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A study of the Mode-locking lasing pulse formation in closed cavities is presented within a statisti-
cal mechanical framework where the onset of laser coincides with a thermodynamic phase transition
driven by the optical power pumped into the system. Electromagnetic modes are represented by
classical degrees of freedom of a Hamiltonian model at equilibrium in an effective ensemble corre-
sponding to the stationary laser regime. By means of optimized Monte Carlo numerical simulations,
the system properties are analyzed varying mode interaction dilution, gain profile and number of
modes. Novel properties of the resulting mode-locking laser phase are presented, not observable
by previous approaches based on mean-field approximations. For strong dilution of the nonlinear
interaction network, power condensation occurs as the whole optical intensity is taken by a few elec-
tromagnetic modes, whose number does not depend on the size of the system. For all reported cases
laser thresholds, intensity spectra, phase waves and ultra-fast electromagnetic pulses are computed.

I. INTRODUCTION

In multimode lasers with many cavity modes, nonlin-
ear interactions originate among modes. One notable
mechanism inducing interaction is saturable absorption,
i.e., the progressive depletion of low power tails of the
light pulse traveling through the cavity at each roundtrip.
This causes the consequent amplification of very short
pulses composed by modes with locked phases, a phe-
nomenon called mode-locking [1, 2]. Mode-locking (ML)
derives from the nonlinear synchronization constraint on
the oscillations of interacting modes. Given any quadru-
plet of modes {k1, k2, k3, k4} this is expressed by the fre-
quency matching condition (FMC):

|νk1 − νk2 + νk3 − νk4 | ≤ γ . (1)

where γ is the single mode line-width. Phase-locking
occurs at the ML lasing threshold and corresponds to
some long-range order in the set of modes in the cavity.

We adopt a statistical mechanical approach to describe
the optical properties of stimulated light emission from
cavities with a large number of modes. In this approach
the generation of a multimode ML lasing regime from a
fluorescent continuous wave (CW) regime as the optical
power in the cavity is increased can be characterized as
a thermodynamic phase transition between a disordered
phase and a phase with long-range order . The stationary
laser system can be treated as a thermodynamic system
at equilibrium in a thermal bath whose effective tempera-
ture is proportional to the inverse squared power pumped
into the cavity [3, 4]. Since the first attempt by Gordon
and Fischer in the early 00’s [5], this approach has been
performed in a mean-field fully connected approximation
corresponding in the optical language to the so-called
narrow-band approximation, see also Refs. [3, 6–8]. This
consists in choosing mode frequencies in a narrow band-
width ∆ν around the central frequency of the cavity. So
narrow that the frequency interspacing δν between res-
onant modes is less than the linewidth γ of each mode.

In this way Eq. (1) is practically always satisfied and,
therefore, actually irrelevant in determining lasing prop-
erties.

In the present work we introduce frequency depen-
dent populations of modes, considering gain profiles g(ν)
and the effect of nontrivial frequency matching on the
mode couplings. This analysis requires to go beyond
the limits of validity of mean-field theory and it is car-
ried out by means of optimized Monte Carlo (MC) sim-
ulations running on GPU’s. An exhaustive numeri-
cal analysis accounting for the fluctuations induced by
these new ingredients reveals that, depending on the
optical system properties, on the cavity topology, and
on the relative gain-to-nonlinearity strength, different
thermodynamic-like phases occur. Such regimes range
from a ferromagnetic-like one, where all mode phases are
aligned, to a phase-wave one, where phases of modes at
nearby frequencies are strongly correlated, though not
equal to each other. The ferromagnetic behavior occurs
in the low finesse limit of the narrowband approxima-
tion. Non-trivial phase locking occurs, instead, at high
finesse. In the latter case we show how, distributing the
frequencies according to an optical frequency comb [9–
11], intensity spectra and pulse phase delay observed in
ultra-short pulses are reproduced [12].

As it will be taken up in the following, previous stud-
ies based on mean-field theory are exact only in the nar-
row band-width case. In this paper we go beyond the
mean-field approximation, accounting also for situations
in which different modes exhibit different frequencies

Our study introduces two essential and new ingredi-
ents. The first one is the FMC, yielding mode interac-
tion networks that are no longer described by mean-field
theory, in which non-trivial multimode emission spectra
and mode phase correlations above threshold occur. The
second ingredient is a random dilution of the interacting
network, modeling possible topological disorder in arbi-
trary cavity structures, as, e.g., multi cavity channels not
exactly equal to each other. We will show that, as far as
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it is not too strong, the latter kind of dilution does not al-
ter at all the laser transition properties. Below a certain
dilution point, however, in the lasing phase the whole
optical power condenses into a small set of connected
modes, scaling independently of the number of modes.

