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Abstract
We study the evolution of behavior under reinforcement learning in a Prisoner’s Dilemma
where agents interact in a regular network and can learn about whether they play one-shot or
repeatedly by incurring a cost of deliberation. With respect to other behavioral rules used in
the literature, (i) we confirm the existence of a threshold value of the probability of repeated
interaction, switching the emergent behavior from intuitive defector to dual-process cooperator;
(ii) we find a different role of the node degree, with smaller degrees reducing the evolutionary
success of dual-process cooperators; (iii) we observe a higher frequency of deliberation.

Introduction
The evolution of cooperation has been investigated intensely in various disciplines, such as biology,
economics, computer science, physics and psychology. There are two important dimensions, among
many (Bowles and Gintis, 2011; Lehmann and Keller, 2006; Nowak, 2006), that have been shown to
affect the evolution of cooperation: the interaction structure, i.e., who interacts with whom (Santos
et al., 2006), and the mode of cognition, i.e., the extent of deliberation as opposed to intuition
(Capraro, 2019). While for the interaction structure there is a substantial consensus that sparse
and heavily clustered networks help the spread of cooperation (Nowak, 2006; Ohtsuki et al., 2006),
for the mode of cognition results are more articulated and depend on specific features of the social
dilemma (Bear et al., 2017; Bear and Rand, 2016) and of the cost of deliberation (Jagau and van
Veelen, 2017).

An important aspect in evolutionary models is the behavioral rule adopted by agents, which
heavily contributes to determining the trajectories of the dynamic adjustment. While the litera-
ture has extensively considered behavioral rules encompassing best reply (Bilancini and Boncinelli,
2009) and imitation (Levine and Pesendorfer, 2007) as well as processes of the type death-birth or
birth-death (Ohtsuki et al., 2006), little attention has been given to evolutionary dynamics based
on reinforcement learning (Tanabe and Masuda, 2012). Reinforcement learning is a prominent be-
havioral rule originated in behavioral sciences (Skinner, 1938a,b) and recently become extremely
popular in computer sciences, with many different applications (Nian et al., 2020). Reinforcement
learning, which is a particular type of Q-learning, is known for its capacity to solve complex prob-
lems, at least those with a fixed environment (Watkins and Dayan, 1992), in a very parsimonious
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way in terms of informational requirements. However, reinforcement learning performs poorly to
attain cooperation in a system with many interacting agents (Tanabe and Masuda, 2012).

We contribute to the literature by addressing the effects of inserting reinforcement learning into
the model of Mosleh and Rand (Mosleh and Rand, 2018), which is basically the same model of
Bear and Rand (Bear and Rand, 2016) with the addition of an interaction structure in the form
of a k-regular lattice. In their model, agents accumulate over time payoffs across games played
with all of their neighbors, and the agents who are randomly selected to update behavior copy the
strategy of a neighbor with a probability that is increasing in the neighbor’s accumulated payoff.
In our model, when behavior is updated an agent increases the probability of choices that have
best performed in the past, regarding the cognitive mode and the action in the Prisoner’s Dilemma
conditional on the information acquired.

We provide three main results. First, we confirm previous findings, obtained with other behav-
ioral rules (Bear and Rand, 2016; Mosleh and Rand, 2018), that for low probabilities of repeated
interaction the intuitive defector behavior (i.e., always defect, never deliberate) is favored by evo-
lution, while for higher probabilities it is the dual-process cooperator behavior (i.e., cooperate if
not deliberating, deliberate to switch to defection when payoff-maximizing) to be favored. The
intuition is similar to the one of the previous literature (Bear et al., 2017; Bear and Rand, 2016;
Jagau and van Veelen, 2017; Mosleh and Rand, 2018): when the probability of repeated interaction
is very low, it is not worth incurring the cost of deliberating to learn if the current interaction is
actually repeated or one-shot, with the result that agents always expect the interaction to be mostly
one-shot and systematic defection becomes very attractive. In this respect, reinforcement learning
does not change the quality of results.

Second, in contrast with specific (Mosleh and Rand, 2018) and general (Nowak, 2006; Ohtsuki
et al., 2006) findings of the previous literature that fewer connections help the spread of cooperation,
we find that a lower degree in the regular network hampers the adoption of dual-process cooperation,
making intuitive defection more likely to be adopted. Therefore, reinforcement learning drastically
changes the effects of a higher number of connections, which here becomes a factor promoting
cooperation.

