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A visual representation of the hand 
in the resting somatomotor regions 
of the human brain
Yara El Rassi 1, Giacomo Handjaras 1, Cristina Perciballi 7, Andrea Leo 1,2, Paolo Papale 1,3, 
Maurizio Corbetta 4,5, Emiliano Ricciardi 1 & Viviana Betti 6,7*

Hand visibility affects motor control, perception, and attention, as visual information is integrated 
into an internal model of somatomotor control. Spontaneous brain activity, i.e., at rest, in the absence 
of an active task, is correlated among somatomotor regions that are jointly activated during motor 
tasks. Recent studies suggest that spontaneous activity patterns not only replay task activation 
patterns but also maintain a model of the body’s and environment’s statistical regularities (priors), 
which may be used to predict upcoming behavior. Here, we test whether spontaneous activity in 
the human somatomotor cortex as measured using fMRI is modulated by visual stimuli that display 
hands vs. non-hand stimuli and by the use/action they represent. A multivariate pattern analysis 
was performed to examine the similarity between spontaneous activity patterns and task-evoked 
patterns to the presentation of natural hands, robot hands, gloves, or control stimuli (food). In the left 
somatomotor cortex, we observed a stronger (multivoxel) spatial correlation between resting state 
activity and natural hand picture patterns compared to other stimuli. No task-rest similarity was found 
in the visual cortex. Spontaneous activity patterns in somatomotor brain regions code for the visual 
representation of human hands and their use.
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The hand is an active sensory organ. Daily, we rely on its physical and motor properties to grasp and manipulate 
objects, often under visual guidance. This ability also depends on proprioception and touch. These two sensory 
systems track the movement of the hand and convey information about the objects, respectively. Therefore, visual 
and haptic information co-occurs1 with the motor counterparts, especially during everyday manual behavior. 
Sensory afferents and movements are represented in the primary somatosensory (S1) and motor cortices (M1)2–5. 
Notably, recent studies in healthy individuals showed non-afferent processing of visual stimuli within the pri-
mary somatosensory  cortex6. It is unknown, however, whether such multisensory response maps reflect the co-
occurrence statistics occurring during natural manual behavior. Having “access” to the visual and sensorimotor 
properties of the hand can be an efficient strategy for the brain to rapidly interact with the features of everyday 
objects. Recent studies show that visual inputs can reach the motor cortex at a relatively short latency and that 
the connection is facilitated during visuomotor stimuli, possibly contributing to visuomotor  integration7. The 
perception of static body stimuli suggestive of fluent movement recruits the motor area, as shown by increased 
oxygen-dependent responses in M1 and somatomotor area (SMA) and increased functional connectivity between 
the two  areas8.

Recent theoretical and empirical  studies9–11 suggest that frequent environmental stimuli and body move-
ments (statistical regularities), also referred to as prior  experience12,13, may be coded in resting brain activity. 
The spontaneous activity observed when the participant lies quietly at rest, without any sensory input or motor 
 output14, may have a role in encoding such multisensory representation of the hand more than other biological 
stimuli. Previous electrophysiological and neuroimaging studies show that rather than being random noise, 
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spontaneous activity is highly structured in space and time (for a  review15,16). However, there is still no consensus 
on its functional role and computations.

The first systematic investigation addressing the spatiotemporal structure of the spontaneous activity focused 
on the hand region of the primary somatomotor cortex. Through interregional correlations at rest, or resting 
state functional connectivity, authors found that the topography of the somatomotor areas is similar to that 
evoked by finger  movements17. One possible interpretation of Biswal’s (1995) findings could be that the internal 
representations of the hand at rest resemble those during touch and  action18. This begs the question of whether 
the resting (somatomotor) brain retains traces of everyday experience with the hand, either visual, motor, or 
somatosensory. If this hypothesis holds, it can suggest that the internal hand model is stable, present even at rest, 
and multisensorial, encompassing the visual and somatomotor aspects.

Stimulus-evoked patterns are linked to spontaneous mutlivertex activity patterns, mainly in the stimulus’s 
preferred brain  region19. More recently, other fMRI evidence shows that activity patterns related to hand move-
ments replay in spontaneous activity in the motor cortex and association  networks11,20. More precisely, the human 
motor cortex codes more frequently for ecological hand movements than uncommon hand  movements11. These 
findings support the idea that the co-occurrence of vision and usage of the hand may be represented in the 
generic patterns of the resting somatomotor cortex. Building on this body of evidence, we hypothesized that the 
multivariate patterns of BOLD resting state activity in the somatomotor cortex, as measured using functional 
magnetic resonance imaging (fMRI), retain higher similarity with patterns of the multivariate task-evoked activ-
ity elicited by visual hand stimuli compared to other non-hand stimuli. If the internal model adapts to natural 
 stimuli21, this effect should be specific for natural hands but not for hand-shaped objects (such as robot hands or 
gloves) or control stimuli (i.e., food). Given that intrinsic representations are specific for the stimuli being coded 
in that  area19, we do not expect this effect in the early visual areas that code low to mid-level features. Differences 
between rest and task distributions were assessed by employing both the Kolmogorov–Smirnov (KS) statistics 
and multivoxel similarity  analysis11,19,20. Unlike the Kolmogorov–Smirnov test, this second analysis captures 
the highest similarity between task-evoked multivoxel patterns of a category and the patterns observed on each 
frame of the resting scan. These two analyses confirmed that an internal representation of the static hand, not 
suggestive of any motion, is coded in the left somatomotor region. This representation was found in the early 
somatomotor areas but not in the visual cortex, suggesting that it might be employed for its inferred use. This 
is further confirmed by the trend analysis showing that the internal hand representation is stronger than that of 
the robot hand or glove.

