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1. INTRODUCTION

Many engineering design and control problems can be
formulated, analyzed or solved in a set-theoretic frame-
work. By set-theoretic we refer here to any method which
exploits properties of suitably chosen sets or constructed
sets in the state space (Blanchini and Miani, 2008). In
designing a control system for instance, the constraints,
uncertainties and design specifications all together are
described naturally in terms of sets; and in measuring
the effect of a disturbance on a system’s response or in
bounding the error of an estimation algorithm likewise,
sets play a central role. A number of key set-theoretic
concepts have been proposed in the early 1970s, but their
systematic applications were not possible until enough
computational capability became widely available.

Today, many such methods and tools are available for
the estimation and control of linear systems – Witness
for instance the popularity of Matlab’s Multi-Parametric
Toolbox (Herceg et al., 2013). To name but a few features,
they support the construction and a variety of opera-
tions on convex sets, the synthesis and implementation
of explicit model predictive control (MPC) for linear time
invariant or piecewise affine systems, the construction of
maximal invariant sets or Lyapunov functions for piecewise
affine systems, etc (see, e.g., Kurzhanski and Valyi, 1997;
Blanchini and Miani, 2008).

The focus in this paper is on set-theoretic methods for
nonlinear systems which can offer computational guaran-
tees or certificates, with a strong emphasis on recent de-
velopments in our own research group. As such, the paper
may not be considered a review or survey paper, although
effort is made to point the reader to relevant, alternative
approaches or related work throughout. Despite enormous
progress in recent years, set-theoretic methods and tools
for nonlinear systems are not as developed as their linear
counterparts, and they still constitute a widely open field
of research when it comes to computational efficiency;
see, e.g., Streif et al. (2013) for a recent survey (with
applications to biochemical networks).

A key enabler for set-theoretic methods is the ability to
enclose the range of nonlinear multivariate systems, and
the class of factorable functions—namely, those functions
which can be represented by means of a finite compu-
tational graph—has attracted much attention. Since the
invention of interval analysis by Moore more than 50 years
ago, many computational techniques have been developed
to construct tight enclosures for the range of factorable
functions. The focus in the first part of the paper (Sect. 2)
is on so-called affine set-parameterizations, which encom-
pass both convex and nonconvex set parameterizations.
Among the alternatives to enclose the range of functions
or sets defined by equalities and/or inequalities, mention
should be made of the sum-of-squares (SOS) approaches
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which provide nested sequences outer-approximations as
hierarchies of linear matrix inequality (LMI) relaxations
(Lasserre, 2009); see also Parrilo (2003).

Questions of reachability and invariance have been studied
extensively in the dynamics and control literature due to
their wide range of applications. Direct characterization
of reachability concepts is one of the topics addressed by
viability theory (Aubin, 1991), and the development of
computational tools supported by these theories is an on-
going effort. In Sect. 3, we describe a number of direct
approaches that rely on the discrete- or continuous-time
propagation of affine set-parameterizations. Similar to the
factorable case above, alternative approaches recently de-
veloped involve constructing outer-approximations of the
reachable set of (possible controlled and constrained) dy-
namic systems as hierarchies of linear matrix inequality
(LMI) relaxations (Henrion and Korda, 2014). Moreover,
so-called indirect approaches have also been developed,
which formulate reachability questions as optimal con-
trol (or game theory) problems and determine reachable-
set outer-approximations by Hamilton-Jacobi projections
(Mitchell and Tomlin, 2003; Lygeros, 2004). Related to
reachability analysis, the problems of computing the region
of attraction of a target set or the maximum invariant set
are also essential and long-standing challenges in dynamic
system and control theory (Henrion and Korda, 2014;
Korda et al., 2014).

A great variety of algorithms, including complete search
methods for problems in global optimization, constraint
satisfaction or robust estimation, hinge on the ability to
enclose the range of functions or the reachable set of
dynamic systems. Our focus in the second part of the
paper (Sect. 4) is more specifically on two selected prob-
lems: (i) the determination of all equilibrium points and
bifurcations of a nonlinear dynamic system (Mönnigmann
and Marquardt, 2002; Waldherr and Allgöwer, 2011);
and (ii) the solution of set-membership parameter esti-
mation problems in dynamic systems (Walter and Piet-
Lahanier, 1990). Finally, we conclude the paper with a
discussion about the application of set-theoretic methods
in tube-based methods for robust model predictive control
(Sect. 5).

1.1 Case Study Problem Definition

The modeling of bioprocesses often gives rise to challenging
dynamic systems, whereby differential equations describ-
ing species mass balances in the system are coupled with
algebraic equations describing charge balance or other fast
phenomena that are assumed to be at equilibrium (or
quasi steady-state). Throughout this paper, we consider
a two-reaction model of anaerobic digestion inspired from
(Bernard et al., 2001)—All the parameter values are re-
ported in Table A.1 (Appendix) for the sake of repro-
ducibility.

The model involves an acetogenesis step, where organic
compounds (S1) are converted into VFA (S2), followed by
a methanogenic step; these steps are associated with the
bacterial populations X1 and X2, respectively:

• Acetogenesis: k1 S1
µ1(·)X1
−→ X1 + k2 S2 + k4 CO2

• Methanogenesis: k3 S2
µ2(·)X2
−→ X2 + k5 CO2 + k6 CH4

The biological kinetics for the reactions are:

µ1(S1) = µ̄1
S1

S1 +KS1
, µ2(S2) = µ̄2

S2

S2 +KS2 +
S2
2

KI2

.

Under the assumptions that the liquid phase is perfectly
mixed and that only a fraction α of the biomass is not
attached onto a support inside the digester, the species
balance equations for the state variables S1, X1, S2, X2,
inorganic carbon (C) and alkalinity Z are given by:

Ṡ1 = D(Sin
1 − S1)− k1µ1(S1)X1 (1)

Ẋ1 = (µ1(S1)− αD)X1 (2)

Ṡ2 = D(Sin
2 − S2) + k2µ1(S1)X1 − k3µ2(S2)X2 (3)

Ẋ2 = (µ2(S2)− αD)X2 (4)

Ż = D(Z in − Z) (5)

Ċ = D(C in − C)− qCO2 + k4µ1(S1)X1 (6)

+ k5µ2(S2)X2 ,

with D, the dilution rate; and Sin
1 , Sin

2 , C in and Z in,
the inlet concentrations. Note that these balances neglect
gaseous emissions other than CO2 and methane. Under
the assumption that the pH range is between 6-8 (normal
operation), a charge-balance equation gives:

CO2aq = C + S2 − Z .

Finally, assuming that the partial pressures of CO2 (PCO2)
and methane (PCH4 ) quickly reach equilibrium and that
the gas phase behaves ideally, we have:

Ptot − PCO2

qCH4

=
PCO2

qCO2

, (7)

where the liquid-gas transfer rate of CO2 and methane are
given by:

qCH4 = α11µ2(S2)X2

qCO2 = kLa
(

CO2aq −KHPCO2

)

with KH, Henry’s constant for CO2; and kLa, the liquid-
gas transfer coefficient.

Notice that (7) leads to a quadratic equation in PCO2 ,
and therefore the model (1)-(7) comes in the form of a
(semi-explicit index-1) DAE system. Nonetheless, (7) has
a unique nonnegative root in the form:

PCO2 =
φCO2 −

√

φ2
CO2

− 4KHPtCO2aq

2KH

with: φCO2 := CO2aq +KHPt +
k6
kLa

µ2(S2)X2,

which can be used to formulate an equivalent ODE system.

