunctions and impaired CV
control. While on the other hand nocturnal ANS dysfunctions influence sleep physiology
and CV control, exacerbating each other in a downward spiral. Moreover, alterations in
the physiological modulation of autonomic activity during the night represent a further
prodromal sign of serious CV implications. This evidence clearly highlights the need of
continuous ANS mapping, with potential sleep-stage-specific monitoring. (4) Electrodes are
deemed the most accurate for continuous HRV monitoring but are also the most intrusive.
Optical sensors show promise for multimodal applications, including HRV, SpO2, arterial
stiffness, PTT, and correlations to BP. (5) Unobtrusive measures such as BCG, cameras, and
radars are capable of accurately estimating HR and RR, but continuous HRV monitoring
remains a challenge with these methods.

4.1. Challenges and Opportunities in Standardizing Metrics for Remote Autonomic Dysfunction
Assessment During Sleep

Continuously mapping autonomic activity and identifying the pathways linking it to
CV control represents a fundamental process for gaining a better insight in the mechanisms
underlying the development of sustained sympathovagal imbalance and their potential
relationship with sleep disorders. Both conditions worsen the prognosis and progression of
CV diseases, underscoring the importance of identifying prodromal states of sympathova-
gal imbalance for early diagnosis and timely intervention. However, the optimal metrics for
distinguishing between physiological and pathological autonomical states remains unclear
across different applications. This is compounded by the lack of standardized methods
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for assessing nocturnal autonomic function, making it difficult to interpret results across
studies. This challenge is highlighted by the risk of bias in many studies in the ’Reference
standard’ domain. The lack of a universally accepted reference standard poses a significant
challenge for meaningful comparisons between metrics, particularly since no established
reference standard currently exists for remotely monitoring sympathetic overdrive in a
home setting. An avenue for testing the discriminative capacity of these metrics in assess-
ing sympathovagal imbalance could involve validation against direct measurements of
sympathetic nerve activity through microneurography[97]. This technique, involving the
insertion of a fine electrode into peripheral sympathetic fibers, offers unparalleled accuracy
but is invasive, time consuming, and detrimental for sleep quality, limiting its use in many
studies [97].

Among the most frequently reported metrics for characterizing autonomic function in
our review, HRV and BP were highlighted. Carter’s review (2019) exploring the impact of
existing microneurography studies over 50 years, reported some significant correlations
between the HRV and BP metrics and more invasive microneurography [98]: reduced BP
correlated significantly with reduced muscle sympathetic nerve activity [99], and enhanced
coupling of muscle sympathetic nerve activity and HRV and BP variability during head-
up tilt compared to rest [100]. Moreover, they highlighted that for HRV, the laboratory
of Dwain Eckberg critically appraised sympathovagal balance in response to the study
of [101], who coupled spectral analysis of HRV directly to sympathetic activity obtained
from microneurography. Eckberg (1997) emphasized that while HRV can be used to un-
derstand autonomic activity and for CV risk stratification, caution is needed when using
spectral analysis of HRV to quantify a balance between sympathetic and vagal neural
outflows [7]. All these results refer to autonomic activity during wakefulness. Regarding
nocturnal BP, studies by Somers et al. (1995) and Murali et al. (2003) documented increased
muscular sympathetic nerve activity and BP in patients with OSA during the night [43,56].
These findings confirm the effectiveness of continuous BP measurements for monitoring
autonomic dysregulation. Additionally, they demonstrated that continuous positive airway
pressure therapy reduces nocturnal muscular sympathetic nerve activity and BP in OSA
patients. This indicates that airway obstruction causes sympathetic overdrive, and its
alleviation reduces this overdrive. Continuous BP measurements effectively reflect these
sympathetic responses, making BP monitoring a critical target for continuous CV risk
assessment and for evaluating intervention strategies. Hence, findings must be interpreted
cautiously, necessitating comparison with microneurography measurements to evaluate
the validity and reliability of metrics describing sympathovagal imbalance. This highlights
the critical importance of validating metrics alongside autonomic dysregulation and con-
trol, selecting the most appropriate ones, and thereby laying the groundwork for their
integration into an RPM system.

