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Network-based model of the growth of termite nests
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We present a model for the growth of the transportation network inside nests of the social insect subfamily
Termitinae (Isoptera, termitidae). These nests consist of large chambers (nodes) connected by tunnels (edges).
The model based on the empirical analysis of the real nest networks combined with pruning (edge removal,
either random or weighted by betweenness centrality) and a memory effect (preferential growth from the latest
added chambers) successfully predicts emergent nest properties (degree distribution, size of the largest connected
component, average path lengths, backbone link ratios, and local graph redundancy). The two pruning alternatives
can be associated with different genuses in the subfamily. A sensitivity analysis on the pruning and memory
parameters indicates that Termitinae networks favor fast internal transportation over efficient defense strategies
against ant predators. Our results provide an example of how complex network organization and efficient
network properties can be generated from simple building rules based on local interactions and contribute to our
understanding of the mechanisms that come into play for the formation of termite networks and of biological
transportation networks in general.
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I. INTRODUCTION

Biological transportation networks are a fundamental
component of all living systems, allowing the exchange of
information and material at the scale of the whole system. It is
unsurprising that structures specialized for transportation are
found at all levels of biological organization, including intra-
cellular transportation along the cytoskeleton, and vascular and
neural networks within the body of animals. At the biological
scale of animal groups and communities, the transportation
of food and material, the movements of animals and the
inter-individual encounters are often supported by specialized
transportation networks of trails, galleries, and burrows that
the animals produce and use in their exploration and foraging
movements (reviewed in [1]). Social insects in particular are
known to produce some of the most complex networks of
trails and galleries in the animal kingdom, probably as a result
of their high level of sociality. These networks include trail
networks in ants or termites [2–4], and underground systems
of tunnels formed by ants [5] or termites [6–8].

All biological transportation networks share similar func-
tions: by favoring transportation over distances much larger
than those permitted by simple diffusion they mediate the
integration of the different parts that compose a biological
system, supporting the functional unity of the system as
a whole. They also share a similar morphogenesis, in the
sense that almost all biological transportation networks are
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produced as the result of self-organized (SO) morphogenetic
processes whereby the growth is driven by locally available
information, in the absence of a preexisting master plan of
the network [9,10]. The formation of animal and human
transportation networks has been modeled with models based
on growth alone (e.g., army ant raid networks [11], ant gallery
networks [5,12], or urban street patterns [13]), pruning of an
existing network [14,15], or a combination of both [16–18].

A common characteristic of all these networks is that
they are embedded in a 2D or 3D environment, that is, both
the position of network nodes and the layout of network
edges are associated with sets of spatial coordinates. The
effects of spatial embedding cannot be neglected when trying
to understand the formation and topological properties of
these networks, because the probability of existence of a
connection between two nodes depends not only on their
relative distance [19], but also on the physical arrangement
and steric interactions between edges. While a large part of
the existing network literature has dealt with social or com-
munication networks, which are comparatively less affected
by spatial constraints (see reviews in [20–22]), the theoretical
foundations underlying the analysis and the modeling of
spatially explicit networks are comparatively less developed
(see [23] for a review) and often deal with specific fields such
as urban transportation and human mobility patterns [24].

In this paper we focus on a specific class of biological trans-
portation networks represented by the network of chambers
and tunnels that termites of the subfamily Termitinae produce
in the above-ground part of their nest. We identify how struc-
tural features of these transportation networks emerge through
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self-organization based on local rules. The nodes of these
networks correspond to chambers and the edges to tunnels
connecting these chambers. These networks provide safe living
space to termites and are connected to an underground tunnel
network (not considered in this study) that connect the nest
to foraging grounds [25–27]. Termite movements along these
networks involve both bringing back food and distributing
it to the colony (e.g., termite soldiers, larvae, and the royal
couple) and daily patterns of movements of various individuals
to different parts of the nest with favorable environmental
conditions.