Overall, this anaerobic digestion model is challenging as it
features complex dynamics due to pH self-regulation and
liquid-gas transfer. Moreover, the processes span multiple
time scales, with fast dynamics acting on a time-scale of
minutes/hours, and slow dynamics acting on a time-scale
of days.

1.2 Notation

The set of compact subsets of Rn is denoted by Kn, and
the subset of compact convex subsets of Kn, by Kn

C. The
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diameter diam (Z) of a set Z ∈ Kn is defined as

diam (Z) := max
z,z′∈Z

�z − z′� ,

for any given norm on R
n, and the support function

V [Z] : Rn → R of Z as

∀c ∈ R
n , V [Z](c) :=max

z

{

cTz | z ∈ Z
}

. (8)

The Minkowski sum W ⊕ Z, the Minkowski difference
W ⊖Z and the Haussdorf distance dH(W,Z) between two
compact sets W,Z ∈ Kn are given by

W ⊕ Z := {w + z | w ∈ W, z ∈ Z} ,

W ⊖ Z := {w − z | w ∈ W, z ∈ Z} ,

dH(W,Z) := max
{

max
w∈W

min
z∈Z

�w − z� ,max
z∈Z

min
w∈W

�w − z�
}

.

In particular, if W ⊆ Z we have

dH(W,Z) = max
z∈Z

min
w∈W

�w − z� .

The set of n-dimensional interval vectors is denoted by
IR

n. The midpoint and radius of an interval vector P :=
[

pL, pU
]

∈ IR
n are defined as mid(P ) := 1

2 (p
U + pL) and

rad(P ) := 1
2 (p

U − pL), respectively. The n-by-n matrix
diag rad (P ) ∈ R

n×n is a diagonal matrix whose elements
are the components of rad(P ).

The set of n-dimensional positive semi-definite symmetric
matrices is denoted by Sn+. An ellipsoid with shape matrix
S ∈ Sn+ and centered at the origin is denoted by

E(S) :=
{

S
1
2 v | v ∈ R

n, vTv ≤ 1
}

.

2. THE BUILDING BLOCKS

Central to set-theoretic approaches described in this
paper is the selection of parameterizations that can
describe/approximate compact subset in Rn. To keep
our considerations general, we consider affine set-
parameterizations (Houska et al., 2014), a particular class
of computer-representable sets in the form (Em,Dn,m)
such that:

∀Q ∈ Dn,m, ImEm
(Q) := {Q [ b 1 ]T | b ∈ Em } ,

with Em ⊆ Rm, m ≥ 1, the so-called basis set; and
Dn,m ⊆ Rn×(m+1), n ≥ 1, associated domain set.

Usual convex sets such as intervals, ellipsoids or polytopes
can be characterized using affine set-parameterizations
with convex basis sets—see top row of Fig. 1. In particular,
the parameterization (Eball

m ,Rn×(m+1)) with E
ball
m := { ξ ∈

Rm | �ξ�2 ≤ 1 } describes ellipsoids in Rn.

Nonconvex sets too can be represented in terms of
affine set-parameterizations. For instance, the affine set-

parameterization (E
pol(q)
m ,Rn×α(q)

m ) with nonconvex basis

set E
pol(q)
m := {P

(q)
m (ξ) | ξ ∈ [−1, 1]m}, where P

(q)
m (ξ) ∈

Rα(q)
m is the vector containing the first α

(q)
m monomials in

ξ in lexicographic order,

P (q)
m (ξ) := {1, ξ1, . . . , ξm, ξ21 , ξ1ξ2, . . . , ξ

2
m, ξ31 , . . . , ξ

q
m} ,

describes the image set of qth-order polynomials in m vari-
ables. Naturally, alternative polynomial parameterizations
are possible with different polynomial bases, such as the

Chebyshev polynomials of the first kind defined by the
recurrence relation

T0(ξ) = 1, T1(ξ) = ξ

Tk+1(ξ) = 2ξTk(ξ)− Tk−1(ξ), k ≥ 1 ,

which leads to:

P (q)
m (ξ) := {1, T1(ξ1), . . . , T1(ξm), T2(ξ1), T1(ξ1)T1(ξ2), . . . ,

T2(ξm), T3(ξ1), . . . , Tq(ξm)} .

More involved representations of nonconvex sets can be
constructed by combining convex and nonconvex basis sets
in turn. Polynomial image sets combined with intervals or
ellipsoids, for instance, are illustrated in the bottom row
of Fig. 1. These are commonly referred to as Taylor or
Chebyshev models in the literature—see Sect. 2.2.

An important property of affine set-parameterizations
is invariance under affine transformation, that is, the
property of a parameterized set’s image under any affine
transformation to be exactly representable on the same
basis set. Among the foregoing examples, the classes
of ellipsoids, polytopes and polynomial image sets are
all invariant under affine transformation, and so is any
finite combination of these parameterizations. In contrast,
the class of interval boxes is not invariant under affine
transformation given that the rotation of an interval box
may yield another interval box whose edges are no longer
aligned with the original axes—this is one of the main
sources of the wrapping effect in interval analysis. It
should also be clear that any affine set-parameterization
obtained from the combination with interval boxes will
fail to be invariant under affine transformation, including
Taylor/Chebyshev models with interval remainder terms.

2.1 Affine Set-Parameterization Extensions

Factorable functions cover an extremely inclusive class of
functions which can be represented finitely on a computer
by means of a code list or a computational graph involving
atom operations. These are typically unary and binary
operations within a library of atom operators, which can
be based for example on the C-code library math.h.
Natural interval extensions and their variants (Moore
et al., 2009) were among the first techniques developed for
bounding the range of factorable functions. The concept
of interval extension in interval analysis extends readily to
affine set-parameterizations.

Given a function g : Rn → Rp and two affine set-
parameterizations (Em,Dn,m) and (Em,Dp,m), we call the
function gEm : Dn,m → Dp,m an Em-extension of g if

∀Q ∈ Dn,m, ImEm

(

gEm(Q)
)

⊇ g(ImEm
(Q)) ,

with g(ImEm
(Q)) := { g(z) | z ∈ ImEm

(Q) }. A key
property of an affine set-parameterization extension is how
much overestimation it carries with respect to the image
set of the original function (Fig. 2). In particular, the
extension gEm is said to have Hausdorff convergence order
β ≥ 1, if

∀Q ∈ Dn,m, dH
(

ImEm

(

gEm(Q)
)

, g(ImEm
(Q))

)

∈ O(diam(ImEm
(Q))β) . (9)

In general, extensions that have Hausdorff convergence
order two (or higher) may not exist when the underlying
affine set-parameterizations is not invariant under affine
transformation.

IFAC ADCHEM 2015
June 7-10, 2015. Whistler, BC, Canada

984



984 Benoit Chachuat et al. / IFAC-PapersOnLine 48-8 (2015) 981–995

Interval Ellipsoid Zonotope

Domain Dinterval
n := {(diag(w), c) | w ∈ Rm

+ , c ∈ Rm} Rn×(m+1) Rn×(m+1)

Basis Ebox
m := {ξ ∈ Rm | �ξ�∞ ≤ 1} Eball

m := {ξ ∈ Rm | �ξ�2 ≤ 1} Ebox
m

Polynomial Polynomial⊕ Interval Polynomial⊕Ellipsoid

Domain Rn×α
(q)
m Rn×α

(q)
m × Dinterval

n Rn×(α
(q)
m +n+1)

Basis E
pol(q)
m := {Ml,q(ξ) | ξ ∈ [−1, 1]m} E

pol(q)
m × Ebox

m E
pol(q)
m × Eball

m

Fig. 1. Illustration of affine set parameterizations with convex (top row) and nonconvex (bottom row) basis sets.

g1

g2

g(ImEm
(Q))

ImEm

(

gEm(Q)
)

dH
(

ImEm

(

gEm(Q)
)

, g(ImEm
(Q))

)

Fig. 2. Illustration of an extension and the corresponding
overestimation in terms of the Hausdorff distance.