Third, we find that reinforcement learning increases the observed frequency of deliberation, for
every probability of repeated interaction, comparing our results with those of Mosleh and Rand
(2018). It can be interesting to notice that a cognitively cheap behavioral rule, as reinforcement
learning is, is associated with a higher reliance of the more demanding cognitive mode of delibera-
tion. In turn, this greater reliance on deliberation has an impact on cooperation rates, depending
on whether deliberation is more cooperative than intuition (which happens for low probabilities of
repeated interaction) or less cooperative (which happens for high probabilities of repeated interac-
tion).

Overall, reinforcement learning does not change the conclusion that there exists a threshold
value of the probability of repeated interaction switching the emergent behavior from intuitive
defector to dual-process cooperator. At the same time, we can conclude that the role of the
number of connections for the spread of cooperation is moderated by the behavioral rule, with a
higher network degree favoring cooperation under reinforcement learning. Finally, we observe that
reinforcement learning increases the observes frequency of deliberation.
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Methods

In this section we introduce the model, the dynamics and simulations setup, highlighting similarities
and differences with Mosleh and Rand (2018).

The model

Our results are based on agent based simulations. Here, we describe the model setup.

Population. The representative population consists of N = 100 agents simultaneously playing a
modified version of the Prisoner’s Dilemma (PD). At each iteration, the two interacting agents can
play Tit-for-Tat (TFT) or always defect (AllD) in a one-shot or repeated game. In the one-shot
game, TFT corresponds to cooperation, while AllD stands for defection. From now on, we will use
for simplicity C or D to indicate the two choices in both scenarios.

Stage game. The game is a repeated PD with probability PG and payoff matrix[
b− c 0
b 0

]
while with probability 1− pG the agents will be involved in a one-shot PD with payoff matrix[

b− c −c
b 0

]
where b = 4 and c = 1 in our simulations.

Deliberation. At each round, a deliberation cost d∗ is randomly drawn from a uniform distribu-
tion in [0, 1]. Each agent has her own individual threshold cost for deliberation, di, i ∈ {1, . . . , N} :
if di ≤ d∗, the agent will deliberate acquiring information about the game type (one-shot/repeated);
if di > d∗, she will act under intuition ignoring the type of game.

Interaction network. All agents are placed on a regular lattice with fixed number of neighbours
for each agent, i.e. fixed node degree k. We consider different degree values: k ∈ {2, 4, 8, 20, 40}.
The graph is mathematically represented by an adjacency matrix A ≡ (aij)1‘i,j‘N , where aij = 1
means that agent i is linked to agent j, while aij = 0 represents the absence of agents connection.

Each agent is characterized by a vector of parameters, completely defining her strategy:

(pi,int, p
1s
i,del, p

rep
i,del, di) i ∈ {1, . . . , N} (1)

where pi,int is the probability to play C under intuition (i.e., independently on the type of game);
p1si,del is the probability to play C under deliberation in a one-shot PD; prepi,del is the probability to
play C under deliberation in a repeated PD; di is the agent deliberation cost threshold.

At each round, all pairs of connected agents are selected to play the game. The random cost
d∗ ∼ U [0, 1] is drawn at the beginning of each round and kept fixed for all playing agents.
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Dynamics
When all agents have played, the reinforcement learning rule is applied to update the strategy
of each agent, both in terms of actions taken and deliberation cost threshold. At the end of
the game, each agent compares the average payoffs of each choice and game-type and decide to
increase/decrease the related probabilities accordingly. We want to stress that each agent can play
different strategies (cooperate/defect or decide intuitively/deliberately) with different neighbours
in the same round, but according to the same strategy vector (1) kept fixed. Indeed, the update of
the probabilities/cost is done only when all agents have played with all neighbours.

Deliberation cost. At each time and for each agent, we compute the experiences payoffs of
playing under intuition and under deliberation at that time, averaged over the two possible choices
C or D: πi,int, πi,del. Then, the individual deliberation cost is updated according to the following
rule:

di =

{
di + λ if πi,int < πi,del − di

di − λ if πi,int > πi,del − di
(2)

with λ = 0.1.
In other terms, the agent increases (decreases) her deliberation cost of a small amount, λ, if

the average payoff obtained under deliberation - net of the deliberation cost - is greater (smaller)
than the average payoff obtained acting under intuition. If πi,int = πi,del − di, or if one of the
two payoffs cannot be calculated, then the agent deliberation cost does not change. We set 0 and
1 respectively as the maximum and minimum values for the deliberation cost threshold, therefore
if di < 0 → di = 0 and if di > 1 → di = 1. This choice avoids meaningless outcomes, such as
a negative or extremely high deliberation cost threshold, without loss of generality. Indeed, the
effect of having a deliberation threshold cost equal to 0 (1) is exactly the same of having a negative
(greater than 1) one, but speeding up the process avoiding to reach very small (high) threshold
values. Finally, it is worth to notice that the update is done only when both payoffs are observed
(i.e., the agent acts both under deliberation and under intuition at least once in the same round).

