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Abstract—This paper proposes an active set method based
on nonnegative least squares (NNLS) to solve strictly convex
quadratic programming (QP) problems, such as those that
arise in Model Predictive Control (MPC). The main idea is to
rephrase the QP problem as a Least Distance Problem (LDP)
that is solved via a NNLS reformulation. While the method is
rather general for solving strictly convex QP’s subject to linear
inequality constraints, it is particularly useful for embedded MPC
because (i) is very fast, compared to other existing state-of-the-
art QP algorithms, (ii) is very simple to code, requiring only
basic arithmetic operations for computing LDLT decompositions
recursively to solve linear systems of equations, (iii) contrary to
iterative methods, provides the solution or recognizes infeasibility
in a finite number of steps.

Index Terms—Quadratic programming, Active set methods,
Nonnegative least squares, Model predictive control.

I. INTRODUCTION

Model Predictive Control (MPC) is widely spread in indus-
try to optimize closed-loop response of multivariable systems
under constraints on system variables [1]. Except for simple
problems in which the MPC control law can be computed in
explicit form [2] and even hard-coded on chip [3], embedding
an MPC controller in an ECU requires coding and deploying a
Quadratic Programming (QP) solver for computing the control
signals.

Embedded QP for MPC has stimulated extensive research
in the MPC community during the last decade, and to date
many good algorithms and packages for QP are available that
are able to solve linear MPC problems, such as active-set
methods [4, Sect. 24-4], [5] interior-point methods [6], gradi-
ent projection methods [1], [7], and the alternating directions
method of multipliers (ADMM) [8].

This paper introduces a new active-set algorithm for strictly
convex quadratic programs subject to general linear inequality
constraints. The main idea is to recast the QP as a Least
Distance Problem (LDP) and to transform this into a Nonneg-
ative Least Squares (NNLS) problem. If the latter has a zero
residual, the QP is proved infeasible, otherwise the algorithm
provides the primal solution to the original QP problem (and,
if needed, its dual solution). To solve the NNLS problem, we
extend the well-established algorithm of [9, p.161], introduc-
ing recursive LDLT decompositions to speed up the solution
of the unconstrained least squares problems required at each
step of the algorithm. As a result, the proposed QP algorithm
is very simple to code, very fast to execute, and provides the
solution in a finite number of steps, all very attractive features
for embedded MPC applications. The method is compared to
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several state-of-the-art solvers, including commercial ones, on
both random QP tests and on a typical multivariable MPC
application example.

This paper complements the recent paper [2], where an
algorithm was proposed to compute offline multiparametric
QP (mpQP) solutions for getting MPC control laws in explicit
form. The paper [2] showed that all polyhedral computations
(such as removal of redundant inequalities) can be performed
by NNLS; this paper completes the approach by showing that
also the QP’s required by the mpQP solver can be solved by
NNLS. The QP solution algorithm presented in this paper has
been extended in [10] to handle equality constraints, bilateral
inequality constraints, and warm starts for solving mixed-
integer quadratic programs.

A. Notation

Let Rn denote the set of real vectors of dimension n and
N the set of natural integers, respectively. Let I ⊂ N be a
finite set of integers and denote by #I its cardinality. For a
vector a ∈ Rn, ai denotes the i-th entry of a, aI the subvector
obtained by collecting the entries ai for all i ∈ I, ‖a‖2 the
Euclidean norm of a, ‖a‖1 =

∑n
i=1 |ai| the 1-norm of a, the

condition a > 0 is equivalent to ai > 0, ∀i = 1, . . . , n (and
similarly for ≥, ≤, <), and diag(a) is the diagonal matrix
whose (i, i)-th element is ai. For a matrix A ∈ Rn×m, A′

denotes its transpose, Ai denotes the i-th row of A, AI the
submatrix of A obtained by collecting the rows Ai for all
i ∈ I, and AIJ the submatrix of A obtained by collecting
the rows and columns of A indexed by i ∈ I and j ∈ J ,
respectively. For a square matrix A ∈ Rn×n, A−1 denotes
the inverse of A (if it exists) and A−T its transpose, A � 0
(A � 0) denotes positive definiteness (semidefiniteness) of
A. Matrix In denotes the identity matrix of order n, where
sometimes the subscript n is dropped if the dimension is clear
from the context.