2.2 Practical Construction of High-Order Inclusions

The construction of extensions can be automated for fac-
torable functions using a variety of arithmetics, which
can be conveniently implemented in computer programs.
Unlike interval arithmetic, Taylor and Chebyshev model
arithmetics can be used to construct extension functions
that enjoy higher-order Hausdorff convergence (see Fig. 3).
The idea is to propagate the polynomial part (expressed
either in monomial or Chebyshev basis) by symbolic cal-
culations wherever possible, and processing the interval
remainder term as well as the higher-order terms according
to the rules of interval arithmetic.

Given a (q + 1)-times continuously-differentiable function
f : Rn → R on the set P ∈ IR

n, a qth-order Taylor model
of f on P at a point p̂ ∈ P is the pair (Pq

f,P ,R
q
f,P ) of a

qth-order multivariate polynomial Pq
f,P : Rn → R with an

interval remainder Rq
f,P ∈ IR satisfying 1

1 Multi-index notation: A multi-index γ is a vector in Nn, n > 0.
The order of γ is |γ| :=

∑n

i=1
γi. Given a point p ∈ Rn, pγ is

a shorthand notation for the expression
∏n

i=1
p
γi
i , and Tγ(p) for

∏n

i=1
Tγi (pi). Moreover, ∂γf is a shorthand notation for the partial

derivative ∂|γ|f

∂p
γ1
1

···∂p
γn
n

.

f

Pq
f,P

Pq
f,P + rq,Lf,P

Pq
f,P + rq,Uf,P

{Pq
f,P (p)} ⊕ Rq

f,P

p
pL pU

Fig. 3. Illustration of Taylor/Chebyshev models.

∀p ∈ P , f(p)− Pq
f,P (p) ∈ Rq

f,P and

Pq
f,P (p) =

∑

γ∈N
n,|γ|≤q

∂γf(p̂)

γ!
(p− p̂)γ .

Likewise, (Pq
f,P ,R

q
f,P ) is called a qth-order Chebyshev

model of f on P if

∀p ∈ P , f(p)− Pq
f,P (p) ∈ Rq

f,P and

Pq
f,P (p) =

∑

γ∈N
n,|γ|≤q

aγ(P )Tγ(p
s) ,

with aγ(P ) ∈ O(diam (P )
|γ|
) and psi :=

p−mid(Pi)
rad(Pi)

.

Rules for binary sum, binary product and univariate com-
position between Taylor models or Chebyshev models have
been described and analyzed, e.g., in Makino and Berz
(2003); Bompadre et al. (2013); Dzetkulič (2014); Ra-
jyaguru et al. (2014). As well as enabling the computation
of Taylor and Chebyshev models for factorable functions,
these rules guarantee high-order convergence of the re-
mainder term to zero with the diameter of the parameter
host set P as

Rq
f,P ∈ O(diam (P )

q+1
) . (10)

Naturally, the same approach applies to vector-valued
functions f : Rn → Rp by treating each function compo-
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nent separately, also retaining the high-order convergence
property (10).

In connection to the affine set-parameterization formalism
introduced in Sect. 2.1, Taylor and Chebyshev model arith-
metics support the constructions of extensions for a vector-

valued function f : Rn → R
p in the form fE

pol(q)
m ×E

box
m :

Rn×α(q)
m × Dinterval

n → Rp×α(q)
m × Dinterval

p . In the sense of
(9) nonetheless, such extensions may only have Hausdorff
convergence order β = 1 regardless of the polynomial
order q, since the underlying affine set-parameterization
is not invariant under affine transformation. Note that
this result is not in contradiction with (10), which only
guarantees (q+1)th-order convergence for extensions from

(E
pol(q)
m ,Rn×α(q)

m ) into (E
pol(q)
m × Eball

m ,Rp×α(q)
m × Dinterval

p ).

A procedure that makes use of Taylor/Chebyshev model
arithmetic for the construction of extensions that are
quadratically convergent was proposed by Houska et al.
(2013); see also Houska et al. (2014). This construc-
tion is based on Taylor/Chebyshev models with ellip-
soidal remainder terms as the pair (Pq

f,P , S
q
f,P ), with Sq

f,P

the shape matrix of the ellipsoidal remainder E(Sq
f,P ),

thus yielding extensions in the form fE
pol(q)
m ×E

ball
m :

Rn×(α(q)
m +n+1) → Rp×(α(q)

m +p+1).

Finally, because the image set of a multivariate polynomial
of order 2 or higher is nonconvex in general, applications
of Taylor/Chebyshev models often call for constant/affine
bounds or convex/polyhedral enclosures of such sets.

• Tight interval bounds can be obtained using LMI
methods (Lasserre, 2009). Other ways of deriving rig-
orous interval bounds involve exact bounding of the
polynomial’s first- and second-order terms (Makino
and Berz, 2003; Lin and Stadtherr, 2007b) or ex-
pressing the polynomial in Bernstein bases (Lin and
Rokne, 1995).

• Affine bounds can be obtained likewise by retaining
the first-order term, while bounding all of the other
terms using one of the foregoing approaches.

• Polyhedral enclosures can be obtained on appli-
cation of the reformulation-linearization technique
(RLT) by Sherali and Fraticelli (2002); Sherali et al.
(2012). Other approaches to convex/polyhedral en-
closures include the decomposition/relaxation/outer-
approximation technique (Smith and Pantelides,
1999; Tawarmalani and Sahinidis, 2004) as well
as McCormick’s relaxation technique (McCormick,
1976; Mitsos et al., 2009).

Both the Taylor and Chebyshev model arithmetics,
along with the aforementioned bounding and relax-
ation approaches to enclose the range of these estima-
tors, are implemented in MC++, our in-house library
that is freely available from https://bitbucket.org/
omega-icl/mcpp. The following example illustrates some
of these features in connection to the anaerobic digestion
model in Sect. 1.1.

Case Study 1. We consider the nonlinear relationship be-
tween the concentration S2 and the partial pressure PCO2

in the anaerobic digestion model in Sect. 1.1. After sub-
stitution of the various subexpressions, we obtain:

f(PCO2 , S2) = KHP
2
CO2

+ Pt(C + S2 − Z)

+



C + S2 − Z +KHPt +
k6
kLa

µ̄2S2X2

S2 +KS2 +
S2
2

KI2



PCO2

The parameter values are those given in Table A.1 and
the other states are taken as C = 30 [mmol L−1], Z =
50 [mmol L−1] and X2 = 4 [g(cell) L−1]. Moreover, all the
computations are carried out with MC++.

The set of points (PCO2 , S2) ∈ Y := [0.1, 1]×[0, 15] satisfy-
ing f(PCO2 , S2) = 0 is represented in solid black line on the
plots of Fig. 4. We investigate several parameterizations of
this (nonconvex) set in the form of Chebyshev models of
orders q = 2, . . . , 4. The blue, green and purple lines on
the left plot of Fig. 4 enclose the set of points (PCO2 , S2)
such that:

Pq
f,Y (PCO2 , S2) + r = 0 , for some r ∈ Rq

f,Y ,

with (Pq
f,Y ,R

q
f,Y ) a qth-order Chebyshev model of f on

Y . These parameterizations provide tighter and tighter
approximations as the order q increases. For comparison,
convex and concave relaxations obtained from the Mc-
Cormick relaxation of f on Y are shown in dashed lines
on the figure. It is clear that, for this example, Chebyshev
models of order 3 or higher provide tighter enclosures
than McCormick relaxations, mainly due to their ability
to capture nonconvexity.

