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Abstract— Self-triggered feedback control is used as a
means to reduce the energy and communication require-
ments of networked systems. Triggered-control schemes
result in aperiodic communications, with a potential for
communication conflicts when multiple feedback loops are
closed over a shared network. In this paper, we analyze
the necessary/sufficient conditions for simultaneous sta-
bilizability of a set of nonlinear systems over a network
from the perspective of scheduling theory, using Lyapunov
functions and input to state stability. We then propose a
recursively-feasible self-triggering scheme that minimizes
the usage of the communication channel while ensuring the
stability of all systems.

Index Terms— Self-triggered control, networked sys-
tems, scheduling, simultaneous stabilizability

I. INTRODUCTION

Aperiodic feedback control, and particularly event- or self-
triggered feedback control, are typically used as means to
reduce the energy and communication requirements of a con-
trol system, minimizing the number of updates of the control
variable per unit time [1]–[4]. Advantages become evident
in the context of control loops closed over a communication
network, where a parsimonious usage of the communication
channel allows the control loop to coexist with other services
sharing the same communication medium. In this case, the
framework of self-triggered control is particularly interesting
since it avoids all communications when inputs are not being
updated.

Such designs raise a number of issues, besides the obvious
challenge of enforcing the stability of the closed-loop sys-
tem despite the reduced communication rate. Control over
a network requires the encoding of measures and control
signals in digital form, bringing about the limitations of a
quantized representation of real-valued data that led to the
modern theory of quantized control [5]–[8]. Furthermore, self-
triggered control of multiple nodes involves the coupling
between a problem of communication scheduling and one of
ensuring or even optimizing control performances given the
chosen communication schedule. This is a well-known issue in
real-time systems and network control systems literature [9]–
[12], discussed at least since [13]. Joint scheduling and control
design was discussed for almost as long [14]–[19]. In all
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these cases, the focus is typically on ensuring the performance
of a given feedback loop closed over a network, possibly
coping with the presence of other tasks competing for the same
communication resource (as was the case in [2], one of the
first publications introducing the current framework for event-
triggered control). The implications of parallel control loops
competing for the same communication resource, and their
joint design, are less frequently investigated. An exception
is in the research line that started with [20] (see e.g., [21]–
[23]) where constraints on wide classes of communication
protocols, in the form of a Maximum Allowable Transfer
Interval (MATI), were computed to ensure the stability of
multiple feedback loops closed over a network. Our work here
is close in spirit to some of the ideas that stemmed from this
literature. However, here we address the more general problem
of determining whether a protocol exists at all, which will sta-
bilize the network of nonlinear nodes. Once the stabilizability
of the network is established, we then address the problem
of developing a dynamic communication protocol that also
minimizes the usage of the communication medium. In this
sense, our target is closest to [24], which provides a theoretical
basis for schedulability analysis and scheduler synthesis for
LTI systems. In this paper, we address roughly this same class
of problems, but with a few relevant differences. We introduce
in Section II the notion of connection patterns, which allows
us to describe a wide variety of network structures. Our main
contributions are then in Sections III and IV. In Section III
we derive the conditions for the simultaneous stabilizability
of a set of systems over a network, and we discuss the rela-
tions between simultaneous stabilizability of nonlinear systems
and of their linearization. Then, in Section IV we define a
centralized triggering law which retains the main property of
self-triggered isolated systems: the connection of one or more
systems is triggered only when necessary to ensure asymptotic
stability. By construction, the centralized triggering function
does not introduce any communication overhead since the state
measurements are communicated by each system only at the
time when its connection is triggered.

II. PROBLEM SETTING

A. Definition of the model class

Let us consider a discrete-time nonlinear system

x(t+ 1) = f(x(t), u(t)), x ∈ Rn, u ∈ Rm, (1)

with an equilibrium at x = u = 0 and with f continuously
differentiable in x and u. We assume throughout the paper



that the equilibrium of (1) is not asymptotically stable, since
the other case is not of interest in this work. Consider then a
feedback control

u(t) = k(x(t)) + e(t), (2)

continuously differentiable in x and such that k(0) = 0, which
makes the equilibrium x = 0, u = 0 of the closed-loop system

x(t+ 1) = f (x(t), k(x(t)) + e(t))

input-to-state stable (ISS) with respect to errors e in the
evaluation of the feedback k(x). Assume, furthermore, that the
Jacobian of the closed-loop equilibrium, ∂

∂xf (x, k(x)) |x=0,
is Hurwitz. In the following sections, we will work with the
above nonlinear system, and with its linearization at the origin.
To distinguish the two, we denote by M nl the nonlinear system
with dynamics (1), (2), and by M l its linearization at the
origin.

Let us then define

x(1, ξ, u) := f(ξ, u)

the state reached by M nl from initial condition ξ with input u
in one step, and let x(t, ξ, ·) be the iteration of x(1, ξ, ·) for
t times. According to a well-known result (see e.g., [25], or
[26] for the equivalent in continuous-time systems), the origin
of the closed-loop system is ISS for the input e(t) if and only
if it admits a Lyapunov function V (x), such that

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀x ∈ Rn (3)

and

V (x(1, ξ, k(ξ) + e))− V (ξ) ≤
− α3(|ξ|) + γe(|e|), ∀ ξ ∈ Rn, ∀ e ∈ Rn (4)

where α1, α2, α3, are K∞ functions and γe is a K function.
Throughout the paper we take the following assumption.
Assumption 1: V is quadratic.

Restricting our choice of Lyapunov functions to the family
of quadratic functions allows us to ensure that a Lyapunov
function for a nonlinear system M nl is a Lyapunov function
for its linearization M l as well. This will be used in Section III
to prove the necessary conditions on the sabilizability of a
network of systems M nl. However notice that, other than
Lemma 3, Theorem 6, and Theorem 7, which regard these
necessary conditions, all results in this paper hold indepen-
dently of Assumption 1.

Consider now the case where the input u is only updated
on a subsequence {t1, t2, . . .} ⊂ Z of time instants, and
assume, for the moment, that the only source of error e is
the discrepancy between k(x(t)) and k(x(tj)), t ∈ [tj , tj+1].
The equilibrium remains closed-loop asymptotically stable
provided that the sequence of update times is constructed such
that

γe(|k(x(t))− k(x(tj))|) ≤ (1− σ)α3(|x(t)|), (5)

for some σ ∈ (0, 1).
This is the idea behind the event and self-triggered control

definitions in [27] and, in continuous time, in [2], [28], [29].

At a generic time t, with tj ≤ t ≤ tj+1, an event-triggered
control law is simply synthesized by triggering an update if

γe
(
|k(x(t+ 1))− k(x(tj))|

)
> (1− σ)α3

(
|x(t)|

)
.

The above condition implies that negativity of the left-hand
side of (4) is no longer ensured unless the input is updated
at time t. Note that, while the above condition is formulated
in event form, the arguments x(t + 1) and x(tj) are fully
determined at time tj , since the model (1) is not affected by
external noise. Therefore, the triggering process is effectively
self-driven.

Consider, however, the case where M nl is but one of several
nodes in a networked control system, and the update of the
input u of a node must compete for resources with the input
updates of other nodes. While the problem of scheduling input
updates in the presence of other preemptive processes was
already discussed (see e.g., [2]), in this case, preemption of one
update in favor of another may result in violation of constraint
(5) for the preempted node. Design of the update sequences for
all network nodes must, in this case, confront the additional
constraint of ensuring the asymptotic stability of all nodes at
the same time. In order to properly discuss the implications
of this fact, we need to introduce some terms and definitions.

B. Definition of the network topology and communication
constraints

In the sequel, we will frequently refer to intervals of
integers. To keep our notation short, we will denote by Iba
the set of integers {a, a+ 1, . . . , b}.