By analyzing an extended data set containing nests from
three Termitinae genuses: Cubitermes, Procubitermes, and
Thoracotermes, we formulate a model for the growth of
the transportation networks internal to the nests of these
different termites. The model has two free parameters, λ

that controls preferential growth on the periphery and ξ that
determines the pruning or removal of existing edges. Two
variants of pruning, random pruning or pruning weighted by
betweenness centrality, are explored, and we compare both
variants to random geometric graphs. We calibrate λ and
ξ to the real nests and show that network properties not
used in the calibration process are faithfully reproduced by
the models with pruning, the variant based on betweenness
centrality performing slightly better. The validated models are
then used to assess the sensitivity of some network properties,
linked to internal transportation or nest defense, to the two
free parameters in order to interpret the values that have been
found for the real nests.

II. MATERIALS AND METHODS: FROM AN EMPIRICAL
NEST ANALYSIS TO THE NEST GROWTH MODEL

A. Available termite nests

The 12 networks modeled in this paper (see Table I)
correspond to the above ground part of termite nests from
the African continent. They all belong to the Termitinae
subfamily that have a common architecture: distinct chambers
with a large diameter interconnected by tunnels of a small

diameter (these different elements can be easily identified
because in these nests the connecting tunnels have a diameter
about 10 times smaller than the chambers’ diameter). In our
network representation, chamber barycenters are associated to
nodes and tunnels between chambers to edges between the
corresponding nodes. The detailed network extraction method
from x-ray tomographies of the nests has been described
in [28]. Node coordinates are converted from voxel positions
to metric (x,y,z) coordinates. The z axis corresponds to the
vertical direction.

The majority of the nests used in our study have been
obtained from natural history museums in France, with their
taxonomic identity only known to the genus level. There are
six Cubitermes nest networks (already published in [28]), four
Procubitermes sjoestedti networks collected in 2007 in Côte
d’Ivoire, and two Thoracotermes networks (the larger one, a
T. macrothorax, was collected in the Republic of the Congo
in 2009). See the Supplemental Material [29] for the general
shape of all nests. While some aspects of mound architecture
are typical of nests of each genus (mushroomlike shapes
in Cubitermes, straight pillars in Thoracotermes, and conic
forms in Procubitermes), attempts to use this architecture for
taxonomy have failed [30], pointing to the fact that all the nests
in the Termitinae subfamily (hence all the nests analyzed here)
share similar morphological characteristics and possibly result
from similar construction rules.

B. Empirical network analysis

Each tunnel or edge in the nest networks can be considered
as a three dimensional vector represented by Cartesian coor-
dinates (x,y,z) or by spherical coordinates (r,θ,φ). The latter
will be used to characterize the nests. Since there is no natural
orientation in a tunnel connecting chambers −→

c 1 = (x1,y1,z1)
and −→

c 2 = (x2,y2,z2), it can be represented as either −→
c 1 − −→

c 2

or as −→
c 2 − −→

c 1 [Fig. 1(a)]. Both vectors are used in the
empirical description of the nests, e.g., Figs. 1(b)–1(d) for
nest C9 that shows the distributions of tunnel length r ,
the vertical component θ , and the horizontal component φ.

TABLE I. General statistics of the analyzed termite nest networks and the model parameters that have been calibrated to each nest (see
model description). Nr-C: number of chambers; Nr-T: number of tunnels; ND: average node degree. LCC: size of the largest connected
component. (λBBP,ξBBP) are the parameters for the BBP model, (λRP,ξRP) the ones for the RP model, and RRGG is the parameter for the RGG
model.