Action strategy. At the end of each round, the following average payoffs are computed: (i)
the payoffs resulting from cooperation, πC

i,int, and defection, πD
i,int, under intuition; (ii) the payoffs

resulting from cooperation, πC
i,del,1s, and defection, πD

i,del,1s, under deliberation when the game
is one-shot; (iii) the payoffs resulting from cooperation, πC

i,del,rep, and defection, πD
i,del,rep, under

deliberation when the game is repeated.
Then, the strategy played by every agent i is updated according to the following rules:

pi,int =

{
pi,int + ϵ if πC

i,int > πD
i,int

pi,int − ϵ if πC
i,int < πD

i,int

(3)

pi,del,1s =

{
pi,del,1s + ϵ if πC

i,del,1s > πD
i,del,1s

pi,del,1s + ϵ if πC
i,del,1s < πD

i,del,1s

(4)

pi,del,rep =

{
pi,del,rep + ϵ if πC

i,del,rep > πD
i,del,rep

pi,del,rep + ϵ if πC
i,del,rep < πD

i,del,rep

(5)
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with ϵ = 0.1.
The probability of cooperating in the three cases (under intuition, under deliberation when the

game is one-shot, under deliberation when the game is repeated) is increased (decreased) by a small
amount, ϵ, if the related payoff averaged over all games played by the agent in that round (i.e.,
its number of neighbours or node degree) is greater (smaller) than the average defection payoff
obtained respectively in the same three scenarios. No update takes place in the above thresholds
in case of equality or if one of the payoffs to be compared is absent.

Perturbations. We assume that with probability µ = 0.05 a mutation occurs: the agent updates
her action strategy or her deliberation cost exchanging the inequalities in (2),(3),(4),(5). This choice
introduce the possibility of a random mistake in the update process at each decision level.

Simulations
We considered a discrete range of variability for the probability to have a one-shot game with step
equal to 0.1: pG ∈ {0, 0.1, 0.2, . . . , 1}. At the beginning of each simulation run, all strategy vectors
are independently initialized from a uniform distribution. Each simulation run continued over a
number of generations until no more than one agent updates its strategy for 102 generations. All
results are averaged over 1000 initializations.

Results
In this work the same setting proposed by Mosleh and Rand (2018) has been employed, except for
the behavioural rule used by agents for updating their strategy. Hence, the comparison between
our and their outcomes allows us to focus on the effect of reinforcement learning. In the following
sections, we highlight three main results standing out from this comparison.

Emergence of dual-process cooperation. Figure 1(a) shows that as the probability of repeated
interaction, PG, increases, the observed frequency of cooperation under intuition gets larger and
larger, starting from values close to 0.1 and reaching almost 1. These S-shaped curves correspond
to the switch from situations mainly characterized by intuitive defection (for low values of PG) to
situations where dual-process cooperation prevails (for high values of PG). This is qualitatively the
same result as in Mosleh and Rand (2018).
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Strategy evolution and network structure. (a) Probability of cooperating under
intuition, pint, as function of the probability to have a repeated game, pG. (b) Critical value of the
probability that the interaction is repeated, pG, for which pint = 0.5 across the different values of
k ∈ {2, 4, 6, 8, 20, 40}. (c) Probability of cooperating under deliberation when the game is repeated,
prepdel , as function of the probability that the game is repeated, pG. (d) Probability of cooperating
under deliberation if the game is one-shot, p1sdel, as function of the probability that the game is
repeated, pG. (e) Maximum threshold cost of deliberation, d∗, as function of the probability that
the game is repeated, pG. (f) Maximum value of the deliberation cost across the whole discrete
range of variability of the probability to have a repeated game, pG ∈ {0, 0.1, . . . , 1}. In all panels
the number of each node’s neighbours is fixed, k ∈ {2, 4, 6, 8, 20, 40}.
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However, a difference emerges for small values of PG: while the observed frequency of cooperation
under intuition in Mosleh and Rand (2018) is low for large values of k and high for small values
of k, we find a low frequency of cooperation irrespective of k. This outcome suggests that when
a reinforcement learning update rule is employed, the network structure/number of neighbours
becomes negligible for the emergence of cooperation under intuition when the game is mainly one-
shot, remaining its value around 0.1 independently on the number of games played by each agent.