Consider a network of q nodes competing for a commu-
nication resource. Assume that each node is modeled as in
(1), with possibly different systems for different nodes, and
assume the presence of a centralized scheduler that can assign
the resource based on knowledge of the state of all nodes.
When a node does not receive an update on its input, it uses
the last received input.

In the simplest scenario, we may imagine that only one
node of the network can access the resource at each time
instant: we will call this the trivial connection topology. In
this case, we could formulate the problem by simply asking
that (5) be satisfied without updating more than one input
at a time. In more general cases, however, connections may
follow more elaborate patterns: information regarding multiple
input values could be packed in a single packet or transmitted
during a single time slot, or multiple communication channels
could be used. Also, in the case where the input is updated
based on information gathered by one out of multiple antennas,
satellites, or cameras that collectively cover the whole network,
the sets of nodes covered by different antennas, satellites, or
cameras could be of different cardinality.

To encompass all these scenarios under a common frame-
work, we introduce the concept of connection pattern. Con-
sider a set C of tuples C where

C := (c1, . . . , cm). (6)

Different tuples may have a different number of elements
(different m), and the elements of a tuple C encode the nodes
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Fig. 1. A network with 6 nodes and 4 connection patterns. We encode
with C := {(1, 2), (4, 5, 6), (3), (2, 5)} the condition that the input of
nodes within the same ellipse can be updated simultaneously.

whose input is updated under the corresponding connection
pattern (if c ∈ C, then node c is connected when connection
pattern C is chosen, see Fig. 1 for an example). Set C thus
defines the connection topology, by describing all possible
combinations of nodes whose inputs can be updated simul-
taneously. Assuming, as we did above, to have a network of
q nodes, in the case of a trivial connection topology the set
C contains exactly q tuples, each made of a single symbol. In
the case of a multi-channel communication network, when up
to m arbitrary inputs can be updated at the same time, the set

C contains
∑m

i=1

(
q
i

)
tuples, corresponding to all possible

combinations of up to m symbols out of the q available
ones. Of course, more complex constraints can be encoded
by suitably shaping the elements in C.

Stabilization of multiple feedback loops over a network is
typically discussed in terms of communication protocols and
Lyapunov-based stability properties of the couple protocol-
system [21]. In our case, results are more easily illustrated
in terms of the schedule, that is, the sequence of connection
patterns that ensue from a given protocol. Schedules will
therefore be the central ingredient in our line of attack.
Scheduling connection pattern C at time t means that only
nodes j ∈ C can communicate at time t. A schedule S is,
then, an infinite sequence of connection patterns:

S := (C1, C2, . . .) .

C. Problems Statement
We can now formulate the two problems object of this paper.

We shall first investigate the simultaneous stabilizability of the
network.

Problem 1: Given a network of nodes M nl
j , j ∈ Iq1, and

the constraints induced by a set of connection patterns C,
determine under what conditions it is possible to ensure the
asymptotic stability of all the nodes in the network.
Then, given a network whose nodes can be simultaneously
stabilized, we will address the design of a self-triggered
control scheme.

Problem 2: Given a network of nodes M nl
j , j ∈ Iq1, and the

constraints induced by a set of connection patterns C, devise
a self-triggered control scheme to ensure asymptotic stability
of all the nodes in the network.
We address Problem 1 in Section III and Problem 2 in
Section IV.

III. SIMULTANEOUS STABILIZABILITY

It is immediately apparent that Problem 1 is tightly related
to a scheduling problem: does a schedule S exist that en-

sures the asymptotic stability of all nodes? We clarify this
connection first, in Section III-A, by characterizing bounds on
the frequency with which a single node needs input updates
to guarantee stability, and then, in Section III-B, by using
these constraints to formulate simultaneous stabilizability con-
ditions. The main results are in Theorems 5 and 7, which
provide separate sufficient and necessary conditions.

A. p-step stabilizability of a single node

We begin by defining a condition on the maximum number
of time steps that a node can remain disconnected, without
becoming unstable. The condition will be applied both to
nonlinear systems (M nl) and to their linearizations (M l), hence
we write it in terms of a generic system M .

Definition 1 (p-step stabilizable pair): Consider a system
M with dynamics (1) and (2), and a Lyapunov function V (x)
satisfying (3) and (4). The pair (M,V ) is p-step stabilizable
with parameter σ ∈ (0, 1) if

γe(|k(x(t, ξ, k(ξ)))− k(ξ)|) ≤ (1− σ)α3(|x(t, ξ, k(ξ))|),
∀ ξ ∈ Rn, ∀ t ∈ Ip−1

0 . (7)
Clearly, the above definition is only meaningful if p ≥ 1,
so we will always assume it in the following. The definition
states that a pair (M,V ) is p-step stabilizable for parameter
σ if all p induced systems that are iterations of the original
system, with input u held constant for 1 up to p steps, are
simultaneously stabilized by the feedback u = k(x), since (7)
with (4) implies that the Lyapunov function V decreases at
the rate upper bounded by −σα3(x), for all p systems:

V (x(t+ 1, ξ, k(ξ)))− V (x(t, ξ, k(ξ)))

≤ −σα3(|x(t, ξ, k(ξ))|),
∀ ξ ∈ Rn, ∀ t ∈ Ip−1

0 . (8)

One may therefore see p as a MATI for the discrete-time
system (1), (2), under the family of protocols that updates
u at arbitrary intervals between 1 and p steps. Note that, in
general, a pair (M,V ) that is p-step stabilizable for a given σ
may not be so for a larger σ, and a system M that is p-step
stabilizable paired with V may not be so when paired with a
different Lyapunov function.

We are therefore implicitly assuming that the control design
for the isolated node (and therefore the choice of the Lyapunov
function and the tolerable convergence speed) is completed
before the stabilizability properties of the node in the network
are discussed.

Later we will also use the more stringent definition of
maximally p-step stabilizable pair for parameter σ, meaning a
pair that is p-step stabilizable but not (p+1)-step stabilizable,
keeping parameter σ fixed. The results that follow in this
Section provide a bound for the p-step stabilizability of a linear
system, and a relation between these bounds and those of a
nonlinear system of which this is the linearization. The proofs
are reported in the Appendix.

Let us consider the linear system M l defined as

x(t+ 1) = Ax(t) +Bu(t), u(t) = Kx(t) + e(t), (9)



such that matrix A+BK is asymptotically stable. The closed-
loop system

x(t+ 1) = (A+BK)x(t) +Be(t)

has a Lyapunov function V = x⊤Px such that

(A+BK)⊤P (A+BK)− P = −Q, (10)

with P and Q positive definite.
Lemma 1: The linear system M l and the Lyapunov function

satisfying (10) form a maximally p-step stabilizable pair for
parameter σ ∈ (0, 1), with

p := {max p̄ : D(t) ⪯ −σG⊤(t)QG(t), ∀ t ∈ Ip̄−1
0 },

where G(t) :=
(
At +

∑t−1
j=0 A

jBK
)

and D(t) := (AG(t) +

BK)⊤P (AG(t) +BK)−G(t)⊤PG(t).
Obviously, decreasing the value of σ in the above equation
relaxes the constraint on p, at the expense of a slower
convergence rate of the closed-loop system.

Notice that, while the above lemma ensures existence of a
finite upper bound to the step stabilizability parameter of a
linear system, we can prove existence of such an upper bound
also for the nonlinear system M nl.

Lemma 2: For any σnl ∈ (0, 1) there exists a finite pnl such
that the pair (M nl, V ) is maximally pnl-step stabilizable with
parameter σnl.
Furthermore, under Assumption 1, we can relate the step
stabilizability properties of a nonlinear system M nl and its
linearization M l as follows.