Nest Genus Nr-C Nr-T ND LCC λBBP ξBBP λRP ξRP RRGG

C9 Cubitermes 532 682 2.56 507 0.021 0.117 0.020 0.126 0.199
C10 Cubitermes 396 371 1.87 349 0.065 0.292 0.065 0.292 0.197
C11 Cubitermes 344 310 1.80 260 0.066 0.279 0.065 0.274 0.205
C12 Cubitermes 190 234 2.46 183 0.067 0.246 0.066 0.244 0.274
C18 Cubitermes 312 343 2.2 287 0.031 0.250 0.029 0.248 0.226
C19 Cubitermes 295 445 3.02 268 0.045 0.085 0.046 0.080 0.258
P67 Procubitermes 1123 2149 3.83 1091 0.025 0.0 0.025 0.0 0.177
P78 Procubitermes 675 878 2.60 598 0.014 0.046 0.014 0.044 0.185
P79a Procubitermes 440 525 2.39 347 0.006 0.290 0.006 0.289 0.208
P79b Procubitermes 388 383 1.97 292 0.0 0.451 0.0 0.447 0.203
T29 Thoracotermes 98 96 1.96 90 0.033 0.551 0.033 0.515 0.303
T82 Thoracotermes 1073 1470 2.74 1069 0.018 0.177 0.018 0.164 0.159

Mean 0.033 0.232 0.032 0.227 0.216
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FIG. 1. (Color online) Empirical network description in the case
of nest C9 (Cubitermes sp., Central African Republic; see Fig. 1B
in [28]). (a) Each tunnel or edge is represented as a vector in spherical
coordinates, (b) tunnel lengths (r) distribution, (c) distribution of the
vertical component (θ , 0 points upwards and π points downwards),
and (d) distribution of the horizontal component (φ). (c) and (d) are
symmetric and periodic respectively because both −→

c 1 − −→
c 2 and−→

c 2 − −→
c 1 are used.

The distributions for the other 11 nests are shown in the
Supplemental Material [29].

Both the r distribution [Fig. 1(b)] and the θ distribution
[Fig. 1(c)] resemble normal distributions, the latter with mean
π/2. However, the distribution of φ (x − y plane) rather
follows a uniform distribution [Fig. 1(d)]. These patterns are
confirmed in the other nests (see Supplemental Material [29]).
This means that each termite nest can be characterized by
three parameters: the mean and standard deviation of its tunnel
length distribution (r̄ ,σ̄r ), and the standard deviation of the
vertical θ direction component (σ̄θ ).

C. Model description

Based on the above empirical observations we propose a
simple nest growth model, betweenness based pruning (BBP)
model, with five main procedures: (i) set nest boundaries and
initial node; (ii) determine the initiation node for the next
tunnel; (iii) construct an edge; (iv) create a new node (and give
it an increasing unique identification number i � 1) or connect
to an existing node if it is close to the end of the new edge; (v)
prune edges of lesser importance.

(i) Initial and boundary condition. From the empirical
nest data we can compute the x-y-z intervals [xmin,xmax],
[ymin,ymax], and [zmin,zmax] for each nest. We impose initial
and boundary conditions based on these intervals. We then
choose an initial node (x0,y0,z0) randomly in the intervals x0 ∈
[0.75xmin + 0.25xmax,0.25xmin + 0.75xmax], y0 ∈ [0.75ymin +
0.25ymax,0.25ymin + 0.75ymax], and z = zmin. During nest
growth we assume boundary conditions which have the shape
of an ellipse in the x-y plane. The formula of the ellipse is
given by

(
x − Xc

A

)2

+
(

y − Yc

B

)2

= 1, (1)

with Xc = (xmin + xmax)/2, Yc = (ymin + ymax)/2, A =
(xmax − xmin)/2, and B = (ymax − ymin)/2. The z coordinate
cannot be below zmin, but there is no upper limit for z. The
biological rationale behind these choices is that termite nest
volumes are proportional to colony size (colony size is the
number of individuals living in a single colony [31]) and that
nests are not enlarged during colony growth but rather rebuilt
from scratch—colony size can therefore provide a template
for the surface of the initial nest site construction and for the
final nest height.

(ii) Determining the node of the next edge’s origin. At
each time step we choose a node randomly from all existing
ones. However, in order to foster nest expansion (growth from
peripheral nodes) we give preference to the latest added nodes
by choosing node i with probability exp(−λ(n − i)). Here n is
the total number of nodes for the given nest. The characteristic
time constant λ is specific to each nest and will be chosen by
calibration (see below). The biological idea is that termites
mark construction material with some volatile chemical [32]
and prefer recently built elements to continue construction.