4.2. Modalities for Autonomic Function Evaluation with Potential for RPM

To identify the most promising modalities for defining an RPM system for long-
term home monitoring of a subject’s autonomic state, a trade-off between obtrusiveness
and data accuracy and continuity must be made. This involves considering the specific
metrics adopted and their implications for CV risk assessment. As previously mentioned,
HRV and BP are the most commonly reported metrics for autonomic monitoring with
potential integration into daily-use RPM systems. BP measurements have shown the
capacity to directly reflect nerve sympathetic changes. However, the development of non-
invasive, cuffless, and continuous BP estimations is a promising yet challenging field. It
involves the acquisition of multiple signals, multiple sensor placement on the body, and
individual factors, all of which can affect BP estimation accuracy. Conversely, technologies
for continuous HRV measurements, along with advancements in signal processing and AI
integration, offer promising solutions for accessing continuous HRV data in daily settings.
These technologies range from minimally obtrusive devices like bands and watches to
non-obtrusive options such as BCG, cameras, and radar.
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4.3. Heart Rate Variability in RPM

In our review, we identified several modalities capable of evaluating HRV data: elec-
trodes, optical sensors, cameras, radars, and BCG. Electrodes offer the highest data accuracy
and are commonly used in clinical settings. However, their obtrusiveness, requiring place-
ment on specific body parts and potentially causing skin irritation, makes them less feasible
for daily RPM use.

Many HR-related metrics can be extracted from less obtrusive methods like PPG
sensors and even non-intrusive sensors such as cameras, radar, and BCG. The pulsatile
signals from these modalities yield HR and HRV characteristics comparable to those from
ECG [102,103]. Despite the advantages of PPG sensors, such as ease of use and low
cost, their need for direct skin contact limits their feasibility in certain scenarios. This
limitation has prompted exploration into non-contact HR and HRV measurement solutions
to address mobility constraints and sensor obtrusiveness issues. However, non-contact
methods involve a trade-off between data accuracy and obtrusiveness. These methods
can experience data loss when subjects move out of sensor range and require advanced
signal processing to mitigate motion artifacts [104]. Moreover, motion can lead to the loss
of an IBI, distorting the comprehensive understanding of HRV responses. Despite this, the
accuracy of these non-intrusive methods is adequate for averaged measures such as HR
and RR.

Therefore, we suggest that in scenarios where skin sensor placement is feasible, transi-
tioning to dry electrodes or a PPG sensor integrated into a band-like wearable is currently
the most practical approach for HRV-based metric assessment in everyday settings. Portable
ECG devices such as AliveCor or MyDiagnostick for smartphones, or smartwatches like the
Apple Watch Series 4® with integrated ECG capabilities, provide solutions for recording
ECG, effectively balancing data accuracy with sensor convenience [105–111]. The integra-
tion of ECG into smartwatch-like devices enhances accessibility and usability for RPM
applications. However, it is important to note that none of the above mentioned devices
allow for continuous heart rhythm measurements; instead, users must manually start an
ECG recording when they experience symptoms or receive an irregular rhythm notifica-
tion based on data collected with the PPG sensor [112]. Considering the PPG, despite
its limitation of providing only indirect indications of underlying cardiac rhythms, its
major advantage relies in the broad integration of this modality into the current day’s
smartwatches, allowing a big data stream of continuous HR derived measures and thus
the possibility of reconstructing subject’s IBIs, when lost due to motion artifacts using
AI [113–115].

4.4. Continuous Blood Pressure in RPM

In our review, we identified the potential of optical sensors for indirectly assessing
BP by analyzing the pulse waveform and its propagation. Carek and Holz (2018) used
the PTT from BCG to PPG sensors placed on the legs [62]. Similarly, Park and Choi (2019)
discussed the potential of using PTT from an ECG sensor to a PPG sensor at the wrist, as
tested by Mayer et al. (2018) [55,57]. Alternatively, pulse wave propagation features can
be directly associated with changes in the PPG signal, such as amplitude drop or signal
derivative, as demonstrated by Yilmaz et al. (2023) [72]. Penzel et al. (2002) used PAT to
correlate pulsatile volume change with BP [67]. The advantage of PAT is that it involves a
continuous pressure field around the finger, reducing the signal-to-noise (SNR) ratio and
providing a clearer understanding of wave propagation.