Lemma 3: Under Assumption 1, if the pair (M nl, V ) is pnl-
step stabilizable with parameter σnl, then the pair (M l, V ) is
pl-step stabilizable with parameter σl, with 0 < σl ≤ σnl and
pl ≥ pnl.

Example 1: Take as M nl the following nonlinear system

x(t+ 1) = arctan(x(t)) +
x(t)

2
+ u(t),

u(t) = −0.51 arctan(x(t)) + e(t),

and take V (x) := x2 and α3(|x|) := x2

100 . If we set x(0) = ξ
and assume that u(t) is only updated at t = 0, the closed loop
dynamics become

x(t+ 1) = arctan(x(t)) +
x(t)

2
− 0.51 arctan(ξ).

The linearization M l of the above system at x(t) = 0 and
ξ = 0 is equal to

x(t+ 1) = 1.5x(t)− 0.51ξ,

which satisfies (8) with p := pl = 10 for sufficiently small σ,
as shown in Figure 2. The pair (M l, V ) is 10-step stabilizable,
for sufficiently small σ. Consider however the full nonlinear
model M nl. By explicitly evaluating the largest p such that

V (x(t, ξ, k(ξ)))− V (x(t− 1, ξ, k(ξ))) < 0, ∀ t ≤ p,

as a function of ξ, we obtain the curve in Figure 3. As ex-
pected, near the origin and for small enough σ, (8) is satisfied
for p = 10. However, there are larger initial conditions for
which (8) is satisfied only up to p := pnl = 6, no matter how
small parameter σ is taken. The pair (M nl, V ) is, therefore, at
most 6-step stabilizable, even for extremely small σ.

1 10 11
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Fig. 2. Variation in V , with ξ = σ = 1, for M l in Example 1. Note
how V decreases up to t = 10.
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Fig. 3. The maximum value of p for which (8) is satisfied in system Mnl

in Example 1, for an arbitrarily small parameter σ > 0, as a function of
|ξ|.

B. Simultaneous stabilizability

We have thus established a relation between the step stabi-
lizability of a nonlinear system M nl and its linearization M l,
and we have provided, in Lemma 1, a formula to compute pa-
rameter pl. We will see shortly how this parameter can be used
to formulate conditions for the simultaneous stabilizability of
all nodes in the network. We can now address Problem 1.

We start by formalizing the objective of controlling all sys-
tems to the origin while enforcing the convergence properties
guaranteed by condition (5) as the following simultaneous
stabilizability property, for a set of q systems M nl

j , paired with
as many quadratic Lyapunov functions Vj .

Definition 2 (Simultaneous stabilizability, SS): A set of
systems M nl

j , j ∈ Iq1, is SS if there exist parameters σj and a
schedule S := (C1, C2, . . .), Ck ∈ C, that enforces (5) for all
systems.

To familiarize with the above definition, let us consider a
set of nodes with trivial connection topology. In this case,
each symbol C in the schedule defines the connection of a
single node cj , so that we can identify the connection pattern
C with the symbol cj . If we assume that each pair (M nl

j , Vj)
is pj-step stabilizable for some finite pj , then SS is guaranteed
provided we find a schedule S := (cj1 , cj2 , . . .) such that
each symbol cj appears at least once every pj steps. This
is an example of a well-known scheduling problem, known
as the pinwheel scheduling [30]. The pinwheel scheduling
problem is NP-complete, but numerous results exist which
allow one to decide the existence of a schedule for large
families of pinwheel problems with low computational effort
[30]–[32]. In particular, quite interestingly for the scope of
this paper, it was proved in [30] that all pinwheel problems
admit a schedule if and only if they admit a periodic schedule,



with period bounded by a function of the parameters pj . This
means that the schedulability of an instance of the pinwheel
problem can always be decided by searching over a finite set
of periodic schedules. This may lead us to think that proving
SS can be done using standard scheduling machinery. This is,
unfortunately, only partially true, for two reasons. First, the
general case of nontrivial connection topology brings some
theoretical complications. Second, parameters pj are only
upper bounds to the time that a node can remain disconnected.
In the following, we introduce a set of sufficient and set
of necessary conditions for SS. We assume that all pairs
(M nl

j , Vj) (resp. (M l
j , Vj)) are maximally pnl

j (resp. pl
j)-step

stabilizable for arbitrarily small σj > 0, and we know from
Lemma 2 that pnl

j and pl
j are always finite.

Let us begin by addressing the sufficient conditions. Our
strategy is to approximate a problem with arbitrary connec-
tion topology with one with trivial connection topology, and
then to use standard sufficient conditions from the pinwheel
scheduling theory.

Given a set of q nodes with r (nontrivial) connection
patterns, consider the vector p := (p1, . . . , pq) ∈ Rq

+ of
step stabilizability constraints, and the following mixed-integer
optimization problem

min
ρi,ηi,j

r∑
i=1

ρi (11a)

s.t. ρi ≥
1

pj
ηi,j , ∀ i ∈ Ir1, j ∈ Iq1, (11b)∑

i:j∈Ci

ηi,j = 1, ∀ j ∈ Iq1, (11c)

ηi,j ∈ {0, 1}, ∀ i ∈ Ir1, ∀ j ∈ Iq1. (11d)

In the above problem, index i ranges over the available
connection patterns, while index j ranges over the nodes.
We can therefore see the variables ηi,j as the elements of
a matrix η with columns corresponding to nodes, and rows to
connection patterns. Constraint (11c) imposes that columns of
η have a single nonzero element, which defines an assignment
of the node to a unique connection pattern. Constraint (11b)
then states that, for each connection pattern Ci, parameter ρi
be larger than the inverse of the step-stabilizability constraint
pj for all nodes j assigned to connection pattern Ci. Parameter
ρi is thus akin to a frequency with which connection pattern
Ci should be scheduled, in order to ensure the stability of all
the nodes that were assigned to it. Call ρ∗(p) ∈ Rr

+, η
∗(p) ∈

{0, 1}r×q an optimal solution of the above problem. By (11a)
and (11b), for each connection pattern Ci, either ρi = 0 (no
node was assigned to Ci), or there exists at least one node j
such that ρ∗i (p) = 1/pj . We may consider these as the critical
nodes, as they constrain the frequency with which connection
patterns should be scheduled. We may then select one critical
node for each connection pattern, and prove that SS of this
set of nodes with trivial connection topology implies SS of
the original set of nods with the original connection topology.
We formalize this in Lemma 4, using a selection function,
which returns the set of indices of the selected systems, and a
connection pattern translation function, which given the index

j of one of the selected systems returns the connection pattern
the system was attached to.

Definition 3 (Selection function Σ(p,C)): Given p and C,
return a subset {j} of nodes such that, for each i ∈ Ir1 with
ρ∗i (p) > 0, there exists a unique j ∈ Σ(p,C) such that j ∈ Ci,
η∗i,j(p) = 1, ρ∗i (p) =

1
pj

.
Note that the function above is required to return one

symbol j ∈ Iq1 satisfying the stated constraints, but the solution
of (11) may admit multiple such j. Which symbol is chosen
is irrelevant for the results that follow.

Definition 4 (Translation function Θ(p,C, j)): Given p, C,
and a symbol j ∈ Σ(p,C), return the unique Ci such that
η∗i,j = 1; i.e., Θ(p,C, j) := {Ci with η∗i,j = 1}.

For better readability, in the following, we write the selec-
tion function Σ(Iq1) and the translation function Θ(j), leaving
implicit the problem parameters (p,C) while explicating the
effect of the selection function of selecting a subset Σ(Iq1) of
the symbols Iq1.