II. PROBLEM FORMULATION AND MAIN RESULTS

We want to solve strictly convex QPs of the form

min
z

V (z) ,
1

2
z′Qz + c′z (1a)

s.t. Gz ≤ g, (1b)

where Q � 0 is the Hessian matrix, c ∈ Rn, G ∈ Rq×n,
and g ∈ Rq . Problem (1) arises when considering linear MPC
formulations, see, e.g., [1].

Theorem 1: Consider the QP (1) and let Q � 0. Let L′L
be a Cholesky factorization of Q and define

M , GL−1, d , g +GQ−1c. (2)

Consider the Nonnegative Least Squares problem

min
y

1

2

∥∥∥∥[−M ′−d′
]
y −

[
0
γ

]∥∥∥∥2

2

(3a)

s.t. y ≥ 0, (3b)

where γ is any positive scalar, and let

r∗ , −
[
M ′

d′

]
y∗ −

[
0
γ

]
(4)
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be the residual obtained at the optimal solution y∗ of (3),
where y∗ ∈ Rq and r∗ ∈ Rn+1. The following statements
hold:
i) If r∗ = 0 then QP (1) is infeasible;
ii) If r∗ 6= 0 then

z∗ , −Q−1

(
c+

1

γ + d′y∗
G′y∗

)
(5)

solves QP (1).
Proof: First, by defining u , Lz + L−T c, we complete

the squares in (1a) by substituting z = L−1u − Q−1c and
recasting (1) into the equivalent constrained Least Distance
Problem (LDP)

min
u

1

2
‖u‖22 (6a)

s.t. Mu ≤ d. (6b)

i) If the optimal residual r∗ = 0 in (4), then y∗ satisfies the
following conditions:

M ′y∗ = 0
d′y∗ = −γ
y∗ ≥ 0.

(7)

By Farkas’s Lemma [11, p. 201], (7) is equivalent to infea-
sibility of (6b), and therefore the LDP problem (6) does not
admit a solution, and consequently (1).
ii) To prove the second statement, we follow the reasoning

in [9, pp. 165–167]. Consider the KKT conditions for prob-
lem (3)

−
[
M d

] [ −M ′y∗
−d′y∗ − γ

]
− w∗ = 0 (8a)

(y∗)′w∗ = 0 (8b)
w∗, y∗ ≥ 0, (8c)

where w∗ is the optimal dual variable for problem (3).
From (8a) we get

−
[
M d

]
r∗ − w∗ = 0 (9)

and hence the condition r∗ 6= 0, together with (8b) and (9),
imply that

0 < (r∗)′r∗ = (r∗)′
[
−M ′
−d′

]
y∗ − (r∗)′

[
0
γ

]
= (w∗)′y∗ − γr∗n+1 = −γr∗n+1,

i.e., r∗n+1 = −d′y∗ − γ < 0. By letting

u∗ , − 1

r∗n+1

r∗{1,...,n} = − M ′y∗

γ + d′y∗
, (10)

from (8c) and (9) we obtain

0 ≤ w∗ = −
[
M d

]
r∗ = −r∗n+1

[
M d

] [ r∗{1,...,n}
r∗n+1

1

]
and hence −Mu∗+d ≥ 0, or equivalently u∗ is feasible for the
LDP problem (6). It remains to prove that u∗ is also optimal

for (6). To this end, consider the remaining KKT conditions
of optimality for problem (6)

u∗ +M ′λ∗ = 0 (11a)
(λ∗)′(Mu∗ − d) = 0 (11b)

λ∗ ≥ 0. (11c)

Let
λ∗ , − 1

r∗n+1

y∗. (12)

By negativity of r∗n+1 and nonnegativity of y∗ we get (11c).
Moreover, by recalling (10) and (4), we get

u∗ =
1

r∗n+1

M ′y∗ = −M ′λ∗

so that also (11a) is satisfied. To prove (11b) we observe
that (λ∗)′(Mu∗ − d) = − 1

r∗n+1
(λ∗)′(Mr∗{1,...,n} + dr∗n+1)

= 1
(r∗n+1)2 (y∗)′

[
M d

]
r∗ = − 1

(r∗n+1)2 (y∗)′w∗ = 0 because
of (8b) and (9). In conclusion, u∗ is the optimal solution of
problem (6), and hence the vector z∗ defined in (5) solves (1).