Dual-process cooperation and node degree. In contrast with Mosleh and Rand, we find that
the curves associated with a smaller k are located further down, as shown in figure 1(a). Our results
suggest that a higher number of neighbours favors the adoption of dual-process cooperator behavior,
while the opposite is true for Mosleh and Rand (2018). This outcome highlights the role played by
the reinforcement learning update rule: by increasing the number of games played by each agent
in each round, the probability to move from intuitive defection to dual-process cooperation rapidly
increases; on the contrary for k = 2 this passage arrives at high value of pG (> 0.5). Figure 1(b)
summarizes this effect, showing a negative slope curve representing the relation between the node
degree and the probability PG (the analogous figure in Mosleh and Rand (2018) exhibits instead a
positive slope).

Furthermore, by looking at figures 1(c) and 1(d), we recognize that the frequency of cooperation
under deliberation when the game is repeated rise rapidly as pG increases, at least when the node
degree is rather large, and they never go down. In our case, hence, we do not observe the frequency
get pulled back towards 0.5 as in Mosleh and Rand (2018), figure 3.

Frequency of deliberation. Figure 1(e) shows the maximum threshold cost for deliberation
averaged over all agents and for all values of the probability pG. Even if the curves shapes (inverted
V) are quite similar to the analogous graph of Mosleh and Rand, in our setting two main differences
occur: (i) for all values of k, except for k = 2, we observe very close trends of the maximum
deliberating cost with respect to the probability pG with a slight leftward shift of the peak as
k increases (exactly the opposite tendency exhibiting in the analogous figure of Mosleh); (ii) the
maximum threshold costs of deliberation double that of Mosleh and Rand for almost all values of
pG. Both outcomes, summarised in figure 1(f), suggest a higher frequency of deliberation when a
reinforcement learning update rule is used.

The heat-maps in figure 2 provide a graphical summary of our main results showing the variation
of the probability of cooperating under intuition, in figure 2(a), and the maximum threshold cost,
in figure 2 (b), with respect to the node degree, k, and the probability to have a repeated game, pG.
This is particularly useful to highlight the differences with the setup proposed by Mosleh Mosleh
and Rand (2018), hence, to evaluate the effect of a reinforcement learning update rule.

Finally, we have repeated the same analysis with different network structures: Erdös-Rényi ran-
dom graph, Watt-Strogatz and Barabasi-Albert model with varying node degree (k ∈ {2, , 6, 8, 20, 40}).
These findings show high similarity to the case of agents placed on regular lattices, (i) confirming
that the observed outcomes are related to the network density rather then to other specific network
features as already pointed out by Mosleh and Rand; (ii) stressing that the differences observed
with respect to their setup are due to the introduction of a reinforcement learning update rule
(figures available upon request).
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(a) (b)

Figure 2: Dual-process cooperation and network structure. Heat-maps of the (a) probability
of cooperating under intuition, pint, and (b) the maximum threshold cost of deliberation, d∗, as
a function of the number of neighbours (i.e., the number of games played by each agent in each
round), k, and the probability to have a repeated game, pG.

Discussion

The debate in the literature whether people are more cooperative under intuition or deliberation
has not focused much so far on the specific rule adopted by agents when updating behavior. In
this paper we have shown that the main qualitative conclusion obtained in Mosleh and Rand
(2018) is robust to agents following a reinforcement learning rule: for a low probability of repeated
interaction the prevailing behavior is intuitive defection, while dual-process cooperation spreads as
such probability increases until it becomes prevalent for high probabilities. This pattern holds for
every number of interacting partners. In this respect we differ from Mosleh and Rand (2018), where
dual-process cooperation is quite common also for low probabilities of repeated interaction when
the number of interacting partners is small. Figure 4 summarizes our main findings.

At the same time, there are important qualitative differences brought about by reinforcement
learning. The most important one concerns the widespread belief in literature that a smaller
number of interacting partners promotes the spread of cooperation. With reinforcement learning,
we find the opposite: the smaller the number of partners, the more difficult it is for the dual-process
cooperation to prevail. The reasons for this result could be fruitfully investigated in future research.

Another interesting observation concerns the observed frequency of deliberation. The use of
reinforcement learning, which is a behavioral rule that consumes few cognitive resources, increases
the frequency of deliberation, which is more cognitively costly than intuition.

In general, the results of our study call for further investigation into the role played by behavioral
rules in explaining the prevalence of cooperation and intuition within models of dual-process theory.
Along this research line, it would be interesting to explore cases where the behavioral rules differs
between deliberation and intuition, while in this paper, and in related studies in the literature, only
the available information changes between one cognitive mode and the other.

Finally, it is also interesting to study how the network of interactions evolves over time in
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response to the payoffs earned. This would require a model where cognition and cooperation
coevolve over a dynamic network, which we leave for further research.
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