Consider a set Iq1 of nodes (1) endowed with Lyapunov
functions to form pi-step stabilizable pairs, and a set C :=
{C1, . . . , Cr} with nontrivial connection topology.

Lemma 4: A sufficient condition for simultaneous stabi-
lization of nodes Iq1 is that the subnet with nodes Σ(Iq1) be
SS with trivial connection topology Ĉ := Σ(Iq1). Moreover,
if a schedule Ŝ = (Ĉ1, Ĉ2, . . .) in the trivial connection
topology Ĉ stabilizes the subnet Σ(Iq1), then the schedule
S := (C1, C2, . . .) with Ci := Θ(Ĉi) simultaneously stabilizes
all nodes Iq1.
The above lemma, whose proof is in the Appendix, provides
a means to prove SS for a network with nontrivial connec-
tion topology, by checking SS for a subnetwork with trivial
connection topology, and a means to translate a stabilizing
schedule for the subnetwork into one for the full network.
The computation of a stabilizing schedule for the subnetwork
(with trivial connection topology) can be performed using
the pinwheel scheduling algorithms mentioned in [30]–[32],
giving us the following result.

Theorem 5 (SS, sufficient conditions): Sufficient conditions
for SS of nodes Iq1 are

r∑
i=1

ρ∗i (p
nl) ≤ 3

4
, (12)

or
r∑

i=1

ρ∗i (p
nl) ≤ 5

6
and ∃ i ∈ Ir1 : ρ∗i (p

nl) =
1

2
. (13)

Proof: By Lemma 4, if the nodes Σ(Iq1) (defined by
solving (11) and with the corresponding trivial connection
topology) are SS, then the nodes Iq1 with nontrivial connection
topology are SS. A sufficient condition for the SS of nodes
Σ(Iq1) is the existence of a schedule where each node j ∈
Σ(Iq1) is connected at least once every pnl

j steps. Conditions
(12) and (13) are then proved to be sufficient for the existence
of such a schedule in [33].

Example 2: Consider again the network in Fig. 1, and
assume that, for a given parameter σ, all nodes are maximally
pnl-step stabilizable with pnl

1 = 10, pnl
2 = 2, pnl

3 = 8,
pnl
4 = 10, pnl

5 = 3, pnl
6 = 9. A naı̈ve attempt might be to try



to use only connection patterns C1, C2, C3, which together
cover all the network nodes, ignoring C4. In this case, we
easily notice that the schedule S := (C1, C2, C1, C2, . . .)
is the only possible schedule that connects nodes 2 and 5
frequently enough, but since it never connects node 3 it
will not simultaneously stabilize the network. However, the
solution of (11) is ρ∗(pnl) = (1/10, 1/9, 1/8, 1/2), and

η∗(pnl) =


1 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 0 0
0 1 0 0 1 0

 .

We have that
∑4

i=1 ρ
∗
i (p

nl) ≃ 0.836 < 5
6 , ρ∗4(p) = 1/2,

so by Theorem 5 the network is SS. To find a stabilizing
schedule, we note that the selection function has value Σ(I61) =
(1, 2, 3, 6). Nodes (1, 2, 3, 6) with trivial connection topology
are simultaneously stabilized, for example, by the schedule
Ŝ := (2, 1, 2, 3, 2, 6, 2, 1, 2, 3, 2, 6, . . .). We have Θ(1) = C1,
Θ(2) = C4, Θ(3) = C3, Θ(6) = C2, therefore by Lemma 4
the full network is simultaneously stabilized by the schedule
S =: (C4, C1, C4, C2, C4, C3, C4, C1, C4, C2, C4, C3, . . .).

Let us now attack the problem of deriving the necessary
conditions for SS. We begin with the following result.

Theorem 6: A necessary condition for the SS of M nl
j , j ∈

Iq1, is that there exists a periodic schedule

S := (C1, C2, . . . , Cl, C1, C2, . . .) ,

of period l ≤
∏

j p
l
j , such that every symbol j belongs to

Ci for at least one Ci in every subsequence of pl
j successive

connection patterns.
Proof: Assume that the systems M nl

j are SS by some
schedule S := (C1, C2, . . .), possibly non-periodic. This
implies, by Lemma 3, that the same schedule simultaneously
stabilizes M l

j at the origin: the linearizations and the corre-
sponding Lyapunov functions form pl

j-step stabilizable pairs,
for suitable σj > 0, with pl

j ≥ pnl
j . Define an infinite sequence

of q-dimensional vectors (D1, D2, . . .), so that there is a vector
Dk for each tk ≥ 0, and that Dk,j (the j-th element of
vector Dk) represents the count, at time tk, of the number
of steps since the input of system j was last updated. If S
simultaneously stabilizes the set of linearized systems, given
that pl

j is maximal for any σj > 0, it must be that 0 ≤
Dk,j < pl

j , therefore vectors Dk can assume at most
∏q

j=1 p
l
j

different values. This means that the sequence (D1, D2, . . .)
must have two identical vectors, at most

∏q
j=1 p

l
j steps apart.

Let k1, k2 denote the time instants corresponding to these two
identical vectors; we have k2 − k1 ≤

∏q
j=1 p

l
j . Let Speriod :=

(Ck1
, . . . Ck2−1) be the corresponding finite subsequence of S.

The periodic schedule obtained by iterating Speriod indefinitely
ensures that every symbol j ∈ Ci for at least one Ci

in every subsequence of pl
j successive connection patterns,

and therefore simultaneously stabilizes the set of linearized
systems.
Part of the proof structure for Theorem 6 is taken from
Theorem 2.1 in [30] which, however, addresses a simpler setup
of the pinwheel scheduling of a set of q symbols. The above
theorem constrains the SS of an arbitrary network with the

SS of the corresponding network of linearized systems by a
periodic schedule. We can obtain a necessary condition for
the existence of such as schedule by recurring to a modified
version of problem (11). Consider the problem

min
ρ̂i,η̂i,j

r∑
i=1

ρ̂i (14a)

s.t.

r∑
i=1

ρ̂iη̂i,j ≥
1

pj
, ∀ i ∈ Ir1, j ∈ Iq1, (14b)

η̂i,j = 1, ∀ i ∈ Ir1, j ∈ Ci, (14c)
η̂i,j = 0, ∀ i ∈ Ir1, j /∈ Ci (14d)

and let ρ̂∗(p) ∈ Rr
+, η̂

∗(p) ∈ {0, 1}r×q be an optimal
solution. Notice that (14c) and (14d) are stating that η̂i,j = 1 if
and only if j ∈ Ci. In other words, variables ηi,j have a fixed
value, so that contrary to (11) the above is a Linear Program
(LP). We leave them in the problem statement to highlight
the formal symmetry between problems (11) and (14). Indeed,
while in (11) parameter ρi represents the frequency with which
a connection pattern should be scheduled to ensure, by itself,
stability of all nodes that were assigned to it, in (14) a node j is
simultaneously assigned by (14c) and (14d) to all connection
patterns Ci with j ∈ Ci. Then, interpreting ρ̂i as the average
portion of time slots allocated to connection pattern Ci, (14b)
is stating that the set of connection patterns Ci that connect
node j should collectively be allocated at least 1/pj of the
time slots. Using the optimal solution to the above LP, and
Theorem 6, we have the following.

Theorem 7 (SS, necessary condition): A necessary condi-
tion for SS of nodes Iq1 is that

r∑
i=1

ρ̂∗i (p
l) ≤ 1, (15)

Proof: According to Theorem 6, SS implies the existence
of a periodic schedule S such that every symbol j belongs to
a Ci for at least one Ci in every subsequence of pl

j successive
connection patterns. Consider a single period of the schedule
of length L. Every connection pattern Ci appears ρ̂iL times
in a period, for some ρ̂i ∈ [0, 1], and

r∑
i=1

Lρ̂i = L. (16)

Then, SS implies that, in schedule Ci, connection patterns that
contain symbol j appear in at least a fraction L/pj of all the
steps of a period L. Remembering that, according to (14c) and
(14d), η̂i,j = 1 if and only if j ∈ Ci, this with (16) imply that

r∑
i=1

Lρ̂iηi,j ≥
L

pl
j

, ∀ j ∈ Iq1.