The following lemma characterizes the relation between the
dual variable w of problem (3) and feasibility/optimality of z
in (1b).

Lemma 1: Let y ∈ Rq such that d′y 6= −γ, and define
z ∈ Rn and w ∈ Rq as

z = − 1

γ + d′y
L−1M ′y −Q−1c (13a)

w = MM ′y + (γ + d′y)d (13b)

similarly to (5) and (8a), respectively. Then, for all i ∈
{1, . . . , q} and ε ≥ 0, the condition

wi ≥ −(γ + d′y)ε (14a)

implies that
Giz − gi ≤ ε. (14b)

Moreover, given the dual problem

max
λ≥0

Ψ(λ), Ψ(λ) , −1

2
λ′GQ−1G′λ− d′λ− 1

2
c′Q−1c (15)

of QP (1) it holds that

V (z) = Ψ(λ) +
1

(γ + d′y)2
w′y (16)

and hence, if
w′y = 0 (17)

and
λ =

1

γ + d′y
y (18)

is such that λ ≥ 0, then z is (super-)optimal, in that

V (z) ≤ V (z∗). (19)

Proof: The fact that condition (14a) implies (14b) simply
follows by left-multiplying z as defined in (13a) by G,
subtracting g, and recalling (2). To prove (19), consider that
by (13a) the primal cost V (z) = 1

2λ
′MM ′λ − 1

2c
′Q−1c =

Ψ(λ) + λ′MM ′λ + d′λ = Ψ(λ) + 1
(γ+d′y)2w

′y, which



APRIL 15, 2014 - IEEE-TAC PAPER NO. 14-1376 - REVISED VERSION 3

proves (16). For all dual feasible λ ≥ 0, Ψ(λ) is a lower
bound on the optimal primal cost V (z∗). Together with
condition (17), this implies (19).

Remark 1: In case r∗n+1 = −(γ + d′y∗) 6= 0, the solution
λ∗ of the dual QP problem (15) is given by (12). In case γ = 1
Problem (3) can be rewritten as the following QP

min
y

1

2
y′
(
GQ−1G′ + dd′

)
y + d′y (20a)

s.t. y ≥ 0 (20b)

Note that, although closely related, Problems (15) and (20) are
different because of the extra term 1

2y
′dd′y.

The alternative QP formulation (20) suggests the following
corollary of Theorem 1.

Corollary 1: Given the QP (1) with Q = Q′ � 0, the
convex QP problem (20) always admits an optimal solution
y∗. If the optimal cost of (20) is − 1

2 then (1) is infeasible,
otherwise z∗ defined in (5) is the optimal solution of (1).

Proof: The cost function (20a) is equal to
1
2y
′ (G′Q−1G+ dd′

)
y +d′y + 1

2 − 1
2 = 1

2

∥∥∥[−M ′−d′

]
y

− [ 0
1 ]‖22 −

1
2 ≥ −

1
2 , so (20) always admits a solution y∗.

If the optimal cost is − 1
2 then the residual defined in (4) is

zero and by Theorem 1 the QP problem (1) is infeasible.
Otherwise, y∗ solves (3) and therefore, by Theorem 1, z∗

in (5) solves (1).
The following Corollary 2 of Theorem 1 provides a further

criterion to detect infeasibility of the QP problem (1).
Corollary 2: For any subset of constraint indices P ⊆

{1, . . . , q} and γ > 0, if the solution sP of the least squares
problem

sP = arg min
zP

∥∥∥[M ′P
d′P

]
zP +

[
0
γ

]∥∥∥2

2
(21)

is such that the squared residual ‖M ′PsP‖2+(γ+d′PsP)2 = 0,
then the QP problem (1) is infeasible.