The middle and right plots of Fig. 4 show polyhedral enclo-
sures f(PCO2 , S2) = 0, as constructed by constructing con-
vex/concave bounds of the multivariate polynomial using
McCormick’s approach (middle plot) or by extracting the
first-order term of the Chebyshev models and bounding
the remaining terms (right plot). These simple bounds
appear to be better than, or at least comparable to, those
computed directly fromMcCormick relaxations. Moreover,
the Chebyshev-derived bounds are found to progressively
outperform the latter as the parameter range is reduced
(results not shown). Note that tighter polyhedral enclo-
sures could also be obtained by accounting for the depen-
dencies in higher-order terms of the Chebyshev models.
⋄

3. REACHABILITY ANALYSIS OF NONLINEAR
DYNAMIC SYSTEMS

The problem addressed in this section is the computa-
tion of time-varying enclosures X(t, P ) ⊇ X(t, P ), where
X(t, P ) := {x(t, p) | p ∈ P} stands for the reachable set of
parametric dynamic systems in the form

∀t ∈ [0, T ] , ẋ(t, p) = f(x(t, p), p) (11)

with x(0, p) = x0(p) .

In this formulation, the state x : [0, T ] × P → Rnx is
regarded as a function of the uncertain parameter vector
p ∈ P ⊆ Rnp along the time horizon [0, T ]. A major
complication in computing the enclosures X(t, P ) is that
these functions do not have a factorable representation
in general, and therefore the bounding/relaxation tech-
niques introduced in Sect. 2 may not be applied directly.
Nonetheless, algorithms for bounding the solution set of
such parametric dynamic systems can take advantage of
the fact that the right-hand side function f and the initial
value function x0 are usually factorable.
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Fig. 4. Result of various parameterizations in enclosing the nonlinear relationship between S2 and PCO2 in the two-step
anaerobic digestion model. Left plot: full Chebyshev model; Middle plot: Chebyshev-based convex/concave bounds;
Right plot: Chebyshev-based affine bounds.

Existing methods for set-valued ODE integration can be
broadly classified as discrete-time and continuous-time.
Discrete-time methods proceed by first discretizing the
integration horizon into finite steps, and then propagating
a reachable set enclosure through each step. Many such
integrators go back to the original work by Moore (1979),
who presented a simple test for checking the existence and
uniqueness of ODE solutions over a finite time step using
interval analysis. This test was later incorporated into an
algorithm that implements a two-phase approach (Lohner
et al., 1992; Nedialkov et al., 1999): (i) determine a step-
size and an a priori enclosure of the ODE solutions over
the current step; then, (ii) propagate a tightened enclosure
until the end of that step. Both phases typically rely on a
high-order Taylor expansion of the ODE solutions in time,
and the enclosures are propagated by a variety of affine
set-parameterization extensions (Berz and Makino, 2006;
Lin and Stadtherr, 2007b; Neher et al., 2007). Recently,
Houska et al. (2013) have proposed a reversed, two-phase
algorithm that starts by constructing a predictor of the
reachable set and then determines a step-size for which
this predictor yields a valid enclosure.

In contrast, continuous-time methods involve constructing
an auxiliary system of ODEs whose solution is guaranteed
to enclose the reachable set of the original ODEs. These
methods are inspired from the theory of differential in-
equalities (Walter, 1970; Scott et al., 2012), viability the-
ory (Aubin, 1991), or other set-theoretic methods such as
ellipsoidal calculus (Kurzhanski and Valyi, 1997; Houska
et al., 2012). Recently, Villanueva et al. (2014) have devel-
oped a unifying framework based on a generalized differen-
tial inequality for continuous-time propagation of convex
and non-convex enclosures of the reachable set of uncer-
tain ODEs. Other recent developments of continuous-time
methods are concerned with enclosing the reachable set
of implicit differential equations (Scott and Barton, 2013;
Rajyaguru et al., 2015).

The following subsections further detail both approaches
and their properties, with a focus on the authors’ own
contributions and using the set-theoretic concepts and
tools in Sect. 2. Specifically, given a parameterization Qp

of the parameter set P on the affine set (Em,Dnp,m),
we describe techniques for constructing a matrix valued
function Qx : [0, T ] → Dnx,m such that

∀t ∈ [0, T ], ImEm
(Qx(t)) ⊇ X(t, P ) . (12)

An application is presented for the two-step anaerobic
digestion model at the end of the section.

3.1 Discrete-Time Set Propagation

Many discrete-time methods consider a Taylor expansion
in time of the ODE solutions. Assuming that x(·, p) is the
solution of (11) up to time t ∈ [0, T ) for a given parameter
p, and provided that this solution can be extended until
t+h with h ∈ (0, T−t], the application of Taylor’s theorem
for an s-th order expansion gives

x(t+ h, p) =
s

∑

i=0

hiφi(x(t, p), p) + hs+1φs+1(x(τ, p), p)

for some τ ∈ [t, t+h]; and with φ0, φ1, . . . , φs+1 the Taylor
coefficient functions of the solution, defined recursively as

φ0(x, p) := x and φi(x, p) :=
1

i

∂φi−1

∂x
(x, p) f(x, p).

In reversing the two phases of the traditional discrete-
time approach, the algorithm by Houska et al. (2013)
removes the need for an a priori enclosure of the solu-
tion and also provides a natural mechanism for step-size
selection. The propagation starts from a parameterization
Qx(0) := xEm

0 (Qp), with xEm

0 an extension of the initial-
value function x0, so that ImEm

(Qx(0)) ⊇ X(0, P ). Then,
the following two steps are applied repeatedly:

(1) Given a parameterization Qx(t) at some t ∈ [0, T )
such that ImEm

(Qx(t)) ⊇ X(t, P ), compute a predic-
tor Qx(t + h) of the solution for all h ∈ (0, T − t]
as:

Qx(t+ h) :=

s
⊎

i=0

hiφEm

i (Qx(t), Qp) ⊎ hTOLQunit

for a pre-specified tolerance TOL > 0 and Qunit ∈
Dnx,m; and where φEm

i are extensions of the Taylor
coefficient functions φi for each i = 0, . . . , s and ⊎
stands for the extension of the addition operator.

(2) Determine a step-size h̄ such that the predictorQx(t+
h) is guaranteed to yield a valid enclosure of the
reachable set, ImEm

(Qx(t+ h)) ⊇ X(t + h, P ), for
all h ∈ [0, h̄]; that is,

∀τ ∈ [t, t+ h], ImEm

(

(τ − t)s φEm

s+1(Qx(τ), Qp)
)

⊆ TOL ImEm
(Qunit) ,

with φEm

s+1 an extension of the Taylor coefficient func-
tion φs+1.
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A practical way of finding a valid step-size h̄ is given in
Houska et al. (2013, 2014).

Especially appealing within this approach is the inherent
flexibility of the algorithm, which can be used with any
affine set-parameterization, including the propagation of
convex sets (e.g., interval boxes, ellipsoids) and noncon-
vex sets (e.g., polynomial image sets derived from Tay-
lor/Chebyshev models).