The above inequality implies (14b), and therefore guarantees
the existence of a feasible solution ρ̂(pl) to (14). Furthermore,
by (16) such a solution satisfies

∑
i ρ̂i(p

l) = 1, and this
implies condition (15).

Theorems 5 and 7 partially solve Problem 1 by providing
separate necessary and sufficient conditions for SS. As far as
we know, a unified set of necessary and sufficient conditions



for SS cannot be given, except for the case where all nodes
are linear.

Corollary 8: For a network of linear systems, Theorem 6
provides necessary and sufficient conditions

Proof: If all nodes are linear, then pl
j and pnl

j coincide.
Then the conditions of Theorem 6 define a schedule that si-
multaneously stabilizes all nodes. They are therefore sufficient,
and not only necessary.
An implication of the above corollary is that with linear nodes
a stabilizing schedule exists if and only if a periodic stabilizing
schedule exists, while with nonlinear nodes we can expect that
any stabilizing schedule settles on a periodic sequence, once
the state is close enough to the equilibrium.

Note that the necessary condition (15) is based on ρ̂∗(p),
i.e., the optimizer of (14). On the other hand, the sufficient
conditions (12) and (13) are based on ρ∗(p), i.e., the opti-
mizer of (11). Computation of the two, therefore, requires the
solution of distinct optimization problems. Furthermore, there
exist networks that are SS, and hence satisfy the necessary
condition, while not satisfying the sufficient conditions, and
there exist networks that satisfy the necessary condition while
not being SS, as the next two examples show.

Example 3: Consider a set of 3 linear systems, described
as in (1), with the trivial connection topology and pl1 = pl2 =
3, pl3 = 4. In this case, ρ̂∗1(p

l) = ρ̂∗2(p
l) = 1

3 and ρ̂∗3(p
l) = 1

4 .
Therefore,

∑
i ρ̂

∗
i (p

l) = 11
12 which satisfies (15). Since the

systems are linear, pnl = pl, therefore
∑

i ρ
∗
i (p

nl) = 11
12 . As

a result, the sufficient conditions (12) and (13) are not satisfied.
Nevertheless, the simple periodic schedule S = (1, 2, 3, . . .)
simultaneously stabilizes the set of systems. This example
shows that the sufficient conditions (12) and (13) are not
necessary.

Example 4: Consider Example 3 with pl1 = 2, pl2 =
3, pl3 = 12 and the trivial connection topology. Similar to
Example 3,

∑
i ρ̂

∗
i (p

l) =
∑

i ρ
∗
i (p

nl) = 11
12 , which implies

the necessary condition (15) is satisfied but the sufficient
conditions (12) and (13) are not. Contrary to Example 3, one
can show by exhaustive search that the systems are not SS.
This example shows that the necessary condition (15) is not
sufficient.
To conclude, let us explore the application of Theorems 5 and
7 to the nonlinear system of Example 1.

Example 5: Consider a network with q nodes with the
nonlinear dynamics of Example 1. In case of trivial connection
topology we have pl = 10 and pnl = 6, equal for all nodes.
Sufficient condition (12) ensures that a network of at least
4 nodes can be simultaneously stabilized, while necessary
condition (15) limits the largest SS network to 10 nodes. In this
example, one can easily verify that a Round Robin schedule
will simultaneously stabilize up to 6 nodes.

Now consider the non-trivial set of connection patterns
C = {1, (2, 3), (4, 5, 6), . . . , (. . . , q − 1, q)}. In this case,
the sufficient condition (15) holds for q ≤ 55; however, the
necessary condition (12) only holds for q ≤ 10.

IV. CENTRALIZED SELF-TRIGGERED SCHEDULING

Consider now a set of nodes and corresponding Lyapunov
functions, so that the nodes are SS by a periodic schedule, each

node and Lyapunov function forming a pi-step stabilizable pair
for some parameter σi. This means that there exists at least
one periodic schedule S of connection patterns stabilizing all
systems. In the case of linear nodes, this is not a restrictive
assumption, as observed in Corollary 8. Call R any set of finite
sequences of connection patterns that form minimal periods of
periodic stabilizing schedules, that is, sequences of connection
patterns that, iterated, form the full schedule, and that cannot
be decomposed into identical subsequences. In the following,
with a little abuse of notation, we identify by S both the
(infinite) periodic schedule and the subsequence that forms
a minimal period, so that S ∈ R identifies the set of infinite
schedules whose minimal periods are sequences in R. Assume
also that the set R includes all rotations of each sequence,
i.e., if (C1, . . . , CL) ∈ R then (Ck, . . . , CL, C1, . . . , Ck−1) ∈
R, ∀ k ∈ IL1 . For each node j in the network, define tj as the
last time node j was connected and ξ

j
as the corresponding

state. Define

pj,ξ(t) := max
p∈N

{p : γj,e(|kj(xj(t−tj , ξj , kj(ξj)))−kj(ξj)|)

≤ (1− σj)αj,3(|xj(t− tj , ξj , kj(ξj))|)∀ t ∈ Ip−1
0 } (17)

Differently than in (7), in the above equation, the inequality
is required to hold only for a specific value of ξ

j
. Note that,

by construction, pj,ξ(t+ 1) = pj,ξ(t)− 1.
Then, call t̄j(S, t) the next time node j will be connected,

if schedule S is used from time t onward.

t̄j(S, t) := t+

(
min
τ∈IL1

τ : j ∈ S(τ)

)
.

Note that t̄j(S, t) is guaranteed to be upper bounded by t+L,
given that S is periodic of period L. We can now formulate the
following centralized triggering function, exploiting the fact
that it is safe to leave the node disconnected for t̄j(S, t) − t
time steps and knowing that it has already been disconnected
for pj,ξ(t) time steps. The triggering function can then be
defined as

T (t) := max
S∈R

min
j

(pj,ξ(t)− (t̄j(S, t)− t)) , (18)

and the corresponding triggered event

E(t) : N → C, E(t) := S∗(1),

where S∗ is the maximizing schedule in (18) and S∗(1) is
the first connection pattern in the schedule. Function T (t)
measures the deadline before which a node will need to be
connected, to enforce stability, in the best possible schedule
among those available in R.

Theorem 9 (Solution to Problem 2): Assume that the
nodes are SS by a periodic schedule and that T (t) > 0 at
time t = 0. Then, Problem 2 is solved by connecting nodes
with connection pattern E(t) when T (t + 1) ≤ 0, or leaving
all nodes disconnected otherwise.

Proof: We need to show that, with the suggested con-
nection strategy,

γj,e(|k(xj(t− tj , ξj , ki(ξj)))− k(ξ
j
)|)

≤ (1− σj)α3,j(|xi(t− tj , ξj , ki(ξj))|), ∀ t ≥ 0, (19)



since this implies, through (4), that

V (xj(t− tj , ξj , kj(ξj)))− V (xj(t− 1− tj , ξj , kj(ξj)))

≤ −σαj,3(|xi(t− 1− tj , ξj , kj(ξj))|), ∀ ξj ∈ Xj .

Once this is proven, the result follows from the Lyapunov
theorem.

