
PHYSICAL REVIEW RESEARCH 6, 043257 (2024)

Temporal networks with node-specific memory: Unbiased inference of transition probabilities,
relaxation times, and structural breaks
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One of the main challenges in the study of time-varying networks is the interplay of memory effects with
structural heterogeneity. In particular, different nodes and dyads can have very different statistical properties in
terms of both link formation and link persistence, leading to a superposition of typical timescales, suboptimal
parametrizations, and substantial estimation biases. Here we develop an unbiased maximum-entropy framework
to study empirical network trajectories by controlling for the observed structural heterogeneity and local link
persistence simultaneously. An exact mapping to a heterogeneous version of the one-dimensional Ising model
leads to an analytic solution that rigorously disentangles the hidden variables that jointly determine both static
and temporal properties. Additionally, model selection via likelihood maximization identifies the most parsimo-
nious structural level (either global, node specific, or dyadic) accounting for memory effects. As we illustrate
on real-world social networks, this method enables an improved estimation of dyadic transition probabilities,
relaxation times, and structural breaks between dynamical regimes. In the resulting picture, the graph follows
a generalized configuration model with given degrees and given time-persisting degrees, undergoing transitions
between empirically identifiable stationary regimes.
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I. INTRODUCTION

Time-varying graphs have been studied intensively due to
their relevance for many systems and processes. The temporal
variability of networks is critical in several diverse fields for
multiple reasons. Examples include (a) the study of commu-
nication in highly dynamic networks, e.g., broadcasting and
routing in delay-tolerant networks [1]; (b) the exploitation of
passive mobility, e.g., the opportunistic use of transportation
networks [2]; and (c) the analysis of complex social systems,
e.g., the characterization of the dynamic interaction patterns
emerging in a social network [3–5].

Different ways to represent the data in such dynamic
settings are proposed [6]. Among these, the snapshots’ rep-
resentation deserves special mention as the primary approach
used in this work. This method aggregates temporal informa-
tion into nonoverlapping fixed time windows, thereby creating
an ordered sequence of static networks. Even if this represen-
tation can sometimes be misleading [7], mainly for reasons
linked to the time windows’ choice, its usage can bring
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different advantages [8]. Snapshot representation is easy to
interpret and gives a natural setup to readapt some models
widely used for static cases.

Often, the transition of models from static to dynamic
cases involves incorporating “memory” terms, typically of
a Markovian nature [9]. For instance, exponential random
graph models (ERGMs) [10] are adapted to dynamic contexts
by adding mechanisms that account for temporal evolution.
Originating with the first descriptions of dynamic networks
using a Markovian model [11], Snijders [12] proposed an evo-
lutionary mechanism viewed as a continuous process, where
ministeps represent changes between two consecutive snap-
shots. Alternatively, ERGMs can be adapted using a discrete
mechanism, as in the temporal exponential random graph
models (TERGMs) [13], which do not presume any specific
sequence for the creation or disruption of links between snap-
shots. Instead, links are generated simultaneously in each
snapshot based solely on the temporal order of the network,
aiming to replicate the model’s imposed constraints. It is
within this latter framework that we position our contribution.

Initially, we define a quantity that captures the temporal
correlation between different snapshots: the persisting con-
nectivity, an indicator of the stability of connections between
nodes. Due to its intuitive interpretation, link stability is a
commonly used measure in the literature. For instance, the
concept is implemented in “edge-Markovian evolving graphs”
[14], where the stability of links is observed to study memory
effects. Attention to this mechanism is also underscored in
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[15], which proposes a methodology to describe link persis-
tence and the dynamics of latent variables associated with
each node that contribute to link formation. Latent vari-
ables are also employed by Zhang et al. [16], where the
connection between nodes is modeled as a continuous-time
Markov process, with a characteristic rate influenced by the
nodes’ latent variables. Drawing on characteristics observed
in the literature, we propose our models. We introduce various
maximum-entropy models, each sharing the same functional
form but designed with different levels of heterogeneity in
the constraints used. These models are tailored for stationary
time networks. We begin with three memoryless models, each
employing different constraints: the first uses a time-averaged
constraint for each link, the second employs a time-averaged
constraint for each node’s degree, and the third implements
a constraint for the overall average degree, also averaged over
time. We enhance these models by adding memory-based
constraints to one of the memoryless frameworks, which
previously only constrained average degrees. These new spec-
ifications include the time-averaged persisting connectivity,
the time-averaged persisting degree, defined as the amount of
a degree conserved from one snapshot to the next, and the av-
erage persisting degree across nodes, also averaged over time.
After a suitable reparametrization, the resulting models show
an analogy with the one-dimensional Ising model. Exploiting
this analogy, we analytically solved the models, enabling the
use of the maximum likelihood approach to estimate the mod-
els’ parameters and to precisely compute the expected values
of several key quantities of interest.

The proposed models have the property of being applicable
only to study temporal networks that present a stationary evo-
lution. We overcome this limitation by proposing a structural
break detection method that leverages these models to identify
stationary periods. Thanks to this solution, we can also capture
changing points, often corresponding to exogenous events.

We tested the proposed approaches using two proximity
data sets: the MIT Proximity Network (2004–2005) [17],
which includes a documented list of external events, and the
Primary School Proximity Network [18]. For the latter, we
assumed the presence of external events based on the school’s
scheduled activities. To assess the degree of heterogeneity in
the models, we employed the Akaike information criterion
(AIC) [19]. Initially, we evaluated the memoryless models and
found that the model with constraints on degrees performed
best according to the AIC. We then examined the memory
model and discovered that the model incorporating constraints
on both the degree and persisting degree outperformed the
others. This finding indicates that the system possesses mem-
ory, which can be explained by latent variables associated
with each node. Additionally, our structural break approach
effectively identified many real-world events that, according
to the algorithm, induced structural changes in the network’s
evolution. Ultimately, we characterized each node by leverag-
ing the Markovian process involved in link formation.

II. MAXIMUM-ENTROPY PROBABILITY
FOR COMPLEX NETWORKS

Before addressing temporal networks, we must revisit
some foundational theories underpinning our models for

time-varying graphs. We introduce the maximum-entropy ap-
proach to complex networks as a powerful tool for modeling
complex systems [20]. Given a graph G with a number of
nodes N and specific properties C(G), the maximum-entropy
approach provides a method to derive the most unbiased prob-
ability distribution P(G) [21]. This distribution encompasses
all possible graphs of the same type, ensuring that C(G) is
accurately reproduced on average.

To obtain this probability, we go through a constrained
entropy maximization [22], which involves finding the maxi-
mum of the Shannon-Gibbs entropy:

S[P] = −
∑

G

P(G) ln P(G), (1)

granting the constraints that the probability distribution has to
reproduce on average

〈C〉 =
∑

G

C(G)P(G) = C∗, (2)

where G is a generic network in the ensemble, C∗ is the
observed value of the constraint, and 〈·〉 indicates the ex-
pected value over the ensemble of networks. The constrained
maximization problem is solved by introducing a Lagrange
multiplier (θ ) for each constraint. The solution results in
a probability distribution that turns out to have the same
functional form of the exponential random graphs models
(ERGMs) [23]:

P(G|�θ ) = e−H (G|�θ )

Z (�θ )
, (3)

where H (G|�θ ) =∑i θiCi is the graph Hamiltonian, and

Z (�θ ) =∑G e−H (G|�θ ) is the normalization constant, also called
partition function.

A critical assumption that is often made when we work
with these models is the independence of link formation, such
that we are allowed to write the probability for the formation
of the entire graph as

P(G) ≡
∏
i< j

p
ai j

i j (1 − pi j )
1−ai j , (4)

where ai j is the i, j entry of the adjacency matrix of the graph
G, and pi j represents the probability that ai j = 1 (nodes i and
j are connected).

A relevant example for this paper is given by the binary
configuration model (CM) [23], where the resulting proba-
bility distribution is obtained after constraining the degree
sequence, such that it admits a Hamiltonian representation

H (G|�θ ) ≡
N∑

i=1

θiki, (5)

where ki is the degree of node i. For this problem, the pi j is
[20,24,25]

pi j ≡ xix j

1 + xix j
, (6)

where xi ≡ e−θi for each node i [20,25]. xi is often called the
“fitness” of node i and can be interpreted as the propensity of
node i to link with other nodes.
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A. Maximum likelihood principle

When applying the model to a real-world graph G∗, it is
necessary to introduce a criterion to select the values of the
parameters �x. According to the maximum likelihood principle,
these parameters should be set to values that maximize the
likelihood of the observed data under the given model [25].
Specifically, we seek the parameter values �x∗ that maximize
the likelihood function P(G∗|�x). For the CM, �x∗ can be deter-
mined by solving N coupled equations [20,25]:

〈ki〉 =
∑
j �=i

xix j

1 + xix j
= k∗

i ∀ i, (7)

where k∗
i ≡ ki(G∗) represents the empirical degree of node i in

G∗. In other words, the maximum likelihood principle shows
that one needs to set �x to the particular value �x∗ (or, equiva-
lently, to set �θ to the particular value �θ∗) ensuring that each
expected degree 〈ki〉 =∑ j �=i pi j matches the corresponding
observed degree k∗

i .
Interestingly, this model has been shown to effectively

reproduce the empirical topology of various real-world net-
works [20]. In the case of the world trade web (WTW), which
represents the network of international trade among countries,
the fitness parameter x∗

i has been related with an empirical
property, specifically the gross domestic product (GDP) of
each country i [24,25]. Given its theoretical and practical
advantages, we will use the CM Eq. (6) as a starting point
for the extension of the formalism to the temporal case.

Generally, including the CM, if we require that a network
model generates a desired set �C ≡ {C1, . . . ,CK} of topologi-
cal properties, the maximization of (1) leads to Eq. (3) where
H (G) =∑K

k=1 θkCk [20,23]. If we apply the maximum like-
lihood principle, then we find that the value �θ∗ maximizing
the likelihood of the model [25] is also the value ensuring
that the expected value 〈Ck〉 of each property Ck matches the
corresponding empirical value C∗

k ≡ Ck (G∗). Thus, �θ∗ can be
found as the solution of the K coupled equations 〈Ck〉 = C∗

k
for all k.

III. FROM STATIC TO TIME-VARYING GRAPHS

There are different ways to move from a model for static
graphs to one for time-varying graphs, mainly depending on
the representation and on the assumption made on the system
[6]. Our purpose is to create a model that generates a sequence
of graphs with fixed number of nodes and with properties that
can fluctuate in time but are on average constant.