3.2 Continuous-Time Set Propagation

This approach involves constructing auxiliary ODEs that
describe the coefficient Qx of a parameterization of the
state variables; that is,

∀t ∈ [0, T ] , Q̇x(t) = F (Qx(t), Qp) , (13)

with initial parameterization Qx(0) := xEm

0 (Qp). Clearly,
a possible choice for the right-hand-side function F in
(13) is the extension fEm of the original right-hand side
f in (11). However, it is useful in practice to account
for certain facet constraints that mitigate the growth of
the reachable set enclosure; this includes the method of
standard differential inequalities as well as ellipsoidal set
propagation techniques. Recently, Villanueva et al. (2014)
have formulated a generalized differential inequality (GDI)
that contains the usual facet constraint methods as special
cases. This GDI describes sufficient conditions on the
support function V [X(t, P )] of a convex enclosure X(t, P )
of the reachable set as follows:

a.e. t ∈ [0, T ] , ∀c ∈ R
nx ,

V̇ [X(t, P )](c) ≥ max
ξ,ρ







cTf(ξ, ρ)

�

�

�

�

�

�

ξ ∈ X(t, P )
cTξ = V [X(t, P )](c)
ρ ∈ P







with V [X(0, P )](c) ≥ maxρ
�

cTx0(ρ)
�

� ρ ∈ P
�

.

Interestingly, the GDI also supports the construction
of nonconvex enclosures, e.g., in the form of Taylor
or Chebyshev models with convex remainder bounds
(Pq

x,P (t, ·),R
q
x,P (t)) for each t ∈ [0, T ], so that:

X(t) := {Pq
x,P (t, p) | p ∈ P} ⊕Rq

x,P (t) ⊇ X(t, P ) . (14)

The polynomial part Pq
x can be directly obtained via

the solution of the auxiliary ODEs (13) in the desired

polynomial image basis E
pol(q)
m and with F := fE

pol(q)
m .

In the case of Taylor models, for instance, these ODEs
correspond to the sensitivities of (11) up to order q.

Besides the polynomial part, ways of propagating convex
remainder enclosures in the form of interval bounds or
ellipsoids are also described in Villanueva et al. (2014).
An interval remainder Rq

x(t) :=
�

rLx (t), r
U
x (t)

�

can be
propagated by integrating the following 2 × nx system of
auxiliary ODEs, for all i = 1, . . . , nx:

ṙLi (t) = min
ξ,ρ











fi(P
q
x(t, ρ) + ξ, ρ)

− Ṗq
xi
(t, ρ)

�

�

�

�

�

�

�

ξi = rLxi
(t)

ξ ∈ [rLx (t), r
U
x (t)]

ρ ∈ P











ṙUi (t) = max
ξ,ρ











fi(P
q
x(t, ρ) + ξ, ρ)

− Ṗq
xi
(t, ρ)

�

�

�

�

�

�

�

ξi = rUxi
(t)

ξ ∈ [rLx (t), r
U
x (t)]

ρ ∈ P











.

Likewise, an ellipsoidal enclosure E(Sq
x(t)) can be prop-

agated by integrating the following nx × nx system of
auxiliary ODEs:

Ṡq
x(t) =A(t)Sq

x(t) + Sq
x(t)A(t)

T +

nx
�

i=1

κi(t)S
q
x(t)

+ diag(κ(t))−1 diag rad(Ωq
f [S

q
x(t)])

2 ,

with A(t) =
�

∂f
∂x (P

q
x(t, p̂), p̂)

�

. Here, the nonlinearity

bounder Ωq
f [S] ∈ IR

nx must satisfy

f(Pq
x(t, ρ) + r, ρ)− Ṗq

x(t, ρ)−
∂f

∂x
(Pq

x(t, ρ), ρ) r ∈ Ωq
f [S],

for all (r, ρ) ∈ E(S) × P , and its construction can be
automated using interval analysis for instance. Moreover,
the scaling function κ : [0, T ] → R

nx

++ can be chosen in
such a way as to minimize tr(Sq

x(t)).

Continuous-time methods based on differential inequalities
are appealing in that the auxiliary ODEs can be solved
using off-the-shelf ODE solvers. However, because of the
need for applying a numerical discretization and since the
right-hand side function defining the auxiliary ODE is
typically non-differentiable, it is hard to give any guarantee
on the discretization error. This non-differentiability can
also impair the step-size control mechanism of the numer-
ical integration algorithm, and in principle it should be
addressed in the framework of hybrid discrete-continuous
systems (see, e.g., Singer, 2004).

3.3 Properties

A common feature of discrete- and continuous-time set
propagation methods is their ability to propagate sets
described by a variety of affine-set parameterizations,
including both convex and nonconvex sets. Despite the
fact that these methods rely on rather different ideas,
they share several important properties regarding their
convergence order and stability.

We have already stressed the importance of high-order
inclusions in Sect. 2. As far as the convergence of reach-
able set enclosures is concerned, the computed enclosures
ImEm

(Qx(t)) can, under certain conditions and at each
time t ∈ [0, T ], inherit the convergence order of function
extensions in the chosen affine set-parameterization Em. In
the particular case of qth-order Taylor/Chebyshev mod-
els with convex remainder bounds, (Pq

x,P (t, ·),R
q
x,P (t)),

computer implementations can be devised such that (Vil-
lanueva et al., 2014):

• for continuous-time set propagation,

∀t ∈ [0, T ], Rq
x,P (t) ∈ O(diam (P )

q+1
) ;

• for discrete-time set propagation,

∀t ∈ [0, T ], Rq
x,P (t) ∈ O(diam (P )

q+1
) +O(TOL) .

Notwithstanding these high-order convergence properties,
both continuous and discretized set-valued integration
methods are subject to the wrapping effect, which typically
results in the diameter of the reachable set enclosure
diverging to infinity, even on finite time horizons—the
so-called ‘bound explosion’ phenomenon. For stable ODE
systems in particular, a rather natural requirement would
appear to be that the computed enclosures are themselves
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stable, at least for small enough initial value or uncertain
parameter sets.

Recently, Houska et al. (2014) have derived sufficient con-
ditions for the discrete-time method outlined in Sect. 3.1
to be locally asymptotically stable, in the sense that the
computed enclosures are guaranteed to remain stable on
infinite time horizons when applied to a dynamic system in
the neighborhood of a locally asymptotically stable peri-
odic orbit (or equilibrium point). The key requirement here
is quadratic Hausdorff convergence of function extensions
in the chosen affine set-parameterization, since the enclo-
sures may not contract fast enough to neutralize the wrap-
ping effect otherwise. Note that this result also applies
to continuous-time set propagation. This stability analysis
sheds light on the fundamental reason why those currently
available set-valued ODE integrators relying on interval
arithmetics in one way or another fail to be locally asymp-
totically stable, regardless of the size of the uncertainty
set; and even state-of-the-art integrators based on Taylor
models with interval remainders, such as VSPODE (Lin
and Stadtherr, 2007b) or COSY Infinity (Makino and
Berz, 2005), may not stabilize the reachable set enclosures
of asymptotically stable dynamic systems, despite the fact
that they implement advanced heuristics for rotating the
basis of the interval remainder.

One way to promote asymptotic stability involves propa-
gating Taylor/Chebyshev models with ellipsoidal remain-
der bounds, for which extensions with quadratic Haus-
dorff convergence can be constructed (see Sect. 2.2). Both
discrete- and continuous-time set-valued ODE integrators
implementing this approach based on MC++ are made
freely available at https://bitbucket.org/omega-icl/
eqbnd. The following example illustrates these stability
considerations.
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Fig. 5. Projections ontoX2 (top plot) and S2 (bottom plot)
of the reachable set X(t, P ) (shaded area) and of the
enclosures X(t, P ) computed with Taylor models of
order q = 1, . . . , 4 with interval remainders (dashed
lines) and ellipsoidal remainders (solid lines) in the
two-step anaerobic digestion model.