Results
In this study, we examined whether the human somatomotor cortex codes at rest for a visual representation of 
the hand and its inferred use. Using fMRI, we acquired an eight-minute resting state scan in which observers 
kept their eyes on a fixation point without any explicit cognitive or motor task (Fig. 1A). We then presented 
observers with pictures of four categories of stimuli, i.e., natural hands, robot hands, gloves, and control stimuli 
(i.e., food) (Fig. 1D). We were interested in testing two main predictions. First, we predicted that the somato-
motor cortex maintains a stronger similarity between the activity patterns evoked by hand stimuli and resting 
state patterns compared to those evoked by non-hand stimuli. This is given by the nearly continuous vision of 
our hands in everyday life, compared to hand-like stimuli like robot hands or gloves. These stimuli share visual 
attributes with hands but are much less common and not parts of the human body. Second, inferred action/use 
may also modulate spontaneous activity in the somatomotor cortex. Robot hands perform similar actions to 
hands, while gloves have no autonomous motor attributes despite their relative visual similarity. To test the asso-
ciation between resting state spontaneous activity and task-evoked responses, we selected three separate regions 
of interest (ROIs, Fig. 2A): left and right somatomotor areas (i.e., precentral and postcentral gyri) and bilateral 
early visual areas (V1–V2–V3). The left somatomotor area was identified with a three-minute finger tapping scan 
(Fig. 1C) by performing a student t-test group analysis on all subjects. The mask was then mirrored to identify the 
right somatomotor area. Finally, the early visual areas were selected using a functional atlas of the visual cortex.

Correlation between resting state and task-evoked multivoxel activity in the selected ROIs
First, we extracted task-evoked and resting state multivoxel activity for each ROI and measured the overall dif-
ferences between distributions of pattern similarities using the KS test. We then employed a repeated-measure 
one-way ANOVA using the KS statistic (i.e., maximum difference between the task and rest empirical cumulative 
distribution functions, ECDFs) to assess the differences between resting state activity and the four categories. 
Moreover, since KS statistic does not provide an indication of the portions of the ECDFs that differ among task 
categories, we performed the same analysis using only the upper 90th percentile (U90 value) of the ECDF, as 
done in previous  studies19. Briefly, to highlight the differences characterised by distributions with heavy tails, 
we compared the mean multivoxel activity of each stimulus object to the patterns of every time point of resting 
state (Fig. 2B). This resulted in four vectors (for the stimulus categories) of Pearson’s r values representing the 
strength of the relationship between the stimulus and rest patterns and can be represented with four ECDFs. We 
compared the ECDFs, considering only the upper 90th percentile (U90 value) as a cutoff, and used a one-way 
repeated-measures ANOVA in each region of interest.

Using ANOVA and considering the KS statistic, significant differences (after Bonferroni corrected threshold) 
between rest-task category group correlations were found in the left somatomotor ROI (Fig. 3A),  (F(3,54) = 4.194, 
p = 0.01, ηp

2 = 0.189), but not in the right somatomotor ROI (Fig. 3C)  (F(3,54) = 0.847, p = 0.47, ηp
2 = 0.45) or the 

early visual areas (Fig. 3E)  (F(3,54) = 1.133, p = 0.34, ηp
2 = 0.059). When focusing our interest on the upper portion 

of the right tail (i.e., U90 values), the significant results after Bonferroni correction were confirmed only in the left 
somatomotor cortex, where the hand stimuli yielded the strongest rest-task similarity as compared to non-hand 
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stimuli or objects (Fig. 3B)  (F(3,54) = 4.932, p = 0.004, ηp
2 = 0.215). Post-hoc comparisons using Sidak correction 

(p = 0.04) indicated that the hand condition (M = 0.281, SD = 0.016) is significantly higher than the food condition 
(M = 0.232, SD = 0.011). Instead, in the right somatomotor area, the ANOVA using U90 correlation values showed 
no significant main effect of conditions  (F(3,54) = 0.664, p = 0.578, ηp