(iii) Direction and length of the next edge. The length (r)
and the directions (θ , φ) of the next edge are chosen randomly
from the normal or uniform distributions determined above.
Edge length r is restricted to r � rmin, where rmin is the
observed minimum edge length (see also the next rule; shorter
edges would lead to an edge connection to the original node).
The vertical component θ is restricted to the interval (0,π ).
Furthermore, since nest construction goes upward and since
edges in the original data are not oriented we avoid excessive
downward construction by replacing a θ > π/2 + σθ by θ =
π − θ (recall that θ = π points downward). Finally, φ is drawn
randomly from a uniform distribution in (0,2π ).

(iv) Edge construction. This new edge is only added if
it does not quit the ellipsoid boundary condition [otherwise,
a new edge (r,θ,φ) is drawn until it remains within these
boundaries]. The biological rationale is that termites sense
gravity [33] and do not extend construction over empty space
(note that the construction of the characteristic “hats” in
Cubitermes nests is not included in our model). A new node
is created if there is no existing node within the distance rmin

of the end point of the new edge. If there already exists a node
within this distance the new edge is connected to this node.

(v) Pruning of edges. At each time step i we compute
the edge betweenness of each edge [34], that is the number
of shortest paths between pairs of nodes that pass through
this edge, and remove the one with the smallest value with
probability ξ . Such pruning is a common feature of most
observed transportation networks (reviewed in [1]). It has
been directly observed in termite’s underground tunneling
networks [8,35], and there is an indirect evidence that it
happens in Cubitermes nest growth [28].

Repeat steps (ii)–(v) until the model has the same number of
nodes as the original nest. The biological rationale underlying
this stop criterion is again the observation that mound size
is proportional to colony size [31] and mound size is better
approximated by the number of chambers (volume) than the
number of edges (network length).

Since λ is related to nest height h and ξ is related to the
total number of tunnels L, we determine these two parameters
one by one, first estimating λ (with an arbitrarily fixed ξ ) by
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minimizing the error function

ε1 = |hdata − hmodel|/hdata (2)

with a standard bisection method, then estimating ξ (fixing the
already estimated λ) by minimizing the error function

ε2 = |Ldata − Lmodel|/Ldata. (3)

For each value of (λ,ξ ) we simulate 500 nests in order to
compute mean hmodel and Lmodel. Overall error is defined as
ε = ε1 + ε2. We will use an analysis of variance to test whether
the estimated parameters are specific for a genus, reporting the
resulting F statistic with the associated degrees of freedom
and p values.

D. Alternative models: Random geometric graph (RGG) model
and random pruning (RP) model

We consider two alternative models to clarify the perfor-
mance of the BBP model and the roles of local rules in the BBP
model: (i) random geometric graph model and (ii) random
pruning model. A random geometric graph (RGG) is the
mathematically simplest spatial network [23]. The RGG model
for a given nest is embedded in the cylindrical space having
the same interval of [xmin,xmax], [ymin,ymax], and [zmin,zmax]
obtained from the nest with the ellipsoid boundary condition
given by Eq. (1). The nodes of the RGG model are uniformly
distributed in this cylinder. Two nodes i and j are connected
if the below condition is satisfied:(

Xi − Xj

A

)2

+
(

Yi − Yj

B

)2

+
(

Zi − Zj

C

)2

� R2
RGG. (4)

Here Xi , Yi , and Zi indicate x, y, and z coordinates of
node i, respectively and A = (xmax − xmin)/2, B = (ymax −
ymin)/2, and C = (zmax − zmin)/2. We determine the value of
RRGG such that it gives us the same number of links in the
RGG network as in the original nest network.

The random pruning (RP) model is the same as the original
model in every point [i.e., from (i) to (iv) in the previous
subsection] except the pruning process [i.e., (v) in the previous
subsection], where we remove a randomly selected link with
probability ξ rather than the lowest edge-betweenness link.

