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1. INTRODUCTION

On-line optimization and real-time control have received
much attention over the past few decades, driven by the
need to improve performance and reduce economic costs
in industrial processes. The strategy employed in classi-
cal model predictive control (MPC) entails the repeated
solution of an optimal control problem that predicts the
system’s future behavior over a finite, receding time-
horizon, using the current state measurements or estimates
as initial conditions (Rawlings and Mayne, 2009). The
optimized control strategy is implemented until the next
measurements become available, and it is the repetition of
this process that creates a feedback control.

Several approaches have been proposed in the literature
to mitigate the computational burden associated to the
online solution of optimization problems in MPC. In the
multi-parametric programming paradigm (Pistikopoulos,
2012), the optimization is performed off-line, resulting in
an explicit mapping of the control strategies as a func-
tion of the initial state. For continuous-time systems, this
approach gives rise to multi-parametric dynamic optimiza-
tion (mp-DO) problems, which may either be transformed
into finite-dimensional multi-parametric programs via full
discretization (direct approach), or handled directly using
optimal control theory (indirect approach).

Another approach to reducing the computational burden
in MPC, involves tracking the necessary conditions for
optimality (NCO), namely NCO-tracking (Kadam et al.,
2007; Bonvin and Srinivasan, 2013). In continuous time,
NCO-tracking starts by characterizing the optimal switch-
ing structure of the control trajectories. Under the as-
sumption that this switching structure remains unchanged
in the presence of uncertainty, feedback laws are then

constructed for tracking the active constraints and zero
gradient conditions along each arc.

The so-called multi-parametric (mp-)NCO-tracking ap-
proach was introduced by Sun et al. (2016). It com-
bines mp-DO and NCO-tracking into a unified frame-
work for multi-parametric MPC via the indirect approach.
An algorithm for characterizing the corresponding multi-
parametric solution structure in terms of the exact critical
regions and nonlinear feedback control laws was proposed
for linear-quadratic optimal control problems. In essence,
mp-NCO-tracking provides a means of relaxing the in-
variant switching-structure and active-set assumptions in
NCO-tracking by constructing critical regions for each
switching structure, while enabling a reduction in the
number of critical regions compared to direct mp-MPC
approaches.

The implementation of MPC controllers, both classical
and multi-parametric, is based on a certainty-equivalence
principle, whereby the future of the system is optimized
as if neither external disturbances nor model mismatch
were present, despite the fact that such disturbances and
mismatch are the reason why feedback is needed in the
first place. This approach works well in many practical
applications, and it often exhibits a certain robustness
due to its inherent ability to reject disturbances. When
large disturbances occur, the constraints can nonetheless
become violated, thereby calling for the development of ro-
bust MPC schemes (Bemporad and Morari, 1999; Sakizlis
et al., 2004; Kouramas et al., 2013).

This paper extends the mp-NCO-tracking approach in
order to enable robust multi-parametric controllers for
continuous-time linear dynamic systems. This approach
is inspired by tube-based MPC, and in particular the
so-called rigid tube MPC approach (Mayne, Seron and
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Raković, 2005). It involves backing-off the path and ter-
minal state constraints based on a worst-case uncertainty
propagation determined using either interval analysis or
ellipsoidal calculus. In particular, special attention is paid
to retaining the tractability of the mp-NCO-tracking de-
sign problem. The rest of the paper is organized as follows:
Sect. 2 formulates the optimal control problem of interest;
Sect. 3 provides some background on mp-NCO-tracking
controllers; Sect. 4 develops robust mp-NCO-tracking con-
trollers based on a robust-counterpart formulation of the
mp-DO problem and considers both additive and multi-
plicative time-varying uncertainty; results for the numer-
ical case study of a fluidized catalytic cracking (FCC)
unit are presented in Sect. 5; finally, Sect. 6 concludes the
paper.

2. PROBLEM FORMULATION

We consider constrained linear-quadratic optimal control
problems under uncertainty, in the form:

inf
x,u

1

2

∫ T

0

x(t)TQx(t) + u(t)TRu(t) dt+
1

2
x(T )TQfx(T )

s. t. ẋ(t) = Fxx(t) + Fuu(t) + Fθθ + Fww(t) + f0
x(0) = B0θ + b0
Gxx(t) +Guu(t) +Gθθ + g0 ≤ 0

Hxx(T ) +Hθθ + h0 ≤ 0 .

(1)

Besides standard notation in Appendix A, x ∈ Wnx
1,2 denote

the state response; u ∈ U := {u ∈ Lnu
2 | ∀t ∈ [0, T ], u(t) ∈

U} with U ∈ Knu

C , the control input; θ ∈ Knθ

C , the problem
parameters; w ∈ W := {w ∈ Lnw

2 | ∀t ∈ [0, T ], w(t) ∈ W}
with W ∈ Knw

C , the time-varying uncertainty; and Qf � 0,
Q � 0, and R � 0 are given weighting matrices.