A. Extensions to time-varying graphs

In this section, we discuss possible ways to create a model
capable of generating a sequence of T temporal snapshots of
a network, which we refer to as the “graph trajectory”:

G ≡ {G1, . . . , GT }. (8)

We assume the number of nodes N remains constant through-
out the graph’s evolution. Additionally, each node is assigned
a quantity xi, analogous to the “fitness” in Eq. (7).

The simplest option is that of regarding the observed graph
trajectory G as a sequence of independent realizations of the

same process, the latter being still specified by the static
probabilities pi j where �x is time independent. This assumption
implies that �x remains fixed, and the probability of the entire
graph trajectory factorizes over all time steps as

P (G|�x) =
T∏

t=1

P(Gt |�x) =
T∏

t=1

∏
i< j

p
ai j (t )
i j (1 − pi j )

1−ai j (t ). (9)

This means that we are not introducing any explicit statistical
dependence among different temporal snapshots of the net-
work. So, while the dependence of all snapshots on the same
fitness vector �x implies that the graph trajectory will have a
certain degree of stationarity (especially for the pairs of nodes
with pi j close to either 0 or 1), the conditional independence
(given �x) of different snapshots implies that there are no tem-
poral correlations among such snapshots.

B. Dynamic fitness, no temporal dependencies

Another approach to incorporating temporal dynamics in-
volves making �x time dependent, i.e., replacing xi with xi(t ),
and accordingly, pi j with pi j (t ), while retaining the same
functional form for the probability. This modification allows
each snapshot of the system to be described by a distinct prob-
ability, yet they remain statistically independent in principle.
The probability of the entire graph trajectory G still factorizes
as follows:

P (G|�x) =
T∏

t=1

P(Gt |�x(t ))

=
T∏

t=1

∏
i< j

pi j (t )ai j (t )[1 − pi j (t )]1−ai j (t ), (10)

where �x is represented as a T × N matrix, with the generic
entry xi(t ) located in the t th row and ith column. Assum-
ing that the fitness xi(t ) is a dynamic variable suggests that
node fitness and network topology evolve over comparable
timescales. Conversely, treating xi as fixed implies that node
fitness changes more slowly than the network topology. A sig-
nificant contribution to this approach is by Sarkar and Moore
[26], who introduced a latent distance model with Markovian
properties.

C. Static fitness, temporal dependencies

A third possibility is to assume that different snapshots
are statistically dependent, representing a fundamental change
to the model as it no longer allows different snapshots to
be generated by a single function pi j . In the simplest case,
we might assume that �x is time independent, as in Eq. (9).
However, the probability of the graph trajectory in this context
does not factorize over time steps:

P (G|�x) �=
T∏

t=1

P(Gt |�x). (11)

Significant contributions in this area include the works of
Hanneke (TERGMs) [13] and Zhang et al. [16], wherein both
the structural dynamics are assumed to have a Markovian
nature while the parameters remain constant. Alternatively,
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we may consider �x to be time dependent as in Eq. (10), as
proposed by Mazzarisi et al. [15], though the probability still
does not factorize.

However, for the purpose of this paper, we will focus on
scenarios where �x is fixed. For the class of models described in
Eq. (11), the temporal dependency structure among different
snapshots must be explicitly specified. Generally, this implies
that the connection probability at time t depends not only on t
but also on previous times t ′ < t . Despite this complexity, we
aim to preserve the core feature of the fitness model, where
the connection between nodes i and j depends solely on their
individual properties. Thus, while P (G|�x) does not factorize
over time steps, it still factorizes over pairs of vertices.

Our primary goal is to develop and solve a model un-
der these conditions. As a last remark, we underline that if
combined with suitable techniques, as discussed in Sec. VI,
this class of methods can effectively handle graph trajectories
generated with time-varying parameters that present periods
of stationarity.

D. Measures of time correlation: Persisting connectivity

Before we provide an explicit model with time depen-
dence, we introduce some useful definitions to capture time
correlations. In models with no memory, such as those defined
by Eqs. (9) and (10), the conditional (given �x or x) indepen-
dence of different snapshots implies

〈ai j (t )ai j (t + τ )〉ν = 〈ai j (t )〉ν〈ai j (t + τ )〉ν ∀ t, τ > 0,

(12)

where the subscript ν stands for “no memory.”
The above observation suggests that a useful quantity to

introduce at the level of nodes is the persisting degree hi(t, τ ),
that we define as the part of the degree ki(t ) that also persists
at time t + τm [or sum of links that persists hi j (t, τ )]:

hi(t, τ ) ≡
∑
j �=i

ai j (t )ai j (t + τ ) =
∑
j �=i

hi j (t, τ ). (13)

The persisting degree is computed by summing the quantity
ai j (t )ai j (t + τ ), to which we will refer as persisting link, a
concept also employed in studies such as [14–16].

Note that the value of ai j (t ′) at intermediate times (t < t ′ <

τ ) has no effect on the above definition. From Eq. (12), the
expected value of hi(t, τ ) under a model with no memory is
always

〈hi(t, τ )〉ν =
∑
j �=i

〈ai j (t )〉ν〈ai j (t + τ )〉ν ∀ t, τ > 0. (14)

Comparing the observed and expected (under a model with no
memory) value of hi(t, τ ) is a useful criterion to measure time
correlations in an observed graph trajectory. If we average
over time, the quantity

Ai(τ ) ≡ 1

T

T∑
t=1

[hi(t, τ ) − 〈hi(t, τ )〉ν] (15)

is a node-specific autocovariance function, which allows us
to measure the timescale of the decay of memory for each
node. If the measured autocovariance is zero for all nodes,
then there is no need to introduce a model with memory since

a model described by Eqs. (9) or (10) will be enough. By
contrast, nonzero autocovariance can only be modeled using
time dependencies of some form, thus leading to Eq. (11).

For static cases defined by Eq. (9), the expressions become

〈ai j (t )ai j (t + τ )〉ν = p2
i j ∀ t, τ > 0, (16)

〈hi(t, τ )〉ν =
∑
j �=i

p2
i j ∀ t, τ > 0. (17)

These expressions will be useful in the following.

IV. A SOLVABLE MODEL WITH MEMORY

We now consider an explicit, solvable model that incorpo-
rates time correlations. As previously discussed, we assume
that �x is fixed. Our model employs the maximum-entropy for-
malism outlined earlier, which has been readapted to describe
ensembles of network trajectories. We define the entropy for
these network trajectories as follows:

S[P] ≡ −
∑
G

P (G) lnP (G). (18)

By maximizing this entropy [Eq. (18)] subject to the con-
straint that certain properties Ci(G) observed in the trajectory
are replicated on average, we obtain the solution

P(G|�θ ) = e−∑i θiCi (G)

Z (�θ )
, (19)

where the partition function is given by

Z (�θ ) =
∑
G

e−∑i θiCi (G). (20)

Using the concept of persisting connectivity, we define a spe-
cific type of maximum-entropy model for temporal networks
that serves as a natural generalization of the configuration
model (CM). Interestingly, TERGMs can be exactly derived
following the procedure described above. See Appendix H for
a detailed derivation.

A. Preliminary extension: Memoryless model

As a preliminary step, we first consider three memoryless
models, each defined by using a different type of constraint
aimed at reproducing varying degrees of heterogeneity among
nodes.

The first model precisely replicates the average of each
link. The corresponding Hamiltonian for this model is
given by

H1,ν (G) ≡ 1

T

T∑
t=1

H1(Gt )

= 1

T

T∑
t=1

∑
j<i

αi jai j (t ) =
∑
j<i

αi jai j . (21)

This specification leads to a nontrivial model because, unlike
in the static case, here we constrain the time-averaged links.
This model is nondegenerative, as the Lagrange multipliers
can assume values other than 0 or ∞, which typically occur
in the static binary case.
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The second kind of constraint is similar to the one for the
static CM, with the distinction that degrees are averaged over
time. This results in the following Hamiltonian:

H2,ν (G) ≡ 1

T

T∑
t=1

H2(Gt )

= 1

T

T∑
t=1

N∑
i=1

αiki(t ) =
N∑

i=1

αik̄i. (22)

The last kind of memoryless model is built taking as constraint
the average over time and over nodes of the degree. This turns
out to have a structure analogous to the Erdős-Rényi model
[27], having the following Hamiltonian:

H3,ν (G) ≡ 1

T

T∑
t=1

H3(Gt )

= 1

T N

T∑
t=1

N∑
i=1

αki(t ) = α

N

N∑
i=1

k̄i. (23)

By using expressions of each Hamiltonian above mentioned
in Eq. (19), these models maximize the entropy of the entire
ensemble of graph trajectories, as defined in Eq. (18), under
the constraints specified.

When applying the maximum likelihood principle to each
of these models, we search for the specific values of �α∗
that maximize the likelihood P (G∗|�α) of an observed graph
trajectory G∗. For all three specifications, we find that the
probability of a link existing between two nodes in each snap-
shot shares the same form, as given by the following equation:

pi j = xi j

1 + xi j
, (24)

where

xi j =

⎧⎪⎨
⎪⎩

xi j = e−αi j/T if H1,ν (G),
xix j = e−αi/T e−α j/T if H2,ν (G),
x = e−α/T N if H3,ν (G).

(25)

In Appendix A, we detail the method for determining �α∗ for
the three specifications.

While these kind of models can replicate any of the three
observed time-averaged quantities we constrain, they predict
no time correlations. Using Eq. (24), we find that for the three
specifications, the expected value of the persisting degree is

〈hi(t, τ )〉 =
∑
j �=i

(
xi j

1 + xi j

)2

∀ t, τ > 0. (26)

Comparing the predicted values from Eq. (26) with the ob-
served values of hi(t, τ ) provides a straightforward test for the
adequacy of our models. Specifically, the expected value of
the node-specific autocovariance Ai(τ ), as defined in Eq. (15),
for the memoryless cases is

〈Ai(τ )〉 = 1

T

T∑
t=1

[〈hi(t, τ )〉 − 〈hi(t, τ )〉ν] = 0. (27)

In Fig. 1, we show the normalized autocovariance function for
the degree for various nodes for one of the real-world data sets
[17] used in the empirical application of the model.

FIG. 1. The plot displays the normalized empirical autocovari-
ance [Eq. (15)] as a function of τ for various nodes of the MIT
proximity data set: the outcome is a nonzero decreasing function.