II. THE MODEL

Expanding the electromagnetic field in the complete
base of N normal modes {En(r), νn}[13]

E(r, t) =

N∑
n=1

an(t)e−2πıνntEn(r) + c.c. (2)

the equilibrium dynamics of the time-dependent complex
amplitudes an(t) is given by the Hamiltonian [5]

H = −
N∑
k=1

gk|ak|2 − J
ML∑

{k1,k2,k3,k4}

ak1a
∗
k2ak3a

∗
k4 (3)

where gk and J are chosen as real numbers, neglect-
ing dispersion and Kerr-lens effect. The physical mean-
ing of the coefficients comes from the equivalence of the
Hamiltonian dynamical equation with the Haus master
equation [1]: gk = g(νk) is the net gain profile, J is
the self-amplitude modulation (SAM) coefficient. The
ML sum runs over a subset of quadruplets such that for
each element (k1, k2, k3, k4) the FMC holds. The lat-
ter implies that in the non-linear term of Eq. (3) three
non-equivalent orderings of quadruplets contribute to the
sum, each one consisting of eight equivalent index per-
mutations [38]. The Hamiltonian is symmetrized with
respect to these orderings. The coupling strength in Eq.
(3) is taken as J = N/Nq, where Nq is the number of
quadruplets, making the Hamiltonian extensive.

The total optical energy stored in the system is E =

Nε =
∑N
k=1 |ak|2 and it is kept constant in the dynamics

by external power pumping. Eq. (3) is a direct general-
ization of the Hamiltonian studied in Ref. [5] and can
be seen as the ordered limit of the random laser the-
ory analyzed in Refs. [3, 7, 8]. From the point of view
of statistical mechanics the driven optical system com-
posed by the cavity, the amplifying medium and the op-
tical power pumped into the system can be described by
Eq. (3), considering it as the Hamiltonian of a system
at equilibrium with an effective thermal bath. The role
of the inverse temperature is played by the pumping rate
squared: P2 = βJε2. Here β = 1/kbT is the inverse heat
bath temperature, regulating spontaneous emission. It is
usually represented as white noise in a Langevin dynam-
ics [3–8, 14, 15].

III. MODE INTERACTION NETWORK

Thermodynamic phases are determined by the inter-
action network, as well. In the following we will undergo

the analysis of networks with a varying degree of dilu-
tion. This will be expressed as number of quadruplets
Nq vs. number of modes N . We will discuss data for
Nq = O(N t), t = 1, 2, 3, 4.

Two essentially different types of topologies will be in-
vestigated, depending on the frequency bandwidth be-
ing narrow or finite. Both topologies can be further di-
luted upon homogeneously randomly removing quadru-
plets. The “Narrow Band-width Topology” (NBT) is
low finesse, i.e., δν � γ, and the role of frequencies is
irrelevant. The fully connected instance, consisting in
Nq = N(N−1)(N−2)(N−3)/8 interacting quadruplets,
corresponds to a closed Fabry-Perot-like cavity where
all longitudinal modes are localized in the same spatial
region. Possible random diluted NBT’s correspond to
more complicated geometries, including multi-channels
set-ups. For finite bandwidth, instead, we will work in
the high-finesse limit, δν � γ, with sets of equispaced fre-
quencies [9–11, 16, 17]. We will term this a “Frequency
Comb Topology” (FCT). In this case the list of quadru-
plets is extracted from those nontrivially satisfying Eq. 1:
modes are not all equivalent to each other and mean-field
theory does not hold.

IV. NUMERICAL SIMULATIONS AND DATA
ANALYSIS

We performed extensive Monte Carlo simulations of
equilibrium dynamics by means of the exchange MC [18]
algorithm and the synchronous, fully parallel MC [19–22].
The latter, indeed, remarkably turns out to reproduce a
reliable dynamics in the present model [23]. In the NBT,
system sizes from N = 25 to 500 have been simulated for
random dilutions of Nq = O(N t), t = 2, 3, 4. [39]. For
the FCT, we simulated systems of size N = 100 − 1000
with number of frequencies Nf = N in each case, and
Nq = O(N2) and O(N3) upon applying the FMC filter.