2 = 0.036), confirming that the effect was left-
lateralized (Fig. 3D). Finally, as expected, there were no differences in correlation in the non-hand-preferred 
early visual areas (Fig. 3F) that extract low- to mid-level visual features controlled for in our  stimuli22,23 where 
the ANOVA showed no significant main effect of conditions  (F(3,54) = 1.266, p = 0.295, ηp

2 = 0.066).
As a control, we also considered the distribution percentile from U1 to U99 in the three ROIs. We obtained 

significant effects at the extremes of the distribution in the left somatomotor area (< 30th and > 70th percentiles), 
suggesting that our results were not dependent on the specific choice of the U90 (Fig. 4). The observation that 
the similarities between task and rest correlation in a stimulus category-preferred area occur at the extremes of 
the cumulative distribution function is neither surprising nor novel. Indeed, Kim and colleagues (2020) reported 
effects on the positive and negative tails in the visual cortex. As mentioned by the authors, high positive and 
negative correlation coefficients indicate that the resting multivertex patterns on a given frame were very similar 
to the pattern evoked by the preferred category. Here, this is true for the hand category and specifically for the 
left somatomotor area. Values of the left tail of the distribution (i.e., < 30th percentiles) indicate an inverse, yet 
significant, relationship in support of the results found in the right tail.

On the characterization of the task-rest similarity in the left somatomotor area
In the left somatosensory area, we followed up with a trend analysis for exploring post-hoc ANOVA interac-
tions with U90 and testing the differences among stimulus categories (hand > robot > glove > food) (Fig. 5A). 
Here, the aim is to understand better the multimodal activity highlighted by the visually induced effect. This 
investigation revealed a significant trend for decreased task-rest similarity in the multivoxel spatial pattern going 
from natural hand to hand-shaped objects (e.g., glove)  (F(1,18) = 8.463, p = 0.009, ηp

2 = 0.320) (Fig. 5B). Finally, a 
searchlight analysis (radius = 6 mm) in a larger extent of the left somatomotor cortex was performed to better 
highlight the subregion of the postcentral and precentral gyri involved in the association between task and rest 
activity. Interestingly, this region falls in the postcentral gyrus in correspondence with the hand notch (Fig. 5C).

Figure 1.  fMRI experimental design and stimuli. (A) Before the task session, participants performed an 8 min 
resting state scan without performing any cognitive, motor, or sensory task; (B) In the task session, participants 
performed a covert working memory one-back task detecting the repetition of images depicting four stimulus 
categories (human hands, robot hands, gloves, and food) randomly selected and presented. The task consists 
of five runs, each lasting four minutes. Each run began and ended with 20 s of rest and consisted of 12 blocks. 
Each block lasted 12 s, followed by 8 s of fixation, and included 20 randomized repetitions of the six category 
stimuli (each presented for 0.3 s and followed by fixation for 0.3 s); (C) Representative figures of videos and 
static images used for the experiment. (D) Following the resting state (A) and visual stimulation sessions (B), 
participants performed a 3-min finger tapping task to localize the somatomotor regions (blocks of 15 s of 
activity -blue circle- followed by 15 s of rest -red circle).
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Figure 2.  (A) ROIs selection. We selected three regions of interest (ROIs) (LH: left hemisphere; RH: right hemisphere): 
left somatomotor area (orange) obtained from the finger tapping localizer task and resulting in an ROI (~ 5000 μL) 
encompassing the precentral and postcentral gyri; right somatomotor area (yellow), obtained by left/right flipping 
the ROI mentioned above; bilateral early visual cortex (V1, V2, V3) (in red) selected using a functional atlas of the 
visual cortex, as a further early sensory control region; (B) Task-rest multivoxel similarity analysis. For each subject and 
ROI, we extracted the patterns of task-evoked activity of the four stimulus categories (hand, robot, glove, food). Four 
averaged task-evoked vectors were computed, one for each category. A vector of the same length was computed for 
each resting state frame. Then, we correlated the z-scored multivoxel activity of task conditions with the patterns of all 
resting state timepoints. For each category group, we computed a cumulative distribution function that represents the 
strength of the correlation between the average multivoxel category representation and the patterns from every time 
point of the resting-state signal. Finally, we identified the upper 90% value of the distribution (U90 value) to measure 
task-rest similarity. The data presented here are simulated for illustrative purposes.
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Figure 3.  The empirical cumulative distribution functions (ECDFs) represent the correlation between rest and 
task category (hand/robot/glove/food) in the left somatomotor (A), right somatomotor (B), and early visual 
areas (C). (A) Using the KS statistic, the ANOVA shows that the distributions of correlation (red, yellow, green, 
blue) are significantly higher for the hand category (red distribution) in the left somatomotor area  (F(3,54) = 4.194, 
p = .01, ηp

2 = 0.189). The ANOVA does not show any significant effects for the (B) right somatomotor area 
 (F(3,54) = 0.847, p = .47, ηp