Proof: As proved in part i) of Theorem 1, if such a resid-
ual is zero then the polyhedron C , {u ∈ Rn : MPu ≤ dP}
is empty. Hence, also the polyhedron {u ∈ Rn : Mu ≤ d} =
C ∩ {u ∈ Rn : M{1,...,q}\Pu ≤ d{1,...,q}\P} is empty, and
therefore problem (1) is infeasible.

We now exploit Theorem 1, Corollary 2 and Lemma 1 to
derive an active-set method to solve the QP problem (1) and
its dual (15) within a feasibility tolerance ε. The method is
described in Algorithm 1 and extends the well-known and
simple, yet very effective, NNLS solution algorithm described
in [9, p.161].

Regarding the choice of the parameter γ > 0, one can use
γ = 1 as in [9]. Although the particular choice of γ is not
critical, we observed better numerical conditioning by adapting
γ during the iterations to the value

γ = 1 + ‖dP‖1. (22)

As proved in [9], for ε = 0 Algorithm 1 convergences after
a finite number of steps, providing the optimal solution vector
z∗. The same holds for ε > 0 sufficiently small. In general,
for ε > 0, Algorithm 1 may stop even earlier, providing a
vector z∗ that, by virtue of Lemma 1, satisfies Giz∗− gi ≤ ε,

Algorithm 1 QP solver based on NNLS
Input: Inverse Cholesky factor L−1 of Q, M = GL−1,

vectors c and g, feasibility tolerance ε ≥ 0.

1. v ← L−T c;
2. d← g +Mv;
3. P ← ∅; y ← 0; γ ← 1;
4. w ←M(M ′PyP) + (γ + d′PyP)d;
5. if wi ≥ −(γ + d′PyP)ε, ∀i ∈ {1, . . . , q}, or P =
{1, . . . , q} or ‖M ′PyP‖22 + (γ + d′PyP)2 = 0 then go
to Step 13;

6. i← arg mini∈{1,...,m}\P wi, P ← P∪{i}; γ ← γ+ |di|;
7. sP ← solution of LS problem (21), s{1,...,q}\P ← 0;
8. if sP ≥ 0 then y ← s and go to Step 4;
9. j ← arg minh∈P: sh≤0

{
yh

yh−sh

}
;

10. y ← y +
yj

yj−sj (s− y);
11. I ← {h ∈ P : yh = 0}, P ← P \ I; γ ← γ − ‖dI‖1;
12. go to Step 7;
13. if the residual in Step 7 is nonzero then

λ∗ ← − 1
γ+d′PyP

y; u∗ ←M ′Pλ
∗
P ; z∗ ← L−1(u∗ − v);

otherwise QP problem (1) is infeasible;
14. end.

Output: Primal solution z∗ solving (1) and dual solution λ∗

solving (15), or infeasibility status.

∀i ∈ {1, . . . , q}. Note that in case Step 13 is executed with
P = ∅ then λ∗ = 0, u∗ = 0, and z∗ = −Q−1c.

The LS problem (21) solved at Step 7 corresponds to the
unconstrained quadratic optimization problem

sP = arg min
1

2
z′P [MP dP ]

[
M ′P
d′P

]
zP + [MP dP ]

[
0
γ

]
(23)

or, equivalently, to solving the symmetric linear system

(MPM
′
P + dPd

′
P)sP = −γdP . (24)

Hence, each time Step 4 is executed, we have that yP = sP ≥
0, yi = 0, ∀i ∈ {1, . . . , q} \ P , and hence

w′y = y′PwP = s′P [(MPM
′
P + dPd

′
P)sP + γdP ] = 0.

If in addition d′PyP > −γ, then λ defined as in (18) is
nonnegative, so that by Lemma 1 (super-)optimality of z
as in (13a) follows after each execution of Step 4, and in
particular of z∗ when Algorithm 1 terminates with a nonzero
residual.

Remark 2: Regarding computation and memory require-
ments of Algorithm 1, the largest number of operations is
spent at Steps 4 and 7, where the latter involves solving an
unconstrained least-squares problem with #P variables and
n+1 inequalities. When used in the context of MPC of linear
time-invariant systems, only c, g in (1) may change on-line,
while matrices L−1 and M = GL−1 can be precomputed
offline.