From the plot in Fig. 1, we observe that the node-specific
autocovariance varies for each node and is distinctly nonzero.
This variation provides initial evidence of heterogeneity in the
memory characteristics associated with each node, underscor-
ing the need for a method that can effectively capture this
diversity. These empirical observations allow us to seize the
opportunity and introduce our main contribution.

B. Full model

Now, we introduce temporal correlations at varying de-
grees of heterogeneity into our models. In these models, the
expected persisting degree is nontrivial, and the autocovari-
ance is nonzero. As we did with the memoryless cases, we
define three sets of constraints integrated with the Hamilto-
nian from Eq. (22), resulting in three distinct models:

(i) One-lagged persisting link. The most constrained
model involves constraining the one-lagged persisting link,
given by ai j (t )ai j (t + 1).

(ii) One-lagged persisting degree. The second model im-
poses a constraint on the one-lagged persisting degree hi(t, 1).

(iii) Average one-lagged persisting degree. The third pos-
sibility is to constrain the average of the one-lagged persisting
degrees across all nodes.

As a result, the empirical value of hi(t, 1), as well as that
of the one-lagged autocovariance Ai(1), will be replicated
exactly for the first two models, while on average for the
third one.

In this way, the three Hamiltonians to be added to Eq. (22)
are, in order, as follows:

Hμ(G) =

⎧⎪⎪⎨
⎪⎪⎩
Hμ,1(G) = 1

T

∑
j<i

∑T
t βi jai j (t )ai j (t + 1),

Hμ,2(G) = 1
T

∑N
i

∑T
t βihi(1, t ),

Hμ,3(G) = 1
T N

∑N
i

∑T
t βhi(1, t ),

(28)

where the subscription μ stands for memory.
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To analytically solve these models and derive tractable
expressions for certain quantities of interest, we simplify by
assuming periodic boundary conditions. Specifically, we in-
troduce a fictitious time step T + 1 such that

ai j (T + 1) ≡ ai j (1). (29)

As we will clarify, aside from the stationarity discussed in
Sec. VI, this assumption is the only significant approximation
made to adapt this model to real-world scenarios. Further-
more, the impact of this artifact diminishes as T increases.

We define our models through the following extension of
Eq. (22):

H(G) ≡ H2,ν (G) + Hμ(G). (30)

This expression varies depending on the chosen constraints.
As demonstrated in Appendices B, C, D, and E, after appropri-
ate reparametrization, these models can be mapped exactly to
a superposition of noninteracting one-dimensional Ising mod-
els. They can then be analytically solved, and their solutions
expressed in terms of a constant connection probability:

pi j = 〈ai j (t )〉, (31)

and a “memory” function, which captures the persisting inter-
actions over time:

qi j (τ ) = 〈ai j (t )ai j (t + τ )〉. (32)

The probability pi j mirrors the concept of spin up and down
in a one-dimensional Ising model, representing here the like-
lihood of a connection’s presence. At the same time, qi j can
be seen as the probability of observing two spins at a distance
τ in the same direction.

Explicitly,

pi j =
(

xix jyi j − 1

2
√

4xix j + (xix jyi j − 1)2

)(
(λ+

i j )
T − (λ−

i j )
T

(λ+
i j )

T + (λ−
i j )

T

)
+ 1

2
,

(33)

qi j (τ ) = p2
i j + pi j (1 − pi j )

(
(λ−

i j )
τ (λ+

i j )
T −τ +(λ+

i j )
τ (λ−

i j )
T −τ

(λ+
i j )

T +(λ−
i j )

T

)
, (34)

with

λ±
i j = eJi j cosh Bi j ±

√
e2Ji j sinh2 Bi j + e−2Ji j , (35)

and

Bi j ≡ 1
2 [ln(xi ) + ln(x j ) + ln(yi j )], (36)

Ji j ≡ 1
4 [ln(yi j )]. (37)

Here, xi = e−αi/T , while yi j assumes different expression
depending on the constraints. Like xi j for the different memo-
ryless models, we have

yi j =

⎧⎪⎨
⎪⎩

yi j = e−βi j/T , Hμ,1

yiy j = e−βi/T e−β j/T , Hμ,2

y = e−β/T N , Hμ,3.

(38)

The above expressions imply that the conditional probability
that nodes i and j are connected at time t + τ , given that they

were connected at time t , is

P[ai j (t + τ ) = 1|ai j (t ) = 1] = qi j (τ )

pi j

= pi j +(1−pi j )

(
λτ

−λT −τ
+ +λτ

+λT −τ
−

λT++λT−

)
. (39)

This shows how the models can generate nontrivial tempo-
ral dependencies. The expected node-specific autocovariance
function is

〈Ai(τ )〉 =
∑
j �=i

pi j (1 − pi j )

×
(

(λ−
i j )

τ (λ+
i j )

T −τ + (λ+
i j )

τ (λ−
i j )

T −τ

(λ+
i j )

T + (λ−
i j )

T

)
. (40)

V. TRANSITION MATRICES
AND CORRELATION LENGTH

The introduced model can be utilized to generate graph
trajectories with the prescribed properties. Unlike the static
and memoryless cases, where pi j alone suffices to generate
the network trajectory, this model requires a combination of
pi j and qi j to create a coherent time-varying graph.

Specifically, given the assumption of independent link for-
mation, we need N (N−1)

2 transition matrices. Starting from an
initial configuration, these matrices enable the generation of
the entire graph trajectory. As detailed in Appendix G, in
constructing these matrices, whose functional form is shown
in the following equation, we utilize quantities estimated from
our models:

Pi j =
⎡
⎣ qi j

pi j

pi j−qi j

pi j

pi j−qi j

1−pi j

1−2pi j+qi j

1−pi j

⎤
⎦. (41)

This matrix, as described in Eq. (41), retains the same form
regardless of the model specification chosen; the variations
are only in the expressions for pi j and qi j . Upon deriving
the transition matrices, we employ them to characterize the
stationary distribution between pairs of nodes and to calculate
the average time required to reach this state. By construc-
tion, the largest eigenvalue of the stochastic matrix is one,
and its associated eigenvector is (pi j, 1 − pi j ), as detailed
in Appendix G. This configuration ensures that the station-
ary connection probability precisely matches the marginal
connection probability pi j . Furthermore, the second largest
eigenvalue μi j of the stochastic matrix equals

μi j = qi j − p2
i j

pi j − p2
i j

, (42)

and it is indicative of the rapidity with which the system
converges to the stationary distribution. Indeed, due to the
mapping of the system to the one-dimensional Ising model,
μi j turns out to be related to the correlation length τ c

i j , which
in this context acts as a correlation time. The relationship is
expressed as follows:

μi j =
(

λ−λT −1
+ + λ+λT −1

−
λT+ + λT−

)
= e

− 1
τc
i j . (43)
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This implies

τ c
i j = 1

ln
(

1
μi j

) . (44)

The correlation time τ c
i j tells us how strong the memory is,

i.e., how fast the correlation vanishes as a function of the time
lag between two snapshots. Clearly, different pairs of nodes
have different values of τ c

i j , so some pairs require more time to
relax to their stationary connection probability pi j . One may
also analyze the neighborhood of each node i by consider-
ing the largest second eigenvalue μi ≡ max j �=i{μi j} among
a maximum of N − 1 pairs involving that node. This eigen-
value serves as a node-specific feature, defining the leading
time τ c

i ≡ max j �=i{τ c
i j} = −1/ ln(μi ) required for the entire

neighborhood of node i to reach the stationary distribution.
Thus, even in systems that are already at equilibrium, un-
derstanding the correlation times can offer insights into how
long the system is expected to take to return to equilibrium
after a perturbation, assuming the model accurately reflects
the system dynamics.

VI. STRUCTURAL BREAK DETECTION

To apply these models to real-world data sets, we must
address a critical issue: real-world temporal networks of-
ten exhibit change points, indicating shifts in the statistical
properties of the system. Such shifts render our earlier
models, designed for trajectories with static parameters, in-
appropriate. Nonetheless, by carefully selecting a reasonable
timescale and window, it is possible to identify segments
where the system’s statistical properties remain stationary, and
so do the parameters used to describe them.

The challenge of detecting changing points or structural
breaks has been addressed using various techniques, from
model-based approaches [28–30] to model-free methods [31].
In this section, we introduce a model-dependent methodology
to detect these structural breaks, adaptable to the different
models we have discussed earlier.

Our approach utilizes a widely recognized technique in the
field of detecting structural breaks known as binary segmen-
tation [32]. This methodology relies on an appropriate cost
function that measures the level of uniformity among obser-
vations. The selection of the correct cost function is crucial as
it reflects the underlying mechanism we believe governs the
temporal evolution and characterizes the structural breaks. In
our case, we use a cost function based on the AIC [19]. By
incorporating AIC, we consider not only the likelihood value
but also the number of parameters, enhancing our model’s
robustness. The AIC is defined as follows:

AICmodel = 2Kmodel − 2 ln(Lmodel), (45)

where Kmodel corresponds to the number of parameters of
the model, and Lmodel to the likelihood, computed by fitting
the data.

Breaks are defined by solving the following optimization
problem:

tbreak = arg min
t∈[1,...,T −1]

�AIC(t ), (46)

where �AIC(t ) is our cost function and, given a temporal
network of length T , is defined as follows:

�AIC(t ) = AICtot − AICdiff, (47)

where

AICtot = 2Kmodel − 2 ln(Lmodel) (48)

and

AICdiff(t ) = 4kmodel − 2{ln[L(G0,t )] + ln[L(Gt,T )]}. (49)

A break time tbreak is accepted only if �AIC(tbreak) < 0;
otherwise, we assume there are no breaks. The underlying idea
is to compare a model fitted to the entire temporal network,
assuming uniform parameters, against a model that considers
potential parameter changes at a specific point (tbreak). The lat-
ter model doubles the number of parameters to better capture
any structural changes in the system.

Once a structural break is identified, the new segment
[0, tbreak] is isolated, and the procedure is repeated on this up-
dated temporal network. This process continues until further
division yields no significant benefit. The final break is des-
ignated as tbreak final. Subsequently, the segment [0, tbreak final]
is removed, focusing on the remaining segment [tbreak final, T ].
This method results in a collection of segments that, accord-
ing to the model, are considered to be generated by models
with distinct parameters, which remain approximately con-
stant within each segment.