E. Model validation

We will use five emergent properties to compare between
the original and the simulated networks: (i) node degree
distribution, (ii) size of the largest connected component,
(iii) average topological path length in the largest connected
component, (iv) backbone link ratio (fraction of edges whose
removal leads to a disconnection of the largest connected
component), and (v) local graph redundancy (as defined
in [36], it complements backbone link ratio by computing the
mean of the inverse of the topological path length to connect
two adjacent nodes once the direct link has been blocked:
low values indicate long detours). Predicted properties will be
based on 1000 simulated networks.

F. Sensitivity analysis

We assess the influence of λ, ξ , and network size (number
of nodes) on four network properties: (i) size of the largest con-

nected component, (ii) average topological distance between
any two nodes of the largest connected network component,
(iii) backbone link ratio, and (iv) local graph redundancy. For
an efficient transport inside the nest and easy defense against
predators (such as ants) termite nests should show low average
distance (fast transport), a high backbone link ratio (treelike
structures, tunnel blocking by a soldier efficiently isolates a
part of the nest), and a low local graph redundancy (blocking
of a tunnel forces attacking ants to take long detours). The
values chosen for λ and ξ cover the range of the estimated
values (from 0 to 0.4 in steps of 0.01), while the number of
nodes cover the original nest sizes (200, 400, 600, and 1000
nodes).

III. RESULTS

A. Model validation

Figure 2 shows the degree distributions of the real networks
and the simulated networks generated by the BBP model, RGG
model, and RP model for each nest. The real networks and the
simulated networks show qualitatively similar behaviors, with
peaks around k = 1,2 and exponential type decay of the right
tail. However, all of the nests have a peak at k = 1, while the
BBP model creates a peak at k = 2 for seven nests: the BBP
model seems to create less dead ends than there exist in the real
networks (see also Fig. 3). Nest P67 shows the worst fit with
a larger tail in the model networks: note that this nest looks
like two nest parts that have fused together during growth (see
Supplemental Material Fig. 6), a process not considered in the
simulated networks. The degree distributions generated from
the RGG model and the RP model show similar patterns as the
distributions from the BBP model.

The largest connected component (LCC) of the network is
fundamental for internal transportation since communication
is not possible between disconnected components. Figure 4(a)
represents the sizes of the largest connected components
in real networks and simulated networks. The BBP model
generated networks having comparable sizes of the largest
connected components with the ones in real nests for most
cases while the RGG model failed to generate the largest
connected components of proper size in most cases. However,
the performance of the RP model is comparable with the BBP
model. It is notable that the discrepancy between real networks
and networks generated by RP models is larger when the
average degree is low. The blind cutting of random pruning can
in this case increasingly affect important links and thus reduce
LCC, while with higher average degrees many “back-up”
links exist that help preserve the LCC. We can observe this
pattern also in the sensitivity analysis of the RP model (see
Fig. 13 in the Supplemental Material [29]): with increasing
probability to prune an edge (ξ ) LCC quickly degrades, while
it is better preserved in the BBP model (see Fig. 5 below). This
indicates that betweenness based pruning is a better strategy
than random pruning to keep the largest connected component.

Figure 4(b) compares the average topological distance
between any two nodes in the largest connected component,
Fig. 4(c) the backbone link ratios, and Fig. 4(d) the local
graph redundancy. The RGG statistics are not shown because
computing them makes little sense when the LCC is too small.
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FIG. 2. (Color online) Degree distribution of the real networks (data: red line) and the networks generated by the BBP model (BBP: black
line), by the RGG model (RGG: blue line), and RP model (RP: magenta line). P (k) are relative frequencies (summing to 1).

Overall, both the BBP and RP model successfully reproduced
the average distances, backbone link ratios, and local graph
redundancies of the real networks. However, in the case of
average distance neither BBP nor RP catch the variation
between nests: Kendall’s correlation coefficient τ with the
real nests (τBBP = 0.30 and τRP = 0.363) is not significantly
different from zero. In the case of LCC (τBBP = 0.939 and
τRP = 0.818), backbone link ratio (τ = 0.606 for both models)
or local graph redundancy (τBBP = 0.636 and τRP = 0.606) τ

is significantly different from zero. Given the plotted standard
deviations notable differences can only be detected for nests
C9, P67, P78, and T29 concerning average distance, nests C10
and P67 concerning backbone link ratio, and C10 and P67
concerning local graph redundancy. Again, nest P67 stands
out in this comparison. See the Supplemental Material [29]
for the full distributions of distances as in Fig. 2.