In the rest of the proof, we use the symbol S∗ to denote
the maximizing schedule in (18) computed at time t, leaving
its dependence on t implicit. We start by noting that the as-
sumption of simultaneous stabilizability by a periodic schedule
implies that R is nonempty, therefore S∗ exists. The condition
T (0) > 0 implies that, at time 0, t̄j(S∗, 0) < pj,x, for all j,
i.e., each node is scheduled to be connected before its own
pj,x. By the definition of pj,ξ this means that

γe(|kj(xj(t− tj , ξj , kj(ξj)))− kj(ξj)|)

≤ (1− σ)α3,j(|xj(t)|), ∀ t ∈ It̄j(S
∗)

0 .

From then on, feasibility of the schedule S∗ implies that each
node j is connected at least once every pj steps, ensuring

γe(|kj(xj(t− tj , ξj , kj(ξj)))− kj(ξj)|)

≤ (1− σ)α3(|xj(t)|), ∀ t ≥ t̄j(S
∗).

Condition (19) follows from the two above inequalities.
Next, we provide an example that uses Theorem 9 to

minimize communication while guaranteeing SS.
Example 6: Consider a network of 4 nonlinear nodes with

xj(t+ 1) =

[
1 (0.12− 0.02 · j)
1 0

]
xj(t)

+

[
0
1

]
uj(t) +

[
0

−0.05 sin (xj,1(t))

]
,

where
uj(t) =

[
−0.1 −0.1

]
xj(t),

and assume the trivial connection topology. Consider σj = 0.2
for all j and Vj(x) = x⊤

j Pjxj , where Pj is the solution to the
Lyapunov equation for the system linearized at the origin, with
Qj equal to the identity matrix. Furthermore, let αj,3(|xj |) =
x⊤
j Qjxj .
We can show through Lemma 1 that the linearizations of the

given systems and Lyapunov functions are maximally pj-step
stabilizable with (p1, p2, p3, p4) = (4, 6, 7, 8). The systems
and Lyapunov function pairs also satisfy Assumption 1 such
that, by Lemma 3, these are also upper bounds to the p-step
stabilizability of the nonlinear systems. A grid search over the
2-dimensional state space suggests that these bounds are tight.
Since

∑
i ρ

∗
i (p

nl) = 1
4+

1
6+

1
7+

1
8 < 3

4 , the sufficient condition
(12) in Theorem 5 is satisfied and a periodic stabilizing
schedule exists. In this case in particular a stabilizing schedule
is obtained by repeating sequence (1, 2, 3, 4). The results of a
simulation in which a transmission is triggered as devised in
Theorem 9, letting

R := {(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)}

is shown in Figure 4. The top panel shows the values of the
Lyapunov functions over time, after setting xj(0)
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Fig. 4. The top panel shows the normalized value of the Lyapunov
functions for each of the 4 systems in Example 6, as a function of time.
The bottom panel shows the cumulative number of connections of each
of the systems; the blue line is the cumulative number of time instants
when the communication channel is left unused.

and normalizing Vj(t) with respect to Vj(0) for all j ∈ I41.
The Lyapunov functions are strictly decreasing, as expected.
Using the inequalities

V (t+ 1)− V (t) ≤ −σx⊤(t)x(t),

and
V (t) ≤ λmax(P )

where λmax is the dominant eigenvalue of P , one obtains

V (t) ≤ V (0)

(
1− σ

λmax(P )

)t

,

which holds by a wide margin in this case. The bottom
panel in Figure 4 displays instead the cumulative number of
connections for each node. The blue line is the cumulative
number of idle steps, i.e., time steps when no connection is
requested. As we can see, the self-triggered implementation
leaves the channel idle 39 times in the first 60 steps, that
is, 65% of the time. The following string reports the 60
connection patterns defined by the schedule of Figure 4 (where
· means no connection):

T = ······1234·1·2·1·3·········4··1·3·12·341·2····34·····1····12

Notice how the online-generated schedule is not periodic and
does not strictly follow the sequence 1, 2, 3, 4, despite this
being the ordering in all rotations in R. Furthermore, notice
in Figure 5 how (8) is (tightly) enforced at all times.

A. Robust centralized self-triggered scheduling

Let us now go back to the solution of Problem 2, and
consider the more complex case where the nodes are subject to
input noise wj ∈ Wj , so that the feedback law in (2) becomes

u(t) = k(x(t)) + e(t) + w(t). (20)
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Fig. 5. In the same colour coding as for Figure 4, the value of
V (t + 1) − V (t) for each of the 4 systems. The black curve is the
corresponding value of −σα3(t).

The error e(t) is the same as before and represents the
feedback error due to the sporadic update of the state measure.
The noise w is instead exogenous and may represent, for
instance, a disturbance on the input or the effect on the input of
a bounded measurement error. We shall approach this scenario
with minimal changes to the results presented so far.

Assumption 2: The feedback law k(x) makes system (20)
ISS with respect to inputs e and w
This means that there exists an ISS Lyapunov function Vi(x)
such that

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀x ∈ X

and

V (x(1, ξ, k(ξ) + e+ w))− V (ξ) ≤
− α3(|ξ|) + γe(|e|) + γw(|w|)

∀ ξ ∈ X, ∀ e, w, (21)

where α1, α2, α3, and γe, γw are K∞ functions.
Assumption 3: Disturbances w in (20) are bounded, i.e.,

there exists a cw > 0 such that

γw(|w|) ≤ cw ∀w ∈ W. (22)
Theorem 10 (Problem 2 in the presence of disturbances):

Under Assumption 2, the centralized self-triggered control of
Theorem 9 renders the network ISS from w to x.

Proof: The online scheduling strategy of Theorem 9
ensures that

γj,e(|kj(xj(t− tj , ξj , kj(ξj)))− k(ξ
j
)|)

≤ (1− σ)αj,3(|xj(t− tj , ξj , kj(ξj))|), ∀ t ≥ 0.

Using (21), this implies

Vj(xj(t− tj , ξj , kj(ξj))))− Vj(t− 1− tj , ξj , kj(ξj))

≤ −σαj,3(|xj(t− 1− tj , ξj , kj(ξj))|) + γj,w(|wj |).

Corollary 11: Under Assumption 3 the state of the network
asymptotically converges to the set

{x : V (x) ≤ Vw},

where

Vw =max
x

V (x), (23)

s.t. α3(|x|) ≤
cw
σ
. (24)

Proof: The statement follows from the boundedness
of wi, in Assumption 3 and negative definiteness of V (x)
difference for x ∈ {x : α3(|x|) > cw

σ }.
Example 7: Consider a set of five systems described by

xj(t+ 1) = Ajxj(t) +Bj (uj(t) + wj(t)) , (25)

where

Aj =

[
1 0.12− 0.02 · i

−0.05 1

]
, Bj =

[
0
1

]
,

uj(t) = Kjxj(t), Kj =
[
−0.2 −0.2

]
,

and the disturbance |wj(t)| ≤ w0 for all j ∈ I51. Call Ã :=
A+BK, and assume Lyapunov functions V := x⊤Px, with
Ã⊤PÃ− P = −Q for some positive definite P and Q.

In order to find α3(|x|), γe(|e|), and γw(|w|), one can use
the results in [25]1:

α3(|x|) :=
1

2
λmin(Q)∥x(t)∥22,

γe(|e|) :=
(

2

λmin(Q)
∥Ã⊤PB∥22 + ∥B⊤PB∥2

)
∥e(t)∥22,

γw(|w|) :=
(

2

λmin(Q)
∥Ã⊤PB∥22 + ∥B⊤PB∥2

)
∥w(t)∥22.

Considering Q as the identity matrix and using (22)-(24) and
the above definitions, one can conclude

Vw = 2λmax(P )
(
2∥Ã⊤PB∥22 + ∥B⊤PB∥2

) w2
0

σ
.