Case Study 2. We consider the nonlinear ODE model (1)-
(6) of anaerobic digestion, with uncertain initial conditions
as X1(0) ∈ 0.5± 4% [g(cell) L−1], X2(0)± 4% [g(cell) L−1]

and C(0) ∈ 40 ± 4% [mmol L−1]. The rest of the initial
conditions are given by S1(0) = 1 [g(COD)L−1], S2(0) =
5 [mmol L−1] and Z(0) = 50 [mmol L−1], in addition to
the parameter values in Table A.1.

Projections onto the variables X2 and S2 of the actual
reachable set and of the bounds derived from Taylor
models of order q = 1, . . . , 4 with either interval or
ellipsoidal remainders are shown in Fig. 5. We note that it
only takes a few seconds to generate the bounds in all of
the cases for this problem; see Villanueva et al. (2014) for
a detailed numerical comparison.

For Taylor models with interval remainders, increasing the
order q delays the blow up time significantly, up to about
t ≈ 4 [day] with 4th-order Taylor models. In comparison,
bounds derived from the propagation of Taylor models
with ellipsoidal remainders are found to be superior for
q ≥ 2 here. In particular, Taylor models with ellipsoidal
remainders of order q ≥ 4 are found to stabilize the
reachable set enclosure for this level of uncertainty; that is,
the bounds converge to the actual steady-state values as
t → ∞. Stabilizing the enclosures with lower-order Taylor
models would require reducing the level of uncertainty. ⋄

4. APPLICATIONS OF SET-THEORETIC
APPROACHES FOR COMPLETE SEARCH

A great variety of algorithms, including complete search
methods for problems in global optimization, constraint
satisfaction or robust estimation, hinge on the ability to
construct tight enclosures for the range of (nonlinear and
non-necessarily factorable) functions, such as the methods
described in Sect. 2 and Sect. 3. Our focus in this section
is on set-inversion techniques (Moore, 1992; Jaulin and
Walter, 1993), which enable approximation of sets defined
in implicit form, such as

Pe := {p ∈ P0 | g(p) ∈ Γ} , (15)

using subpavings (sets of non-overlapping boxes). Obvi-
ously, these techniques bear many similarities with branch-
and-bound search in global optimization (Neumaier, 2004;
Tawarmalani and Sahinidis, 2004). They are similar in
flavor to set-oriented numerical methods, as developed,
e.g., by Dellnitz et al. (2001).

Given a compact set P0 ⊂ Rnp , a set Γ ⊂ Rng , and
a continuous function g : Rnp → Rng , set-inversion
algorithms compute partitions Pin and Pbnd such that

⋃

P∈Pin

P ⊆ Pe ⊆
⋃

P∈Pin∪Pbnd

P , (16)

with Pbnd sufficiently small. A prototypical algorithm is
given below.
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Algorithm 1. Set-inversion algorithm.

Input: Termination tolerances ǫbox ≥ 0 and ǫbnd ≥ 0
Initialization: Set partitions Pbnd = {P0} and Pin = ∅;

Set iteration counter k = 0
Main Loop:

(1) Select a parameter box P in the partition Pbnd and
remove it from Pbnd

(2) Compute an enclosure g(P ) ⊇ {g(p) | p ∈ P}
(3) Exclusion Tests:

(a) If g(P ) ⊂ Γ, insert P into Pin

(b) Else if g(P ) ∩ Γ = ∅, fathom P
(c) Else bisect P and insert subsets back into Pbnd

(4) If width(P ) ≤ ǫbox for all P ∈ Pbnd or Vbnd :=
�

P∈Pbnd
volume(P ) ≤ ǫbnd, stop

(5) Increment counter k+=1; Return to step 1
Output: Partitions Pin and Pbnd; Iteration count k

Clearly, Step 2 of Algorithm 1 calls for a procedure capable
of computing an enclosure of the image set {g(p) | p ∈
P} for a given parameter subpartition P . Should the
function g be factorable, such enclosures can be obtained
by considering an extension gEm on a suitable affine set-
parameterization basis Em, as explained in Sect. 2. If g is
defined implicitly via the solution of differential equations,
the set-propagation techniques described in Sect. 3 can
be used instead. Both cases are considered subsequently,
with applications to bifurcation analysis (Sect. 4.1) and
set-membership parameter estimation (Sect. 4.2).

The use of Taylor/Chebyshev models to construct enclo-
sures g is appealing in that it can capture the parametric
dependencies in the actual solution set Pe (besides enjoy-
ing higher-order convergence properties). Given a param-
eter box P := [pL, pU] and a qth-order Taylor/Chebyshev
model enclosure g(P ) := {Pq

g,P (p) | p ∈ P} ⊕ Rq
g,P , the

lower and upper parameter bounds pLj and pUj for each
j = 1, . . . , np can be tightened by solving optimization
problems of the form Paulen et al. (2015):

p
L/U
j = min /maxp pj s.t. Pq

g,P (p) ∈ Γ⊖Rq
g,P } . (17)

This way, a reduced box P is obtained after solving
2× np optimization problems—one problem for the lower
bound and one for the upper bound of each parameter.
As written, the bound-reduction problems (17) are in
general nonconvex for q ≥ 2. Instead of attempting to
solve these problems directly, one can construct polyhedral
relaxations in the form of linear programs (LPs), similar
to the approach used for bound contraction in branch-
and-bound search (see, e.g., Neumaier, 2004; Tawarmalani
and Sahinidis, 2004). In a related approach, Lin and
Stadtherr (2007a) and Kletting et al. (2011) use constraint
propagation in the domain reduction procedure.

In effect, the domain-reduction procedure can be per-
formed as an extra step in Algorithm 1, between Steps 2
and 3. In the case that the reduction of a parameter box P
is larger than a given threshold, it can be repeated multiple
times. It is important to bear in mind that repeating the
reduction several times involves recomputing the enclo-
sures g(P ) of the model outputs on the reduced box P
though. This defines a clear trade-off between the extra
computational burden and the reduction in the size of

the partition Pbnd, which is of course problem-dependent.
Paulen et al. (2015) have also presented a simple approach
to avoid recomputing the enclosures g(P ) as soon as the
remainder term in the Taylor/Chebyshev model is within
a given threshold.

4.1 Bifurcation Analysis

Locating the equilibrium and bifurcation points of a non-
linear dynamic system occurring within a given state-
space domain is an important problem in control. The
set-inversion algorithm described above provides a means
for addressing this problem rigorously. Not only is this a
powerful alternative to the classical continuation methods
(Allgower and Georg, 1990), but it also enables bifurcation
analysis with respect to multiple parameters simultane-
ously; see, e.g., Hasenauer et al. (2009); Waldherr and
Allgöwer (2011); Smith et al. (2014) for recent related
studies.

The equilibrium manifold of a dynamic system given in
the form of parametric ODEs (11) is defined as the pair
of points (p, x) ∈ Rnp+nx such that f(x, p) = 0. The
problem of approximating this manifold as close as possible
can be therefore cast as the set-inversion problem (15) by
considering the extended parameter-state space Rnx+np as

Pe ×Xe := {(p, x) ∈ P0 ×X0 | f(x, p) = 0} . (18)

Once a subpaving of Pe ×Xe has been constructed using
Algorithm 1, so that (16) is satisfied with Pbnd sufficiently
small, one can then infer the stability of the equilibrium
points contained in each subpartition of Pbnd and isolate
those subpartitions which may contain a bifurcation point.