To compare the performances of the BBP model and the
RP model quantitatively we define a Z score for each metric
X such that

Z(X) = Xreal − 〈X〉model

σmodel
, (5)

where 〈X〉model is the average of X for the given model and
σmodel is the standard deviation. We show the Z scores for
each metric and each nest in Tables I–IV in the Supplemental
Material [29]. Interestingly we found that the BBP model has a
tendency to perform better than the RP model for Cubitermes
and Thoracotermes nests, while for the nests of Procubitermes
the RP model performs better than the BBP model.

B. Calibrated parameters

For each nest (except P67 and P79b) we found parameter
sets (λBBP,ξBBP) with ε < 0.025 for the BBP models and
(λRP,ξRP) with ε < 0.027 for the RP model. Nest P67 with
εBBP = 0.285 and εRP = 0.283 is again an exception. In the
case of Nest P79b, the BBP model (εBBP = 0.125) and the RP
model (εRP = 0.129) provide us the taller nests than real ones
since the errors ε are mainly from the height of the models
[i.e., from ε1 in Eq. (2)]. Table I summarizes the principal nest
properties and the estimated parameter sets.

Model parameter ξ does not depend on taxonomy [analysis
of variance at the genus level, F = 0.78,df = (2,9),p = 0.49
for BBP and F = 0.60,df = (2,9),p = 0.57 for RP], but λ

depends on Genus [F = 6.61,df = (2,9),p = 0.017 for BBP
and F = 6.16,df = (2,9),p = 0.021 for RP; Tukey post-hoc:
Cubitermes has significantly higher λ than Procubitermes and
Thoracotermes].

C. Sensitivity to parameters (λ,ξ )

Figure 5 shows the sensitivity of network properties
to the two free parameters (λBBP,ξBBP). We can observe
that for the given parameter space, the size of the largest
connected component is preserved when ξ < 0.3. We further
see that average distance only depends on the decay rate
λ, with low distances for low values of λ. Note that both
sensitivities are quite different in the BP model (Fig. 13 in
the Supplemental Material [29]): the network quickly breaks
down with increasing ξ , especially for large λ, leading to small
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FIG. 3. (Color online) Analyzed Thoracotermes nest T29 with its
network representation (middle) and a simulated network (right) by
the BBP model. The pink node (lower right) indicates the initial node
of the simulated network. Note that while there are isolated chambers
in the original network, isolated chambers are more prevalent in the
simulated nests. See the Discussion for further comments.

LCC’s and low average distances in these LCC’s. The nests
have actually all values of λ < 0.1, indicating a moderate
preference to continue construction from the most recent
nodes. Backbone link ratio and local graph redundancy have a
more complex dependence on (λ,ξ ) (isolines seem to be linked
to the product λξ ), but termites could obtain a high backbone
link ratio and a low local graph redundancy by increasing both
λ and ξ . All these qualitative observations are independent
of nest size (number of nodes). The fact that the analyzed
nests have nevertheless λ < 0.1 indicates that low average
distances have more importance than increasing backbone link
ratio or decreasing local graph redundancy. Only increasing ξ

would further optimize the last three criteria, but also produce
more disconnected chambers (decrease LCC) which incurs
a cost to the colony (construct living space that cannot be
used).

IV. DISCUSSION

In this paper we develop a simple network growth model
(the BBP model) to test how the nest architecture of termites
in the Termitinae subfamily emerges from self-organization
based on local rules only. These nests consist of spherical
chambers connected by tunnels, an architecture that can be
represented as a network. The BBP model uses empirical
nest descriptions (edge length and orientation) and two free
parameters that control peripheral growth and pruning of

existing edges. The free parameters are calibrated by fitting
the model to the observed nest height and the number of
edges.

