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PROBABILITY OF ASYMPTOTIC POLARIZATION
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Abstract. In a network of reinforced stochastic processes, for certain values of the parameters,
all the agents’ inclinations synchronize and converge almost surely toward a certain random vari-
able. The present work aims at clarifying when the agents can asymptotically polarize, i.e. when
the common limit inclination can take the extreme values, 0 or 1, with probability zero, strictly
positive, or equal to one. Moreover, we present a suitable technique to estimate this probability
that, along with the theoretical results, has been framed in the more general setting of a class of
martingales taking values in [0, 1] and following a specific dynamics.
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1. Introduction: setting and scope

One of the main problems in Network Theory (e.g. [1, 21, 25]) is to understand if the dynamics
of the agents of the network will lead to some form of synchronization of their behavior (e.g. [7]). A
specific form of synchronization is the polarization, that can be roughly defined as the positioning
of all the network agents on one of two extreme opposing statuses. The present work is placed in
the recent stream of mathematical literature which studies the phenomena of synchronization and
polarization for networks of agents whose behavior is driven by a reinforcement mechanism (e.g.
[2, 3, 4, 5, 6, 8, 11, 13, 14, 17, 18, 20, 23]). Specifically, we suppose to have a finite directed graph
G = (V, E), where V = {1, ..., N}, with N ≥ 2, is the set of vertices, that is the network agents,
and E ⊆ V ×V is the set of edges, where each edge (l1, l2) ∈ E represents the fact that agent l1 has
a direct influence on the agent l2. We also associate a deterministic weight wl1,l2 ≥ 0 to each pair
(l1, l2) ∈ V × V in order to quantify how much l1 can influence l2 (a weight equal to zero means
that the edge is not present). We define the matrix W , called in the sequel interaction matrix, as

W = [wl1,l2 ]l1,l2∈V×V and we assume the weights to be normalized so that
∑N

l1=1wl1,l2 = 1 for each
l2 ∈ V . Regarding the behavior of the agents, we suppose that at each time-step they have to make
a choice between two possible actions {0, 1}. For any n ≥ 1, the random variables {Xn,l : l ∈ V }
take values in {0, 1} and they describe the actions adopted by the agents at time-step n. The
dynamics is the following: for each n ≥ 0, the random variables {Xn+1,l : l ∈ V } are conditionally
independent given Fn with

(1) P (Xn+1,l = 1 | Fn) =
N∑

l1=1

wl1,lZn,l1 a.s. ,

where, for each l ∈ V ,

(2) Zn,l = (1− rn−1)Zn−1,l + rn−1Xn,l,

with 0 ≤ rn < 1, {Z0,l : l ∈ V } random variables with values in [0, 1] and Fn = σ(Z0,l : l ∈
V ) ∨ σ(Xk,l : 1 ≤ k ≤ n, l ∈ V ). Each random variable Zn,l takes values in [0, 1] and it can be
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interpreted as the “personal inclination” of the agent l of adopting “action 1”. Thus, Equation (1)
means that the probability that the agent l adopts “action 1” at time-step (n + 1) is given by a
convex combination of l’s own inclination and the inclination of the other agents at time-step n,
according to the “influence-weights” wl1,l. Note that we have a reinforcement mechanism for the
personal inclinations of the agents: indeed, by (2), whenever Xn,l = 1, we have a strictly positive
increment in the personal inclination of the agent l, that is Zn,l > Zn−1,l (provided Zn−1,l < 1)
and, in the case wl,l > 0 (which is the most usual in applications), this fact results in a greater
probability of having Xn+1,l = 1.

To express the above dynamics in a compact form, let us define the vectorsXn = (Xn,1, .., Xn,N )⊤

and Zn = (Zn,1, .., Zn,N )⊤. Hence, for n ≥ 0, the dynamics described by (1) and (2) can be
expressed as follows:

(3) E[Xn+1|Gn] = W⊤Zn,

and

(4) Zn+1 = (1− rn)Zn + rnXn+1.

Moreover, the assumption about the normalization of the matrix W can be written as W⊤1 = 1,
where 1 denotes the vector with all the entries equal to 1.

The recent paper [5] provides the sufficient and necessary conditions in order to have the almost
sure asymptotic synchronization of all the agents’ inclinations, that is the almost sure convergence
toward zero of all the differences (Zn,l1 −Zn,l2)n, with l1, l2 ∈ V . This phenomenon has been called
complete almost sure asymptotic synchronization and, in the considered setting, it is equivalent to
the almost sure convergence of all the inclinations (Zn,l)n, with l ∈ V , toward a certain common
random variable Z∞. Under the assumption that W is irreducible (i.e. G = (V,E) is a strongly
connected graph) and P (Z0 ∈ {0,1}) < 11 (in order to exclude the trivial initial conditions), in [5]
it has been proven that:

(i) when W⊤ is aperiodic, the complete almost sure asymptotic synchronization holds true if
and only if

∑
n rn = +∞;

(ii) when W⊤ is periodic, the complete almost sure asymptotic synchronization holds true if
and only if

∑
n rn(1− rn) = +∞.

In the case of complete almost sure asymptotic synchronization, in order to provide a full descrip-
tion of the asymptotic dynamics of the network, we here deal with the phenomenon of non-trivial
asymptotic polarization, i.e. with the question when the common random limit Z∞ can touch the
barrier-set {0, 1} with a strictly positive probability, starting fromZ0 /∈ {0,1}. As we will show, this
probability depends on how large is the weight of the new information with respect to the present
status of the process (Zn)n. Indeed, looking at the dynamics (4), we can interpret the terms rn and
(1−rn) as the weights associated, respectively, to the new information Xn+1 and to the present sta-
tus Zn, in the definition of the next status Zn+1 of the process. Moreover, the quantity

∏n
k=0(1−rk)

can be seen as the weight associated to the entire history of the process until time-step n, and so it
can be taken as a measure of the memory of the process at time-step n. Under the conditions that
ensure the complete almost sure asymptotic synchronization (note that, in particular, this means
that

∑
n rn = +∞), in the non-trivial case P (Z0 /∈ {0,1}) > 0, we can have different scenarios

for the probability of asymptotic polarization of the network. In particular, adding the condition
rn = O(exp(−

∑n
k=0 rk)

∑n
k=0 rk), or equivalently rn = O(

∏n
k=0(1−rk)

∑n
k=0 rk), in order to bound

the impact of the new information with respect to the past, we guarantee that the probability of

1Similarly to the notation 1 already mentioned above, the symbol 0 denotes the vector with all the entries equal
to 0.
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non-trivial asymptotic polarization is zero (see Theorem 3.1). On the contrary, if we add condi-
tions in order to bound the impact of the history, we allow to have a strictly positive probability
of non-trivial asymptotic polarization: specifically, we refer to condition

∑
n

∏n
k=0(1− rk) < +∞,

which assures that the probabilities P (Z∞ = z|Z0 /∈ {0,1}), with z = 0 or z = 1, are both strictly
positive (see Theorem 2.4). Finally, condition

∑
n r

2
n < +∞ is enough to avoid that the probability

of asymptotic polarization is equal to one (see Theorem 3.3(i)). Indeed, this condition ensures that
the weight of the new information decreases to zero rapidly enough. Then, we can argue that,
since the contribution of the past in defining the next status of the system remains relevant, the
process (Zn)n can stay close to its initial value Z0, and this, since P (Z0 /∈ {0,1}) > 0, forces
Z∞ ∈ (0, 1) with a strictly positive probability. On the contrary, when

∑
n r

2
n = +∞, the limit Z∞

touches the barriers with probability one and so it is a Bernoulli random variable with parameter
depending on the initial random variable Z0 (see Theorem 3.3(ii)). In particular, the above results
fully characterize the probability of non-trivial asymptotic polarization in the case when there exist
c > 0 and 0 < γ ≤ 1 such that limn n

γrn = c and
∑

n(rn− cn−γ) is convergent, which is the setting
of the results proven in [2, 3, 4, 13]. Table 1 summarizes the different scenarios according to the
values for γ and c.

Parameters 0 < γ ≤ 1/2 1/2 < γ < 1 γ = 1
0 < c ≤ 1 = 1 ∈ (0, 1) = 0
c > 1 = 1 ∈ (0, 1) ∈ (0, 1)

Table 1. Probability of non-trivial asymptotic polarization: possible scenarios for
the case when limn n

γrn = c and
∑

n(rn − cn−γ) is convergent. Specifically, when
it is strictly positive, we have P (Z∞ = z|Z0 /∈ {0, 1}) > 0 for both z = 0 and z = 1.

When the probability of non-trivial asymptotic polarization is in (0, 1), an interesting problem
is to find statistical tools, based on the observation of the system until a certain time-step, in order
to determine, up to a small probability, if the system will polarize in the limit. This paper deals
with this question and provides a suitable technique, which is essentially based on concentration
inequalities and Monte Carlo methods. Moreover, we use the provided estimators for the probability
of asymptotic polarization to define an asymptotic confidence interval for the random variable Z∞.
The statistical tools illustrated in this work complete the more classical ones obtained in [2, 3, 4]
by means of central limit theorems under the conditional probability P (· | 0 < Z∞ < 1). Indeed,
when Z∞ takes values in {0, 1}, these central limit theorems become convergences in probability to
zero and so they are not useful in order to obtain the desired confidence interval for Z∞ under P .
The problem of making inference without excluding the case when the random limit Z∞ belongs
to {0, 1} is not covered by the urn model literature either.

Finally, we point out that we present the theoretical results and the estimation technique in the
general setting of a stochastic process M = (Mn)n≥0 that takes values in [0, 1] and is a martingale
with respect to some filtration G = (Gn)n with the dynamics

(5) Mn+1 = (1− rn)Mn + rnYn+1, n ≥ 0,

where Yn+1 takes values in [0, 1] and E[Yn+1|Gn] = Mn a.s. In particular, when the probability of
touching the barrier-set {0, 1} in the limit, given 0 < M0 < 1, belongs to (0, 1), our scope is to find
an estimator of this probability and to construct an asymptotic confidence interval for the almost
sure limit M∞ of (Mn)n, based on the information Gn collected until a certain time-step n. This
general framework can cover many other contexts in addition to the one presented above (e.g. [19]).



4 G. ALETTI, I. CRIMALDI, AND A. GHIGLIETTI

The sequel of the paper is so structured. Section 2 presents the results about the probability of
touching the barrier-set {0, 1} in the limit for a martingale with dynamics (5). In Section 3 we state
the results of the asymptotic polarization of a network of reinforced stochastic processes, i.e. we deal
with the problem of touching the barriers for the random variable Z∞ when the complete almost
sure asymptotic synchronization holds true. In Section 4 we present the estimation technique for
the probability of touching the barriers in the limit for a martingale with dynamics (5). Then, in
Section 5 we construct a confidence interval for the limit random variableM∞, given the information
collected until a certain time-step. Finally, in Section 6 the provided methodology is applied in the
framework of a network of reinforced stochastic processes and some simulation results are shown.
In the appendix we give some recalls and technical details.