Recall that a dynamic system is stable if and only if the
determinant of its nx-by-nx Hurwitz matrix,

H(x, p) :=

















c1(x, p) c3(x, p) c5(x, p) · · · 0
c0(x, p) c2(x, p) c4(x, p) · · · 0

0 c1(x, p) c3(x, p) · · · 0
0 c0(x, p) c2(x, p) · · · 0
...

...
...

. . .
...

0 0 0 · · · cnx
(x, p)

















,

and all its leading principal minors are positive, where
ci(x, p) are the coefficients of the characteristic polynomial

of the Jacobian matrix Jf := ∂f
∂x ,

det(Jf (x, p)− λI) =: λnx +

nx
�

i=1

ci(x, p)λ
nx−i .

In practice, symbolic expressions for the coefficients ci
can be obtained using the Faddeev-Leverrier algorithm
(Helmberg et al., 1993). Moreover, the Hurwitz matrix
can be reduced to an upper triangular form, say U , using
a modified Neville elimination algorithm in O(n2

x) opera-
tions (Gasca and Peña, 1992). The following stability tests
can be performed sequentially on a subpartition P ×X by
evaluating the elements ci and Uii in a given arithmetic,
such as interval arithmetic or Taylor/Chebyshev model
arithmetic (see Sect. 2):

(1) If none of the coefficients ci or diagonal elements Uii

are nonnegative, then all the equilibrium points in the
considered subpartition are stable;

(2) If at least one element ci or Uii is negative, then all the
equilibrium points in the subpartition are unstable;
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(3) Otherwise (that is, if any one of the elements ci or
Uii have zero in range), the subpartition may contain
a bifurcation point.

The types of bifurcation points that can be detected this
way include:

• Steady-state bifurcation points, whereby the Jaco-
bian matrix Jf has a zero eigenvalue; their occurrence
can be tested by checking if any element ci or Uii

vanishes.
• Hopf bifurcation points, which occur in the presence
of a limit cycle when Jf has one conjugate pair of
eigenvalues with zero real part and the other eigen-
values all have negative real parts; their occurrence
can be tested by checking that

cnx
> 0, ∆nx−1 = 0, ∆nx−2 > 0, . . . ,∆1 > 0,

with ∆i the ith principal minor of H (El Kahoui and
Weber, 2000).

Note that enclosures of the bifurcation points can also be
directly computed on appending the foregoing bifurcation
characterization constraints to the equilibrium constraints
in (18). This removes the need for computing the full
equilibrium manifold.

Case Study 3. We consider the problem of determining
the equilibrium points of the two-step anaerobic digestion
model (1)-(7), along with characterizing their stability.
The focus is on varying the dilution rate D as the bi-
furcation parameter in the range P0 := [10−3, 1.5], and
the state-space domain for [X1 X2 S1 S2 Z C PCO2 ] is
X0 := [0, 0.6]×[0, 0.8]×[0, 5.]×[0, 80]×[0, 80]×[0, 80]×[0, 1].
As previously, the model parameter values are those listed
in Table A.1.

The results produced by the set-inversion algorithm are
shown in Fig. 6, with an indication of the stable and
unstable parts of the equilibrium manifold. In order to
compute the enclosures in Step 2 of Algorithm 1, we use
affine relaxations derived from 2nd-order Chebyshev mod-
els of the equilibrium constraints, similar to the approach
described in Case Study 1 above. Moreover, we perform
domain reduction at each node via the solution of auxiliary
LPs in order to refine the equilibrium set approximation.
The set-inversion algorithm is interrupted after 40,000
iterations, with a corresponding runtime of a few minutes
only.

Note that only steady-state bifurcations occur in this
problem, which correspond to a change in stability of the
equilibrium manifold. One such bifurcation occurs here
around D = 1 [day], where both a stable branch and an
unstable branch merge into a single stable branch. Another
bifurcation is seen to occur around D = 1.07 [day] with a
change in stability along a single branch. ⋄

4.2 Set-Membership Parameter Estimation

Among the available techniques to account for uncertainty
in parameter estimation, set-membership estimation, also
known as guaranteed parameter estimation, aims to deter-
mine all the parameter values of a model that are consis-
tent with a set of measurements under given uncertainty
scenarios. Initially developed for algebraic models in the

early 1990s (Moore, 1992; Jaulin and Walter, 1993), these
techniques were later extended to dynamic models using
ODE bounding techniques (e.g., Jaulin, 2002; Raissi et al.,
2004). Our focus in this subsection shall be on the latter
and we consider the case where the uncertainty enters the
estimation problem in the form of bounded measurement
errors.

Given a nonlinear dynamic system in the form of paramet-
ric ODEs (11), consider a set of output functions

y(t, p) = g(x(t, p), p) ∈ R
ny . (19)

Now, for a set of output measurements ym(ti) at N
time points t1, . . . , ti, . . . , tN ≤ T , classical parameter
estimation seeks to determine one particular instance p⋆

of the parameter values for which the (possibly weighted)
normed difference between these measurements and the
corresponding model outputs y is minimal. We note by
the way that such optimization problems are typically
nonconvex and call for global optimization, for which one
can use branch-and-bound search in combination with
the ODE bounding techniques described earlier in Sect. 3
(Esposito and Floudas, 2000; Singer and Barton, 2006).

In contrast, guaranteed (bounded-error) parameter estima-
tion accounts for the fact that the actual process outputs,
yp, are only known within some bounded measurement
error e ∈ E := [eL, eU ], so that

yp(ti) ∈ ym(ti) + [eL, eU ] =: Yp(ti) .

The main objective then is to estimate the set Pe of all
possible parameter values p such that y(ti, p) ∈ Yp(ti) for
every i = 1, . . . , N . Clearly, this problem can be cast as
the following set inversion:

Pe :=

{

p ∈ P0

∣

∣

∣

∣

∀i = 1, . . . , N,
ym(ti) + eL ≤ y(ti, p) ≤ ym(ti) + eU

}

.

(20)

Depicted in red on the top plot of Fig. 7 is the set of
all output trajectories satisfying y(ti, p) ∈ Yp(ti) with
i = 1, . . . , N , and on the bottom plot the corresponding
set Pe projected onto the (p1, p2) space.

A practical limitation for the guaranteed parameter esti-
mation problem as given in (20) is the need for consistent
measurement data and bounds throughout the entire time
series; otherwise, there may not be any model response
matching the output measurements within the specified er-
ror bounds, and the parameter set Pe is empty. In most ap-
plications based on real data, this calls for data preprocess-
ing, for instance using data reconciliation techniques, in
order to get rid of the outliers. For instance, these outliers
could be due to over-optimistic noise bounds or to sensor
failures at given time instants. To handle this situation, it
is possible to ‘protect’ the estimator against a prespecified
number of outliers, by allowing for a number of output
variables to be outside of their prior feasible intervals
(see, e.g., Jaulin et al., 2001; Kieffer and Walter, 2005).
Another situation whereby the parameter set Pe may be
empty is in the presence of significant model mismatch,
which calls for the development of further robustification
strategies or alternative guaranteed parameter estimation
paradigms (Csáji et al., 2012; Kieffer and Walter, 2014).