4.5. Advantages and Disadvantages in Using PPG for Remote Autonomic Function Monitoring

PPG is able to monitor both HRV and BP continuously in a less obtrusive way as the
ECG, and the intra-arterial or inflatable cuff, respectively. A significant amount of further
information can be extracted from the sole PPG and its derivative waveforms. The systolic
peak can be used for HR, the dicrotic notch and the areas before and after can be associated
with stroke volume, and slope transit time can indicate hypertension [116,117]. The first
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derivatives are linked to blood velocity, which in turn relates to BP [116,117]. Moreover,
PPG slowing varying features have been associated with variation in autonomic function.
In particular, sudden drops in the amplitude of the PPG pulsatile waveform have been
suggested to reflect sympathetic activations of the skin vasculature underlying peripheral
vasoconstriction [35]. Mean number of drops per hour during a night of sleep have been
demonstrated to be a good predictor of CV risk in OSA [118]. Overall, this evidence makes
this modality a potential candidate for RPM due to its capacity to extract multiple features
able to reflect autonomic function.

Nonetheless, to ensure the reliability of PPG features, the waveform must be of high
quality and with a high SNR ratio. To improve the accuracy of continuous monitoring, a
comprehensive understanding of the sources of inaccuracies is required, as highlighted
by Fine et al. (2021) [119]. They identified several key noise sources and corresponding
solutions. Individual variations, such as skin tone, can lead to decreased signal intensity,
which can be addressed by selecting the appropriate PPG wavelength. Obesity also results
in decreased signal intensity, though currently, there is no solution for this issue. Age can
alter the PPG waveform and signal intensity, and this can be resolved through calibration,
as can the changes in signal intensity associated with gender. Physiological factors also
play a significant role in modifying the PPG waveform. For instance, RR can alter the
waveform, but this can be corrected using a high-pass filter. Venous pulsations also affect
the PPG waveform, which can be mitigated with high-pass filtering and applying a pressure
field. Local body temperature could change signal intensity and can be managed through
calibration. Additionally, the body site in which the PPG sensor is applied affects signal
intensity and waveform, which can also be calibrated. External factors such as motion
artifacts and ambient light can degrade the SNR. These issues can be resolved using filters
and secondary sensors. Moreover, optical shielding and applying optimal pressure are
essential for maintaining a high SNR without affecting waveform features [119].

4.6. Potential Applications of a RPM System Capable to Monitor Nocturnal
Autonomic Dysregulation

Our findings highlight the potential of RPM systems capable of assessing nocturnal
autonomic dysfunction to facilitate early diagnosis and intervention for a wide range
of conditions characterized by sympathetic overdrive, such as systemic hypertension,
myocardial infarction, congestive heart failure, stroke and many others [45,46]. Nonetheless,
this review clearly showed that nocturnal autonomic assessment results predominantly
limited to sleep-related breathing disorders. We emphasize the importance of focusing
on nocturnal autonomic activity, leveraging the absence of many confounders (e.g., daily
living and work activities) and the ANS dominance over the central nervous system during
sleep. This approach could be applied to a broader range of cardiometabolic pathologies
related to autonomic dysregulation [14–26].

In this review, the benefits of monitoring autonomic function during sleep were
discussed for various pathologies. For instance, physiological changes during REM sleep
may be severely disrupted in individuals with pre-existing coronary artery stenosis. In
myocardial infarction, the HRV parameter LF/HF increased during NREM sleep and
further increased during REM sleep compared to a decrease in this parameter during
NREM for healthy subjects. For systemic hypertension, continuous BP monitoring can
help identify extreme dipping or non-dipping profiles. For atrial fibrillation, monitoring
the incidence of fragmented sinoatrial dynamics using HRV during sleep was suggested.
However, the advantages of sleep monitoring in congestive heart failure were not discussed,
despite its potential benefits.