Remark 3: Algorithm 1 is cold-started at Step 3 from the
null combination P of active constraints. Conditions for warm-
starting the algorithm with P 6= ∅ and a corresponding suitable
value of y have been proposed in [10]. In alternative, as
suggested in [12], one can very effectively warm start a NNLS
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algorithm like Algorithm 1 by running first a finite number of
iterations of an accelerated gradient-projection algorithm, like
the one proposed in [7].

III. RECURSIVE LDLT DECOMPOSITION

Solving the LS problem (21) at Step 7 is the most time
consuming operation of Algorithm 1. The symmetric linear
system (24) can be solved by a variety of techniques, such
as QR factorization, Conjugate Gradient (CG) or Cholesky
factorization. Here, to solve (21) we adopt instead the LDLT

factorization of the left hand side matrix of (24)

LDL′ =
[
MP dP

] [M ′P
d′P

]
, (25)

where L is a lower-triangular matrix of dimension #P with
all ones on its diagonal and D is a diagonal matrix. The
factorization (25) can be computed for example using [13,
Algorithm 4.1.1]. The drawback in using such a classical
LDLT decomposition procedure is that it assumes that all
diagonal elements in D are nonzero, i.e., that the matrix to
be factorized in (25) is full rank. Moreover, since the set P
changes incrementally by adding one component (Step 6) or
removing one or more components (Step 11), one should take
advantage of the way P is modified incrementally to compute
the LDLT factorization in (25) more efficiently in a recursive
way.

Iterative QR factorization methods to solve (21) have been
proposed in [9, Chap. 24]. The following lemma provides a
way of computing instead the LDLT transformation recur-
sively of a generic matrix AA′, A ∈ Rp×m, with L lower
triangular with unit diagonal and D diagonal, with Dii ≥ 0,
which also covers the case in which AA′ is rank-deficient.

Theorem 2: Let A ∈ Rp×n. Then there exists a lower
triangular matrix Lp ∈ Rp×p with unit diagonal and a diagonal
matrix Dp ∈ Rp×p with Dii ≥ 0, satisfying the following
recursions

L1 = 1, D1 = ‖A1‖22 (26a)

Lk+1 =

[
Lk 0

(`k+1)′ 1

]
(26b)

Dk+1 =

[
Dk 0
0 dk+1

]
(26c)

(LkDk)`k+1 = A1:kA
′
k+1 (26d)

dk+1 = ‖Ak+1‖22 − (`k+1)′Dk`k+1 (26e)

for k = 1, . . . , p− 1, and such that

A1:kA
′
1:k = LkDk(Lk)′, ∀k = 1, . . . , p. (27)

Proof: We prove the theorem by induction on k. For k =
1, (27) trivially follows from (26a). Assume that (26)–(27) are
satisfied for a given k and consider matrix A1:k+1. Consider
the linear system

A1:kA
′
1:kx

k+1 = A1:kA
′
k+1, (28)

which is the condition for vector xk+1 ∈ Rk to be an optimal
solution of the LS problem

min
x∈Rk

‖A′1:kx−A′k+1‖22. (29)

Since (29) is always solvable, a vector xk+1 satisfying (28)
exists, and hence a vector `k+1 = (Lk)′xk+1 exists that
solves (26d). For all components Dii = 0 of Dk, the product
Dii`

k+1
i = 0 for any value of `k+1

i , in particular we can set
`k+1
i = 0, i = 1, . . . , k. System (26d), by left-multiplying by

(Lk)−1, can be rewritten also as

Dk`k+1 = ck+1, (30)

where ck+1 ∈ Rk is the unique solution of Lkck+1 =
A1:kA

′
k+1. Since (26d) is solvable, (30) is also solvable, and

hence necessarily ck+1
i = 0 for all i such that Dii = 0. In

conclusion, the following vector `k+1 defined as

`k+1
i =

{
ck+1
i

Dii
if Dii 6= 0

0 if Dii = 0
(31)