For our types of models, we can specify a general expres-
sion for the loglikelihood, given by

ln(Lmodel) = −H − ln(Z ), (50)

where H represents the Hamiltonian of the system, and Z
denotes the partition function. The specific values of these
components are determined by the formulation of the Hamil-
tonian and the characteristics of the partition function used
in the model. Consequently, their selection depends on the
relevance of the constraints underlying the model designed
to interpret the available data. The extent to which the iden-
tified points correspond to actual events or genuine changes
in the data-generating process largely hinges on how accu-
rately the employed model captures the underlying dynamics
of the data.

A crucial aspect to emphasize is that the methodology
we introduced presupposes that the identified segments are
stationary. However, the assumption of segment stationarity
is not always empirically verified. Specifically, if one of the
identified segments is only as long as the minimum chosen
length (e.g., three snapshots in our application), it may not be
reasonable to consider that segment as stationary. Conversely,
segments exceeding this minimum length are generally as-
sumed to be stationary relative to the model used for their
identification. This assumption implies that the parameters
describing the data generation process are relatively constant
within the identified segment, justifying their use to character-
ize that interval.

Finally, to validate the effectiveness of this methodol-
ogy, we conducted a series of synthetic experiments. The
results, detailed in Appendix I, demonstrate that when ex-
ternal shocks, interpreted as structural breaks, are sufficiently
significant, our methodology successfully identifies them.

043257-7



CLEMENTE, TESSONE, AND GARLASCHELLI PHYSICAL REVIEW RESEARCH 6, 043257 (2024)

FIG. 2. Comparison of persisting degree at τ = 1. This plot illustrates the persisting degree computed for τ = 1 in two actual networks
and compares these values with the average persisting degrees from 1000 shuffled instances of each network. The comparison highlights the
differences between structured temporal interactions in real data sets and their randomized sequences, underscoring the impact of temporal
order. (a) Shows results for the MIT Proximity Network, while (b) displays results for the Primary School Proximity Network.

VII. APPLICATION TO SOCIAL PROXIMITY NETWORKS

In this section, we demonstrate the capabilities of our
approach by examining various aspects that our models can
effectively characterize. Specifically, we aim to determine
whether incorporating a one-step memory is sufficient to ac-
curately reproduce the quantities hi(t, τ ) for different values
of τ . Additionally, we seek to assess the level of hetero-
geneity in memory across different nodes. This analysis not
only tests the validity of the one-step memory assumption but
also enhances our understanding of memory dynamics within
the network, offering insights into how individual nodes con-
tribute to the overall temporal structure.

For our real-world application, we examine two proxim-
ity temporal networks derived from two different data sets.
The first data set considers an experiment conducted by the
Massachusetts Institute of Technology (MIT). Specifically,
during the academic year 2004–2005, the MIT Media Lab-
oratory conducted a reality mining experiment [17]. The
experiment involved tracking 92 participants through their
smart phones. Utilizing Bluetooth data, they obtained proxim-
ity measurements, which we interpret as connections between
the individuals. By organizing the linkages on a daily basis
and recording the time stamps of these proximity events, we
constructed a daily empirical temporal network consisting of
244 undirected snapshots.

The second data set originates from a study conducted in a
primary school, where proximity detectors worn by students
and teachers captured interactions over a period of two days,
specifically from October 1 to 2, 2009 [18]. For this analysis,
we focus on data from the first day, where the linkages are col-
lected on a 10-min time-window basis, resulting in snapshots
representing all interactions within each interval. For this
second temporal network, we have a total of 52 undirected
snapshots, each of 242 nodes. By construction, both temporal
networks have snapshots that are undirected and unweighted.

Before applying the models directly to the data sets, we
conduct a preliminary analysis to evaluate the impact of the

temporal order of the snapshots on the network dynamics. To
investigate this aspect, we generated 1000 instances of each
temporal network by completely randomizing the order of the
snapshots in every instance. For each randomized network, we
then calculated the persisting degree for various values of τ .

Figure 2 demonstrates the significance of temporal order
by comparing the persisting degree measured in the original
network with its average from 1000 reshuffled instances. The
persisting degree from the reshuffled networks consistently
falls below that of the original, suggesting a nontrivial tem-
poral structure in the data.

To quantify the significance of these observations, we com-
pute the Z-score [33] for each node across three different
values of τ . This Z-score measures how many standard de-
viations the original network’s persisting degree is from the
reshuffled networks’ mean. Our analysis reveals that a signif-
icant majority of nodes exhibit persisting degrees markedly
higher than expected under random temporal order.

Specifically, for τ = 1, 2, and 3, approximately 97% of
the total nodes display a Z-score greater than 1.96, for the
MIT data set. In contrast, for the Primary School network, the
proportion of nodes with significant Z-scores decreases from
97% at τ = 1 to 57% at τ = 3, suggesting a decay in temporal
correlations as τ increases. This decay indicates a transition
toward memoryless dynamics.

While the School Proximity data set exhibits behavior
indicative of Markovian dynamics, making our models par-
ticularly applicable, the MIT Proximity data set presents
a different scenario. Here, as τ increases, the number of
nodes showing a significant positive divergence in their
persisting degree, compared to values from randomization, re-
mains constant. This preliminary analysis indicates significant
deviations from Markovian dynamics, suggesting that the
models introduced do not fully capture the MIT temporal
network. It is crucial to recognize that this analysis does not
account for possible structural breaks, which, if present, may
conceal a behavior more closely aligned with our models. To
explore this possibility, we employ the structural break detec-
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TABLE I. The table shows the performance metrics for the three
memoryless models applied to each data set. The model demonstrat-
ing the best performance for each data set is highlighted in bold.

AICtotal

Model MIT Primary School

H1,ν 8624.4 850 304 908.75
H2,ν 1657.11 4652.06
H3,ν 1716.39 4362.65

tion techniques previously described to identify and adjust for
potential changes in the network dynamics of both the systems
analyzed.

Initially, we evaluated the three memoryless models to
assess the heterogeneity in the link formation mechanisms.
Following this, we investigated the effects of memory. During
the process of detecting structural breaks, our objective is to
identify a vector of N changing points:

Tv = [tbreak(0), . . . , tbreak(N )]. (51)

Once those breaks are defined, we can compute the value of
the AIC for each bounded period.

Where, for each period, AIC depends on the likelihood and
on the number of parameters each model uses. For the three
memoryless cases, we have that

Kmodel =
⎧⎨
⎩

N (N − 1)/2 for H1,ν ,

N for H2,ν ,

1 for H3,ν

(52)

and the likelihood measures the ability to reproduce the aver-
age over time of the observed links.

To compare which of the models explain better the data,
we compute the total AIC for the three models, defined
as the summation of the AIC computed for each segment
individuate:

AICtotal =
∑
tb∈Tv

AIC
(
Gtb−1,tb

)
, (53)

where when tb = tbreak(0), tb−1 = 0.
In the practical implementation of our algorithm for detect-

ing structural breaks, we initiate the analysis with segments
comprising a maximum of 50 data points. We then progres-
sively move the window forward if no break point is identified
within these segments. This approach is chosen to mitigate
potential numerical issues that can arise from analyzing larger
segments, such as computational inefficiencies.

From these three memoryless models, see Table I.
Analysis of the performance metrics in Table I reveals

differing optimal models for the MIT and Primary School data
sets. For the MIT data set, the model with node-specific con-
straints on degrees emerges as the winner, suggesting that con-
nection patterns are better explained by latent variables unique
to each node, rather than a uniform parameter for each link.
This finding underscores the importance of considering indi-
vidual node characteristics, which the AIC scores support by
indicating that models using a single parameter oversimplify
the network dynamics. This implies that while link formations

TABLE II. The table shows the performance metrics for the
memoryless models with local constraints and the three models with
memory. The model demonstrating the best performance for each
data set is highlighted in bold.

AICtotal

Model MIT Primary School

H2,ν 1 398 430.29 1 956 993.64
H1 336 021.35 625 824.76
H2 268 522.79 169 403.17
H3 272 456.55 170 927.21

are independent, links sharing common nodes might still re-
flect interconnected behaviors due to their shared origins.

Conversely, the Primary School data set shows a prefer-
ence for the model with global-level constraints, suggesting
the influence of overarching structures, possibly driven by
classroom dynamics, which dominate the characteristics of
individual and dyadic interactions.

Given these insights, we proceed to integrate memory ef-
fects into our models to establish their impact on explaining
network dynamics. We extend the analysis using three differ-
ent specifications, each augmenting the time-averaged degree
sequence with memory-based constraints. Our objective in
this next phase is to quantify the significance of memory
and its heterogeneity across the data sets. We continue to
use the AIC to rank the performance of these “full” models,
similar to our approach in the memoryless scenario. For each
specification, we have that

Kmodel =

⎧⎪⎨
⎪⎩

N + N (N − 1)/2 for H1,

N + N for H2,

N + 1 for H3.

(54)

We compare these three models, as well as a baseline model
that only constrains the degree sequence, using the AICtotal.
It is important to emphasize that the likelihood expressions
employed in this comparison are distinct from those discussed
previously. In this analysis, we evaluate each model’s ability
not only to reproduce the presence of links accurately, but also
to capture their persistence over time effectively. Based on the
results presented in Table II, the preferred model for both data
sets is the one that incorporates constraints on the persisting
degree. This outcome suggests that describing the persistence
of links is more effectively achieved using variables associ-
ated with individual nodes rather than through global system
attributes or link-specific properties. Thus, memory in these
networks is better explained by node-level characteristics.

Given that we have data on external events for these em-
pirical temporal networks, we further evaluate the ability of
our best-performing model to capture real-world changes. We
apply the winning model and compare the detected structural
breaks with documented external events to assess its predic-
tive accuracy.

In assessing the model’s performance, it is important to
note that our approach requires at least two snapshots, setting
a resolution limit. We consider real events detected if they fall
within tbreak ± 2. As shown in Fig. 3, for the MIT data set
[Fig. 3(a)], our model predicted a total of 20 events. Within
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FIG. 3. Figure illustrates the detection of structural breaks: red lines represent known external events, while blue points denote predicted
events. Horizontal bars show the uncertainty associated with each predicted event. (b) Corresponds to the Primary School data set, with events
such as classroom changes and playground times, while (a) relates to the MIT data set, featuring identified external events.

a range of two days (snapshots), we accurately detected 9
out of 23 real events. In the case of the Primary School
data set [Fig. 3(b)], our model predicted 7 events and suc-
cessfully captured all 6 of the assumed real events within a
two-snapshot range. Although the model in the case of the
MIT data set only partially aligned with real events, many pre-
dicted points closely approximate actual events, underscoring
our memory model’s capacity to reflect the impact of exter-
nal influences on the system. Identified changes are not only
linked to external events but also indicate substantial shifts
in the model’s parameters that define interaction dynamics
among network participants. These findings suggest distinct
dynamic segments within the network, each characterized by
unique interaction patterns.