2 = 0.45) or (C) early visual area  (F(3,54) = 1.133, p = .34, ηp
2 = 0.059). (D–E–F). We 

further used the approach  of19, who used the upper 90% cutoff (U90) of the distribution of correlation values 
to measure task-rest multivoxel pattern similarity. The boxplots represent subjects’ U90 z-scored values for 
the four categories. Specifically, the y-axis shows the z scores at the 90th percentile cutoff of the correlation 
between task and rest in the multivoxel patterns analysis, and the x-axis shows the different category groups. 
Each dot represents a subject. Results are shown in the left somatomotor (D), right somatomotor (E), and early 
visual areas (F). In the right somatomotor hand region (E), and early visual areas (F), the ANOVA showed no 
significant main effect of conditions (right somatomotor hand region  (F(3,54) = 0.664, p = .578, ηp

2 = 0.036) early 
visual area  (F(3,54) = 1.266, p = .295, ηp

2 = .066). Instead, in the left somatomotor area (D), the ANOVA shows a 
similar significant main effect of visual categories  (F(3,54) = 4.932, p = .004, ηp

2 = 0.215), where the hand stimuli 
yielded the strongest rest-task similarity.

Figure 4.  Absolute log-10 of the raw p values across all the tested cut-offs. The red dotted line represents the 
significance threshold at an uncorrected p = 0.05, and values above that line indicate cut-offs that resulted to 
be significant. In the left somatomotor area, we obtained significant effects at the extremes of the distribution 
(< 30th and > 70th percentiles), suggesting that the results were not dependent on the specific choice (e.g., U90).
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Discussion
Encoding of the hand form in the resting somatomotor region
In the case of hand, use and visibility often co-occur, with beneficial effects on behavioral performance: hand 
visibility improves the accuracy of volitional  movements24, reduces the perception of  pain25, increases tactile 
 perception26 and allows motor-visual regularities that compute the sense of  agency27. During the interaction with 
the external objects, we also rely on an intrinsic model of the body structure to mediate an understanding of 
 position28,29. Tactile perception relies on prior knowledge rather than accurate spatiotopic representations based 
on current sensory  input30. Other evidence suggests that the brain employs a standard posture or a Bayesian prior 
for guiding body-space perception and  action31. For example, automatic hand postural configurations can be 
quantified with near-optimal Bayesian inference on somatosensory  signals32. This is interesting because sponta-
neous activity maintains statistical regularities (priors) to anticipate and even predict environmental  demands15. 
This hypothesis has been tested using natural visual stimuli and cognitive  tasks11,19,33–35. More specifically, the 
idea is that during offline periods, the brain forms generic priors or low-dimensional representations as categories 
or synergies, rather than individual instances or movements, that summarise the relative abundance of visual 
stimuli, objects, or motor patterns in the natural environment (statistical regularities). Interestingly, this reduced 
subspace of summary representations is formed along a hierarchy with the somatomotor cortices at the lower 
 level10. Consistently, our results show task-rest patterns similarity in the cortical hand region.

The multivoxel activity between rest and task tests the occurrence of similar temporal fluctuations in a given 
region, during the visual stimulation and the resting state. Correlation, which does not imply causation, tests the 
relationship between intrinsic and task-evoked activity. In this context, results show that at rest the hand somato-
motor region maintains a stronger multivoxel pattern of activity that resembles that evoked by the presentation 
of the natural hands compared to control stimuli (e.g., food). We use two methods to correlate our data: while 

Figure 5.  (A) ANOVA: The x-axis shows the four categories, and the y-axis shows the z scores of the correlation 
between task and rest in the multivoxel patterns analysis. Each dot represents a subject. The ANOVA shows a 
significant main effect of visual categories  (F(3,54) = 4.932, p = .004, ηp

2 = 0.215); (B) The graph shows a significant 
linear trend (hand > robot > glove > food)  (F(1,18) = 8.463, p = .009, ηp

2 = .320). The x-axis shows the four categories, 
and the y-axis shows the z scores at the 90th percentile cutoff. Each dot represents a subject; (C) The searchlight 
analysis shows the task-rest association critically depends on the postcentral gyrus activity. We reported the 
significant voxels (uncorrected p value < 0.05) in orange.
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the Kolmogorov–Smirnov test evaluates the whole of two distributions, with the multivoxel similarity analysis 
we correlated task-related patterns with those extracted from each time point of the resting state to generate 
cumulative distribution functions using the upper  90th percentile as a measure of strength of correlation between 
stimulus group and rest patterns for each ROI and subject. This allows us to highlight the differences in the tails 
of the distributions. As shown in Fig. 2B, while the mean distribution of task-rest similarity values is consist-
ently zero across all tasks, the tail of the distribution for the hand category is more positive (higher number of 
values > 90th percentile) compared to other conditions. A control analysis performed on the lower number of 
values, i.e., < 30th percentile (Fig. 4), supports this finding for the hand category, in agreement with previous 
 studies11,19,20. Therefore, the somatomotor regions acting as a central node of processing of afferent and efferent 
inputs, fundamental for the active tactile feedback and proprioception, may retain low-dimensional representa-
tions (e.g., the body form) during the offline periods, instrumental to the interaction with the environment. We 
often rely on the physical properties of our body (especially the hand) to grasp and manipulate objects and the 
co-occurrence of sight and use contributes to generating priors tied to the actual experience. According to the 
idea that things occurring nearly coincidentally in time are represented together in the  cortex36, i.e., cutaneous, 
proprioceptive, and visual signals, the co-occurrence statistics of usage and visibility may be represented in the 
somatomotor regions. Despite diverse spatial and temporal resolutions, previous findings in humans have dem-
onstrated the existence of preferred tuning of single neurons to visually cued non-grasp-related hand shapes in 
the posterior parietal  cortex37. Moreover, in monkeys, a substantial number of neurons in the arm/hand region 
of the postcentral gyrus is activated by both somatosensory and visual  stimulation38. Here, for the first time, we 
found that the rest-task similarity in the somatomotor cortex is driven by the hand form, and we can access it 
through a visually cued paradigm without explicit motor processing.