In fact, sleep apnea is a common and serious comorbidity in congestive heart failure,
often underdiagnosed [120]. It results in additional sympathetic overdrive during sleep,
compounding the persistent sympathetic drive during wakefulness. Implementing a RPM
system would allow for a better understanding of the mechanisms linking sleep breathing
disorders to autonomic dysregulation in congestive heart failure. This presents a compelling
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use case, as congestive heart failure is a significant healthcare challenge affecting millions
worldwide. Its prevalence is increasing due to improved post-diagnosis survival rates and
an aging population [121,122].

For congestive heart failure, RPM technologies capable of capturing ANS dysregu-
lation could offer advantages over traditional non-invasive parameters, as ANS-related
parameters change earlier in the cascade of events leading to decompensated congestive
heart failure than signs and symptoms [123]. Early detection and intervention, facilitated
by monitoring these ANS-related parameters, could potentially mitigate hospitalization
and mortality rates. To address these gaps, we propose applying and validating all iden-
tified metrics within a single application characterized by sympathetic overdrive, such
as congestive heart failure, to assess their ability to distinguish between different ANS
states. This approach could provide valuable insights into early detection and intervention
strategies for managing congestive heart failure more effectively. Additionally, the potential
of sleep interventions is highlighted by studies showing that the diagnosis and treatment
of central sleep apnea or Cheyne–Stokes respiration in congestive heart failure patients
with continuous positive airway pressure or adaptive servo-ventilation during the night
are associated with improved clinical outcomes [125? ,126] . This improvement is believed
to be caused by the relief of continuous sympathetic overactivity, restoring the recovering
function of sleep through homeostasis.

Another important aspect is the challenge RPM systems face in ensuring data pri-
vacy and security. The continuous collection and transmission of sensitive health data
introduce potential vulnerabilities, such as data breaches and unauthorized access. Ro-
bust encryption protocols, secure data storage systems, and stringent access controls are
essential to safeguard patient information. Additionally, ensuring device security and
maintaining the integrity of interconnected networks are critical to prevent tampering and
unauthorized access. Addressing these challenges is crucial for building trust between
patients and healthcare providers, thereby facilitating the effective implementation of RPM
systems [127]. Note that the challenges of data privacy and security are related to the
company brand and management, not to the metrics and modalities reviewed in this paper.

Future Research Directions

Our review underscores a critical gap in current RPM systems and telehealth appli-
cations, which predominantly focus on monitoring wakefulness. This focus highlights a
significant limitation: the need for systems that offer insights into nocturnal autonomic and
circadian regulation. During sleep, the ANS plays a pivotal role that is often overshadowed
by the CNS (Central Nervous System) during wakefulness.

The existing monitoring systems primarily cater to sleep staging, sleep quality assess-
ment, and detection of breathing-related sleep disorders. While these systems are valuable,
they do not fully capture the intricate dynamics of nocturnal autonomic regulation. Given
the ANS’s crucial role in regulating cardiovascular health and maintaining homeostasis
during sleep, there is an urgent need for non-intrusive monitoring systems that can assess
ANS activity throughout the night without disrupting sleep.

Moreover, the link between sleep disorders, particularly breathing-related disorders,
and cardiovascular diseases remains underexplored. Research has not sufficiently examined
the nocturnal autonomic changes associated with conditions such as heart failure. This
knowledge gap hampers our understanding of the comorbidity between sleep-related
breathing disorders (e.g., central sleep apnea) and heart failure. It also limits our ability
to develop effective interventions to address the continuous sympathetic overdrive that
persists during sleep, a period crucial for restorative processes.

To address these gaps, we propose a road map for advancing nocturnal autonomic
regulation research:

• Development of Advanced Monitoring Technologies: Prioritize the creation of non-
intrusive technologies that can accurately measure nocturnal ANS activity. Such
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advancements are fundamental for obtaining reliable data on autonomic regulation
and cardiovascular health.

• Longitudinal Studies on Nocturnal Autonomic Changes: Utilize these advanced
monitoring technologies to conduct studies that investigate how nocturnal autonomic
changes correlate with cardiovascular pathologies. These studies could help identify
potential biomarkers for early intervention.