2. Probability of touching the barriers in the limit for a class of martingales

Consider a stochastic process W = (Wn)n≥0 taking values in the interval [0, 1] and following the
dynamics

(6) Wn+1 = (1− rn)Wn + rnYn+1, n ≥ 0,

where 0 ≤ rn < 1 and Yn+1 takes values in [0, 1].

The next proposition establishes a relationship between the above dynamics and the evolution
of an urn model. In the particular case of Yn+1 ∈ {0, 1} and E[Yn+1|W0, Y1, . . . , Yn] = Wn, from
this result we get that a single reinforced stochastic process corresponds to a time-dependent Pólya
urn [22].

Proposition 2.1 (Correspondence with an urn model). For each n ≥ 0, the random variable Wn

corresponds to the proportion of balls of color A inside the urn at time-step n for a two-color urn
process where the number of balls of color A (resp. B) added to the urn at time-step n ≥ 1 is αnYn
(resp. αn(1− Yn)) with

(7) αn = s0
rn−1∏n−1

k=0(1− rk)
,

where s0 > 0 is an arbitrary constant.

Proof. Firstly, we recall the dynamics of a general two-color urn model: if S0 is the initial number
of balls in the urn, Zn is the proportion of balls of color A inside the urn at time-step n, UA

n (resp.
UB
n ) is the number of balls of color A (resp. B) added to the urn at time-step n ≥ 1, we have that

(Zn)n follows the dynamics

(8) Zn+1 = (1−Rn+1)Zn +Rn+1Yn+1

with Rn+1 = Un+1/Sn+1 and Yn+1 = UA
n+1/Un+1, where Un+1 = UA

n+1 + UB
n+1 (i.e. the number of

balls added to the urn at time-step n+1) and Sn+1 = S0+
∑n+1

k=1 Uk (i.e. the total number of balls
in the urn at time-step n+ 1).

Now, let s0 > 0 and, for any n ≥ 0, set

αn+1 = sn
rn

1− rn
, sn+1 = αn+1 + sn =

sn
1− rn

so that

sn+1 = s0 +

n∑
k=0

αk+1 =
s0∏n

k=0(1− rk)
, αn+1 = sn+1rn = s0

rn∏n
k=0(1− rk)
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and, by (6),

sn+1Wn+1 = snWn + αn+1Yn+1.

Set Hn = snWn for each n ≥ 0. By induction, we get

Hn+1 = Hn + αn+1Yn+1 = H0 +

n∑
k=0

αk+1Yk+1.

If Kn = sn(1−Wn) for each n ≥ 0, then we have

Kn+1 = Kn + αn+1(1− Yn+1) = K0 +

n∑
k=0

αk+1(1− Yk+1).

(Note that Hn and Kn can be interpreted as the numbers of balls in the urn of color A and color
B, respectively, at time-step n). Moreover sn+1 = Hn+1 +Kn+1.

Summing up, we have shown that Wn corresponds to the proportion Zn = Hn/sn of balls of color
A inside the urn at time-step n for a two-color urn process where S0 = s0 is the initial number of balls
in the urn, the number of balls of color A (resp. B) added to the urn at time-step n is UA

n = αnYn

(resp. UB
n = αn(1− Yn)). Indeed, (6) and (8) coincide since Rn+1 =

UA
n+1+UB

n+1

Sn+1
= αn+1

sn+1
= rn. □

Remark 1. Note that in the above proposition, we only give the number of added balls UA
n and

UB
n at each time-step n in terms of αn and Yn. We give no specifications about the conditional

distribution of Yn+1 given (W0, Y1, . . . , Yn), that is the updating mechanism of the urn. Even if we
require that (Wn)n is a martingale with respect to some filtration G = (Gn)n (as below), that is
E[Yn+1|Gn] = Wn a.s., this is not enough to determine the conditional distribution of Yn given Gn,
except for the trivial case when the random variables Yn are indicator functions.

Now, let M = (Mn)n≥0 be a martingale with respect to some filtration G = (Gn)n, taking values
in [0, 1] and following the dynamics of (6), that is

(9) Mn+1 = (1− rn)Mn + rnYn+1, n ≥ 0,

where 0 ≤ rn < 1, Yn+1 takes values in [0, 1] and E[Yn+1|Gn] = Mn. Set M∞
a.s.
= limnMn.

In the following theorem we will present a sufficient condition ensuring that the probability that
the process (Mn)n converges to the barrier-set {0, 1} is zero. The merit of this result is that it is
very general, as it holds for any martingale whose dynamics can be written as in (9).

Before presenting the theorem, notice that when P (M0 = 0) > 0, we trivially have a strictly
positive probability of touching the barrier-set {0} in the limit, i.e. P (M∞ = 0) > 0, since we
obviously have P (M∞ = 0|M0 = 0) = 1. On the contrary, when P (M0 = 1) > 0, we trivially have
P (M∞ = 1) > 0 as P (M∞ = 1|M0 = 1) = 1. For this reason, in the next result the probability of
touching the barriers in the limit will be presented given the set {0 < M0 < 1}.

Theorem 2.2. If P (0 < M0 < 1) > 0 and

(10) rn = O
(
e−

∑n
k=0 rk

n∑
k=0

rk

)
,

then P (M∞ = 0| 0 < M0 < 1) = P (M∞ = 1| 0 < M0 < 1) = 0.

In order to prove the stated result, we generalize the technique used in [19, Lemma 1]. Firstly,
we present some auxiliary results that will be proven in Appendix A.

Lemma 2.3. Let αn be defined as in (7) and sn = s0 +
∑n

k=1 αk. We have:
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a) If
∑

n rn = +∞, we have

(11)
∞∑
n=0

rn∑n
k=0 rk

= +∞.

b) If 0 < supn rn < 1, then we have 2.

(12)
n∑

k=0

rk =
n∑

k=0

αk+1

sk+1
≍ ln(sn+1) = ln

( s0∏n
k=0(1− rk)

)
c) Condition (10) implies

∑
n r

2
n < +∞ and is equivalent to

(13)
rn∑n
k=0 rk

= O
( n∏

k=0

(1− rk)
)
,

which is equivalent to

(14) αn+1 = O(ln(sn+1))

and also to

(15) rn = O(ln(sn+1)/sn+1).

We can interpret
∏n

k=0(1 − rk) as a measure of the memory of the process at time-step n.
Therefore, the above condition (13), equivalent to (10), can be read as a bound for the amount of
new information in order to avoid that it becomes too large with respect to the historical information
observed in the past until time-step n. Then, since the contribution of the past in defining the
current status Mn remains relevant, the process Mn cannot move too far from the initial values,
and this avoids it to touch the barriers 0 or 1 in its limit.

Proof of Theorem 2.2. Without loss of generality, we can assume P (0 < M0 < 1) = 1 (otherwise,
it is enough to replace P by P (·|0 < M0 < 1)). In this proof we will focus only on the case∑

n rn = +∞ as when
∑

n rn < +∞ condition (10) is trivially satisfied and we have

0 < M0

∞∏
k=0

(1− rk) ≤ M∞ ≤ 1− (1−M0)

∞∏
k=0

(1− rk) < 1 a.s. .

In the sequel we use the notation of the above Proposition 2.1 and we split the rest of the proof in
some steps.

First step (proof of Hn = snMn
a.s.→ +∞ and Kn = sn(1−Mn)

a.s.→ +∞):
As seen in the proof of Proposition 2.1, we have

H0 = s0M0 and Hn+1 = s0M0 +

n∑
k=0

αk+1Yk+1.

Therefore, we have (Hn)n increasing and

lim
n

Hn = lim sup
n

Hn ≥ lim sup
n

n∑
k=0

αk+1Yk+1 = lim sup
n

n∑
k=0

( k∑
ℓ=0

rℓ

) αk+1∑k
ℓ=0 rℓ

Yk+1

≥ r0

+∞∑
k=0

αk+1∑k
ℓ=0 rℓ

Yk+1.

2an ≍ bn means that 0 < lim infn
an
bn

≤ lim supn
an
bn

< +∞.
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It follows, that Hn → +∞ a.s. if
∑

k
αk+1∑k
ℓ=0 rℓ

Yk+1 = +∞ a.s. For proving this last fact, we recall

that, by (13), we have
αk+1∑k
ℓ=0 rℓ

= s0
rk∏k

ℓ=0(1− rℓ)

1∑k
ℓ=0 rℓ

= O(1).

Therefore, by Theorem A.2 reported in Appendix A,
∑

k
αk+1∑k
ℓ=0 rℓ

Yk+1 = +∞ a.s. if and only if∑
k

αk+1∑k
ℓ=0 rℓ

Mk = +∞ a.s. But, we have

αk+1Mk ≥ αk+1M0

k∏
ℓ=0

(1− rℓ) = s0M0rk,

so that by (11) ∑
k

αk+1∑k
ℓ=0 rℓ

Mk ≥ s0M0

∑
k

rk∑k
ℓ=0 rℓ

= +∞.

By a symmetric argument, we get Kn → +∞ a.s.

Second step (proof of lim infn ln(sn)/Hn
a.s.
= 0 and lim infn ln(sn)/Kn

a.s.
= 0): We will prove that

lim supn
Hn

ln(sn)

a.s.
= +∞. This is equivalent to showing that, for any a > 0, the event

Aa =
{
sup
n

∑n−1
k=0 αk+1Yk+1

ln(sn)
≤ a

}
has probability zero. To this end, fix b > a and let us define, for any n ∈ N, the sets

Aa,n =
{∑n−1

k=0 αk+1Yk+1

ln(sn)
≤ a

}
and Bb,n =

{∑n−1
k=0 αk+1Mk

ln(sn)
≥ b
}
.

To prove P (Aa) = 0 we will show the following points:

(i) P (Aa) = limn P (Aa ∩Bb,n);
(ii) limn P (Aa ∩Bb,n) ≤ lim supn P (Aa,n ∩Bb,n);
(iii) for any ϵ > 0 there exists a sufficiently large b such that lim supn P (Aa,n ∩Bb,n) ≤ ϵ.