At this point, we replicate the initial tests performed on
the entire MIT data set, now focusing on the segments iden-
tified through structural break detection. We selected three
of the longest periods for testing: T MIT

1 = [2004/10/05 →
2004/10/12], T MIT

2 = [2004/11/15 → 2004/12/07], and
T MIT

3 = [2005/03/11 → 2005/04/01]. For each segment, we
compare the persisting degree for different values of τ com-
puted on the shuffled network with the actual data. Our
observations reveal a gradual decrease in memory effect
across all three periods as τ increases. Specifically, the per-
centage of nodes with a Z-score greater than 1.96, indicating
a statistically significant difference, decreases from 33% for
τ = 1% to 0% for τ = 3 in period T MIT

1 , from 87% for τ =

1% to 3% for τ = 3 in period T MIT
2 , and from 73% to 0%

in period T MIT
3 . These results suggest that the system pro-

gressively loses memory of its previous state with increasing
τ , highlighting behavior that approaches a Markovian model.
However, this trend is observed only within specific segments
delineated by the structural break detection algorithm, em-
phasizing the importance of localized analysis within broader
temporal networks.

Here, we move to the last part of our real-world appli-
cations by assessing the predictive performance of the four
models. We compute the expected values for hi(τ ) at τ = 2
and 3, and compare them with the real values using the mean
squared error (MSE) [see Eq. (55)]. We select specific periods
for this comparison to demonstrate the models’ effectiveness
across different data sets. For the MIT data set, we focus
on the period T MIT

1 . For the Primary School data set, we
examine two distinct periods, T School

1 = [8 : 30 → 9 : 30] and
T School

2 = [11 : 40 → 14 : 00]:

MSE(y, ŷ) = 1

nsamples

nsamples∑
i=1

(yi − ŷi )
2, (55)

where ŷ is the predicted value while y is the true one.
The results in Table III indicate that the models do not

precisely reproduce values of hi(τ ) for τ �= 1. Notably, for
periods T MIT

1 and T School
2 , the model with constraints on each

node outperforms other models in predicting actual autocor-
relation values across different τ , aligning with our earlier
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TABLE III. In the table, we present the mean squared error (MSE) computed between the predicted values of hi(τ ) and the measured values,
using different models. Each model’s parameters, estimated from the nearest segment identified by the structural break detection algorithm of
the respective model, were used for evaluation. Bold text highlights the minimum MSE for each segment and each value of τ , indicating the
best-performing model for those cases.

T MIT
1 T School

1 T School
2

τ H1 H2 H3 H2,ν H1 H2 H3 H2,ν H1 H2 H3 H2,ν

2 3.99 0.95 1.13 8.63 0.59 0.31 0.28 0.57 1.68 0.4 0.58 2.59
3 3.73 1.25 1.46 7.45 0.62 0.44 0.41 0.62 1.19 0.62 0.75 1.84

findings. The only exception occurs during the period T School
1 ,

which corresponds to a time when students are in class. Here,
a global driver appears to dominate local factors, leading to
memory effects more effectively explained by a single global
parameter. AIC calculations for this period further support
this observation, with AIC(H3) = 13 983.2 and AIC(H2) =
14 115.64, indicating a stronger fit for the model with global
constraints (H3). Despite the better performance of H3 in
the T School

1 segment, the overall evidence suggests that the
model with local constraints (based on AICtotal) is generally
preferable for this data set, indicating a broader efficacy of
local constraints across the entire network.

It is worth noting how the memoryless model exhibits
consistent or improved performance as τ increases. This trend
suggests a gradual memory loss in certain periods as we move
further from the system’s current state. This effect can be clar-
ified by considering the following equations for the expected
behavior of the autocorrelation function in models with and
without memory:

〈ai j (t )ai j (t + τ )〉μ = 〈ai j (t )〉2
μ + O(e

− τ
τc
μ ), (56)

〈ai j (t )ai j (t + τ )〉ν = 〈ai j (t )〉2
ν . (57)

Here, Eq. (56) introduces a decay term that attenuates as τ in-
creases, reflecting the memory model’s capacity to gradually
lose the memory of initial conditions. This decay is governed
by the relaxation time τc, indicative of the number of iterations
required for the system to reach a stationary distribution. The
relaxation time, related to the second eigenvalue by Eq. (43),
characterizes each link’s tendency towards equilibrium. In
contrast, Eq. (57) for the memoryless model suggests constant
autocorrelation, independent of τ . The comparative analysis
of these models, as shown in Table III, highlights a nontrivial
Markovian nature of the data, reinforcing the suitability of
our modeling approach for these systems. The implications of
τc extend beyond theoretical interest; they provide practical
insights into the dynamic behavior of nodes and the identified
segments within the network.

VIII. CONCLUSIONS

Working with exponential random graph models often
presents challenges in parameter estimation, particularly due
to the complex analytical summations required to compute
the partition function. These challenges are further relevant in
temporal exponential random graph models, which introduce
additional degrees of freedom, complicating their tractability.

In this paper, we tackled these challenges by mapping a
specific class of TERGMs, defined by the concept of persist-

ing degree, to a combination of one-dimensional Ising models.
This innovative approach allowed us to derive an analytic
solution and calculate the partition function exactly, thereby
providing precise expressions for the probability of a link
between two nodes and the persistence of this link over time.

Our results emphasize the importance of models that
capture memory effects, such as the persisting degree, for
maintaining crucial network dynamics. While simplifications
like averaging can be useful under certain conditions, they
generally fall short of capturing the true dynamics. Our
framework introduces a methodology to assess when such
simplifications are warranted, distinguishing between, for ex-
ample, global effects driven by external factors and local
effects intrinsic to individual nodes.

While our proposed methodology initially applies only to
stationary temporal networks, we address this limitation by
introducing an approach that leverages our unique class of
models to identify segments where the stationarity hypothe-
sis holds. This involves exploring the presence of structural
breaks within temporal networks. By utilizing techniques for
detecting changing points, we successfully identified signifi-
cant shifts in network behavior and dynamics. These shifts are
indicative of underlying changes in the processes governing
network evolution.

We applied our methodologies to two real-world datasets,
demonstrating the model’s ability to characterize each node
by different memory effects and to leverage these changes to
infer external events. Additionally, we introduced the concept
of relaxation time for each node, which can be precisely com-
puted in our framework. This measure represents the number
of snapshots required for a network to reach a stationary distri-
bution from a random configuration and is particularly useful
for predicting the system’s response to external perturbations.

Beyond describing network dynamics, the models we
developed may serve as generative models, offering new di-
rections for leveraging these approaches to address the lack
of canonical generative models for temporal networks. Given
the nature of maximum entropy, the null models developed in
this framework can be broadly applied to various scenarios,
providing an unbiased basis for comparison and uncovering
hidden patterns and new insights in real systems.
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APPENDIX A: FINDING �α FOR THE THREE
MEMORYLESS MODELS

Here, we display how to derive the functional form of
pi j for the three specifications of the memoryless model and
how to estimate the values of �α to ensure the constraints are
accurately reproduced. We focus particularly on the results for
the most constraining Hamiltonian, which applies constraints
at the dyadic level; similar reasoning applies to the other two
cases.

Let us recall the Hamiltonian with constraints at the dyadic
level:

H1,ν (G) = 1

T

∑
t

∑
j<i

θi jai j (t ) =
∑
j<i

θi jai j . (A1)

In this case, the expression for the Hamiltonian enables us
to draw upon the results from the work of Newman [23]. By
applying the same arguments used by Newman, we can derive
the functional form of pi j ,

pi j = 〈ai j〉 = e−θi j

1 + e−θi j
. (A2)

The models defined by Eqs. (22) and (23) are special cases of
this general formulation, where in order, for the specification
in Eq. (22), θi j = θi + θ j , while for Eq. (23), θi j = θ/N ∀ i, j.
The expression of xi j is defined in the main text in Eq. (25).

To capture the right values of �θ , such that the observed
constraints are reproduced, we have to solve a series of equa-
tions that came from the maximum likelihood principle. For
the three specifications, the equations are

〈ai j〉 = xi j

1 + xi j
= a∗

i j ∀ i, j ∈ N (A3)

for the first specification in Eq. (21). Here we have to solve
N (N−1)

2 equations, and a∗
i j is the average over time of the link

between i and j.

〈ki〉 =
∑
i �= j

xix j

1 + xix j
= k∗

i ∀ i ∈ N. (A4)

For the second expression of the general model in Eq. (22). In
this case we have to solve N equations, and k∗

i is the average
over time of the degree of node i:

x

1 + x
= 1

N (N − 1)

∑
i

k∗
i = k∗

(N − 1)
. (A5)

In this last case, the equation to solve is only one, and k∗ is
the average overtime of the average degree.

APPENDIX B: MAPPING TO THE ONE-DIMENSIONAL
ISING MODEL

Here we provide a detailed proof of the main results
presented in the text. To begin, we explicitly rewrite the
Hamiltonian given in Eq. (30), considering constraints at the
level of links (H1,m):

H1(G) ≡ H2,ν + H1,m

=
N∑

i=1

(αik̄i ) +
∑
j<i

βi jai j (t )ai j (t + 1)

= 1

T

T∑
t=1

⎡
⎣ N∑

i=1

αiki(t ) +
∑
i< j

βi jai j (t )ai j (t + 1)

⎤
⎦

= 1

T

T∑
t=1

⎡
⎣∑

i �= j

αiai j (t ) +
∑
j<i

βi jai j (t )ai j (t + 1)

⎤
⎦

= 1

T

T∑
t=1

∑
j<i

[(αi + α j )ai j (t ) + βi jai j (t )ai j (t + 1)].