• Integration of Multimodal Data: Investigate the integration of data from various
metrics, including HRV, BP, and SpO2, while considering the sleep phases during
which these measurements are taken. This approach could offer a comprehensive
understanding of autonomic regulation and its impact on CV health.

• Evaluation of Intervention Strategies: Assess and validate therapeutic approaches
aimed at decreasing sympathetic activity and improving patient outcomes.

• Validation of Clinical Utility: Confirm the effectiveness and practicality of these
monitoring technologies in real-world clinical settings.

5. Conclusions

In conclusion, we categorized and described the current methods for nocturnal ANS
monitoring identified in the literature. Various modalities were reviewed, including elec-
trodes (EEG, ECG, PSG), optical sensors (PPG and PAT), non-intrusive BCG, cameras (RGB
and IR), radars, and accelerometers. Among reported metrics compatible with these modal-
ities, HRV and BP emerged as the most commonly and successfully used metrics. HRV is
valuable for understanding autonomic activity and CV risk stratification, although caution
is needed when using spectral analysis of HRV to quantify the balance between sympathetic
and vagal neural outflows. BP, directly related to sympathetic activity, proves effective
for monitoring sympathovagal imbalance, highlighting the importance of continuous BP
monitoring for CV risk assessment and intervention evaluation. Secondly, we investigated
the connection between nocturnal autonomic dysregulation and CV risk. HRV and BP
were noted as critical indicators due to their relationship with both autonomic function
and CV health. Studies reviewed indicated that CV dysfunction and sleep disturbances are
frequently associated, highlighting a potential downward spiral of health. Understanding
the mechanisms of this interplay and the underlying autonomic dysregulation may poten-
tially lead to effective intervention strategies. Given that sleep is a period for homeostasis
and recovery, where the baroreflex is reset, targeting specific metrics during different sleep
stages could be an effective strategy for identifying early markers of CV risk.

Finally, we assessed the feasibility of the identified methods based on their com-
patibility with selected metrics, obtrusiveness, data accuracy, continuity, and practical
considerations. HRV monitoring appears most feasible due to advancements in dry ECG
electrode development for wearables such as bands and watches, which offer minimal
invasiveness. PPG, with calibration options and signal reconstruction capabilities, can
provide accurate IBIs for HRV analysis. Non-obtrusive methods like BCG and camera
systems can be integrated near the bedside, enabling continuous monitoring without the
discomfort of wearing devices, though with a trade-off in HRV accuracy. Continuous BP
monitoring using non-invasive PPG remains promising yet challenging, with two main
research directions: waveform morphology theory and waveform propagation theory. The
former requires extensive data and individualized calibration, while the latter involves
multiple sensors and faces challenges related to signal acquisition and accuracy.

Overall, while significant advancements have been made in nocturnal ANS monitoring,
further research and development are needed to enhance the accuracy, feasibility, and
integration of these methods into RPM systems for effective long-term monitoring and
management of autonomic function and cardiovascular risk.

6. Limitations

We acknowledge that our initial PICO search strategy, which centered on CV im-
plications and RPM during nighttime, may have excluded certain remote monitoring
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technologies. This focus was intentional, as CV diseases pose a significant global healthcare
challenge, affecting millions with increasing prevalence due to improved post-diagnosis
survival rates and an aging population [121,122]. We also deliberately prioritized nocturnal
monitoring, potentially overlooking daytime technologies like inflatable BP cuffs that are
appropriate during the day but too invasive for nighttime use. Nighttime monitoring was
chosen with the expectation of obtaining more reliable baseline measurements, as nighttime
conditions reduce disturbances from activities such as body movement or leaving sensor-
monitored rooms. Additionally, ANS responses are more prominent during sleep, offering
clearer measurements less influenced by the CNS, which dominates during wakefulness.

However, we recognize that this narrower focus may have excluded other patient
populations that could benefit from ANS monitoring, such as those with insomnia, periodic
leg movement syndrome, cognitive impairment, cerebrovascular disorders, and metabolic
conditions like obesity and diabetes [2,12,39,40,44–47].