Regarding point (i), we know from the first step of this proof that Hk → +∞ a.s., and so, for any

λ > 0, the probability that Mk = Hk
sk

≥ λ
sk

≥ λ
sk+1

eventually is one. Therefore, by (12), we have

(for a suitable constant c > 0) that

lim inf
n

∑n−1
k=0 αk+1Mk

ln(sn)
≥ λ lim inf

n

∑n−1
k=0

αk+1

sk+1

ln(sn)
≥ cλ a.s.

which implies, by the arbitrariness of λ,

lim inf
n

∑n−1
k=0 αk+1Mk

ln(sn)
= +∞ a.s.

Then P (lim infnBb,n) = 1, hence limn P (Bb,n) = 1 and (i) is verified.
For point (ii), it is enough to notice that Aa = ∩nAa,n.
Finally, regarding point (iii), set C = supn

αn
ln(sn)

< +∞ by (13) and let n be fixed and define for

any k = 0, . . . , n− 1

X∗
k+1 =

αk+1

C ln(sn)
Yk+1, M∗

k = E(X∗
k+1|Gk) =

αk+1

C ln(sn)
Mk,
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while X∗
k+1 = M∗

k = 0 for k ≥ n. With this notations, 0 ≤ X∗
k ≤ 1, τ∗ ≡ n− 1 is a stopping time,

and Aa,n = {
∑τ∗

k=0X
∗
k+1 ≤ a/C}, Bb,n = {

∑τ∗

k=0M
∗
k+1 ≥ b/C}. Then, by [16, Theorem 1], we have

the following upper bound

P
(
Aa,n ∩Bb,n

)
= P

(∑τ∗

k=0
X∗

k+1 ≤
a

C
,
∑τ∗

k=0
M∗

k+1 ≥
b

C

)
≤
( b
a

)a/C
e(a−b)/C ,

which holds uniformly in n. This naturally implies that there exists b large enough such that
P (Aa,n ∩Bb,n) < ϵ for any n ∈ N. This concludes the proof.
By a symmetric argument we can obtain the same limit relation also for Kn.

Third step (conclusion):
We observe that

E[(M∞ −Mn)
2|Gn] =

∑
k≥n

r2kE[(Yk+1 −Mk)
2|Gn] =

∑
k≥n

r2kE[E[(Yk+1 −Mk)
2|Gk]|Gn]

≤
∑
k≥n

r2kE[Mk −M2
k |Gn] ≤ Mn

∑
k≥n

r2k.

Moreover, we have

(M∞ −Mn)
2 = M2

n1{M∞=0} + 1{M∞ ̸=0}(M∞ −Mn)
2 ≥ M2

n1{M∞=0}.

Therefore, recalling that C = supn
αn

ln(sn)
< +∞ and that x 7→ ln(x)

x2 is decreasing for x ≥ 2, we

have, for any n with sn ≥ 2,

M2
nP (M∞ = 0|Gn) ≤ E[(M∞ −Mn)

2|Gn] ≤ Mn

∑
k≥n

r2k = Mn

∑
k≥n

α2
k+1

s2k+1

≤ Mn

∑
k≥n

C ln(sk+1)
αk+1

s2k+1

= CMn

∑
k≥n

∫ sk+1

sk

ln(sk+1)

s2k+1

dx

≤ CMn

∫ +∞

sn

ln(x)

x2
dx = CMn

( ln(sn) + 1

sn

)
,

which, taking into account that sn → +∞, means M2
nP (M∞ = 0|Gn) = O(Mn ln(sn)/sn). Since

Mn = Hn/sn, it follows P (M∞ = 0|Gn) = O(ln(sn)/Hn) and so (denoting by c a suitable constant)
we get

1{M∞=0}
a.s.
= lim

n
E[1{M∞=0}|Gn] = lim

n
P (M∞ = 0|Gn) ≤ c lim inf

n

ln(sn)

Hn

a.s.
= 0,

that is P (M∞ = 0) = 0.
By a symmetric argument, we obtain P (M∞ = 1) = 0. □

We will now present the conditions to ensure that the probability of touching the barrier-set
{0, 1} in the limit for the general class of martingales (Mn)n with dynamics (8) is strictly positive.
In particular, we will focus on the barrier {0}, as the results for the barrier {1} would be completely
analogous. Moreover, the result will be presented conditioning on the set {0 < M0 < 1} since, as
already observed, it is trivial that P (M∞ = 0|M0 = 0) = 1 and P (M∞ = 0|M0 = 1) = 0.

Before stating the result, let us first present the required assumptions and a technical remark.

Assumption 1. Assume P (0 < M0 < 1) > 0 and that there exist:

(1) a sequence (δn)n in [0, 1] such that
∑+∞

n=0 δnrn = +∞;
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(2) a sequence of non-decreasing functions gn : [0, 1] → [0, 1] such that, for any C > 0,

+∞∑
n=1

gn

(
min

(
C

n−1∏
k=0

(1− δkrk), 1
))

< +∞;

(3) a reinforcement mechanism based on {n0, (δn, gn)n}, with n0 ∈ N: setting

An+1 = {Yn+1 ≤ (1− δn)Mn},
Bn = {P (An+1|Gn) ≥ 1− gn(Mn)},
Cn0 = ∩n≥n0{Ac

n ∪Bn} = ∩n≥n0{1An ≤ 1Bn},

there exists and event En0 ∈ Gn0 such that En0 ⊆ Cn0 and P (En0∩An0+m0 | 0 < M0 < 1) > 0
for some m0 ≥ 1.

Remark 2. Let PEn0
(·) = P (·|En0) and EEn0

[·|G] = EPEn0
[·|G], that is the conditional expectation

given the σ-field G with respect to PEn0
. Then, for any non-negative random variable X and

n ≥ n0, we have

(16) E[X|Gn] ≥ E[X|Gn]1En0
= EEn0

[X|Gn]1En0
, a.s. (and PEn0

-a.s.)

Let X = 1An+1 . As a consequence of Assumption 1.3, we have for n ≥ n0

(17) PEn0
(An+1|Gn)1An = P (An+1|Gn)1An ≥ (1− gn(Mn))1An , PEn0

-a.s.

Example 2.1. For simplicity, assume that P (0 < M0 < 1) = 1 (otherwise, replace P by P (·|0 <
M0 < 1)). Now, consider the case when there exist n0 ∈ N and an event En0 , observable at
time-step n0 (this is the meaning of the Gn0-measurability) such that P (En0) > 0 and, given the
occurrence of En0 , Yn+1 takes value in {0, 1} for each n ≥ n0. Then, there exists a reinforcement
mechanism based on {n0, (δn ≡ 1, gn ≡ id)n}. Indeed, An+1 = {Yn+1 = 0} and, by (16), we
have P (Yn+1 = 0|Gn)1En0

= PEn0
(Yn+1 = 0|Gn)1En0

= (1 − Mn)1En0
= (1 − gn(Mn))1En0

a.s.

for each n ≥ n0. Therefore, we have En0 ⊆ Bn (a.s.) for any n ≥ n0 and so En0 ⊆ Cn0 (a.s.).
Assumption 1.3 is equivalent to requiring that PEn0

(Yn0+m0 = 0) = 1 − E[Mn0+m0−1|En0 ] > 0
for some m0 ≥ 1. But, this is true for each m0 ≥ 1 since, by the martingale property, we get
E[Mn0+m0−1|En0 ] = E[Mn0 |En0 ] and this last quantity belongs to (0, 1) since rn < 1 and Yn ≤ 1
for each n in the dynamics (9) and so Mn0 < 1 a.s. on {0 < M0 < 1}. Assumption 1.1 reduces
to
∑

n rn = +∞, that we already know to be necessary for P (M∞ = 0| 0 < M0 < 1) > 0, while
Assumption 1.2 reads as

∑∞
n=0

∏n
k=0(1− rk) < +∞.

Theorem 2.4. Let Assumption 1 hold. Then

P (M∞ = 0| 0 < M0 < 1) ≥ P (∩+∞
n=n0+m0

An|0 < M0 < 1) > 0.

Specifically, on {0 < M0 < 1}, for each m ≥ 1, we have 3

(18) P (M∞ = 0|Gn0+m) ≥ P (∩+∞
n=n0+mAn

∣∣Gn0+m) ≥

1En0∩An0+m

+∞∏
n=n0+m

(
1− gn

(
Mn0+m

n−1∏
k=n0+m

(
1− δkrk

)))
a.s. .

Remark 3. If Assumption 1 holds for (1 −Mn) and (1 − Yn), then P (M∞ = 1| 0 < M0 < 1) > 0
and an inequality analogous to (18) holds true.

3where
∏n0+m−1

k=n0+m = 1 by convention.
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Before presenting the proof of Theorem 2.4, let us briefly discuss the basic ideas behind it and
the conditions reported in Assumption 1.

The proof of P (M∞ = 0| 0 < M0 < 1) > 0 will be realized by extending the definition of fixation,
which typically refers to the event that a real process definitively assume the same fixed value, e.g.
in this case ∩n≥n0{Yn = 0}. In our general framework, where the distribution of Yn+1 given Gn is not
specified, and so not necessarily discrete, we introduce the notion of “δn-fixation” as the fixation on
the value 1 of the sequence of {1An : n ≥ n0+m0} and we prove that it occurs with strictly positive
probability given {0 < M0 < 1}, i.e. P (∩n≥n0+m0An|0 < M0 < 1) > 0. Assumption 1.1 ensures
that this δn-fixation implies {M∞ = 0}. Indeed, since on each An+1 we have Mn+1 ≤ (1−δnrn)Mn,
condition

∑
n δnrn = +∞ ensures that the decrease of the processMn on the fixation event is strong

enough to reach the barrier {0}. Assumption 1.3 ensures An ∩ En0 ⊆ Bn ∩ En0 for any n ≥ n0,
where En0 is an event with strictly positive probability, given {0 < M0 < 1}, and observable at
time-step n0 (i.e. En0 ∈ Gn0). Since each Bn provides a lower bound on the probability of the
next set An+1, we can read Assumption 1.3 as the existence of a triggering mechanism, with a
strictly positive probability of starting at time m0 (i.e. P (En0 ∩An0+m0 |0 < M0 < 1) > 0 for some
m0 ≥ 1), for the sequence of sets {An : n ≥ n0 +m0}: the occurrence of An implies, with at least
a certain probability, the occurrence of An+1, which, iterating this argument for any n ≥ n0 +m0,
is the key point of the δn-fixation. Then, Assumption 1.2 ensures that gn(πn) → 0 sufficiently fast
to have

∑
n gn(πn) < +∞, for any πn = O(

∏n
k=0(1 − δkrk)). This fact guarantees that the above

triggering mechanism implies the δn-fixation with a strictly positive probability.