is a solution of (26d). By defining dk+1 as in (26e), we get

Lk+1Dk+1(Lk+1)′ =
[

LkDk(Lk)′ LkDk`k+1

(`k+1)′Dk(Lk)′ `k+1)′Dk(Lk)`k+1+dk+1

]
=
[
A1:kA

′
1:k A1:kA

′
k+1

Ak+1A
′
1:k Ak+1A

′
k+1

]
= A1:k+1A

′
1:k+1,

which proves that (27) is satisfied also for k + 1. �
Corollary 3: Let A ∈ Rp×n and let LDL′ = AA′ be a

decomposition of AA′, with L ∈ Rp×p lower triangular with
unit diagonal and D ∈ Rp×p diagonal, Dii ≥ 0, ∀i = 1, . . . , p.
Then, for any b ∈ Rn, a solution x ∈ Rp of the least-squares
problem

min
x
‖A′x− b‖22 (32)

is given by solving

Lc = Ab (33a)

`i =

{ ci
Dii

if Dii 6= 0

0 if Dii = 0
, i = 1, . . . , p (33b)

L′x = `. (33c)

Proof: The proof immediately follows by substituting
A1:k with A, A′k+1 with b, ck+1 with c, and `k+1 with `
in the proof of Theorem 2.

Theorem 2, through Eqs. (26b)–(26e), provides a way of
updating the LDLT decomposition when a row Ak+1 is added.
The following Lemma 2 tackles the case in which a row is
deleted from A.

Lemma 2: Given the LDLT decomposition[
A1

a′

A2

]
[A′1 a A

′
2 ] = LDL′ (34)

where
L =

[
L1 0 0
` 1 0
L3 L4 L2

]
, D =

[
D1 0 0
0 δ 0
0 0 D2

]
, (35)

L ∈ Rp×p lower triangular with unit diagonal, D ∈ Rp×p
diagonal, Dii ≥ 0, ∀i = 1, . . . , p, an LDLT decomposition

L−D−L
′
− =

[
A1

A2

]
[A′1 A

′
2 ] (36)

with L− ∈ R(p−1)×(p−1) lower triangular with unit diagonal
and D− ∈ R(p−1)×(p−1) diagonal, D−ii ≥ 0, ∀i = 1, . . . , p−
1, is given by

L− =
[
L1 0
L3 L̄2

]
, D− =

[
D1 0
0 D̄2

]
(37)
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where L̄2, D̄2 provide the LDLT decomposition L̄2D̄2L̄
′
2 =

δL4L
′
4 +L2D2L

′
2, with L̄2 lower triangular with unit diagonal

and D̄2 diagonal.
Proof: Since δL4L

′
4 + L2D2L

′
2 =

[
L2D

1
2
2 δ

1
2 L4

]
·
[
D

1
2
2 L
′
2

δ
1
2 L′4

]
, by Theorem 2 an LDLT decomposition

L̄2D̄2L̄
′
2 of δL4L

′
4 + L2D2L

′
2 exists such that

L̄2 is lower triangular with unit diagonal and D̄2

is diagonal. Since LDL′ =

[
L1D1 0 0
? ? ?

L3D1 δL4 L2D2

]
·[

L′1 ? L
′
3

0 ? L′4
0 ? L′2

]
=

[
L1D1L

′
1 ? L1D1L

′
3

? ? ?
L3D1L

′
1 ? L3D1L

′
3+δL4L

′
4+L2D2L

′
2

]
=

[
A1A

′
1 ? A1A

′
2

? ? ?

A2A
′
1 ? A2A

′
2

]
and L−D−L

′
− =

[
L1D1 0
L3D1 L̄2D̄2

]
·[

L′1 L
′
3

0 L̄′2

]
=
[
L1D1L

′
1 L1D1L

′
3

L3D1L
′
1 L3D1L

′
3+L̄2D̄2L̄

′
2

]
, Eq. (36) is satisfied

by inspection. �
Note that one does not need to take square roots

of D2 and δ as L̄2, D̄2 can be determined as
in Theorem 2 by replacing A1:kA

′
k+1 in (26d) with

(δ(L4)1:k(L′4)k+1+(L2)1:kD2(L′2)k+1) and ‖Ak+1‖22 in (26e)
with (δ(L4)k+1(L′4)k+1 + (L2)k+1D2(L′2)k+1).