(B1)

The other two cases, as for the memoryless model, are just
a particular specification of this, where the two Hamiltonian
reads as

H2(G) ≡ H2,ν + H2,m

=
N∑

i=1

[αik̄i + βih̄i(1)]. (B2)

Using H2,m, and

H3(G) ≡ H2,ν + H3,m

=
(

N∑
i=1

αik̄i

)
+ βh̄, (B3)

for H3,m. From now on, we will refer to H1(G) as H(G).
We now focus on Eq. (B1). Let us introduce the “spin”

variables σi j (t ) = ±1 defined through

ai j (t ) ≡ σi j (t ) + 1

2
. (B4)

In Eq. (B1), each graph G(t ) in the trajectory G has been
parametrized by the adjacency matrix A(t ) with entries ai j (t ).
Equivalently, we can parametrize G(t ) by the “spin matrix”
�(t ) with entries σi j (t ). If we insert Eq. (B4) into (B1), after
some algebra we arrive at

H(G) = H0 −
T∑

t=1

∑
j<i

[Bi jσi j (t ) + Ji jσi j (t )σi j (t + 1)],

where we have defined

Bi j ≡ − 1

2T
(αi + α j + βi j ), (B5)

Ji j ≡ − 1

4T
(βi j ), (B6)

H0 ≡
∑
j<i

(
αi + α j

2
+ βi j

4

)
. (B7)
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Note that H0 is a constant term that does not depend on the
specific graph trajectory G. As it has no effect on any observ-
able of the model, we can omit it from further considerations.
Consequently, the Hamiltonian simplifies to

H(G) =
∑
j<i

H (Gi j ), (B8)

where, if we still parametrize G(t ) using the matrix
�(t ),Gi j = {σi j (1), . . . , σi j (T )} is the restriction of G to the
pair of nodes i, j, i.e., the temporal sequence of (connection
and disconnection) events for such pair, and

H (Gi j ) ≡ −
T∑

t=1

[Bi jσi j (t ) + Ji jσi j (t )σi j (t + 1)]. (B9)

A crucial observation is that Eq. (B9) corresponds to the
Hamiltonian of a one-dimensional Ising model with first-
neighbor interactions, where each “spin” σi j (t ) is located at
lattice site t and interacts with the spin at site t + 1. Here,
the parameters Bi j and Ji j function as the external field and
coupling constant, respectively. This model is well known
for its solvability in an analytical framework [34]. Before
presenting the solution, it is important to note that Eq. (B8)
implies that

Z (Bi j, Ji j ) ≡
∑
Gi j

e−H (Gi j ) (B10)

is the partition function for the dyad-specific Hamiltonian
(B9). If we assume independence among dyads, the parti-
tion function for the graph-wide Hamiltonian (B1) can be
expressed as the product of the partition functions of all dyads:

Z (B, J) ≡
∑
G

e−H(G) =
∏
j<i

Z (Bi j, Ji j ). (B11)

Similarly, if

P(Gi j |Bi j, Ji j ) = e−H (Gi j )

Z (Bi j, Ji j )
(B12)

is the probability of the dyadic trajectory Gi j in the model
defined by Eq. (B9), then the probability P (G|B, J) of
an entire graph trajectory G in the model specified by
Eq. (B1) is

P (G|B, J) = e−H(G)

Z (B, J)
=
∏
j<i

P(Gi j |Bi j, Ji j ). (B13)

APPENDIX C: PARTITION FUNCTION

We now present the solution of the dyadic model as defined
by Eq. (B9), by adapting it from the well-known solution of
the one-dimensional Ising model [34]. The imposition of the
periodicity condition, as specified in Eq. (29), ensures that
all sites (time steps) are statistically equivalent, implying that
each site contributes equally to the overall statistical proper-
ties of the model:

〈σi j (1)〉 = 〈σi j (2)〉 = · · · = 〈σi j (T )〉. (C1)

The system is therefore translationally (here, temporally) in-
variant. The partition function (B10) is

Z (Bi j, Ji j ) =
∑
Gi j

exp[Bi jσi j (t ) + Ji jσi j (t )σi j (t + 1)], (C2)

and can be rewritten as a product of terms involving only two
successive time steps:

Z (Bi j, Ji j ) =
T∏

t=1

∑
σi j

Vi j (σi j (t ), σi j (t + 1)), (C3)

where the function Vi j (x, y) is defined as

Vi j (x, y) ≡ exp

(
x + y

2
Bi j + xyJi j

)
. (C4)

Given that both x and y can take the values ±1, we can define
the four possible states of Vi j as V ++

i j , V +−
i j , V −+

i j , and V −−
i j ,

corresponding to the combinations of x and y being (+1,+1),
(+1,−1), (−1,+1), and (−1,−1), respectively. These can
be arranged to form a 2 × 2 matrix called as the transfer
matrix Vi j , crucial in solving the model [34]

Vi j ≡
(

V ++
i j V +−

i j

V −+
i j V −−

i j

)
=
(

eJi j+Bi j e−Ji j

e−Ji j eJi j−Bi j

)
. (C5)

This allows us to rewrite Eq. (C3) as

Z (Bi j, Ji j ) = Tr
(
VT

i j

)
(C6)

(where VT
i j denotes the T th matrix power of Vi j , and not the

transpose of the latter).
Now let �v±

i j denote the two eigenvectors of Vi j , and λ±
i j

the corresponding eigenvalues, with λ+
i j � λ−

i j . The relation-
ship between the matrix, its eigenvectors, and eigenvalues is
given by

Vi j �v ±
i j = λ±

i j �v ±
i j . (C7)

The 2 × 2 matrix Qi j ≡ (�v +
i j , �v −

i j ), having column vectors �v +
i j

and �v −
i j , diagonalizes Vi j , i.e.,

Vi j = Qi j

(
λ+

i j 0

0 λ−
i j

)
Q−1

i j . (C8)

A direct calculation of the eigenvalues and eigenvectors
yields

λ±
i j = eJi j cosh Bi j ±

√
e2Ji j sinh2 Bi j + e−2Ji j . (C9)

It then follows, using the cyclic properties of the trace, that
Eq. (C6) simply reduces to

Z (Bi j, Ji j ) = Tr

(
λ+

i j 0

0 λ−
i j

)T

= (λ+
i j )

T + (λ−
i j )

T , (C10)

and the full partition function (B11) is

Z (B, J) =
∏
j<i

[(λ+
i j )

T + (λ−
i j )

T ]. (C11)
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Similarly, the probability of the dyadic trajectory Gi j is

P(Gi j |Bi j, Ji j ) =
∏T

t=1 Vi j (σi j (t ), σi j (t + 1))

(λ+
i j )

T + (λ−
i j )

T
(C12)

and that of the entire graph trajectory G is

P (G|B, J) =
∏
j<i

∏T
t=1 Vi j (σi j (t ), σi j (t + 1))

(λ+
i j )

T + (λ−
i j )

T
. (C13)

APPENDIX D: EXPECTED VALUES

We start the calculation of the expected value of σi j (t )
using two distinct approaches to facilitate a comprehensive
analysis and subsequent computation of the autocorrelation
function. In the first approach, we determine the expected
value by utilizing the free energy per spin, which is defined
by the following equation:

Fi j = − 1

T
lnZ (Bi j, Ji j ), (D1)

and differentiating Fi j with respect to Bi j , we obtain 〈σi j (t )〉:
∂ lnZ (Bi j, Ji j )

∂Bi j
= 1

(λ+
i j )

T + (λ−
i j )

T

×
[

T (λ+
i j )

T −1
∂λ+

i j

∂Bi j
+ T (λ−

i j )
T −1 ∂λ−

∂Bi j

]
,

(D2)

where
∂λ±

i j

∂Bi j
has the following expression:

∂λ±
i j

∂Bi j
= eJi j

⎡
⎢⎣sinh Bi j ± sinh Bi j cosh Bi j√

sinh2(Bi j ) + e−4Ji j

⎤
⎥⎦. (D3)

Considering that

〈σi j (t )〉 = − ∂Fi j

∂Bi j
, (D4)

we can finally obtain the expected value of σi j (t ):

〈σi j (t )〉 = eJi j

(λ+
i j )

T + (λ−
i j )

T

⎡
⎢⎣(λ+

i j )
T −1

⎛
⎜⎝sinh Bi j + sinh Bi j cosh Bi j√

sinh2(Bi j ) + e−4Ji j

⎞
⎟⎠+ (λ−

i j )
T −1

⎛
⎜⎝sinh Bi j − sinh Bi j cosh Bi j√

sinh2(Bi j ) + e−4Ji j

⎞
⎟⎠
⎤
⎥⎦.

(D5)

Given this general result, we can move to the thermodynamic limit, obtaining a simplified expression:

〈σi j (t )〉t l = eJi j

λ+
i j

⎡
⎢⎣sinh Bi j + sinh Bi j cosh Bi j√

sinh2(Bi j ) + e−4Ji j

⎤
⎥⎦ = sinhBi j√

sinh2(Bi j ) + e−4Ji j

. (D6)

As anticipated, the result obtained in Eq. (D6) can also be
derived using an alternative technique: the transfer matrix
method [34]. To employ this method, we introduce S, a di-
agonal matrix whose diagonal elements represent all possible
spin values. This matrix plays a crucial role in transforming
the system states into a format suitable for the transfer matrix
analysis. Specifically, the matrix S is defined as follows:

S ≡
(

S++ S+−
S−+ S−−

)
=
(+1 0

0 −1

)
, (D7)

having elements S±± ≡ S(±1,±1), with

S(x, y) ≡ xδ(x, y). (D8)

We can rewrite 〈σi j (t )〉:

〈σi j (t )〉 ≡
∑
Gi j

σi j (t )P(Gi j |Bi j, Ji j ) = Tr
(
SVT

i j

)
(λ+

i j )
T + (λ−

i j )
T

,

(D9)

and using the eigenvector of the transfer matrix, we have

〈σi j (t )〉 = 1

Z (Bi j, Ji j )
[(λ+

i j )
T 〈v+

i j |S|v+
i j 〉 (D10)

+ (λ−
i j )

T 〈v−
i j |S|v−

i j 〉], (D11)

that, using also the results in Eq. (D6), in the thermodynamic
limit is

〈σi j (t )〉t l = 〈v+
i j |S|v+

i j 〉 (D12)

= eJi j

λ+
i j

⎡
⎢⎣sinh Bi j + sinh Bi j cosh Bi j√

sinh2(Bi j ) + e−4Ji j

⎤
⎥⎦. (D13)

Hence, by combining Eqs. (D6), (D11), and (D13), we obtain
an expression for the quantity 〈v−

i j |S|v−
i j 〉:

〈v−
i j |S|v−

i j 〉 = eJi j

λ−
i j

⎡
⎢⎣sinh Bi j − sinh Bi j cosh Bi j√

sinh2(Bi j ) + e−4Ji j

⎤
⎥⎦

= −〈v+
i j |S|v+

i j 〉, (D14)

and, after some algebraic manipulations, we find that for a
finite number of snapshots, the expected value of a spin is

〈σi j (t )〉 = 〈v+
i j |S|v+

i j 〉
(

(λ+
i j )

T − (λ−
i j )

T

(λ+
i j )

T + (λ−
i j )

T

)
. (D15)
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Now we have all the elements necessary to compute the ex-
pected value of σi j (t )σi j (t + τ ) for 0 < τ < T . Similar to the
expected value of the spin function, this can also be expressed
using the transfer matrix:

〈σi j (t )σi j (t + τ )〉

= 1

Z (Bi j, Ji j )

∑
{σi=±1}

σt 〈σt |V |σt+1〉 . . .