Proof of Theorem 2.4. Without loss of generality, we can assume P (0 < M0 < 1) = 1 (otherwise,
it is enough to replace P by P (·|0 < M0 < 1)). First note that, on An+1, Mn+1 ≤ (1 − δnrn)Mn,

so that, for each m ≥ 1 and N ≥ 1, on ∩n0+m+N−1
k=n0+m Ak+1, we have

(19) Mn0+m+N ≤ Mn0+m

n0+m+N−1∏
k=n0+m

(
1− δkrk

)
.

Hence, because of Assumption 1.1, we have ∩+∞
k=n0+mAk ⊆ {M∞ = 0}. Moreover, by Assump-

tion 1.3, (17) and (19), we obtain, PEn0
-a.s.

PEn0

( n0+m+N+1⋂
n=n0+m

An

∣∣∣Gn0+m

)

= EEn0

[
EEn0

[1An0+m+N+1
|Gn0+m+N ]1An0+m+N

n0+m+N−1∏
n=n0+m

1An

∣∣∣Gn0+m

]

≥ EEn0

[(
1− gn0+m+N (Mn0+m+N )

) n0+m+N∏
n=n0+m

1An

∣∣∣Gn0+m

]

≥
(
1− gn0+m+N

(
Mn0+m

n0+m+N−1∏
k=n0+m

(
1− δkrk

)))
PEn0

( n0+m+N⋂
n=n0+m

An

∣∣∣Gn0+m

)
,

which leads by induction to

PEn0

(
∩n0+m+N+1
n=n0+m An

∣∣Gn0+m

)
≥

1An0+m

n0+m+N∏
n=n0+m

(
1− gn

(
Mn0+m

n−1∏
k=n0+m

(
1− δkrk

)))
PEn0

− a.s.,
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that gives (18) by (16) and letting N → +∞ and recalling that we have ∩+∞
k=n0+mAk ⊆ {M∞ = 0}.

Finally, let m = m0 as in Assumption 1.3 such that PEn0
(An0+m0) > 0. From (18), taking the

mean value of both sides, we get that P (M∞ = 0) > 0 by Assumption 1.2 as follows

P
(
M∞ = 0

)
= E[P

(
M∞ = 0

∣∣Gn0+m0

)
] ≥ P (∩+∞

n=n0+m0
An

∣∣Gn0+m0)

≥ E
[
1En0∩An0+m0

+∞∏
n=n0+m0

(
1− gn

(
Mn0+m0

n−1∏
k=n0+m0

(
1− δkrk

)))]

= E
[
1En0∩An0+m0

+∞∏
n=n0+m0

(
1− gn

(
Mn0+m0∏n0+m0−1

k=0

(
1−δkrk

) n−1∏
k=0

(
1− δkrk

)))]

≥ P (En0 ∩An0+m0)
+∞∏

n=n0+m0

(
1− gn

(
min

(
C

n−1∏
k=0

(1− δkrk), 1
)))

> 0,

where C−1 =
∏n0+m−1

k=0 (1 − δkrk) and, using the fact that gn(·) is a non-decreasing function, we
have replaced Mn0+m0 ≤ 1 by 1. □

The next result deals with the case in which the probability of touching the barriers in the limit
is not only positive as in Theorem 2.4, but it is exactly equal to one.

Theorem 2.5. Set L∞ = lim infn→∞ V ar[Yn+1|Gn] and assume

(20) P ({M∞(1−M∞) > 0} ∩ {L∞ = 0}) = 0.

Then, if
∑

n r
2
n = +∞, we have P (M∞ = 0) + P (M∞ = 1) = 1 and P (M∞ = 1) = E[M0].

Condition (20) is a natural assumption. It ensures that, asymptotically, the variance of the
reinforcement variables (Yn)n is bounded away from zero whenever M∞ ∈ (0, 1). If this is not the
case, the convergence to the barriers may not be related with the type of reinforcement sequence
(rn)n. For instance, when Yn+1 = Mn (that means V ar[Yn+1|Gn] = 0) eventually, then Mn is
definitively constant (not equal to 0 or 1 when 0 < M0 < 1) whatever the sequence (rn)n is.

Proof of Theorem 2.5. Let us first denote by ⟨M⟩ = (⟨M⟩n)n the predictable compensator of the
submartingale M2 = (M2

n)n. Since M is a bounded martingale, we have that ⟨M⟩n converges a.s.
and its limit ⟨M⟩∞ is such that E[⟨M⟩∞] < +∞ (and so ⟨M⟩∞ < +∞ a.s.). Then, we observe
that

⟨M⟩∞ =
∑
n

(⟨M⟩n+1 − ⟨M⟩n) =
∑
n

E[(Mn+1 −Mn)
2|Gn] =

∑
n

r2nV ar[Yn+1|Gn] .

Therefore, for each ϵ > 0, the event

Aϵ =
⋃
n

⋂
k≥n

{V ar[Yk+1|Gk] ≥ L∞ − ϵ}

is contained (up to a negligible set) in the event {(L∞ − ϵ)
∑

n r
2
n < +∞}. Since

∑
r2n = +∞, this

last event coincides with {L∞ ≤ ϵ}. It follows that, since P (Aϵ) = 1 for each ϵ > 0 by the definition
of L∞, we have P (L∞ ≤ ϵ) = 1 for each ϵ > 0, from which we get P (L∞ = 0) = 1 and so, by (20),
P (M∞(1−M∞) > 0) = 0, that is P (M∞(1−M∞) = 0) = 1. This concludes the proof of the first
statement. For the last statement, it is enough to note that P (M∞ = 1) = E[M∞] = E[M0]. □

Now, we conclude the picture with a simple general result.

Proposition 2.6. If P (0 < M0 < 1) > 0 and
∑

n r
2
n < +∞, then P (M∞ = 0) + P (M∞ = 1) < 1.
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Proof. We note that P (M∞ = 0)+P (M∞ = 1) = 1 if and only if E[M∞(1−M∞)] = 0. Therefore,
we set xn = E[Mn(1−Mn)] so that E[M∞(1−M∞)] = limn xn and we observe that

xn+1 = E[Mn+1]− E[M2
n+1] = E[Mn]− (1− r2n)E[M2

n]− r2nE[Y 2
n+1].

From this equality, we get xn+1 = (1− r2n)xn + r2n
(
E[Mn]− E[Y 2

n+1]
)
≥ (1− r2n)xn, because Yn+1

takes values in [0, 1] and so E[Y 2
n+1] ≤ E[Yn+1] = E[Mn]. Thus, we have xn+1 ≥ x0

∏n
k=0(1 − r2k)

for each n and so E[M∞(1−M∞)] ≥ x0
∏+∞

k=0(1−r2k), where the infinite product is strictly positive
when

∑
n r

2
n < +∞. □

Finally, the following remark can be useful in order to describe the distribution of the limit
random variable M∞ in the open interval (0, 1).

Remark 4. Arguing exactly as in [2, Theorem 4.2], we get

an(Mn −M∞)
stably−→ N (0,ΦM∞(1−M∞)),

(for the definition of the stable convergence, see, for instance, Appendix B in [2] and references

therein) provided that E[(Yn+1 − Mn)
2|Gn]

a.s.→ ΦM∞(1 − M∞), where Φ is a suitable bounded
positive random variable, which is measurable with respect to G∞ =

∨
n Gn, and that there exists

a sequence (an)n of positive numbers such that an → +∞

a2n
∑
k≥n

r2k −→ 1 and an sup
k≥n

rk −→ 0.

The above convergence is also in the sense of the almost sure conditional convergence (see [12,
Definition 2.1]) with respect to (Gn)n. If P (Φ > 0) = 1, this last fact implies that P (M∞ = z) = 0
for all z ∈ (0, 1) (see the proof of [13, Theorem 2.5]).

3. Probability of asymptotic polarization for a network of reinforced stochastic
processes

We consider a system of N ≥ 2 RSPs with a network-based interaction as defined in Section 1.
Assuming to be in the scenario of complete almost sure asymptotic synchronization of the system,
that is when all the stochastic processes (Zn,l)n, with l ∈ V , converge almost surely toward the

same random variable Z∞ (or, in other terms, when Zn
a.s.−→ Z∞1), we are going to describe the

phenomenon of asymptotic polarization, i.e. to determine if the common limit variable Z∞ can
or cannot belong to the barrier-set {0, 1}. To this end, in order to exclude trivial cases, we fix
P (T0) < 1 with T0 = {Z0 = 0} ∪ {Z0 = 1} and we collect the conditions that ensure the complete
almost sure asymptotic synchronization of the system (see [5, Corollary 2.5]) in the following
assumption:

Assumption 2. Assume that at least one of the following conditions holds true:

(1)
∑

n rn = +∞ and W aperiodic,
(2)

∑
n rn(1− rn) = +∞.

(For the definition of periodicity of a matrix please refer to Appendix C). Under these conditions,
the almost sure random limit Z∞ of the system is well defined and we can introduce the set

T∞ = {Zn
a.s.−→ 1} ∪ {Zn

a.s.−→ 0} = {Z∞ = 1} ∪ {Z∞ = 0}.
The rest of this section is dedicated to characterize when we have P (T∞|T c

0 ) = 0 (non-trivial as-
ymptotic polarization is negligible), 0 < P (T∞) < 1 (asymptotic polarization with a strictly positive
probability, but non almost sure) or P (T∞) = 1 (almost sure asymptotic polarization). In particular,
for the second case, we will give a condition that assures P (T∞|T c

0 ) > 0 (non-trivial asymptotic
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polarization with a strictly positive probability).

Before stating the results, we point out that the conditions reported in Assumption 2 are essen-
tial only for the complete almost sure asymptotic synchronization, and so for the existence of Z∞.
Indeed, the provided results could be also stated for the case N = 1 omitting Assumption 2.

We highlight that the key-point for the following results is that, in the case of complete almost
sure asymptotic synchronization, the random variable Z∞ can be seen as the almost sure limit of
the martingale

Z̃n = v⊤Zn ,

where v is the (unique) left eigenvector associated to the leading eigenvalue 1 of W⊤ with all
the entries in (0,+∞) and such that v⊤1 = 1. Indeed, we note that the assumption P (T0) < 1

corresponds to P (0 < Z̃0 < 1) > 0 and the stochastic process (Z̃n)n is a martingale, with respect
to the filtration F = (Fn)n associated to the model (see Section 1), which follows the dynamics

(21) Z̃n+1 = (1− rn)Z̃n + rnYn+1, with Yn+1 = v⊤Xn+1.

The first result follows from Theorem 2.2 and Lemma 2.3, and it shows sufficient conditions to
guarantee that the probability of touching the barriers in the limit is zero on T c

0 , i.e. on the set
where the initial condition is non-trivial.