The BBP model correctly reproduces several emergent
properties: (a) node degree distribution (Fig. 2), (b) the size of
the largest connected component [Fig. 4(a)], (c) the average
distance between any two nodes in the largest connected
component [Fig. 4(b)], (d) the backbone link ratio [Fig. 4(c)],
and (e) the local graph redundancy [Fig. 4(d)]. The properties
(c) to (e) are of ecological relevance: the populations move
around in these nests to place brood or larvae in chambers
with optimal climatic conditions or to store and retrieve food
(dead organic matter), short distances are therefore useful.
It has already been shown for Cubitermes nests that their
average distances are shorter than what could be obtained by
randomly connecting the existing nodes [36], and our model
correctly reproduces these lengths for most analyzed nests.
The nest must also protect the colony against ant predators:
this is done by the soldiers who can block a tunnel with their
head capsule. A treelike network structure (or high backbone
link ratio combined with local graph redundancy) helps with
this strategy, and our model also correctly predicts these
properties.

We compare our BBP model to two alternatives, the RP
model that is identical to BBP but with pruning applied to
randomly chosen edges instead of the smallest betweenness
centrality edge as in BBP, and to the Random Geometric
Graph (RGG) model with the same space constraints as the
two previous models. The latter can be ruled out because it
cannot reproduce the observed largest connected component
(LCC). The RP model generally performs as well as the BBP
model (in the case of Procubitermes even better according to
the Z scores) for nests with average degree � 2.0. However, in
nests with lower average degree (C10,C11,P79b,T29) RP tends
to give fragmented networks. Furthermore, the sensitivity
analysis shows that LCC size is conserved in the BBP model
for a much larger range of pruning probabilities than in the
RP model. Overall, pruning based on betweenness centrality
(BBP) reproduces networks similar to the real networks more
robustly than the RP model, we therefore conclude that
betweenness centrality based pruning might be an important
mechanism in termite nest construction.

While our model is intended to specifically reproduce
the general properties and appearance of termite nests of
the Termitinae subfamily, we can speculate that the key
ingredients that regulate network morphogenesis in our model
(peripheral growth and pruning) are likely to be shared also
by a large number of biological transportation networks. For
instance, pruning phenomena are observed in the maturation
of neural networks (e.g., through programed cell death [37]
and synaptic pruning [38]). Mycelial networks formed by
fungi similarly undergo a maturation process that involves
peripheral growth of the hyphal tips in response to local
changes of turgor pressure [39] and regression of filaments
from nutrient depleted regions [40]. Growth of peripheral
filaments that are subsequently pruned is also central to the
formation of the network of cytoplasmic tubes that constitute
the body of the plasmodium of Physarum polycephalum [41].
It seems plausible that self-organized network construction
and optimization requires to operate on an initially highly
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FIG. 4. (Color online) Comparison between the real networks (data: red bar) and the networks generated by the BBP model (BBP: gray
bar), by the RGG model (RGG: blue bar), and RP model (RP: magenta bar). (a) Size of the largest connected components (LCC). (b) Average
topological distance between any two nodes in the LCC. (c) The backbone link ratio. (d) Local graph redundancy. The error bars represent
standard deviations computed from 1000 model generated networks.

connected network that is subsequently pruned. This could
respond for instance to the fact that self-organized mechanisms
can only evaluate transportation performance through the
transportation itself, and the fine-tuning and optimization of
the network requires these mechanisms to operate on already
formed connections.

The sensitivity analysis (Fig. 5) indicates that our two
free parameters λ (for peripheral growth) and ξ (for pruning)
strongly influence both average distance and backbone link
ratio (as well as local graph redundancy, another measure
of how efficiently the nest can be defended; see [36]). We
calibrated them by concentrating on a minimal number of
features, nest height, and total number of tunnels (i.e., links),
in order to use the other nest features as emergent properties
for model validation. The good qualitative agreement between
these emergent features and the original nest features indicates
that the estimated parameter values would not change much if
calibration had been based on more features. The peripheral
growth parameter λBBP has mean value 0.033, meaning that
the probability for a given node to be chosen for the next edge
is divided by half every 30 newly added chambers. Typical
Cubitermes nests grow in 1–3 months [30], meaning that the
half-life is of the order of some days to a week, a plausible
duration for chemical marking in termites. In larger nests our
model will also predict that growth becomes spotted on the

nest surface, in agreement with field observations by one of
the authors [42].