× 〈σt+τ−1|V |σt+τ 〉σt+τ 〈σt+τ |V |σt+τ+1〉 . . .

= 1

Z (Bi j, Ji j )

∑
σt ,σt+τ

σt 〈σt |V τ |σt+τ 〉σt+τ 〈σt+τ |V T −τ |σ1〉.

(D16)

It is also possible to write matrix V in its eigenvector
space |vi〉:

V =
∑

l∈{+,−}
|vl〉λl〈vl |, (D17)

where λi are the correspondent eigenvalues. In this way, given
that the eigenvectors are orthonormal we have

V n =
∑

l∈{+,−}
|vl〉λn

l 〈vl |. (D18)

Hence, the expected value of the product of spins at different
times is given by

〈σi j (t )σi j (t + τ )〉

= 1

Z (Bi j, Ji j )

∑
σt ,σt+τ

∑
i, j∈{+,−}

× [σt 〈σt |vi〉λt+τ
i 〈vi|σt+τ 〉σt+τ 〈σt+τ |v j〉λT −τ

j 〈v j |σt 〉
]
.

(D19)

We can then rewrite Eq. (D19) by utilizing the matrix repre-
sentation of spin states Si, in terms of its eigenvector basis:

Si =
∑
σi

|σi〉σi〈σi|. (D20)

In this way moving 〈v j |σt 〉 (is just a number) and summing
over σi j (t ) and σi j (t + τ ), we obtain

〈σi j (t )σi j (t + τ )〉 =
∑

i, j〈v j |St |vi〉λτ
i 〈vi|St+τ |v j〉λT −τ

j∑
i λ

T
i

,

(D21)

where Si = S ∀ i. Hence, after writing explicitly the summa-
tion, Eq. (D21) becomes

〈σi j (t )σi j (t + τ )〉 = 1

λT+ + λT−
[λT

+〈v+|S|v+〉2 + λT
−〈v−|S|v−〉2 + [(λ−

i j )
τ (λ+

i j )
T −τ + (λ+

i j )
τ (λ−

i j )
T −τ )〈v+|S|v+〉(1 − 〈v+|S|v+〉]].

(D22)

Finally, incorporating the results from Eqs. (D14) and (D13), and performing some algebraic manipulations, we get

〈σi j (t )σi j (t + τ )〉 = 1

Z
Tr[SV τ SV N−τ ] = 〈σi j (t )〉2

t l + 〈σi j (t )〉t l [1 − 〈σi j (t )〉t l ]

(
(λ−

i j )
τ (λ+

i j )
T −τ + (λ+

i j )
τ (λ−

i j )
T −τ

(λ+
i j )

T + (λ−
i j )

T

)
, (D23)

that in the limit T → ∞ (corresponding to long graph tra-
jectories) with τ fixed and finite (which necessarily implies
τ  T ) becomes

〈σi j (t )σi j (t + τ )〉 = 〈σ (t )〉2
t l + 〈σ (t )〉t l [1 − 〈σ (t )〉t l ]

(
λ+

i j

λ−
i j

)τ

.

(D24)

Now, it should be noted that the model exhibits a mani-
fest “translational” invariance, which in the context of our
discussion translates to temporal invariance. This invari-
ance implies that both 〈σi j (t )〉 and 〈σi j (t )σi j (t + τ )〉 are
independent of t . As a result, the expectation values of

time-averaged quantities coincide with those of the quantities
themselves:

〈σi j (t )〉 = 〈σi j (t )〉, (D25)

〈σi j (t )σi j (t + τ )〉 = 〈σi j (t )σi j (t + τ )〉. (D26)

A similar result holds if we go back to the original variables
ai j (t ) using Eq. (B4). By doing so, we can express the quanti-
ties in terms of ai j (t ), leading to

pi j ≡ 〈ai j (t )〉 = 〈ai j (t )〉, (D27)

qi j (τ ) ≡ 〈ai j (t )ai j (t + τ )〉 = 〈ai j (t )ai j (t + τ )〉. (D28)

Therefore, using Eqs. (B4) and (D15) we derive for pi j the
following relationship:

pi j =

⎛
⎜⎝ e2Ji j sinh Bi j

2
√

1 + e4Ji j sinh2 Bi j

⎞
⎟⎠
(

(λ+
i j )

T − (λ−
i j )

T

(λ+
i j )

T + (λ−
i j )

T

)
+ 1

2
=
(

xix jyi j − 1

2
√

4xix j + (xix jyi j − 1)2

)(
(λ+

i j )
T − (λ−

i j )
T

(λ+
i j )

T + (λ−
i j )

T

)
+ 1

2
,

(D29)

043257-15



CLEMENTE, TESSONE, AND GARLASCHELLI PHYSICAL REVIEW RESEARCH 6, 043257 (2024)

where we have introduced the parameters

xi ≡ e−αi , yi j ≡ e−βi j . (D30)

While for qi j (τ ), a similar derivation leads to

qi j (τ ) = p̃2
i j + p̃i j (1 − p̃i j )

×
(

(λ−
i j )

τ (λ+
i j )

T −τ + (λ+
i j )

τ (λ−
i j )

T −τ

(λ+
i j )

T + (λ−
i j )

T

)
, (D31)

where p̃i j corresponds to the value of pi j computed in the long
limit trajectory:

p̃i j =

⎛
⎜⎝ e2Ji j sinh Bi j

2
√

1 + e4Ji j sinh2 Bi j

⎞
⎟⎠+ 1

2
. (D32)

qi j in the thermodynamic limit assumes the following
expression:

q̃i j (τ ) = p̃2
i j + p̃i j (1 − p̃i j )

(
λ+

i j

λ−
i j

)τ

. (D33)

APPENDIX E: MAXIMUM LIKELIHOOD ESTIMATION

The above expressions enable the computation of all rele-
vant expected properties for the time series generated by the
model. This calculation is contingent upon setting the param-
eters B and J to their optimal values B∗ and J∗. These optimal
values are those that maximize the likelihood P (G∗|B, J)
of the observed graph trajectory G∗, where the probability
P (G|B, J) is defined in Eq. (C13). Similarly, this optimization
process can be equivalently expressed in terms of the param-
eters �x and �y. We seek the values �x∗ and �y∗ that maximize the
likelihood function for the same observed graph trajectory.

As discussed in the main text, the probability P (G|B, J)
is modeled as specified in Eq. (B13), where the Hamiltonian
H(G) is described by Eq. (B1). According to a general theo-
rem [25], the values �x∗ and �y∗ that maximize the likelihood
satisfy a system of equations for N + N (N−1)

2 variables. These
equations are

〈k̄i〉 =
∑
j �=i

pi j = k̄∗
i ∀ i, (E1)

〈ai j (t )ai j (t + 1)〉 = qi j (1) = h̄∗
i j ∀ i, j, (E2)

where pi j and qi j (1), which are both functions of �x and �y,
as specified in Eqs. (D29) and (D31). These formulations not
only ensure the consistency of model estimates with observed
data but also enable the direct calculation of node and dyadic
properties based on the fitted model parameters.

For the models specified by H3, the system of N (N−1)
2 equa-

tions, as shown in Eq. (E2), is replaced with different sets of
equations depending on the constraints applied. Specifically,
we solve either N equations for each node given by

〈h̄i〉 =
∑
j �=i

qi j (1) = h̄∗
i ∀ i, (E3)

or a single aggregated equation for the entire network:

1

N

N∑
i=1

〈h̄i〉 =
∑
i �= j

qi j (1) = 1

N

N∑
i=1

h̄∗
i . (E4)

It is important to note that even if we impose a uniform β

across all nodes, qi j remains distinct for each pair due to its
dependence on the values of �α.

In general, the expressions for pi j and qi j are the ones
described in Eqs. (D29) and (D31), although if the long tra-
jectory limit is satisfied, the thermodynamic limit versions can
be implemented.

APPENDIX F: FROM MEMORY TO MEMORYLESS

Here we demonstrate how, starting from the full model and
deactivating the memory component, we can derive the same
expression for pi j as in the memoryless case. The absence of
memory in the system can be effectively modeled by setting
βi = 0 for all i, which translates to Ji j = 0 for all pairs i, j.
This setting leads to the simplification of the Hamiltonian,
implying

λ+
i j = 2 cosh Bi j, (F1)

λ−
i j = 0, (F2)√

sinh2(Bi j ) + e−4Ji j = cosh Bi j . (F3)

Using these equations in the expression of 〈σi, j (t )〉
[Eq. (D15)], we have

〈σi j (t )〉 = sinh Bi j

cosh Bi j
= e2Bi j − 1

e2Bi j + 1
. (F4)

Considering that Bi j = 1
2 [ln(xi ) + ln(x j )], we obtain

〈σi j (t )〉 =
(

xix j − 1

xix j + 1

)
. (F5)

The primary quantity of interest is 〈ai j〉. Recalling the rela-
tionship between the spin variable and the adjacency matrix
element 〈ai j〉 = 〈σt 〉+1

2 , we get

〈ai j〉 = xix j

xix j + 1
. (F6)

This expression for 〈ai j〉 matches exactly with that expected
in the memoryless case.