Theorem 3.1 (Non-trivial asymptotic polarization is negligible). Under Assumption 2, if we also
have condition (10) or, equivalently, (13), then P (T∞|T c

0 ) = 0. In particular, these conditions are
satisfied when there exists 0 < c ≤ 1 such that limn nrn = c and

∑
n(rn − cn−1) is convergent.

Proof. The first statement follows by an application of Theorem 3.1 to (Z̃n)n. Regarding the last

statement, we note that
∑n

k=0 rk = c ln(n)+O(1) and then e−
∑n

k=1 rk
∑n

k=1 rk = O(n−c ln(n)). □

Note that, since
∑

n rn = +∞ (by Assumption 2), conditions (10), or (13), imply
∑

n

∏n
k=0(1−

rk) = +∞ (see (11) in Lemma 2.3). In the next result we consider the opposite condition.

Theorem 3.2 (Non-trivial asymptotic polarization with a strictly positive probability). Under
Assumption 2, if ∑

n

n∏
k=0

(1− rk) < +∞,

then we have P (Z∞ = z|T c
0 ) > 0 for both z = 0 and z = 1 and so P (T∞|T c

0 ) > 0. More
precisely, we have a strictly positive probability, given T c

0 , of fixation of all the stochastic processes
{(Xn,l)n : l ∈ V } on the value z for both z = 0 and z = 1.

In particular, the above assumptions are satisfied when limn n
γrn = c and

∑
n(rn − cn−γ) is

convergent for γ = 1 and c > 1 or for 1/2 < γ < 1 and c > 0.

Proof. This result follows from Theorem 2.4 applied to Z̃n and to (1 − Z̃n) (see Remark 3) with
n0 = 0, δn ≡ 1, Gn = Fn, gn(x) = g(x) = min

(
x

vmin
, 1
)
∀n, where vmin = minl vl > 0, En0 = Cn0 .

Indeed, we have An+1 = {Yn+1 = 0} = ∩N
l=1{Xn+1,l = 0} and so a.s.

P (Ac
n+1| Gn) = P (∪N

l=1{Xn+1,l = 1}| Fn)

≤
N∑
l=1

[W⊤Zn]l = 1⊤W⊤Zn

≤ 1

vmin
v⊤W⊤Zn =

1

vmin
v⊤Zn =

1

vmin
Z̃n.
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It follows P (An+1| Gn) ≥ 1− g(Z̃n) a.s. for each n. This means P (Bn) = 1 for each n, C0 ∈ G0 and
P (C0) = 1. Assumption 1.2 is simply to be verified as, for any C > 0,

∞∑
n=1

gn

(
min

(
C

n−1∏
k=0

(1− δkrk), 1
))

=
∞∑
n=1

min
(C∏n−1

k=0(1− rk)

vmin
, 1
)

≤ C

vmin

∞∑
n=1

n−1∏
k=0

(1− rk)

=
C

vmin

∞∑
n=0

n∏
k=0

(1− rk)

< +∞.

Let us now focus on Assumption 1.3 (with n0 = 0 and En0 = Cn0), and in particular on proving
that, for some m0 ≥ 1, P (An0+m0 |T c

0 ) > 0 holds true. To this end, we observe that, by the
irreducibility of W and the assumption P (T0) < 1, there exists a time-step m∗ such that, the event
{0 < Zm∗,l < 1 : ∀l ∈ V } has a strictly positive probability under P (·|T c

0 ). Then, we have

P (Am∗+1|T c
0 ) = E[∩N

l=1{Xm∗+1,l = 0}|T c
0 ] = E

[ N∏
l=1

(1− Zm∗,l)|T c
0

]
≥ E

[
(1−max

l∈V
Zm∗,l)

N |T c
0

]
> 0.

Therefore Assumption 1.3 holds true with m0 = m∗ + 1. Hence, we can apply Theorem 2.4 to Z̃n

and we get

P (Z∞ = 0|T c
0 ) ≥ P (∩+∞

n=n0+m0
An|T c

0 ) > 0 ,

where ∩+∞
n=n0+m0

An = ∩n≥n0+m0, l=1,...,N{Xn+1,l = 0}.
By simmetry (1− Z̃n) and (1− Yn) also satisfy Assumption 1 (with the same n0, δn, gn, En0 and
m0) and so we get

P (Z∞ = 1|T c
0 ) ≥ P (∩n≥n0+m0, l=1,...,N{Xn+1,l = 1}|T c

0 ) > 0 .

The last statement of Theorem 3.2 follows from Lemma A.1: indeed, when γ = 1 and c > 0,
we have

∏n
k=0(1 − rk) = O(n−c) and the series

∑
n n

−c is convergent when c > 1; while, when
1/2 < γ < 1 and c > 0, we have

∏n
k=0(1 − rk) = O(exp(−Cn1−γ)) (with C = c/(1 − γ)) and the

series
∑

n exp(−Cn1−γ) is always convergent. □

The last result follow from Theorem 2.5 and Proposition 2.6, and it affirms that the probability
of asymptotic polarization is strictly smaller than or equal to 1 according to the convergence or not
of the series

∑
n r

2
n.

Theorem 3.3. Under Assumption 2, we have:

(i) If
∑

n r
2
n < +∞, then P (T∞) < 1 (non-almost sure asymptotic polarization);

(ii) If
∑

n r
2
n = +∞, then P (T∞) = 1 (almost sure asymptotic polarization) and P (Z∞ = 1) =

v⊤E[Z0].

In particular, when limn n
γrn = c > 0, case i) is verified if 1/2 < γ ≤ 1 and case ii) is verified

when 0 < γ ≤ 1/2.
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Proof. Statement (i) follows from Proposition 2.6.
Statement (ii) follows from Theorem 2.5, with Gn = Fn, since

V ar[Yn+1|Fn] =
N∑
l=1

v2l [W
⊤Zn]l(1− [W⊤Zn]l).

Then, we have

V ar[Yn+1|Fn]
a.s.−→ L∞ =

(
N∑
l=1

v2l

)
Z∞(1− Z∞),

and so (20) is trivially satisfied.

Regarding the last statement of Theorem 3.3, we note that rn → 0 and, since rnn
γ/c → 1, the

series
∑

n rn has the same behaviour as the series c
∑

n n
−γ (that is they are both convergent or

both divergent). This last series diverges for 0 < γ ≤ 1 and c > 0. Therefore, in that case, the
second condition in Assumption 2 is verified. Similarly, the series

∑
n r

2
n has the same behaviour

as the series c
∑

n n
−2γ , which is convergent or not according to 2γ > 1 or not. □

In the special case of a single process, the first part of Theorem 3.3 is in accordance with [22, 24].
Indeed, [24, condition (1.4)] corresponds to

∑
n(

rn
1−rn

)2 < +∞, that is
∑

n r
2
n < +∞. Moreover,

Theorem 3.3 agrees with [13, Theorem 2.1], where
∑

n r
2
n = +∞ is given as sufficient and necessary

condition for the almost sure asymptotic polarization of the process (
∑N

l=1 Zn,l/N)n, under the
mean-field interaction.

Finally, for the sake of completeness, we conclude this section with the following remark:

Remark 5. Given the complete almost sure asymptotic synchronization of the system, since E[(v⊤Xn+1−
Z̃n)

2|Fn]
a.s.→ ΦZ∞(1 − Z∞), with Φ = ∥v∥2 > 0, we can apply Remark 4 to (Z̃n)n so obtaining

P (Z∞ = z) = 0 for all z ∈ (0, 1), provided that there exists a sequence (an)n such that an → +∞,

a2n
∑
k≥n

r2k −→ 1, and an sup
k≥n

rk −→ 0 .

For instance, this fact is verified when limn n
γrn = c with c > 0 and 1/2 < γ ≤ 1 (it is enough to

take an = nγ−1/2
√

(2γ − 1))/c).

4. Estimation of the probability of asymptotic polarization

Given the theoretical results about the probability of asymptotic polarization for a network of
reinforced stochastic processes, our next scope is to provide a procedure in order to estimate this
probability, given the observation of the system until a certain time-step. In this section, and in
the next one, we again face the problem in the general setting of a G-martingale M = (Mn)n≥0

taking values in [0, 1] and following the dynamics (9). Here, the filtration G = (Gn)n assumes the
meaning of the information collected until time-step n, i.e. the observed past until time-step n, and
we aim at providing consistent estimators for the conditional probabilities P0,n = P (M∞ = 0|Gn)
and P1,n = P (M∞ = 1|Gn).

We point out that we will not use the lower bound (18) since this bound has been obtained eval-
uating the probability that the process converges to the barrier {0} by δn-fixation, i.e. evaluating
the probability of the event ∩+∞

n=n0+m0
An. However, in general it could be possible that the process

touches the barrier {0} in the limit without δn-fixation. Hence (18) would not provide a consistent
estimate for the considered probability.
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In the sequel we assume
∑

n r
2
n < +∞, because, as previously shown, this condition assures that

the probability of asymptotic polarization is strictly less than 1 when P (0 < M0 < 1) > 0 (see
Proposition 2.6). In this framework, we present some strongly consistent estimators for the condi-
tional probabilities P0,n = P (M∞ = 0|Gn) and P1,n = P (M∞ = 1|Gn). Naturally, the estimation
makes sense when the observed value M0 belongs to (0, 1) (otherwise we trivially have M∞ = 0
when M0 = 0, or M∞ = 1 when M0 = 1, with probability one).

We start by proving the following result:

Proposition 4.1. Assume
∑

n r
2
n < +∞. Then, the random variables

(22) U0,n = exp

(
− 2M2

n∑∞
k=n r

2
k

)
and U1,n = exp

(
−2(1−Mn)

2∑∞
k=n r

2
k

)
provide almost sure upper bounds for P0,n and P1,n, respectively, such that

U0,n − P0,n
a.s.−→ 0 and U1,n − P1,n

a.s.−→ 0.

Proof. We observe that −rn(1−Mn) ≤ Mn−Mn+1 = rn(Mn−Yn+1) ≤ rnMn and so, by Hoeffding’s
lemma (applied to Mk −Mk+1 and to E[· | Gk] with a = −rk(1−Mk) and b = rkMk), we have for
each k and t ∈ R

E
[
et(Mk−Mk+1) | Gk

]
≤ e

1
8
t2r2k a.s. .

Hence, for each K > n and t ∈ R, since Mn −MK =
∑K−1

k=n (Mk −Mk+1), we get

E[et(Mn−MK) | Gn] = E

[
K−1∏
k=n

E
[
et(Mk−Mk+1) | Gk

]
| Gn

]
≤ e

1
8
t2

∑K−1
k=n r2k a.s. .