In a related work, Rumschinski et al. (2010) apply a set-
inversion approach in order to discriminate between com-
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Fig. 6. Set of stable (blue) and unstable (red) equilibrium points of the two-step anaerobic digestion model with respect
to the dilution rate D.

yi(t)

t

Y (·, P3)

Y (·, P2)

Y (·, P1)

p1

p2
P2 ∈ Pin

P1 /∈ Pin ∪ Pbnd

Pe

P3 ∈ Pbnd

P0

Fig. 7. Illustration of guaranteed parameter estimation
concepts in the space of output trajectories (top plot)
and in the parameter space (bottom plot).

peting model hypotheses and to provide guaranteed outer
estimates on the model parameters that are consistent
with the experimental measurements. They consider non-
linear dynamic systems with polynomial/rational right-
hand sides, and construct SDP relaxations in order to

Table 1. Dilution rate and inlet concentration
profiles in guaranteed estimation problem.

Input Day 1 Day 2 Day 3 Day 4

D [/day] 0.25 1.00 1.00 0.25
Sin
1 [g(COD)/L] 2.38 2.38 4.76 2.38
Sin
2 [mmol/L] 80.0 80.0 160.0 80.0

Zin [mmol/L] 50.0 50.0 100.0 50.0
Cin [mmol/L] 5.0 5.0 10.0 5.0

carry out the exclusion tests after discretizing the differ-
ential equations. In a follow up work, Streif et al. (2012)
have developed the Matlab toolbox ADMIT automating
the analysis.

Case Study 4. We consider the problem of computing
guaranteed parameter sets for the nonlinear ODE model
(1)-(6). Three outputs are considered to carry out the es-
timation, namely S1, S2, and C, with measurements every
4 hours over a 4-day period. Pseudo-experimental data are
generated by simulating a nominal model with parameter
values from Table A.1 and using the dilution rate and
influent concentrations in Table 1. Moreover, the effect of
measurement noise is simulated by rounding the nominal
outputs up or down to the nearest values by retaining,
respectively, 2, 1 and 1 significant digits; then, measure-
ment error ranges of, respectively, ±0.01, ±0.1 and ±0.1
are added to these values. Regarding the parameters, the
focus is on estimating the kinetic parameters describing
biomass growth, namely µ̄1 ∈ [1.15, 1.25], KS1 ∈ [6.7, 7.3],
µ̄2 ∈ [0.735, 0.75], KS2 ∈ [9.2, 9.5], and KI2 ∈ [235, 265].

The results produced by the set-inversion algorithm are
shown in Fig. 8. The shape of the guaranteed parameter
set is indeed characteristic of the large correlations be-
tween the parameters µ̄1 and KS1 , which indicates that
µ1(S1) ≈

µ̄1

KS1
X1 in this case. Likewise, a large correlation

is observed between µ̄2, KS2 and KI2 . We also note that
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the nominal parameter values (red cross on Fig. 8) lie
inside the approximation of the set Pe.

In order to compute the reachable set enclosures we use
4th-order Taylor models with ellipsoidal remainders, in
agreement with the results of the reachability analysis
conducted in Case Study 2. Moreover, we perform domain
reduction at each node via the solution of auxiliary LPs
constructed from the polyhedral relaxations of the Taylor
models of the predicted outputs at each measurement
time, and we apply up to 10 passes as long as the range
reduction for any parameter exceeds 20%. Finally, we do
not recompute the reachable sets on children nodes when
all the Taylor model remainders at their parent nodes have
converged to within 10−4. With these settings, the set-
inversion algorithm reaches a tolerance of ǫbnd = 5 · 10−5

after 3,130 iterations and a runtime of about 35 minutes.
See Paulen et al. (2015) for further numerical comparisons,
including the solution of a related guaranteed parameter
estimation problem in 7 parameters. ⋄
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Fig. 8. Projections onto the subspaces (KS1 ,µ̄1), (µ̄2,KS1),
(KS2 ,µ̄2) and (KI2 ,KS2) of the guaranteed parameter
sets for the two-step anaerobic digestion model.

5. SUMMARY AND FUTURE DIRECTIONS

This paper has presented an overview of some of the set-
theoretic methods developed in our research group for
the analysis of uncertain/parametric nonlinear dynamic
systems. These methods are heavily dependent on our
ability to compute tight bounds on the range of factorable
functions and on the reachable set of dynamic systems.
In particular, we have presented a formalism based on so
called affine-set arithmetics and set propagation, and we
have applied this formalism so as to cast problems in bifur-
cation analysis and set-membership parameter estimation
as set-inversion problems. This way, these problems can be
addressed both rigorously and efficiently using complete
search methods.

Besides complete search applications, it is important to
reemphasize that set-theoretic methods also hold many
promises in other areas of mathematics and engineering,
such as fault diagnosis (Scott et al., 2014) or model
predictive control (MPC). To reinforce this latter point,

we provide in this following subsection a formulation
for robust MPC, which makes use (and extends) the
generalized differential inequality presented in Sect. 3.

5.1 Tube-Based Methods for Robust MPC

Model predictive controllers are a class of feed-back con-
trollers, which proceed by solving an optimal control prob-
lem to predict the future behavior of a dynamic system
on a finite time-horizon. The computed optimal input is
then applied to the real process until the next measure-
ment arrives and the process is then repeated, following
a receding horizon approach. In this procedure, the future
behavior of the system is optimized without accounting for
external disturbances or model-plant mismatch, although
these uncertainties are the only reason why feedback is
needed at all.

For applications with hard constraints, MPC implementa-
tions can lead to constraint violations, and it is for those
applications that robust MPC can be used to correct the
optimistic predictions of MPC. Of the possible approaches
for implementing robust MPC (see, e.g., Bertsekas, 2007;
Dadhe and Engell, 2008; Goulart and Kerrigan, 2006), our
focus here is on tube-based MPC (Langson et al., 2004),
whereby the predicted trajectories used in traditional
MPC are replaced by robust forward invariant tubes; that
is, tubes enclosing all the response trajectories for a chosen
control law regardless of the particular realization of the
uncertainty.

Consider a controlled dynamic system with time-varying
uncertainties in the form

∀t ∈ [0, T ], ẋ(t) = f(x(t), u(t), w(t)),

where u(t) ∈ U ⊆ Knu and w(t) ∈ W ⊆ Knw denote
the control and disturbances, respectively. By letting Y
denote the set of all robust forward invariant tubes, we
can formulate the tube-based MPC problem as:

min
Y ∈Y

� t+T

t

ℓ(Y (τ))dτ s.t.

�

Y (τ) ⊆ Fx,

Y (t) = {x̂t},

where the feasibility constraints Fx := {x ∈ Rnx |g(x) ≤ 0}
are enforced for all τ ∈ [t, t + T ]; the set-valued function
ℓ : Π(Rnx) → R is the objective function in the MPC
controller; and x̂t denotes the current state measurement
at time t.

This formulation shows deep connections between forward
invariant tubes and the reachable-set enclosure X(·, P ),
e.g., computed via the generalized differential inequality
presented in Sect. 3. In particular, we envision extensions
of the work by Villanueva et al. (2014) towards the
following min-max differential inequality:

a.e. t ∈ [0, T ] , ∀c ∈ R
nx ,

V̇ [X(t)](c) ≥ min
ν

max
ξ,ω











cTf(ξ, ν, ω)

�

�

�

�

�

�

�

ξ ∈ X(t)
cTξ = V [X(t)](c)
ν ∈ U
ω ∈ W











,

which defines a sufficient condition for the set-valued
function X : [0, T ] → Π(Rnx) to be a robust forward
invariant tube.

Our on-going investigations aim at developing efficient
and tractable numerical procedures for constructing such
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robust forward invariance tubes, as well as tractable algo-
rithms for the on-line solution of the corresponding tube-
based MPC problems.
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Appendix A. CASE STUDY MODEL PARAMETERS

The parameter values used in the two-step anaerobic
digestion model in Sect. 1.1 can be found in Table A.1.
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