Our model does not explain how termites decide to dig a
new tunnel or how they choose an orientation in space—it is an
empirical model at an intermediate scale. As such it resembles
the 2D ant tunneling network models suggested by [5,12,43],
or 2D termite tunneling models as suggested by [6–8].
However, though 3D network data of social insect nests
become increasingly available [44–46], our model seems to be
the first to predict the nest’s 3D network architecture. Further
work should investigate how nests grow in time [46] and, on the
other end, how termites decide where and when to construct.

Another feature not predicted by our model are the charac-
teristic “hats” atop the Cubitermes nests (see the Supplemental
Material [29]). It is not known how termites decide to start
constructing laterally, and we could not identify statistical
properties specific to the height where the hat is constructed.
The behavioral algorithm underlying this specific hat feature
is therefore an open question.

There were also some misfits in this work. For example,
nest P67 is badly explained. This nest actually consists of
two columns that have grown together (see the Supplemental
Material [29]). This bad fit might be corrected by letting
the model grow from two randomly chosen initial nodes.
Also, the above ground nest is only part of a termite colony,
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FIG. 5. (Color online) Sensitivity analysis of the BBP model. The sizes of largest connected components (LCC) are depicted in (a), (e), (i),
and (m). LCC is shown as the fraction of the original network size. The average distances are depicted in (b), (f), (j), and (n). The backbone
link ratios are depicted in (c), (g), (k), and (o). The local graph redundancies are depicted in (d), (h), (l), and (p). Note that nest P79b with
ξ = 0.451 and nest T29 with ξ = 0.551 lie outside the range of simulated ξ values; they therefore do not appear in figures (e) to (h) and (a) to
(d), respectively. The spatial information of Nest C9 was considered as physical constraints for the analysis.

it connects to an extensive underground tunneling network
through which termites access food. The absence of this
underground network in our data leads to an underestimation
of edge betweenness of the lower edges, thus explaining
the often observed pruning of these edges (Fig. 3) that
leads to an illogical disconnection between the above and
below ground nest parts. This could only be corrected if
one collects, in addition to the above ground part, a cast
of the corresponding underground network [45]. Note also
that underground tunnels are often built at a constant distance
below ground, thus effectively leading to a 2D below ground
network [25,47]: an extended data set could therefore explore
how 3D networks connect to 2D networks and how this alters
network properties. A further discrepancy is observed in the

node degree distributions (Fig. 2): all nests have a peak at
degree 1, but for half the nests the model predicts a peak at
degree 2. This could probably be corrected by including this
criterion when fitting λ, or by treating the fusion distance R

(model part iv) as a free parameter. In the interest of keeping
the model simple we refrained from such extended fitting
procedures.

The sensitivity analysis (Fig. 5) shows that average distance
only depends on the peripheral growth parameter λ, not on
the pruning parameter ξ . Backbone link ratio and local graph
redundancy, on the other side, depend on both parameters
(higher λ can be compensated by lower ξ or the other way
around). Both observations are true for all analyzed nest sizes.
An efficient termite nest should have small average distances,
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high backbone link ratios, and low local graph redundancy.
The detected nest positions suggest that short distances are
more important for the colony than the other two criteria (that
can be linked to nest defense). However, further information
is required on what termites actually do in their nests and
on their vulnerability to predation before further speculating
about such issues.

In sum, we found a parsimonious empirical network growth
model based on self-organized principles that successfully
predicts the nest architecture of Termitinae nests. Peripheral
growth (i.e., some volatile chemical marking of new chambers,
nodes, and edges) and pruning of less important edges are
important ingredients in this model.
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