Taking K → +∞ (and recalling that MK
a.s.→ M∞ and et(Mn−MK) ≤ et since Mn ∈ [0, 1] for each

n), we find

E[et(Mn−M∞) | Gn] ≤ e
1
8
t2

∑∞
k=n r2k a.s. .

Therefore, for each λ > 0, we obtain

P (M∞ = 0 | Gn) = P (Mn −M∞ = Mn | Gn)

≤ P (Mn −M∞ ≥ Mn | Gn) = P (eλ(Mn−M∞) ≥ eλMn | Gn)

≤ e−λMnE
[
eλ(Mn−M∞) | Gn

]
≤ e−λMn+

1
8
λ2

∑∞
k=n r2k a.s. .

Choosing λ = 4Mn/
∑∞

k=n r
2
k (> 0 if Mn > 0, but for Mn = 0 the upper bound is trivial!) in

order to minimize the above expression, we obtain P0,n ≤ U0,n almost surely. Moreover, we know

that P0,n = E[I0(M∞)|Gn]
a.s.→ I0(M∞), where I0 denotes the indicator function of the set {0},

that is I0(x) = 1 if x = 0 or I0(x) = 0 otherwise. Hence, when P0,n → 0, that is when M∞ > 0,

by the fact that
∑

n r
2
n < +∞, we have that a.s. − limn→∞

∑∞
k=n r2k
M2

n
=

limn→∞
∑∞

k=n r2k
M∞

= 0 and

so U0,n
a.s.→ 0. When P0,n ̸→ 0, that is when P0,n

a.s.→ 1, we also have U0,n
a.s.→ 1, because, by

construction, P0,n ≤ U0,n ≤ 1 a.s. for each n.
Analogously, we can compute the upper bound for the barrier 1, i.e. U1,n, and prove that

U1,n − P1,n
a.s.→ 0. □
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The above upper bounds could be used in order to have consistent estimators of P0,n and P1,n,
respectively. However, at a fixed n the difference between Uz,n and Pz,n, with z ∈ {0, 1}, may
be large. Therefore, in applications, given the observed past until time-step n, we can get better
estimates if we replace Uz,n by U ′

z,n,t = E[Uz,t|Gn] with t > n. Indeed, by Blackwell-Dubins result
(see [9, Theorem 2] or [12, Lemma A.2(d)]), we have

U ′
z,n,t − Pz,n = E[Uz,t − Pz,t | Gn]

a.s.−→ 0 for t → +∞.

The quantity U ′
z,n,t can be estimated by simulating a large number K ∈ N of realizations of

Mt based on the observed past Gn (say {M j
t , j = 1, . . . ,K}), then computing the corresponding

realizations of Uz,t by the above formulas (say {U j
z,t, j = 1, . . . ,K}), and finally averaging over

these realizations, so that we get

U ′K
z,n,t =

1

K

K∑
j=1

U j
z,t, where lim

K→∞
U ′K
z,n,t

a.s.
= E[Uz,t | Gn]

a.s.
= U ′

z,n,t.

It is important to notice that the increase of t has only a computational cost but it does not have
anything to do with the increasing of the number of observed data, which depends on n. Some
pratical guidelines on the choice of the time-step t > n are reported in Section B of the Appendix.

Remark 6. Note that the random variables (22) represent only one of the multiple bounds that can
be used to create analogous consistent estimators of the probability of asymptotic polaritation P0,n

and P1,n. Indeed, the methodology presented in this paper works as well with other bounds (see
[10]), e.g. Chebychev, Bennet, etc. . .

5. A confidence interval for M∞

In this section we define an asymptotic confidence interval for M∞ given Gn, i.e. based on
the information collected until time-step n. Analogously to the estimators U ′K

z,n,t, for z ∈ {0, 1},
presented in the previous section, also this interval is built by simulating a large number K ∈ N of
realizations of Mt (with t > n) based on the observed past Gn. However, as we will see in Remark 7,
the confidence interval cannot be simply constructed using the quantiles of the empirical distribution
Mt given Gn obtained in simulation, because in that case the desired confidence level 1− α would
not be guaranteed. Instead, we define an asymptotic confidence interval for M∞ as a suitable union
of some of these three components:

(i) an asymptotic confidence interval constructed for the case 0 < M∞ < 1 (see Subsection 5.1
for the details);

(ii) the barrier set {0}, in order to include the possible case M∞ = 0;
(iii) the barrier set {1}, in order to include the possible case M∞ = 1.

The presence or absence of each one of the above three sets (and the confidence level chosen for the
interval (i)) in the union depends on the estimated probability, given Gn, of the events {M∞ = 0},
{M∞ = 1} and {0 < M∞ < 1}, i.e. on the estimates of P0,n, P1,n and P(0,1),n = 1 − P0,n − P1,n,
respectively, proposed in the previous section.
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Given α ∈ (0, 1), we denote by IKn,t,1−α the asymptotic confidence interval for M∞ that we want
to construct in this section. First of all, we observe that we have the following decomposition:

P (M∞ ∈ IKn,t,1−α | Gn) = P (M∞ ∈ IKn,t,1−α | Gn, 0 < M∞ < 1)P (0 < M∞ < 1 | Gn)

+ P (M∞ ∈ IKn,t,1−α | Gn,M∞ = 0)P (M∞ = 0 | Gn)

+ P (M∞ ∈ IKn,t,1−α | Gn,M∞ = 1)P (M∞ = 1 | Gn)

= P (M∞ ∈ IKn,t,1−α | Gn, 0 < M∞ < 1)P(0,1),n

+ P (0 ∈ IKn,t,1−α | Gn)P0,n

+ P (1 ∈ IKn,t,1−α | Gn)P1,n,

where we have used that IKn,t,1−α is based only on Gn and so it does not depend on M∞. Now,

we can consider the consistent estimators, U ′K
0,n,t and U ′K

1,n,t, defined in the previous section, and

U ′K
(0,1),n,t = 1 − U ′K

0,n,t − U ′K
1,n,t

4. Moreover, let us denote by IK(0,1),n,t,θ the asymptotic confidence

interval of level θ for M∞, based on Gn, when 0 < M∞ < 1 (see Subsection 5.1 for details). Then,
we can give the following definition:

Definition 5.1. The asymptotic confidence interval IKn,t,1−α for M∞, based on Gn, is defined as
follows:

(1) IKn,t,1−α = {0}, if U ′K
0,n,t ≥ 1− α;

(2) IKn,t,1−α = {1}, if U ′K
1,n,t ≥ 1− α;

(3) IKn,t,1−α = IK
(0,1),n,t, 1−α

U′K
(0,1),n,t

, if U ′K
(0,1),n,t ≥ 1− α;

(4) IKn,t,1−α = {0} ∪ {1},
if max{U ′K

0,n,t, U
′K
1,n,t} < 1− α, U ′K

0,n,t + U ′K
1,n,t ≥ 1− α and U ′K

(0,1),n,t < min{U ′K
0,n,t, U

′K
1,n,t};

(5) IKn,t,1−α = {0} ∪ IK

(0,1),n,t,
1−α−U′K

0,n,t

U′K
(0,1),n,t

,

if max{U ′K
0,n,t, U

′K
(0,1),n,t} < 1−α, U ′K

0,n,t+U ′K
(0,1),n,t ≥ 1−α and U ′K

1,n,t < min{U ′K
0,n,t, U

′K
(0,1),n,t};

(6) IKn,t,1−α = {1} ∪ IK

(0,1),n,t,
1−α−U′K

1,n

U′K
(0,1),n,t

,

if max{U ′K
(0,1),n,t, U

′K
1,n,t} < 1−α, U ′K

(0,1),n,t+U ′K
1,n,t ≥ 1−α and U ′K

0,n,t < min{U ′K
(0,1),n,t, U

′K
1,n,t};

(7) IKn,t,1−α = {0} ∪ {1} ∪ IK

(0,1),n,t,
1−α−U′K

0,n,t−U′K
1,n,t

U′K
(0,1),n,t

, if all the above conditions do not hold.

We notice that IKn,t,1−α depends on the Gn−measurable random variables U ′K
0,n,t, U ′K

1,n,t and

U ′K
(0,1),n,t, which means that the specific form of the interval, i.e. (1)-(7), is selected based on

the information collected until the time-step n. In addition, we note that the level θ of the interval
IK(0,1),n,t,θ is not always the same, as it is set so that the global level of the interval IKn,t,1−α attains

(asymtotically in t and K) the nominal level 1− α. Indeed, if we denote as Cn,1−α the asymptotic
(in K and t) coverage of the interval IKn,t,1−α, i.e.

Cn,1−α
a.s.
= lim

t,K→∞
P (M∞ ∈ IKn,t,1−α|Gn),

4If the time t > n used in the simulations is not high enough to make these estimators accurate, it is possible that

U ′K
0,n,t + U ′K

1,n,t > 1; in that case, we can replace U ′K
0,n,t by

U′K
0,n,t

U′K
0,n,t+U′K

1,n,t
, U ′K

1,n,t by
U′K

1,n,t

U′K
0,n,t+U′K

1,n,t
and U ′K

(0,1),n,t by 0.
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we can show that, for any value of P0,n, P1,n and P(0,1),n, we always have Cn,1−α ≥ 1 − α. To

this end, we consider the following seven cases, where in each one the interval IKn,t,1−α is the one
reported in the corresponding case of the previous Definition 5.1, because it is exactly the interval
that is selected in that case when t, K are large (since the choice is based on strongly consistent
estimators of the probabilities P0,n, P1,n and P(0,1),n):

(1) if P0,n ≥ 1− α, Cn,1−α = 0 + 1 · P0,n + 0 = P0,n ≥ 1− α;
(2) if P1,n ≥ 1− α, Cn,1−α = 0 + 0 + 1 · P1,n = P1,n ≥ 1− α;
(3) if P(0,1),n ≥ 1− α, Cn,1−α = 1−α

P(0,1),n
· P(0,1),n + 0 + 0 = 1− α;

(4) if max{P0,n, P1,n} < 1− α, P0,n + P1,n ≥ 1− α and P(0,1),n < min{P0,n, P1,n},
Cn,1−α = 0 + 1 · P0,n + 1 · P1,n = P0,n + P1,n ≥ 1− α;

(5) if max{P0,n, P(0,1),n} < 1− α, P0,n + P(0,1),n ≥ 1− α and P1,n < min{P0,n, P(0,1),n},
Cn,1−α =

1−α−P0,n

P(0,1),n
· P(0,1),n + 1 · P0,n + 0 = 1− α;

(6) if max{P(0,1),n, P1,n} < 1− α, P(0,1),n + P1,n ≥ 1− α and P0,n < min{P(0,1),n, P1,n},
Cn,1−α =

1−α−P1,n

P(0,1),n
· P(0,1),n + 0 + 1 · P1,n = 1− α;

(7) if all the above conditions do not hold,

Cn,1−α =
1−α−P0,n−P1,n

P(0,1),n
· P(0,1),n + 1 · P0,n + 1 · P1,n = 1− α.