Our results align with the multimodal role of M1/S1 that embodies different body/motor-related representa-
tions, including the one mediated by hands. Linguistic studies show correlates of action words in the somatotopic 
activation of the motor and premotor cortex (e.g.,39,40). Similarly, embodied cognition theories suggest that 
understanding action verbs is reliant on the involvement of action-related areas; this representation is found 
to be body-specific. For example, right- and left-handers perform actions differently and use different brain 
regions for semantic  representation41. In summary, the stability of the spontaneous activity suggests that this 
set of neural signals is a possible candidate to preserve long-term models and priors of common behaviours 
and natural  stimuli9,10. These prior representations are the result of statistical learning mechanisms that store 
the co-occurrence statistics of hand visibility and usage, instrumental to the exploration and manipulation of 
the surroundings.

From birth, humans learn to use their hands in a more refined and precise fashion to interact with external 
objects. Spontaneous activity has been hypothesised to reflect a recapitulation of previous experiences or expec-
tations of highly probable sensory events. More precisely, the ongoing activity could be related to the statistics 
of habitual cortical activations during real life, both in  humans19,35,42 and  animals21,43. For example, a higher 
similarity between  motor11 and association  cortex20 and spontaneous patterns have been shown for natural hand 
sequences than for novel sequences. Based on these findings, our results can be interpreted as evidence that rest-
task similarity reflects natural stimuli, or more specifically, hand-like objects compared to artificial ones. Recent 
studies have found that this effect is higher in stimuli-selective  regions19.

Beyond being natural, hands have sensory and motor attributes. From a visual point of view, gloves and 
robotic hands share with the hands both size and shape, but they are non-living items with either synthetic motor 
properties such as the robot, or no independent motor attributes such as the glove. While the visual attributes 
may explain the similarity between rest and task activity induced by the natural hand compared to control objects 
(i.e., food), the inferred action/used can bias such similarities along a continuum where hands are higher, as tied 
to natural movements, than robotic hands performing similarly, yet unnatural, and gloves, without autonomous 
motor attributes (Fig. 3A/C and Fig. 5B). The interplay of these factors offers an interpretation of the rankings 
obtained: on top of the continuum, the natural hand, most abundant environmentally, has the necessary visual 
features and motor attributes, then the robot hand though not as environmentally abundant, has the same visual 
features and synthetic motor attributes, the glove retains only the visual features but cannot act on its own, and 
finally the food objects neither have the same visual nor motor attributes.

Studies in the visual cortex demonstrated that the long-term natural experience shapes the response profile. 
The high-level cortical representations of these regions capture the statistics with which visual stimuli  occur44,45. 
Furthermore, animal studies demonstrated that when visual stimuli are natural scenes, the reliability of visual 
neurons’ response increases and persists in the subsequent spontaneous activity; these effects are not observed 
with the stimulation with the noise of flashed bar  stimuli43. In the ferret’s visual cortex, the tuning function of 
neurons “learns” the statistics of natural but not artificial stimuli as the animal  grows21. Here, for the first time, 
we found evidence of visual representations encoded in non-visual regions at rest, but regions still specific to 
our hand stimuli (hand notch area). Thus, we believe that the cumulative impact of the statistics with which 
natural stimuli occur during the development and the experience shapes the ongoing activity of the whole 
brain, not limited to the visual cortex. Our results are confirmed and opposed by Stringer and  coworkers46 that 
show representations of natural motor sequences at rest in the mouse visual brain but also across the forebrain. 
Similar to our results, they confirm that natural sequences are coded in resting state and shape the activity of 
the whole brain, but conversely, they find motor sequence representations in the visual system. The discrepancy 
could be explained by the fact that our stimuli did not represent any actions (i.e., strictly open hands), and the 
fact that spontaneous activity in mice is recorded differently than in humans (mouse running in darkness vs 
humans staring at a cross with eyes open). However, their results similarly show evidence of generic multimodal 
representations encompassing both motor and visual attributes.