Taking σ = 0.4 and w0 = 0.01 then Vw,1 = Vw,2 =
0.27, Vw,3 = 0.29, Vw,4 = 0.35, Vw,5 = 0.57 . According to
Lemma 1, we have p1 = p2 = p3 = 4 and p4 = p5 = 3, and
we can easily deduce, from Theorem 7, that the network would
not be SS with the trivial connection topology. Assuming the
connection patterns

{C1 := (1, 2), C2 := (2, 3), C3 := (4, 5), C4 := (5, 1)},

solving (11) we obtain

ρ∗ =

(
0,

1

4
,
1

3
,
1

4

)
, η∗ =


0 0 0 0 0
0 1 1 0 0
0 0 0 1 1
1 0 0 0 0

 ,

and Σ(I51) = {1, 2, 5} (notice that the optimization problem
has multiple optimal solutions, and the selection function

1in [25], because of a typo, the norm of ∥B⊤PB∥ in the γ functions is
squared.
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Fig. 6. The top panel shows the value of the Lyapunov functions
for each of the 5 systems in Example 7, as a function of time. The
bottom panel shows the cumulative number of connections of each of
the systems; the blue line is the cumulative number of time instants when
the communication channel is left idle.

may return multiple equivalent selections). Theorem 5 en-
sures the existence of a stabilizing periodic schedule for
Σ(I51), which in this case is the simple round robin schedule
(1, 2, 5, . . .). Using Lemma 4 and the translation function, we
finally obtain the stabilizing schedule for the original system:
S := (C4, C2, C3, . . .). A simulation of the network stabilized
through the triggering strategy in Theorem 9 is shown in
Figure 6. The communication channel is idle for 50% of
the time, and we see in the top panel that the bounds Vw,i

overestimate the asymptotic value of the Lyapunov functions
by more than one order of magnitude: our estimate is therefore
far from tight.

V. CONCLUSIONS

We have analyzed the conditions for simultaneous stabi-
lizability of a set of networked control systems both linear
and nonlinear, assuming a very general formulation of the
network topology using the concept of connection patterns.
Quite interestingly, we have proved that a network of linear
systems can be stabilized if and only if it can be stabilized by
a periodic connection schedule. In terms of networked control
systems theory, this means that for a network of linear systems,
it is not restrictive to consider communication protocols that
implement a periodic communication schedule. This does not
hold, however, in the case of nonlinear systems. In this case,
we have proved distinct necessary and sufficient conditions
for simultaneous stabilizability. Finally, assuming one or more
periodic stabilizing schedules are given, we have designed
an online re-scheduling algorithm, which is effectively self-
triggered, and guarantees simultaneous stability of all nodes in
the network while greedily minimizing network usage, even in
the presence of input disturbances. Results were illustrated by
examples involving linear and nonlinear systems. The size of
the networks in the examples was small to allow us to illustrate

the results in a relatively compact form, but the numerical tools
that we introduced scale well to much larger networks. These
results expand on the existing theory, both by generalizing the
possible connection topologies and by providing conditions for
stabilizability that stand regardless of any choice of connection
protocol.

APPENDIX

A. Proof of Lemma 1
In the notation of (4), we have α3(|x|) := x⊤Qx. Now

suppose that, in (9), the input is only updated at time 0 so
that u(t) = Kξ for t ∈ Ip−1

0 . We have

x(t) =

At +

t−1∑
j=0

AjBK

 ξ := G(t)ξ (26)

for t ≥ 1, and

e(t) = K(ξ − x(t)) = K(I −G(t))ξ. (27)

We can extend (26) to t = 0 by defining G(0) := I . We
observe that, using (9), (26), and (27), we have

V (x(t+ 1))− V (x(t))

=
(
(A+BK)G(t)ξ +BK(I −G(t))ξ

)⊤

P
(
(A+BK)G(t)ξ +BK(I −G(t))ξ

)
− ξ⊤G(t)⊤PG(t)ξ

=
(
(AG(t) +BK)ξ

)⊤
P
(
(AG(t) +BK)ξ

)
− ξ⊤G(t)⊤PG(t)ξ.

Calling

D(t) := (AG(t) +BK)⊤P (AG(t) +BK)−G(t)⊤PG(t),

we can enforce V (x(t+1))−V (x(t)) ≤ −σx⊤(t)Qx(t) =
−σξ⊤G⊤(t)QG(t)ξ by requiring that

D(t) ⪯ −σG⊤(t)QG(t). (28)

B. Proof of Lemma 2
We need to prove that there exists at least one initial

condition ξ such that (7) only holds up to some finite p.
The proof is by contradiction. Assume that the pair (M nl, V )
is pnl-step stabilizable with parameter σnl for any pnl >
0, i.e., pnl is unbounded. This implies that (8) holds for
all t ≥ 0 and for all ξ ∈ Rn, and therefore that V
acts as a Lyapunov function for trajectory x(t, ξ, u(ξ)) of
M nl. Therefore, limt→∞ x(t, ξ, u(ξ)) = 0. This means that
limt→∞ f(x(t), u(ξ)) = 0 but also implies, by continuity of
f , that limt→∞

(
f(x(t), u(ξ))− f(0, u(ξ))

)
= 0. Therefore,

f(0, u(ξ)) = 0, ∀ ξ ∈ Rn. (29)

Now, we have by assumption that ∂
∂ξf(ξ, u(ξ))|ξ=0 is

Hurwitz, while ∂
∂ξf(ξ, 0)|ξ=0 is unstable. Therefore,

∂
∂uf(ξ, u)|ξ=0,u=0

∂
∂ξu(ξ)|ξ=0 ̸= 0, which implies that

∂
∂ξf(0, u(ξ)) ̸= 0. This contradicts (29).



C. Proof of Lemma 3

Call f [t](ξ) the t-time iteration of (1) obtained when keeping
u = u(0) constant, and set u(0) = k(ξ), that is, f [t](ξ) :=
x(t, ξ, k(ξ)). We can always write the quadratic Lyapunov
function V (x) as x⊤Px for some positive definite matrix
P and, using (4) and (7), p-step stabilizability of the pair
(M nl, V ) means that

V (x(t, ξ, k(ξ)))− V (x(t− 1, ξ, k(ξ))) =

(f [t](ξ))⊤Pf [t](ξ)− (f [t−1](ξ))⊤Pf [t−1](ξ)

≤ −σnlα3(|f [t−1](ξ)|), ∀ t ∈ Ip
nl

1 . (30)

Given that α3(|x|) ≥ 0, ∀ |x| ≥ 0, this implies

(f [t](ξ))⊤Pf [t](ξ)− (f [t−1](ξ))⊤Pf [t−1](ξ) ≤ 0, ∀ t ∈ Ip
nl

1 .

Now call J [t] ∈ Rn×n the Jacobian matrix of f [t](ξ) at ξ = 0,
let A,B be the matrices of the linear system Ml, and K the
Jacobian of the feedback law k(ξ) at ξ = 0, so that we have
J [t] =

(
At +

∑t−1
j=0 A

jBK
)

. Calling H
[t]
V (ξ) the terms of

the expansion of V (x(t, ξ, k(ξ))) at ξ = 0 of cubic or higher
order, we can rewrite the above inequality as

ξ⊤
(
J [t]

)⊤
PJ [t]ξ +H

[t]
V (ξ)

− ξ⊤
(
J [t−1]

)⊤
PJ [t−1]ξ −H

[t−1]
V (ξ)

≤ 0, ∀ t ∈ Ip
nl

1 . (31)

This implies that
(
J [t]

)⊤
PJ [t]+

(
J [t−1]

)⊤
PJ [t−1] is negative

definite , ∀ t ∈ [1, . . . pnl], or else there would exist a direction
ξ along which the left-hand side of (31) tends to a positive
value, as |ξ| → 0. Therefore there exists c1 > 0 such that

ξ⊤
((

J [t]
)⊤

PJ [t] +
(
J [t−1]

)⊤
PJ [t−1]

)
ξ

≤ −c1|ξ|2, ∀ t ∈ Ip
nl

1 .