5.1. Confidence interval for the case 0 < M∞ < 1. In this section we illustrate the details
concerning the asymptotic confidence interval IK(0,1),n,t,θ of level θ for M∞, given 0 < M∞ < 1, that

has been used above for the definition of the interval IKn,t,1−α. To avoid unnecessary complications,

here we focus on the case when the limit random variable M∞ has no atoms in (0, 1) (we recall
that a set of sufficient conditions for this scenario are provided in Remark 4 of Section 2, which
are for instance verified for a network of RSPs as discussed in Remark 5 at the end of Section 3).
The interval IK(0,1),n,t,θ is based on the quantiles of the conditional distribution of Mt given Gn and

{0 < M∞ < 1}, and we show that

lim
t,K→+∞

P (M∞ ∈ IK(0,1),n,t,θ | Gn, 0 < M∞ < 1)
a.s.
= θ.

First of all, we define the following conditional cumulative distribution functions: for any x ∈
[0, 1]

F(0,1),n,∞(x) = P (M∞ ≤ x | Gn, 0 < M∞ < 1) a.s. and

F(0,1),n,t(x) = P (Mt ≤ x | Gn, 0 < M∞ < 1) a.s.

Because of the assumption that M∞ has no atoms in (0, 1), then F(0,1),n,∞ and its inverse are
continuous. Moreover, we define the corresponding quantiles of order α/2 and 1− α/2:

q(0,1),n,∞,α
2
= F−1

(0,1),n,∞

(α
2

)
and q(0,1),n,∞,1−α

2
= F−1

(0,1),n,∞

(
1− α

2

)
,

q(0,1),n,t,α
2
= min

{
x ∈ [0, 1] : F(0,1),n,t(x) ≥

α

2

}
and

q(0,1),n,t,1−α
2
= min

{
x ∈ [0, 1] : F(0,1),n,t(x) ≥ 1− α

2

}
.
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Now, we can set I(0,1),n,t,θ equal to the interval with extremes q(0,1),n,t, 1−θ
2

and q(0,1),n,t, 1+θ
2
, so that

we have

lim
t→+∞

P (M∞ ∈ I(0,1),n,t,θ | Gn, 0 < M∞ < 1) =

lim
t→+∞

P (q(0,1),n,t, 1−θ
2

≤ M∞ ≤ q(0,1),n,t, 1+θ
2

| Gn, 0 < M∞ < 1)
a.s.
=

1− lim
t→+∞

[
F(0,1),n,∞(q(0,1),n,t, 1−θ

2
) + 1− F(0,1),n,∞(q(0,1),n,t, 1+θ

2
)
]
=

1−
[
F(0,1),n,∞(q(0,1),n,∞, 1−θ

2
) + 1− F(0,1),n,∞(q(0,1),n,∞, 1+θ

2
)
]
=

1− 1− θ

2
− 1 +

1 + θ

2
= θ ,

where we have used the continuity of F(0,1),n,∞ and the fact that q(0,1),n,t, 1−θ
2

→ q(0,1),n,∞, 1−θ
2

and

q(0,1),n,t, 1+θ
2

→ q(0,1),n,∞, 1+θ
2

as t → +∞ (because Mt
a.s.→ M∞ and F−1

(0,1),n,∞ is continuous and hence

the pseudo-inverse of F(0,1),n,t converges pointwise to F−1
(0,1),n,∞ for t → +∞).

Remark 7. It is worth highlighting that if we had not conditioned on {0 < M∞ < 1}, then the
cumulative distribution function Fn,∞(·) of M∞ given Gn would not be continuous at 0 and 1, and
so the probability that M∞ lies within the quantiles, say qn,t, 1−θ

2
and qn,t, 1+θ

2
, defined as q(0,1),n,t, 1−θ

2

and q(0,1),n,t, 1+θ
2

but without the conditioning on {0 < M∞ < 1}, would not attain the desired level

θ. For instance, if P0,n > 1−θ
2 , we have qn,∞, 1−θ

2
= 0, but, since P (0 < Mt < 1|Gn) = 1 for any t, we

always have qn,t, 1−θ
2

> 0, and hence5 Fn,∞(qn,∞, 1−θ
2
−) = 0, while limt Fn,∞(qn,t, 1−θ

2
−) ≥ P0,n > 1−θ

2 .

Analogously, if P1,n > 1−θ
2 , we may show that limt 1− Fn,∞(qn,t, 1+θ

2
) ≥ P1,n > 1−θ

2 . Therefore, we

would have limt→∞ P (qn,t, 1−θ
2

≤ M∞ ≤ qn,t, 1+θ
2

| Gn) < θ.

In practice we have to estimate the cumulative distribution function of Mt conditioned on Gn

and {0 < M∞ < 1}, i.e. the function F(0,1),n,t(·) defined above, and the corresponding quantiles

q(0,1),n,t, 1−θ
2

and q(0,1),n,t, 1+θ
2

needed for I(0,1),n,t,θ. In other words, the interval IK(0,1),n,t,θ we are

constructing corresponds to the interval I(0,1),n,t,θ, where we replace the two extremes q(0,1),n,t, 1−θ
2

and q(0,1),n,t, 1+θ
2

with their corresponding estimates qK
(0,1),n,t, 1−θ

2

and qK
(0,1),n,t, 1+θ

2

.

More precisely, we observe that, after some easy computations, we get for each x ∈ [0, 1] and
t ≥ n

F(0,1),n,t(x) = P (Mt ≤ x | Gn, 0 < M∞ < 1) =
E[1{Mt≤x}P(0,1),t | Gn]

E[P(0,1),t | Gn]
,

where we recall that P(0,1),t = P (0 < M∞ < 1 | Gt) = 1 − P0,t − P1,t. Therefore, if we generate
a large number K ∈ N of realizations of Mt based on the observed past Gn, we can approximate

E[1{Mt≤x}P(0,1),t | Gn] by
1
K

∑K
j=1 1{Mj

t ≤x}P
j
(0,1),t and E[P(0,1),t | Gn] = P(0,1),n by 1

K

∑K
j=1 P

j
(0,1),t

(for K large), where P j
(0,1),t can be approximated by U j

(0,1),t (for t large), and so we can estimate

F(0,1),n,t(x) by means of the strongly consistent estimator

FK
(0,1),n,t(x) =

∑K
j=1 1{Mj

t ≤x}U
j
(0,1),t∑K

j=1 U
j
(0,1),t

.

5Fn,∞(x−) = Fn,∞(x)− P (M∞ = x | Gn).
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Finally, from the estimator FK
(0,1),n,t(·) we can derive the quantiles qK

(0,1),n,t, 1−θ
2

and qK
(0,1),n,t, 1+θ

2

needed for the asymptotic confidence interval IK(0,1),n,t,θ.

Remark 8. It is important to highlight that the confidence interval IK(0,1),n,t,θ is to be intended

asymptotically in t and K, but not in n. Then, since n represents the data size while t and K
represent the simulation size, this means that improving the confidence of the above interval in
order to achieve the desired nominal level θ consists only in a computational cost but not in the
practical cost of collecting new data.

6. Application to a network of reinforced stochastic processes

Consider the setting described in Sections 1 and 3. We can apply the proposed methodology to

the martingale Z̃ = (Z̃n)n (see Sec. 3) with the filtration Gn = Fn defined in Section 1. Indeed, as
observed in Section 3, in the case of complete almost sure asymptotic synchronization, the random

variable Z∞ can be seen as the almost sure limit of Z̃n and, when
∑

n r
2
n < +∞, the random

variable U ′K
z,n,t, with z ∈ {0, 1}, as defined in Section 4 provides a strongly consistent estimator

for the probability Pz,n that Z∞ = z given the observed past Fn until time-step n, i.e. given
the observation of the system until time-step n. These estimators can be used in applications in
order to predict how it is likely to have the asymptotic polarization of the network agents and then
providing a confidence interval for Z∞, given the observation of the system until a certain time-step
n and provided that the sequence (rn)n is known.

For instance, let us focus on the case when limn n
γrn = c and

∑
n(rn− cn−γ) is convergent, with

c > 0 and 1/2 < γ < 1, for which we know that 0 < Pz,n < 1 (see Table 1 in Section 1). Then,
in Figure 1, for a given choice of γ and c, we have simulated K = 100 realizations of the network
until a certain time-step n and, for each of them, we have plotted U ′K

z,n,t for a chosen t > n that
satisfies the lower bound provided in the practical guidelines of Section B of the Appendix.

Notice in Figure 1 how the estimates change according to the values of Z̃n observed in the dif-

ferent simulations: when Z̃n is very close to a barrier, z = 0 or z = 1, then the corresponding

U ′K
z,n,t is close to one as well, while when Z̃n lies within (0,1) and is far from the barriers, then both

U ′K
0,n,t and U ′K

1,n,t are very small, so leading U ′K
(0,1),n,t to be large instead. In addition, notice how the

estimates of U ′K
z,n,t get more extreme with a larger value of n, since the probability of polarization

itself gets close to 1 or 0 with more observations, i.e. U ′K
z,n,t

a.s.−→t,K Pz,n
a.s.−→n Iz(Z∞) ∈ {0, 1}.

Figure 2 is focused on the construction of a confidence interval for Z∞ in the same framework
as considered in Figure 1. In particular, it shows how the asymptotic confidence interval IKn,t,1−α

presented in Section 5 can be composed by different disjoint sets: {0}, {1} and IK(0,1),n,t,θ, i.e. the

two barriers and the interval for the case 0 < Z∞ < 1. The specific form assumed by the interval

depends on the observation of the system until the time-step n, and in particular on Z̃n. Indeed,

from Figure 2 it is evident that when Z̃n is very close to a barrier, z = 0 or z = 1, the interval is

only made by that barrier z, while when Z̃n remains inside (0, 1) and is far from the barriers we
get a more classical two-sided interval that excludes them. Naturally, with a larger value of n we
observe more intervals composed by a single set, which can be {0}, {1} or the interval IK(0,1),n,t,θ,

that gets narrower as a natural consequence of the fact that Z̃n
a.s.−→ Z∞.