IV. NUMERICAL EXPERIMENTS

A. Quadratic programs

We compare the performance of the QP solver developed
in the previous section (labeled as QPNNLS) against different
state-of-the-art solvers1.

Figure 1(a) shows the worst-case CPU time obtained on
random feasible QP problems with n variables q = 5n
constraints, and condition number κ = 104 of the primal
Hessian Q. For each n, the reported CPU time is the worst-
case over 100 QP instances. The QPNNLS Algorithm 1 is
executed by updating the LDLT decomposition recursively in
accordance with Theorem 2 and Lemma 2. In all instances,
Algorithm 1 and Dantzig’s dual QP method execute the same
number of iterations.

Figure 1(b) compares different methods to solve the LS
problem (21) at Step 7 of Algorithm 1, namely: (1) incremental
LDLT updates based on Theorem 2 and Lemma 2, (2) compu-
tation of the LDLT decomposition from the original data M ,
d from scratch at every iteration, (3) MATLAB’s backslash
built-in function to solve linear systems in a least-square sense,
(4) MATLAB’s “economy-size” QR decomposition of matrix[
M ′P
d′P

]
, (5) the basic CG method without preconditioning

of [16, Algorithm 5.2], with stopping tolerance equal to 10−8,

1We compared against: (1) Dantzig’s active set algorithm [4, Sect. 24-
4] applied to solve the dual problem (15) (Dantzig), (2) the accelerated
gradient projection method of [7] (GPAD) applied to the dual QP (15) with
diagonal preconditioning [14, Section 2.3.1], (3) the alternative direction
method of multipliers [8] (ADMM), run with ρ = 0.2 for a fixed number
K = 300 iterations in all instances (with checking of feasibility and
optimality criteria disabled for speedup), (4) QUADPROG’s interior point
method, (5) QUADPROG’s active set method of the Optimization Toolbox
for MATLAB V7.1, (6) GUROBI’s v6.0 [15] interior-point method, (7)
GUROBI’s dual simplex method, and (8) QPOASES [5]. Algorithm 1 and
methods 1,2,3 have been implemented in Embedded MATLAB code and
compiled. The numerical experiments were obtained on a Macbook Pro 3GHz
Intel Core i7 with 16GB RAM running MATLAB R2014b.

(6) the incremental QR factorization Method 1 described in [9,
Chap. 24].

B. MPC problems

In order to test the QP solver of Algorithm 1 in an MPC
problem, we consider the AFTI-F16 aircraft control example
described in [17], under the settings of the demo aft16.m
in the Hybrid Toolbox for MATLAB [18]. We consider a
prediction and control horizon of N steps, with hard input and
soft constraints enforced over the prediction horizon, leading
to a QP problem (1) with n = 2N + 1 optimization variables
(the extra variable is needed to soften output constraints, that
is weighted with a penalty of 104) and q = 4N + 2(N − 1)
constraints. The reference trajectory is 0 for the constrained
output, and switches between ±10 deg for the second output,
over a 12 s simulation interval.

We compare Algorithm 1 with incremental LDLT updates
against Dantzig’s active set algorithm [4, Sect. 24-4] applied
to solve the dual problem (15), GUROBI’s dual simplex
method, and QPOASES [5] with warm starting from the active
set of the previous optimal solution2. The worst-case CPU
time encountered during the simulation for different prediction
horizons N is plotted in Figure 1(c)3.

C. Numerical robustness

We test the robustness of Algorithm 1 by comparing results
obtained in single and double precision as a function of the
condition number κ of matrix Q. Figure 1(d) shows the worst-
case norm of the difference obtained over 100 random tests of
the obtained solution with respect to QUADPROG’s double-
precision solution.

Numerical experiments (not reported here) have shown that
robustness can be improved by changing the way the solution
is reconstructed in Step 13 of Algorithm 1. For example, one
can calculate the solution λ∗P of (15) by solving the symmetric
linear system MPM

′
Pλ
∗
I = −dP via QR factorization of M ′P .

V. CONCLUSIONS

This paper has introduced a new active set method for
solving QP problems. The method is attractive in several
application domains where fast and simple to code QP solvers
are required, such as in embedded MPC applications.
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