To address the possibility of missing out on relevant technologies, we conducted an
additional search. This time, we repeated the search string shown in Figure 1 but excluded
terms such as “Cardiovascular”, “Cardiac”, and “Heart”. From this, we selected the six
most recent (from 2021 onward) and most highly cited studies focused on non-invasive
wearables and nearables for nocturnal monitoring. Through this extended review, we iden-
tified several innovative technologies. For instance, Heenman and Sang (2023) discussed
metrics and modalities similar to those in our review, but highlighted an additional tech-
nique based on a microphone to extract respiratory rate and detect movement [128]. Kwon
et al. (2021) [129] introduced an advanced patch-like device with an integrated stethoscope,
developed by Klum et al. [130], that measures left ventricular ejection time and pre-ejection
period, critical markers for heart failure, and extracts respiratory rate through lung sound
analysis. The device also incorporates ECG for HRV measurement, providing a compre-
hensive view of sleep physiology. Other cutting-edge technologies include impedance
plethysmography [131], which accurately estimates pulse waves at the wrist compared
to ECG, and a wearable ultrasound patch [132] that measures tongue thickness, relevant
for OSA events. Beyond CV implications, Li et al. [133] explored the relationship between
nocturnal sympathetic nervous system activity and cognitive dysfunction in OSA patients,
while van Eekelen et al. [134] demonstrated how sleep deprivation affects HRV and PPG
markers, emphasizing the value of continuous ANS monitoring during sleep.

These findings show that the metrics and modalities align closely with those in our
study. However, our research takes a unique approach by specifically examining these
technologies within the context of nocturnal ANS, CV implications, and RPM, a focus
largely missing from previous studies. This distinction underscores the importance of
our work, as it addresses a critical gap by framing these technologies within CV health
monitoring, offering new insights into their potential applications in the field of sleep.
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Abbreviations
The following abbreviations are used in this manuscript:

ANS Autonomic Nervous System
CV Cardiovascular
BP Blood Pressure
RPM Remote Patient Monitoring
PICO Population, Intervention, Comparator, Outcome
ECG Electrocardiogram
PPG photoplethysmography
PAT Peripheral Arterial Tone
BCG Balistocardiography
EEG Electroencephalogram
EDA Electrodermal Activity
EMG Electromyography
EOG Electrooculography
PSG Polysomnography
HR Heart Rate
HRV Heart Rate Variability
IBI Inter Beat Interval
SDNN Standard Deviation of the NN Intervals
SDANN Standard Deviation of the Average NN Intervals
RMSSD Root Mean Square of the Successive Differences
pNN50 Proportion of NN50 divided by the total number of NN intervals
VLF Very Low Frequency
LF Low Frequency
HF High Frequency
LFnu Normalized Low Frequency
HFnu Normalized High Frequency
HRT Heart Rate Turbulence
TO Turbulence Onset
TS Turbulence Slope
OSA Obstructive Sleep Apnea
SE Sample Entropy
LZC Lempel-Zive Complexity
DFA Detrended Fluctuation Analysis
HRF Heart Rate Fragmentation
PIP Percentage of Inflection Points
ALS Accelerative Segments
PNNLS Percentage of NN Intervals in Long Segments
PNNSS Percentage of NN Intervals in Long Segments
AF Atrial Fibrillation
HRa Heart Rate acceleration
PTT Pulse Transit Time
EDR ECG derived respiration rate
PVDF Polyvinylidene Fluoride
EMFi Electro-Magnetic Field imaging
ODI Oxygen Desaturation Index
RR Respiration Rate
rPPG Remote Photoplethysmography
IR Infrared
RGB Red, Green, Blue
AI Artificial Intelligence
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ML Machine Learning
MLP Multilayer Perception
SpO2 Peripheral Oxygen Saturation
AHI Apnea-Hypopnea Index
FuzzyEn Fuzzy Entropy
NREM Non-Rapid Eye Movement
REM Rapid Eye Movement
SNR Signal-to-Noise Ratio
CNS Central Nervous System
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