Remark 9. We observe that the estimating procedure for the probability of asymptotic polariza-
tion and the construction of the asymptotic confidence interval for Z∞ can be adapted to the case
when only the asymptotic behaviour of (rn) is known and the observable variables are the agents’
actions Xn,ℓ. In that case, we have to replace the random variables Zn,ℓ by the empirical means
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Figure 1. Model parameters: N = 3, rn = c
(0.1+n)γ with c = 1 and γ = 0.75, the

interaction matrix W is of the mean-field type, precisely wl1,l2 = 1
2N + 1

2δl1,l2 , with

initial condition Z0 =
1
21. Number of simulations S = 102.

Parameters for the estimating procedure: K = 102, n = 102, 104 and t = n +
104 (that satisfies the guidelines of Section B of the Appendix, e.g. with η = 0.2
and ϵ = 0.05). In each panel identified by n and a limit set z = {0}, (0, 1), {1},
the triangles correspond to the values of Z̃n for the different S simulations. The
circular dots represent the estimate U ′K

z,n,t for the different S simulations. The crosses

represent the target values Pz,n
a.s.
= limK,t→+∞ U ′K

z,n,t, here estimated as U ′K
z,n,105 , for

the different S simulations. The vertical segments indicate the differences between
the estimates and the corresponding target values.

∑n
k=1Xk,ℓ/n or by suitable weighted empirical means [3, 4].
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Appendix A. Some auxiliary results

We start with the proof of Lemma 2.3.
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Figure 2. Model parameters: N = 3, rn = c
(0.1+n)γ with c = 1 and γ = 0.75, the

interaction matrix W is of the mean-field type, precisely wl1,l2 = 1
2N + 1

2δl1,l2 , with

initial condition Z0 =
1
21. Number of simulations S = 102.

Parameters for the estimating procedure: K = 102, n = 102, 104, t = n+ 104 (that
satisfies the guidelines of Section B of the Appendix, e.g. with η = 0.2 and ϵ = 0.05)
and confidence level 1−α = 0.95. In each panel identified by n, the (possible) three
parts that can compose the confidence interval IKn,t,1−α are reported: the set {0}
(red), the set {1} (blue) and the interval IK(0,1),n,t,θ (green). The triangles correspond

to the values of Z̃n for the different S simulations. The crosses represent the target

values Z∞
a.s.
= limt→+∞ Z̃t, here estimated as Z̃105 , for the different S simulations.

Proof of Lemma 2.3. a) In order to prove (11), we note that∑
n≥0

rn∑n
k=0 rk

= 1 +
∑
n≥1

rn∑n
k=0 rk

and, since
∑n−1

k=0 rk/
∑n

k=0 rk = (1+rn/
∑n−1

k=0 rk)
−1 → 1 when

∑
n rn = +∞, we have that the series∑

n≥1
rn∑n
k=0 rk

has the same behaviour as the series
∑

n≥1
rn∑n−1

k=0 rk
(i.e. they are both convergent or

both divergent). In order to prove that the last series diverges to +∞, we observe that

∑
n≥1

rn∑n−1
k=0 rk

=
∑
n≥1

∫ ∑n
k=0 rk∑n−1

k=0 rk

1∑n−1
k=0 rk

dx ≥
∑
n≥1

∫ ∑n
k=0 rk∑n−1

k=0 rk

1

x
dx =

∫ +∞

r0

1

x
dx = +∞.

b) The relation (12) follows by combining the following inequalities:

n∑
k=0

rk =

n∑
k=0

αk+1

sk+1
=

n∑
k=0

∫ sk+1

sk

1

sk+1
dx

≤
n∑

k=0

∫ sk+1

sk

1

x
dx =

∫ sn+1

s0

1

x
dx = ln(sn+1)− ln(s0) ≤ ln(sn+1)

(23)
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and

1

1− supn rn

n∑
k=0

rk ≥
n∑

k=0

rk
1− rk

=
n∑

k=0

αk+1

sk
=

n∑
k=0

∫ sk+1

sk

1

sk
dx

≥
n∑

k=0

∫ sk+1

sk

1

x
dx =

∫ sn+1

s0

1

x
dx = ln(sn+1)− ln(s0).

(24)

Indeed, we get

(25) (1− sup
n

rn)

(
1− ln(s0)

ln(sn+1)

)
≤
∑n

k=0 rk
ln(sn+1)

≤ 1

and, since the limit of ln(s0)/ ln(sn+1) is strictly smaller than 1 if supn rn > 0 (i.e. if the numbers
αn are not all equal to zero), there exists a real constant c > 0 such that

c ≤ lim inf
n

∑n
k=0 rk

ln(sn+1)
≤ lim sup

n

∑n
k=0 rk

ln(sn+1)
≤ 1 .

c) It is immediate to see that (13) implies (10) since (1 − x) ≤ e−x ∀x > 0. The converse is also
trivial when

∑
n rn < +∞. Indeed, (10) is always verified when

∑
n rn < +∞ and

∑
n rn < +∞

trivially implies
∑

n r
2
n < +∞ since rn < 1 ∀n.

Now, we focus on the case when
∑

n rn = +∞. In that case, there exists N > 0 such that∑N−1
k=0 rk ≥ 1. Then, since x 7→ xe−x is decreasing on [1,∞), under (10) we obtain∑

n≥N

r2n ≤
∑
n≥N

rn

(
Ce−

∑n
k=0 rk

n∑
k=0

rk

)
= C

∑
n≥N

∫ ∑n
k=0 rk∑n−1

k=0 rk

e−
∑n

k=0 rk

n∑
k=0

rkdx

≤ C
∑
n≥N

∫ ∑n
k=0 rk∑n−1

k=0 rk

e−xxdx ≤ C

∫ +∞

1
e−xxdx < +∞,

and so the first part of point c) is proven, that is (10) implies
∑

n r
2
n < +∞ (and so rn → 0). As a

consequence of this first result, we have
n∑

k=0

rk
1− rk

−
n∑

k=0

rk =
n∑

k=0

r2k
1− rk

< +∞ .

Therefore, using the inequality (24) for
∑n

k=0
rk

1−rk
, we obtain

n∑
k=0

rk ≥ ln(sn+1)− ln(s0)−
n∑

k=0

r2k
1− rk

,

that is sn+1 = O (exp(
∑n

k=0 rk)). Then, (10) also implies (13): indeed, for suitable real constants
C1 > 0 and C2 > 0, we have

rn∏n
k=0(1− rk)

= rn
sn+1

s0

≤
(
C1e

−
∑n

k=0 rk
∑n

k=0
rk

)
(C2e

∑n
k=0 rk) ≤ C1C2

∑n

k=0
rk.

Recalling that αn+1 = s0
rn∏n

k=0(1−rk)
and using (25), we get that (13) is equivalent to (14), i.e. αn+1 =

O(ln(sn+1)). Finally, recalling that sn+1 = s0/
∏n

k=0(1 − rk) and using (25), we also obtain that
(13) is equivalent to (15), i.e. rn = O(ln(sn+1)/sn+1). □

For reader’s convenience, we here recall some general results. In particular, the first one is a
little generalization of [2, Lemma A.4].
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Lemma A.1. Given 1/2 < γ ≤ 1 and c > 0, let (rn)n be a sequence of real numbers such that
0 ≤ rn < 1,

lim
n

nγrn = c and
∑
n

(rn − cn−γ) is convergent .

Then we have
n∏

k=0

(1− rk) =

{
O
(
exp

[
− c

1−γn
1−γ
])

for 1/2 < γ < 1,

O (n−c) for γ = 1 .

We omit the proof of the above lemma because it is exactly the same as the one of [2, Lemma
A.4].

Theorem A.2 ([15, Theorem 46, p. 40]). Let (Yn)n be a sequence of positive (i.e. non-negative)
random variables, adapted to a filtration G. Then the set {

∑
nE[Yn+1|Gn] < +∞} is almost surely

contained in the set {
∑

n Yn < +∞}. If the random variables Yn are uniformly bounded by a
constant, then these two sets are almost surely equal.

Appendix B. Practical guidelines on the choice of the time t

In this section we provide a practical guideline on the choice of the time-step t > n that has to
be used in the above described estimating procedure.

For instance, consider the estimator U ′K
0,n,t =

1
K

∑K
j=1 U

j
0,t of P0,t (analogous arguments can be

made for the estimator U ′K
1,n,t of P1,t) and focus on a single realization U j

0,t and, in particular,

on its expression in (22), where it is defined as a function of the ratio
∑∞

k=t r
2
k/(M

j
t )

2. Since by

Proposition 4.1 U j
0,t

a.s.−→t I0(M
j
∞), this ratio must tend to infinity a.s. on the set {M j

∞ = 0}.
On the other hand, since

∑
n r

2
n < +∞, we obviously have that it tends to zero a.s. on the set

{0 < M j
∞ ≤ 1}. Moreover, we notice that (M j

t )
2 is bounded by 1, while

∑∞
k=t r

2
k, although it

always tends to zero, can be very large for small t (much larger than 1). As a consequence, if U j
0,t

is computed when the time-step t is small, the ratio
∑∞

k=t r
2
k/(M

j
n)2 (and so U j

0,t) may be always

large, regardless of the value of M j
t , i.e. regardless of the information contained in Gn used to

generate M j
t . To address this issue, we can impose some initial conditions in order to ensure that:

(a) U j
0,t is small when M j

t is not very close to 0;

(b) U j
1,t is small when M j

t is not very close to 1.

Formally, we can fix ϵ > 0 and η > 0 such that U j
0,t < ϵ when M j

t > η and, analogously, U j
1,t < ϵ

when M j
t < 1 − η. These constraints provide us with a condition on the minimum time-step tmin

that we should take to compute the previous estimators: indeed, we have that tmin should be the
minimum integer t such that

exp

(
−2

η2∑∞
k=t r

2
k

)
< ϵ, that is

∞∑
k=t

r2k <
2η2

ln
(
1
ϵ

) .
Appendix C. Periodicity of a matrix

Let A be a non-negative N × N square matrix such that A⊤1 = 1. Then, for any element
l ∈ V = {1, . . . , N}, we can define the period of l, say d(l), as the greatest common divisor n ∈ N
such that An

l,l > 0. Then, if A is also irreducible, all the elements will have the same period and so

we can define the period of the matrix A as d = d(1) = · · · = d(N). A matrix with period d = 1 is
called aperiodic, otherwise a matrix with period d ≥ 2 is called periodic.
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[22] R. Pemantle. A time-dependent version of Pólya’s urn. J. Theoret. Probab., 3(4):627–637, 1990.
[23] N. Sahasrabudhe. Synchronization and fluctuation theorems for interacting Friedman urns. J. Appl. Probab.,

53(4):1221–1239, 2016.
[24] N. Sidorova. Time-dependent Pólya urn, 2018.
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