The gain g(νn) is taken as Gaussian with varying mean
square displacement. We checked thermal equilibration,
i.e., the onset of the pumped stationary regime, by look-
ing at the energy relaxation and at the symmetry of the
distribution of complex amplitude values deep in the las-
ing phase. In the following we present our results about
(I) laser thresholds identification, (II) intensity spectra,
and (III) phase waves, electromagnetic pulses and their
correlations.

(I) Laser threshold

The estimate of the laser threshold is obtained from the
finite size scaling (FSS) analysis of the behavior of the en-
ergy vs. pumping rate, as shown in Fig. 1 for the FCT
(for the NBT the energy behavior is the same). For low
P the system is in an incoherent continuous wave regime
with uncorrelated phases and zero energy per mode. As
P increases a phase transition occurs indicated by a dis-
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FIG. 1: (Color online) Energy vs. P (in arbitrary units) in
the Frequency Comb case with Nq ∝ N2. The arrow marks
the analytic critical point in the thermodynamic limit of the
NBT. Inset: for N = Nf = 100 modes the spinodal line Psp

is shown next to the threshold critical line.

continuity in the energy. For the NBT the N →∞ criti-
cal point is analytically known [3] and pointed out to as
an arrow in Fig. 1. For Nq = O(N t), t = 2, 3, 4 the FSS
of the discontinuity point is compatible with the fully
connected analytical limit, as reported in Tab. I. The
critical thresholds for the FCT case, estimate by FSS for
Nq = O(N2) and for Nq = O(N3) are reported in Tab. I.
The CW/ML laser phase transition is first order: in the
inset of Fig. 1 both the spinodal and the critical points
are displayed, e.g., forN = 100 in a FCT. Spinodal points
occur both in NBT and in FCT. In Fig. 2 the average
mode magnitudes r ≡ 〈|a|〉/

√
ε are plotted. This is

√
2/π

for randomly independently oscillating amplitudes and it
discontinuously increases at the ML lasing threshold in-
dicating intensity mode-locking. For P → ∞, r tends to
1 in the NBT and to 0.990(1) in the FCT case.

Power condensation

As the dilution is strong, i.e., Nq = O(N), each mode
interacts in aO(1) number of quadruplets. Above thresh-
old the whole power E turns out to be taken by a small
number of connected modes and the probability to find
a configuration with energy equipartition is negligible in
the thermodynamic limit. In the mean field approxima-
tion one can prove that in order to display power con-
densation it must be Nq < O(N2) [23] as confirmed by
numerical simulations. In the following we focus on more
connected networks.

ν band Narrow Band Frequency Comb

O(Nq) N2 N3 N4 Exact N2 N3

Pc 1.56(3) 1.59(9) 1.6(3) 1.56697 1.558(8) 1.57(1)

TABLE I: Critical point for N →∞ in various dilutions.

 0.76

 0.8

 0.84

 0.88

 0.92

 0.96

 1

 1.5  1.55  1.6  1.65  1.7  1.75  1.8  1.85

<
r>

P

Frequency Comb

<r>(∞)

 0.76

 0.8

 0.84

 0.88

 0.92

 0.96

 1

<
r>

Narrow Band

<r>(∞)

100
200
300
400
500

√2/π
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ε vs. optical power P (in a. u.) for different sizes

in the NBT (top panel) and in the FCT (bottom panel).
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FIG. 3: (Color online) Intensity spectra for a FCT system of
Nf = N = 150. Nq = O(N2) for increasing P from bottom
to top. Left: gain g(λ) with larger variance, σλ = 3885.
At P > Pc the spectrum starts narrowing because of the
nonlinear mode-coupling. Right: g(λ) with smaller variance,
σλ = 243. Spectra follow the peaked gain profile already in
the CW regime. At Pc mode-locking sets in, enhancing the
sharpening.

(II) Intensity spectra

In Fig. 3 we show two instances of the spectra I(λj) =
〈|aj |2〉 vs. λj = c/νj in FCT systems with Gaussian gain
profiles with different variances. In the left panel the
mean square displacement of the gain profile in the wave-
length dominion is large (σg = 3885) in comparison to the
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frequencies. N = Nf = 500. Bottom insets: phase-locked linear behavior φ(ν) corresponding to each pulse. The phase shift in
the peak of E(t) with respect to the maximum of the envelope corresponds to the slope of φ(ν). Time is in arbitrary units.

spectral free range, whereas in the right panel it is of the
same order of magnitude (σg = 243). In the first case,
below P the CW spectrum is flat and suddenly sharpens
at the ML threshold Pc. To underline this, spectra are
shown right below and above Pc(N = 150) = 1.597(15) in
Fig. 3. In the small σg case the spectra appears already
narrower in the CW regime, following g(λ), as displayed
in the right panel of Fig. 3 for the lowest simulated
pumping rate. At Pc though, their narrowing qualita-
tively changes and becomes progressively independent of
g(λ) as P increases, eventually taking the same spectral
shape of the previous case.