Now consider once more (30). The fact that V (x) is quadratic
implies that −σnlα(|f [t−1](x)|) is lower-bounded, in a neigh-
borhood of ξ = 0, by a quadratic function of |x|, that is,

−c2|x|2 ≤ −σnlα(|f [t−1](x)|), ∀ t ∈ Ip
nl

1

for some c2 > 0. Clearly, there exists a sufficiently large c3 >
1 such that

−c1|x|2 ≤ −c2
c3

|x|2.

Merging the three inequalities above we obtain

ξ⊤
((

J [t]
)⊤

PJ [t] +
(
J [t−1]

)⊤
PJ [t−1]

)
ξ,

≤ −σnl

c3
α(|f [t−1](ξ)|), ∀ t ∈ Ip

nl

1 .

Setting σl := σnl

c3
this implies 0 < σl ≤ σnl and pl ≥ pnl.

D. Proof of Lemma 4

The simultaneous stabilizability of the set Σ(Iq1) with con-
nection patterns Ĉ := Σ(Iq1) means that a schedule Ŝ of the
indices Σ(Iq1) exists, such that index i appears at least once
every pi steps, if system i ∈ Σ(Iq1) is pi-step stabilizable. By
construction of the selection function Σ and (11), for any two
systems j1 and j2 assigned by (11) to the same connection
pattern Ci (i.e., such that η∗i,j1 = η∗i,j2 = 1),

j1 ∈ Σ(Iq1) ⇒ pj1 ≤ pj2 , (32)

that is, the selected (critical) nodes are the most demanding
in terms of communication requirements among all those
assigned to the same connection pattern. We can therefore
construct a schedule S by scheduling Ci when the connection
of system j such that η∗i,j = 1 is scheduled in Ŝ, that is, by
taking Ci := Θ(Ĉi). By (32), such a schedule simultaneously
stabilizes all q nodes.
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[14] K.-E. Årzén, A. Cervin, J. Eker, and L. Sha, “An introduction to
control and scheduling co-design,” in IEEE Conference on Decision and
Control, 2000, pp. 4865–4870.

https://doi.org/10.1109/cdc.2002.1184824
http://dx.doi.org/10.1109/TAC.2007.904277
http://dx.doi.org/10.1109/TAC.2007.904277
https://doi.org/10.1016/s0167-6911(00)00037-2
https://doi.org/10.1016/s0167-6911(00)00037-2
http://dx.doi.org/10.1109/9.948466
http://dx.doi.org/10.1109/9.948466
http://dx.doi.org/10.1109/TAC.2008.2010887
http://dx.doi.org/10.1109/37.898792
http://dx.doi.org/10.1109/87.998012
http://dx.doi.org/10.1016/j.automatica.2003.10.022
http://dx.doi.org/10.1016/j.automatica.2003.10.022
https://doi.org/10.1109/real.1996.563693


[15] M. S. Branicky, S. M. Phillips, and W. Zhang, “Scheduling and feedback
co-design for networked control systems,” in IEEE Conference on
Decision and Control, 2002, pp. 1211–1217.

[16] A. Cervin and J. Eker, “Control-scheduling codesign of real-time sys-
tems: The control server approach,” J. Embedded Comput., vol. 1, no. 2,
pp. 209–224, Apr. 2005.

[17] L. Palopoli, C. Pinello, A. Bicchi, and A. Sangiovanni-Vincentelli,
“Maximizing the stability radius of a set of systems under real-time
scheduling constraints,” IEEE Transactions on Automatic Control,
vol. 50, no. 11, pp. 1790–1795, nov 2005. [Online]. Available:
https://doi.org/10.1109/tac.2005.858639

[18] M. Gaid, A. Cela, and Y. Hamam, “Optimal integrated control
and scheduling of networked control systems with communication
constraints: application to a car suspension system,” IEEE Transactions
on Control Systems Technology, vol. 14, no. 4, pp. 776–787, Jul 2006.
[Online]. Available: http://dx.doi.org/10.1109/TCST.2006.872504

[19] W. Chen, J. Yao, and L. Qiu, “Networked stabilization of multi-input
systems over shared channels with scheduling/control co-design,”
Automatica, vol. 99, pp. 188–194, Jan 2019. [Online]. Available:
http://dx.doi.org/10.1016/j.automatica.2018.10.013

[20] G. Walsh, O. Beldiman, and L. Bushnell, “Asymptotic behavior of
nonlinear networked control systems,” IEEE Transactions on Automatic
Control, vol. 46, no. 7, pp. 1093–1097, jul 2001.

[21] D. Nesic and A. Teel, “Input–output stability properties of networked
control systems,” IEEE Transactions on Automatic Control, vol. 49,
no. 10, pp. 1650–1667, oct 2004.

[22] D. Carnevale, A. R. Teel, and D. Nesic, “A lyapunov proof of an
improved maximum allowable transfer interval for networked control
systems,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp.
892–897, may 2007.

[23] W. P. M. H. Heemels, A. R. Teel, N. van de Wouw, and D. Nešić,
“Networked control systems with communication constraints: Tradeoffs
between transmission intervals, delays and performance,” IEEE
Transactions on Automatic Control, vol. 55, no. 8, pp. 1781–1796, Aug
2010. [Online]. Available: http://dx.doi.org/10.1109/TAC.2010.2042352

[24] A. S. Kolarijani and M. Mazo, “Formal traffic characterization of
LTI event-triggered control systems,” IEEE Transactions on Control of
Network Systems, vol. 5, no. 1, pp. 274–283, mar 2018.

[25] Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time
nonlinear systems,” Automatica, vol. 37, no. 6, pp. 857–869, Jun 2001.
[Online]. Available: http://dx.doi.org/10.1016/S0005-1098(01)00028-0

[26] E. Sontag and Y. Wang, “New characterizations of input-to-state
stability,” IEEE Transactions on Automatic Control, vol. 41, no. 9,
pp. 1283–1294, 1996. [Online]. Available: http://dx.doi.org/10.1109/9.
536498

[27] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Event-
triggered control for discrete-time systems,” in Proceedings of the 2010
American Control Conference. IEEE, jun 2010. [Online]. Available:
https://doi.org/10.1109.acc.2010.5531089

[28] A. Anta and P. Tabuada, “On the benefits of relaxing the periodicity
assumption for networked control systems over CAN,” in IEEE Real-
Time Systems Symposium, 2009, pp. 3–12.

[29] M. Mazo, A. Anta, and P. Tabuada, “An iss self-triggered implementation
of linear controllers,” Automatica, vol. 46, no. 8, pp. 1310–1314, Aug
2010. [Online]. Available: http://dx.doi.org/10.1016/j.automatica.2010.
05.009

[30] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel, “The
pinwheel: A real-time scheduling problem,” in Proceedings of the
Hawaii International Conference on System Science, 1989, pp. 693–702.

[31] M. Y. Chan and F. Chin, “Schedulers for larger classes of pinwheel
instances,” Algorithmica, vol. 9, pp. 425–462, 1993.

[32] D. Chen and A. Mok, “The pinwheel: A real-time scheduling problem,”
in Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. Champan & Hall, 2004, ch. 27.

[33] P. C. Fishburn and J. C. Lagarias, “Pinwheel scheduling: Achievable
densities,” Algorithmica, vol. 34, pp. 14–38, 2002.

Alessandro Colombo received the Diplôme
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