Our results could be alternatively interpreted as a result of motor imagery. Very early works have found that 
motor imagery (i.e., imagining a movement without executing it) has been found to share overlapping networks 
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with motor  performance47. However, we can exclude the possibility that our participants were engaged in hand 
motor imagery during the resting state scan, since that was acquired before the presentation of the visual stimuli 
task and they were naive to the aim of the study.

Our study shows that the multivoxel activity of hands in the somatomotor area is most represented in resting 
state activity. This effect was lateralized to the left, not the right, somatomotor area (Fig. 5B). From a theoretical 
point of view, the lateralization result is well aligned with the existing literature: compared to other body parts 
and objects, static pictures of hands and tools have overlapping activations in the LOTC that are then selectively 
connected to the left intraparietal sulcus and left premotor  cortex48–50. Moreover, a body of literature shows 
bilateral motor cortical activations are produced with the left non-dominant hand. In contrast, movements with 
the dominant right hand induce only contralateral (left)  activations51. Precisely, visuospatial orientation atten-
tion, measured with eye movements, activates a network of premotor and parietal areas in the right hemisphere, 
while motor attention and selection, measured as the attention needed to redirect a hand movement, activate the 
left  hemisphere52,53. TMS and lesion studies further support this left lateralization, describing motor selection, 
motor attention, or motor  learning51,53. The effector-independent activation in the left hemisphere is also found 
in kinesthetic motor imagery that activates common circuits for motion in the premotor, posterior parietal, 
and cerebellar  regions52. More recently, Karolis and  colleagues54, using fMRI, built a lateralization functional 
taxonomy along four axes representing symbolic communication, perception/action, emotion, and decision-
making. Along the action/perception axis, the categories of movement, finger tapping, motor observation, and 
touch were all found to activate the sensorimotor areas of the left hemisphere selectively. Interestingly, all these 
categories had the term hand or finger as principal components with the highest loadings.

In summary, we provide the first evidence that the ongoing activity in the left somatomotor regions main-
tains a long-term representation of the hand shape in the absence of any motor task or sensory stimulation. 
Furthermore, this result may support the representation of visually related information in M1/S1, enforcing a 
multimodal role in these areas.

Limitations
The most significant limitation of our study is the use of highly controlled still images. Stimuli presented were 
in black and white with noise imposed on top to correct for low and mid-level features. This is necessary as a 
first step because we are looking for generic representations in resting state activity and are using early visual 
regions as a control. Based on current theoretical investigation, resting state patterns represent the statistical 
regularities of the environment. Therefore, future studies may employ naturalistic stimuli (for example, videos).

Our sample only included right-handed participants, similar to previous neuroimaging studies testing 
the relationship between spontaneous and task-evoked studies, employing motor  paradigms11,17,20, visual 
 stimulation19,34,35 or cognitive  tasks55,56, to give some examples. Moreover, it is noteworthy that the numerosity 
employed here is aligned with these previous studies and is even higher (n = 19).

Another limitation is the lack of hand motion recordings, which is beyond the aim of our study, i.e., testing 
the relationship between resting-state and visually-evoked activity patterns. Therefore, this would not interfere 
with our results even with minimal movements.

On a methodological note, our ROIs encompass pre and post-central gyrus. Even though the searchlight 
analysis shows the spatial specificity of the task-rest association localized on the postcentral gyrus activity, fur-
ther studies should entangle the hand region alone. Moreover, since kinesthetic motor imagery activates the left 
premotor, posterior parietal, and cerebellar regions and is effector-independent52, this would help us rule out 
mental imagery as a possible explanation of our results.

Conclusion
The sensory and perceptual analysis depends not only on external stimuli but also on coding expected features 
in the surroundings that are simultaneous to the flow of  information57. Building models of the environment 
creates generic priors that are stable and common across individuals yet malleable with experience and  age9. If 
motor-sensory interactions are entrained throughout development into spontaneous cortical oscillations, our 
internal model must have a reservoir of natural behaviours. Our experiment shows that spontaneous activity 
representing the internal model, despite its noisy structure, reliably encodes the visuospatial topography of the 
natural human hand in somatomotor areas. This suggests that the human hand represents a prior for the effective 
motor interaction with the external environment to allow exploration, learning, and adaptation. In line with the 
malleability of the cerebral cortex in response to behavior and other input manipulations, to our knowledge, 
this is the first experiment to show that visually-conveyed representation of hands in resting state activity in 
frontoparietal somatomotor areas by looking at the relationship between evoked and spontaneous activity. By 
measuring the correlation between evoked activity and resting-state activity, we shed light on the multimodal 
role of the somatomotor areas.