We show in Fig. 3 the cumulative detections of very
many pulses, as in data acquisition from ultra-fast ML
lasers. In the MC dynamics used in simulation, though,
each MC step corresponds to a pulse generation. Within
our approach it is, then, possible to look at the dynamics
at much shorter time intervals, where the mode ampli-
tude and intensity profile in λ fluctuates from pulse to
pulse. This is connected to changes in the spectral phase
delay of the electromagnetic pulse. Different spectral dy-
namics are reported in Video 1 of Sup. Mat. [37] (see
details in Sec. VI).

(III) Electromagnetic pulses and phase delay

In terms of slow complex amplitudes, cf. Eq (2),
an(τ) = An(τ)eıφn(τ), An = |an|, the electromagnetic
pulse is

E(t|τ) =

N∑
n=1

An(τ)eı[2πνnt+φn(τ)] (4)

The time τ � t operatively labels a single MC step
in our simulations, i.e., the interval between two pulses.
In Fig. 4 we show E(t|τ) at four different times τ in
the dynamics. In the NBT, in the ML regime all modes
acquire same modulus and phase. In a FCT, instead,

at Pc a non-trivial phase-locking occurs, such that the
mode phases exhibit a linear dependence on the mode
frequencies: φn ' φ0 + φ′νn, as shown in the bottom
insets of Fig. 4. The pulse is, thus, unchirped [1]. The
spectral phase delay, or group delay, φ′ = dφ(ν)/dν|ν=νn
of the optical pulse does not depend on the frequency
of mode n. It changes, though, with time τ , from pulse
to pulse. Within our approach we thus find the typical
spectral phase frequency profile φ(ν) at each given pulse
and its pulse-to-pulse dynamics, cf. Video 2 in Sup. Mat.
[37] (see details in Sec. VI).

Phase waves lifetime

Let us define the time average over an equilibrated set
of data (τ ≥ τtherm) on a time window T : 〈. . .〉T ≡∑T
τ=0(. . .)/T . In the FCT, after a time T > τφ, the

average global phase correlation function Cφ(T ), defined
as

Cφ(T ) ≡ 1

Nf

∑
δν

|Cδν(T )| (5)

Cδν(T ) =
1

Nf

∑
ν

〈cos (φν − φν+δν)〉T (6)

is observed to decay to zero. This is at difference with
the NBT where, in the high power regime, Cφ(T ) is fi-
nite also for T → ∞. For the FCT, the distribution of
correlation times τφ as the optical power varies across the
lasing threshold is sharply peaked around its logarithmic
average ln τφ below threshold, cf. Fig. 5. For increasing
P > Pc the distribution tends to a flat curve.

Vanishing two-mode correlators

A related phenomenon is that the average over T >
τφ of two-mode phase correlations Cδν(T ), cf. Eq. (6),
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vanishes, as shown in Fig. 6, implying a zero ensemble
average. This occurs though modes with frequencies ν,
ν′ = ν + δν are correlated at each time τ , cf. bottom
insets of Fig. 4, and Cδν(T ) 6= 0 when T <∼ τφ. In
Fig. 6 we show Cδν(T ) as function of δν = ν′ − ν for
T = 104 and T = 105. In the top panel, at shorter
time window T = 104, one clearly observes that Cδν
is completely uncorrelated independently of δν for P <
Pc. As the pumping increases above the threshold, Cδν
displays a non-trivial behavior as a function of δν. Above
threshold, thus, the global phase correlation function Cφ,
cf. Eq. (5), becomes larger the higher the pumping.
In other words, the correlation time τφ grows with P
and overcomes T : τφ(P > Pc) > 104. In the bottom
panel of Fig. 6 we consider, instead, a time window T
larger than the average correlation time τφ(P) for most
of the simulated pumping values P, cf. Fig. 5: it can be
observed that Cδν(105) ' 0 for practically almost all δν,
but the smallest ones for large power. The oscillations
displayed by Cδν(T ) in Fig. 6 in the ML laser regime are
due to the fact that different phase delays are involved
in the thermal average. Indeed, cf. bottom insets of Fig.
4, the slope of φ(ν) changes with time τ .