APPENDIX G: DERIVING THE STOCHASTIC MATRICES

The model constructs each link within the network through
a stochastic matrix, which encapsulates the dynamics and
transition probabilities of link formation and dissolution over
time. In this section, we describe the formulation of this
matrix, grounding our discussion in the quantities previously
defined in the model. We aim to explain the coupled probabil-
ities of events for each link by utilizing the defined parameters
and relationships. We begin by connecting these quantities to
formally introduce the stochastic matrix for each link.
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(1) The probability that two nodes have a connection at
time t and t + τ (with τ = 1):

P[ai j (t + τ ) = 1 and ai j (t ) = 1]

= 〈ai j (t )ai j (t + 1)〉 = qi j . (G1)

(2) The probability that two nodes have a connection at
time t and not t + τ :

P[ai j (t + τ ) = 0 and ai j (t ) = 1]

= 〈ai j (t )[1 − ai j (t + 1)]〉 = pi j − qi j . (G2)

(3) The probability that two nodes do not have a connec-
tion at time t having a connection a time t + τ :

P[ai j (t + τ ) = 1 and ai j (t ) = 0]

= 〈[1 − ai j (t )]ai j (t + 1)〉 = pi j − qi j . (G3)

(4) The probability that two nodes do not have a connec-
tion at time t and t + τ :

P[ai j (t + τ ) = 0 and ai j (t ) = 0]

= 〈[1 − ai j (t )][1 − ai j (t + 1)]〉 = 1 − 2pi j + qi j .

(G4)

Defining these elements, we can write the transition matrix
Pi j equal in the form for each couple of nodes

Pi j =
⎡
⎣ qi j

pi j

pi j−qi j

pi j

pi j−qi j

1−pi j

1−2pi j+qi j

1−pi j

⎤
⎦. (G5)

Once the values of α∗
i and β∗

i are determined, each transi-
tion matrix operates independently, signifying that each link
trajectory evolves in isolation, unaffected by the behaviors of
other links. This independence allows for a modular approach
to analyzing the network dynamics. We can separately analyze
the transition matrix for each link, studying its unique behav-
ior and characteristics. Subsequently, we can aggregate these
individual analyses to construct a comprehensive view of the
entire system’s evolution.

The eigenvalues and eigenvectors of these stochastic ma-
trices are particularly informative, as they encapsulate critical
aspects of the link dynamics, such as the response speed to
changes within the network. To find the eigenvalues we solve
the characteristic equation

Det(Pi j − μi j I ) =
∣∣∣∣∣∣

qi j

pi j
− μi j pi j−qi j

pi j

pi j−qi j

1−pi j

1−2pi j+qi j

1−pi j
− μi j

∣∣∣∣∣∣ = 0, (G6)

from which we obtain

μ
i j
(1) = 1, μ

i j
(2) = p2

i j − qi j

p2
i j − pi j

≡ μi j . (G7)

The stationary distribution, that is given by the eigenvector
related to the unitary eigenvalue, is

πi j = (pi j, 1 − pi j ), (G8)

while the second eigenvalue can be interpreted as an in-
dication of how fast the link converges to its stationary
distribution, as remarked in the main text.

APPENDIX H: TEMPORAL EXPONENTIAL RANDOM
GRAPHS AS MAXIMUM-ENTROPY PROBABILITY

In this Appendix, we demonstrate how temporal exponen-
tial random graph models (TERGMs), introduced by Hanneke
in 2010 [13], are inherently structured as maximum-entropy
probability distributions. Hanneke’s seminal work proposed
a dynamic extension of traditional exponential random graph
models (ERGMs) to accommodate time-varying networks,
employing a Markovian assumption to model the temporal
evolution of networks:

P (Gt, Gt−1, Gt−2, . . . , G1|G0)

= P(Gt |Gt−1)P(Gt−1|Gt−2) . . . P(G1|G0). (H1)

In this way, Hanneke develops a nontrivial generalization of
traditional ERGMs. Specifically, he proposes that the con-
ditional probability of observing a network state Gt given
its previous state Gt−1 can be modeled using an ERGM-like
framework. The model is formalized as follows:

P (Gt|Gt−1, �θ ) = e�θC(Gt,Gt−1 )

Zt (�θ, Gt−1)
, (H2)

where C(Gt, Gt−1) is a vector of some properties depending
on Gt and Gt−1, and �θ are the associated Lagrange multipliers.
Similar to ERGMs, TERGMs can also be derived from an
entropy maximization framework. We begin with a general
consideration, and then we show how to reproduce the func-
tional form of the TERGMs. In general the entropy of the
trajectory reads as

S[P] ≡ −
∑
G

P (G) lnP (G), (H3)

where P (G) is the probability distribution over all possible
graph trajectories G.

The goal is to find a probability distribution P (G) that
maximizes this entropy subject to the constraint that the ex-
pected values of certain network properties Ci(G) match their
observed values C∗

i , and that the distribution is properly nor-
malized. This optimization problem is typically solved using
the method of Lagrange multipliers:

∂

∂P(G)

⎡
⎢⎣S[P (G)] + α

⎛
⎝1 −

∑
G

P(G)

⎞
⎠

+
∑

i

θi

⎛
⎝C∗

i −
∑
G

P(G)Ci(G)

⎞
⎠
⎤
⎥⎦. (H4)

The solution of this problem is given by

P(G|�θ ) = e−∑i θiCi (G)

Z (�θ )
, (H5)

that represents an ensemble of trajectories, where

Z (�θ ) =
∑
G

e−∑i θiCi (G) (H6)

is the partition function.
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Now, we can note that if

Ci(G) =
T∑
t

Ci(Gt )

T
(H7)

is the sufficient statistic, Eq. (H5) becomes

P(G|�θ ) =
∏

t

e−∑i θi
Ci (Gt )

T

Z (�θ )
=
∏

t

P(Gt |�θ ), (H8)

where

P(Gt |�θ ) = e−∑i θi
Ci (Gt )

T

Zt (�θ )
(H9)

and

Zt (�θ ) =
∑
Gt

e−∑i θi
Ci (Gt )

T . (H10)

Equation (H8), corresponds to the scenario described in (9).
On the other hand, if we have

Ci(G) =
T∑
t

Ci(Gt |Gt−1)

T
, (H11)

we obtain that

P(G|�θ ) =
∏

t

P(Gt |Gt−1, �θ ), (H12)

where

P(Gt |Gt−1, �θ ) = e−∑i θi
Ci (Gt |Gt−1 )

T

Zt (�θ, Gt−1)
, (H13)

with

Zt (�θ, Gt−1) =
∑
Gt

e−∑i θi
Ci (Gt |Gt−1 )

T . (H14)

Equation (H13) is a particular case of the scenario indicated
in Eq. (11) of the main text, and corresponds to the functional
form of the TERGMs (H2).

Maintaining time-independent parameters is equivalent to
assuming a stationary data-generating process. This assump-
tion implies that we are dealing with a system in equilibrium,
thereby inducing the resulting model described in (H12) a
homogeneous Markov process.

As discussed in the main text, even if we consider the
system at the equilibrium, we can still say something related
to the behavior out of the equilibrium (i.e., relaxation time).

APPENDIX I: STRUCTURAL BREAK DETECTION:
SYNTHETIC EXPERIMENTS

In this Appendix, we present the results from a series of
synthetic experiments designed to evaluate the efficacy of
our structural break detection approach. These experiments
involve simulating temporal networks in a controlled envi-
ronment where we can precisely manage external shocks. We
begin by defining two matrices:

P ≡ (pi j ) ∀ i, j ∈ N,

Q ≡ (qi j ) ∀ i, j ∈ N.
(I1)

FIG. 4. Figure shows the impact of varying levels of pertur-
bations for a synthetic temporal network. These perturbations are
categorized into five levels: L1 (100%), L2 (500%), L3 (1000%), L4
(3000%), and L5 (5000%), as indicated in the legend. Points repre-
sent the predicted breaks for each level of perturbation, accompanied
by corresponding error bars. The red vertical lines denote external
shocks, which remain consistent across data generated with different
intensities of the shock.

From Eq. (I1), we can derive the stochastic matrix for each
pair of nodes, as described in Eq. (41). These matrices govern
the evolution of links over time. Initially, we generate a graph
based on P and, subsequently, we let the connections evolve
according to the stochastic matrix defined for each link from
elements i, j of P and Q.

At a designated point in the timeline, we introduce an
external shock by altering the values in the matrices P and Q
[Eq. (I1)]. Following this perturbation, the connectivity of the
links continues to evolve based on the modified matrices. The
aim of these experiments is to determine whether our struc-
tural break detection algorithm can effectively identify these
induced perturbations. We introduce stochastic perturbations
to the elements of a matrix to simulate shocks or noise. This
is achieved by modifying each element by either increasing
or decreasing its value by a random factor determined by a
specified maximum percentage p. The perturbation process
can be outlined as follows:

(i) Each element in the matrix undergoes a random adjust-
ment process. With equal probability, the element is either
increased or decreased. The magnitude of this adjustment is
randomly selected up to a maximum of p% of the element’s
current value.

(ii) For increments, the adjustment factor is calculated as
1 + random value

100 , where random value is a uniformly distributed
random number between 0 and p. For decrements, it is 1 −
random value

100 .
(iii) The calculated factor is then multiplied by the element

i, j of the matrix to apply the adjustment.
(iv) Postadjustment, any element values exceeding 1 are

capped at 1, and those falling below or equal to 0 are set to
a minimum threshold of 0.05 to maintain a defined range and
avoid negative values.

The resultant matrix represents the original matrix sub-
jected to random perturbations, simulating a shock.

Given the nature of the data-generating process behind the
synthetic graph trajectory, the approach we choose to test is
the one that considers memory effects; therefore, in the struc-
tural break detection algorithm, we use the likelihood related
to the model described by the Hamiltonian H2, considering
constraints at the node level.
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Figure 4 demonstrates a robust alignment between pre-
dicted and actual shocks, underscoring the model’s ef-
fectiveness in identifying structural breaks. The algorithm
successfully captures numerous breaks in various scenarios
but struggles with weaker perturbations and often overpredicts
change points under stronger disturbances. Across all cases,
there are instances where the model inaccurately forecasts
change points, false positives that become more common
as perturbation intensity increases. Intense shocks seem to

induce significant system instability, leading to prolonged pe-
riods where the system’s behavior deviates from the expected
norm. These deviations often drive the algorithm to suggest
breaks, even in the absence of actual external shocks. There-
fore, the identification of such points does not necessarily
signify errors; rather, it reflects our model’s recommendation
to apply different parameters for these segments, highlight-
ing its adaptability in handling dynamic changes within the
network.
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