Materials and methods
Subjects
Twenty healthy individuals (10 females) were enrolled in the study (mean age ± SD 29 ± 2.59 years, range 
24–34 years). All subjects underwent medical interviews and examinations to rule out the history or presence 
of any disorders that could affect brain function and development. Participants were provided with a detailed 
description of all the experimental procedures and were required to sign a written informed consent. All methods 
were carried out in accordance with relevant guidelines and regulations of the ethical review board. The study was 
conducted under a protocol approved by the Area Vasta Nord Ovest Ethics Committee (protocol n. 24579/2018). 
The Area Vasta Nord Ovest Ethics Committee is an independent and multidisciplinary body that is competent for 
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the evaluation of clinical and non-clinical/no-profit studies carried out in healthcare and academic structures of 
the Tuscany North West Area, including IMT School for Advanced Studies and the Tuscany Gabriele Monasterio 
Foundation in Massa (where the MRI data have been acquired). All subjects were right-handed, following the 
Edinburgh Handedness Inventory (10-item inventory)58. We discarded one subject from subsequent analyses 
because of excessive movement artifacts in fMRI data, leading to a final sample of nineteen subjects.

Design and stimuli
The paradigm was divided into three parts (Fig. 1). The first part included an eight-minute resting state scan 
(pre-task scan). During the resting state scan (Fig. 1A), subjects fixated a red cross (24 × 24 degrees) at the center 
of the screen (VisuaStimDigital dual-display goggles, 32 × 24 degrees of visual angles, Resonance Technology 
Inc.), without performing any cognitive or motor tasks. In the second part (Fig. 1B), we presented subjects with 
pictures of four categories of objects, natural hands, robot hands and control stimuli (i.e., food). All stimuli had 
the same vertical orientation. Left and right hands presented from the front and from the back were randomly 
selected and presented. We used six different examples for each object category. We presented subjects with five 
runs lasting four minutes. In each run, subjects attended twelve randomized blocks (four categories, three rep-
etitions each). Each block lasted 12 s, followed by 8 s of fixation, and included 20 randomized repetitions of the 
six stimulus variations, each presented for 0.3 s and followed by fixation for 0.3 s. Participants were instructed 
to perform a covert working memory one-back task, in which they were instructed to identify repetitions of 
the same visual stimulus. Each run began and ended with 20 s of rest to acquire baseline fMRI activity. For the 
stimulus set, we used pictures of items pertaining to the four categories, which were converted to grayscale and 
matched for global luminance and root-mean-squared (RMS) contrast to control for low-level visual biases. 
The object pictures were centered and embedded in a circular pink-noise display with a fixed circumference (16 
degrees) blending into a grey background (Fig. 1D). For the third part (Fig. 1C), subjects performed a three-
minute finger-tapping localizer scan. We instructed them to tap their thumb on every other finger of their right 
dominant hand sequentially and at their own pace (blocks of 15 s of activity followed by 15 s of rest).

All the visual stimuli were presented using MR-compatible display goggles (VisuaStimDigital, Resonance 
Technology Inc.) covering 32 × 24 degrees of visual angle, and a PC running MATLAB (MathWorks Inc, Natick, 
MA, USA) and the Psychophysics Toolbox version  359.

MRI data acquisition
We used a Philips 3 T Ingenia scanner with a 32-channel phased-array coil. We used a gradient recall echo-planar 
(GRE-EPI) sequence with TR/TE = 2,000/30 ms, FA = 75°, FOV = 256 mm, acquisition matrix = 84 × 82, recon-
struction matrix = 128 × 128, acquisition voxel size = 3 × 3 × 3 mm, reconstruction voxel size = 2 × 2 × 3 mm, 38 
interleaved axial slices, and 240 volumes. We also acquired three-dimensional high-resolution anatomical images 
of the brain using a magnetization prepared rapid gradient echo sequence (MPRAGE) with TR/TE = 7/3.2 ms, 
FA = 9°, FOV = 224 mm, acquisition matrix = 224 × 224, acquisition and reconstruction voxel size = 1 × 1 × 1 mm, 
156 sagittal slices.

Preprocessing
We used the AFNI software  package60 and a standard preprocessing pipeline to preprocess fMRI data, separately 
for tasks (i.e., one-back task and finger tapping) and resting state. We temporally aligned the runs (3dTshift), 
then corrected for head motion (3dvolreg), and used the transformation matrices to compute the framewise 
displacement, identifying time points affected by excessive  motion61. We then spatially smoothed the data using 
a Gaussian kernel and an iterative procedure up to 6 mm Full Width at Half Maximum (3dBlurToFWHM). We 
then normalized the runs by dividing the intensity of each voxel over its mean over the time series and applied 
a multiple regression analysis (3dDeconvolve) to estimate the activation patterns for each category. The model 
included the four stimulus categories (hand, robot, glove, food) as regressors for the visual working memory task, 
and finger movement blocks for the localizer of the hand motor area. The output was a stimulus-evoked BOLD 
multivoxel activity (beta weight) for each category. We also included head movement parameters, framewise 
displacement, and signal trends as nuisance variables. We performed a generalized least squares time series fit 
for the resting state data to account for nuisance regressors defined above and signal autocorrelation using an 
autoregressive moving average model (order 1; 3dREMLfit). We registered single subject results and preprocessed 
rest scans to MNI152 standard  space62 using nonlinear registration.