The origin of the vanishing of two-mode correlators
is reminiscent of symmetry conservation in gauge lattice
theories [24] and will be discussed elsewhere [23]. We just
mention that the main difference in the lasing regime for
the two topologies is that in the NBT the global U(1)
symmetry is spontaneously broken, whereas in the FCT
it is conserved across the threshold.

V. CONCLUSIONS

We present the first statistical mechanical approach
to the study of real-world ultrashort mode-locked multi-
mode lasers in closed optical cavities, including possible
degrees of topological disorder. In previous approaches,
statistical mechanical systems with distinct resonances
have been studied in the mean-field approximation, see,
e. g., Refs. [14, 15, 25]. The key point is, though, that
the mean field solution is exact only in the narrow band-
width limit. When describing inhomogeneous topologies,
such as the Frequency Comb Topology of equi-spaced
well-refined resonances, the only thing that the mean-
field theory can account for is a shift in the pumping
threshold resulting from the dilution (in fact, just a mod-
ification of the coupling constant). The nature of the
predicted mode-locked regime remains, indeed, identical
to the one predicted assuming narrow band-width. This
limit basically lies in the very definition of the mean-
field method: since the fluctuations of the mode degrees
of freedom are neglected a many-body problem is actu-
ally reduced to a one-body problem, in which all modes
exhibit a common average phase and a common aver-
age intensity. The inhomogeneity in frequency depen-
dence of the interaction network in more realistic cases, in
which modes with near-by frequencies have stronger cou-
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pling, is simply neglected by construction. Because of the
mean-field assumption, previous approaches have not,
and could not have, accounted for the main properties
here reported: phase waves, non-equipartition threshold
and vanishing two-mode correlators.

Our approach, going beyond mean-field theory, with
Monte Carlo simulations of equilibrium dynamics, allows
to reproduce and study the onset of the lasing regime and
the behavior of emission spectra and laser pulses and rel-
ative group phase delays at any supplied power. The
existence of metastable lasing regimes marked by spin-
odal points in the energy behavior, cf. inset of Fig. 1,
accounts for the onset of optical bistability [26, 27]. The
phenomenon of power condensation for extreme dilution
of mode interaction and the vanishing of the equal time
two-mode phase correlations for long times are proper-
ties that can be experimentally tested. Furthermore, this
kind of approach opens the way to further analyze the
carrier-envelop offset phase behavior, and the tolerance
to disorder in the coupling SAM coefficient. The latter
analysis is useful, e.g., for stabilized micro resonator in
chip-based devices [28, 29] in which technical precision
undergoes µm size constraints and controlling material
damage is a true challenge. Eventually, including open
cavity terms [30, 31] and strong disorder in the nonlin-
ear coupling [3, 6–8], our approach can be applied to the
study of random lasers [32–36].
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VI. SUPPLEMENTAL MATERIAL

Spectra dynamics [Video 1]

In the file Video1 spectral dynamics.mpg a video is
shown for the dynamics of spectra I(λ; τ) = |a(λ; τ)|2
for a FCT system with N = Nf = 500 modes and fre-
quencies. The gain wavelength profile g(λ) is taken uni-
form, i.e. σg = ∞. The finite size threshold for this
specific system is Pc = 1.578(8). Dynamic sequences at
three pumping rate are reported: in the incoherent CW
regime (P = 1.308), slightly above the lasing threshold
(P = 1.865) and for high pumping (P = 2.94). Each MC
step corresponds to the interval between two pulsed emis-
sions in the mode-locked lasing regime. In the video each
single frame is averaged over 10 subsequent Monte Carlo
steps and frames are shown at intervals of 100 Monte
Carlo steps.

Lasing pulse and phase delay dynamics [Video 2]

In the file Video2 phase delay dynamycs.mpg a
video is shown for the stationary dynamics of the re-
lationship φ(ν) of lasing pulses in a simulation of a FCT
system of N = Nf = 500 modes with an initial random
dilution of N tot

q = 37500000 = 0.3N3 and a final number

of interacting quadruplets NFMC
q = 49965. The lasing

system is at optical power P = 1.651, right above the
lasing threshold Pc = 1.578(8). The initial distribution
of the gain among frequencies is taken as uniform. The
interval between each frame is 100 Monte Carlo steps. It
can be observed that at each time τ , corresponding to
a pulsed emission, φ(ν) is approximately linear, yielding
a well defined phase delay φ′ independent from ν. As
the dynamics runs, though, φ′(τ) changes, progressively
taking a broad interval of values.
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