ROIs
We selected three regions of interest (ROIs; Fig. 2A) to test the association between resting state spontaneous 
activity and task-evoked activity. We identified the left somatomotor area after thresholding (p <  10–6 uncorrected) 
the finger tapping localizer group level t-test, resulting in a small ROI (~ 5000 μL) encompassing the precentral 
and postcentral gyri, as also suggested by the overlap with the HCP  atlas63. The center of gravity of our ROI is 
− 42 − 24 54 (MNI atlas). Then, we selected the right somatomotor area by left/right flipping the ROI mentioned 
above (3dLRflip). We defined the bilateral early visual cortex (V1, V2, V3) using  VisFAtlas64 as a further early 
sensory control region.

Task-rest multivoxel similarity analysis
In the main analysis, we first analysed the association between resting state and each task-evoked multivoxel 
activity using a Kolmogorov–Smirnov test. Briefly, for each ROI, we obtained two distributions of correlation 
coefficients: one measuring the similarities among patterns of brain activity during rest, one resembling the simi-
larities between each stimulus category during task (hand, robot, glove, food) and rest. We converted correlation 
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coefficients to z-scores by means of Fisher’s r–z transformation. Using these two distributions, we performed 
a 2-sample Kolmogorov–Smirnov test and we extracted from each participant the D statistical measure which 
represents the maximum difference between the two empirical cumulative distribution functions (ECDFs; kst-
est2 in MATLAB). Then, we performed for each ROI a one-way repeated-measures ANOVA according to the 
four stimulus categories.

Given that task specificity was represented with heavy-tailed distributions, we also used the multivoxel simi-
larity analysis introduced by Kim and  colleagues19. For each subject and ROI, we extracted the patterns of task-
evoked activity of the four stimulus categories (hand, robot, glove, food). A total of four averaged task-evoked 
vectors were computed, one for each category. The length of these vectors represents the number of voxels within 
each network. A vector of the same length was computed for each resting state frame. Then, we correlated (using 
1-pdist2, ’correlation’ distance on MATLAB) the z-scored multivoxel activity of task conditions with the patterns 
of all resting state timepoints. We then converted all r values to z scores, using Fisher’s r–z transformation. For 
each category group, we then computed a cumulative distribution function that represents the strength (Pearson’s 
z score) of the correlation between the average multivoxel category representation and the patterns from every 
time point of the resting state signal. According to previous  analysis11,19,20, we identified the upper 90% value of 
the distribution (U90 value) to measure task-rest similarity (Fig. 2B). This approach, recently adopted by other 
 studies11,19,20 constitutes a representative measure of the relationship between patterns of resting state activity and 
those evoked by a category (averaged task-evoked vectors). The U90 value is a transparent estimation of spatial 
similarity since it refers to the value of a correlation coefficient suggesting the degree of similarity between task-
evoked and resting state activity patterns. This cut-off has a statistical rationale: values below could be closer to 
the mean of the distribution (mean = 0), while values above 90th percentile could be a few, and not representative 
of the population. In order to compare our data to Kim and  colleagues19, we additionally inspected the skewness 
(calculated as the mean of pattern association—the median of pattern association/standard deviation) and the 
spread (calculated as the variance of the pattern association) of the data. In the main analysis, we performed a 
repeated-measures ANOVA for each ROI (stimulus category, 4 levels) and applied Sidak corrections post-hoc.

As a control to the choice of the U90 value, we repeated the analysis using different cut-off. For each category 
group, we identified the percentiles of the cumulative distribution function from U1 to U99 to assess task-rest 
similarity for each subject. We then performed separate repeated measures ANOVA for each cut-off.

Further follow-up analyses in the left somatomotor ROI included a trend analysis to test a priori hypotheses 
of differences among stimulus categories (hand > robot > glove > food). This analysis is suited for exploring post 
hoc ANOVA interactions.

Finally, a searchlight analysis (radius = 6 mm) was performed in a larger extent of the left somatomotor cortex 
identified by performing a student t-test group analysis on the localizer data (p < 0.0001, uncorrected) to further 
explore and highlight the subregions of the postcentral and precentral gyri involved in the association between 
task and rest activity. Specifically, for each searchlight, we extracted U90 in each participant and performed a 
one-way repeated-measures ANOVA to assess similarities between resting-state activity and the four stimulus 
categories. Results were reported at an uncorrected p value < 0.05.

Data availability
This work is part of a European Research Council (ERC) project. The data have been deposited at Open Sci-
ence Framework (OSF) and are publicly available (https:// osf. io/ d9y7j/? view_ only = 053a3129a2ca45af-
b6ea7d191109c78b). Any additional information required to reanalyze the data reported in this paper is available 
from the lead contact upon reasonable request.
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