The focus of the paper is on constructing robust mp-
NCO-tracking controllers, which can guarantee feasibility
in the worst-case scenario for the time-varying uncertainty
w(t). The objective is to develop robust formulations
that are amenable to numerical solution with the same
computational effort as the nominal mp-NCO-tracking
controllers in Sun et al. (2016), i.e. with Fw = 0.

3. mp-NCO-TRACKING METHODOLOGY

For a given parameter value θ and in the absence of
uncertainty, the optimal feedback control trajectory u(t)
for problem (1) consists of a finite sequence of Nt(θ) arcs,
which define the so-called optimal switching structure de-
noted by S(θ). The switching times tk(θ), k = 1 . . . Nt(θ)−
1, between adjacent arcs either correspond to the acti-
vation or deactivation time for a given path constraint,
or touch-and-go points in the case of higher-order state
constraints. Besides their switching structure, characteriz-
ing an optimal solution involves determining the 6-tuple
(u(t), x(t), λ(t), µ(t), ν, π), where λ(t) ∈ Rnx are the co-
state (adjoint) variables; µ(t) ∈ Rng , the multipliers for
the path constraints; ν ∈ Rnh , the multipliers for the
terminal constraints; and π are extra multipliers for certain
interior-point constraints in the presence of high-order
state constraints.

The mp-NCO-tracking methodology by Sun et al. (2016)
proceeds in two steps, as illustrated in Fig. 1:

Model
Multi-parametric

Dynamic Optimization

Multi-parametric
NCO-tracking Controller

Critical Regions

Process
Output

Input

Disturbances

Fig. 1. Principle of multi-parametric NCO tracking.

• The first (off-line) step defines the multi-parametric
control structure, which entails a partitioning of the
uncertain parameter domain into NC critical regions,
Θ1 ∪ · · · ∪ΘNC ⊆ Θ, each corresponding to a unique
switching structure S1, . . . ,SNC . Moreover, mp-DO
determines parametric optimal solution in the form:

∀θ ∈ Θi, (u(t), x(t), λ(t), µ(t), ν, π)

= Ki
(
t, θ, ti1(θ), . . . , t

i
Ni

t−1(θ)
)
,

for each i = 1 . . . NC, where the junction times t
(i)
k

themselves are dependent on θ.
• The subsequent (on-line) step applies the multi-
parametric NCO-tracking controller in a receding
horizon manner. This step involves determining the
critical region Θi containing the current parameter
values θ, by testing primal and dual feasibility under
the corresponding feedback laws Ki. It also involves

computing the current junction times t
(i)
k , for instance

by using a Newton iteration. Then, the selected feed-
back laws are implemented until new measurements
become available at the next sampling time.

4. ROBUST mp-NCO-TRACKING CONTROLLERS

This section develops a robustification of the mp-NCO-
tracking methodology by Sun et al. (2016), whereby worst-
case uncertainty propagation (Chachuat et al., 2015) is
applied to back-off the terminal and path constrained in
order for the feedback controller to guarantee feasibility
under all possible uncertainty scenarios.

We proceed by splitting the state and the disturbance into
nominal and perturbed components as

x(t) = x̂(t) + dx(t) , w(t) = ŵ + dw(t) , (2)

for a given ŵ ∈ W and x̂ such that
˙̂x(t) = Fxx̂(t) + Fuu(t) + Fθθ + Fwŵ + f0
with x̂(0) = B0θ + b0 .

It follows that the dynamics of the state perturbation dx,
given by

ḋx(t) = Fxdx(t) + Fwdw(t) (3)

with dx(0) = 0 ,

is independent of both the control u and the parameter θ.
A unique solution to the initial value problem (3) exists
for all w ∈ W, denoted by δ(·, w) subsequently, and the
reachability tube ∆ : [0, T ] → Knx describing the solution
set of (3) for all possible realizations of the time-varying
uncertainty w is given by

∆(t) := {d ∈ Rnx | ∃w ∈ W : d = δ(t, w)} . (4)

Then, following Houska et al. (2012), a conservative robust
counterpart to the problem (1) that minimizes the nominal
cost can be stated as
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multi-parametric programming paradigm (Pistikopoulos,
2012), the optimization is performed off-line, resulting in
an explicit mapping of the control strategies as a func-
tion of the initial state. For continuous-time systems, this
approach gives rise to multi-parametric dynamic optimiza-
tion (mp-DO) problems, which may either be transformed
into finite-dimensional multi-parametric programs via full
discretization (direct approach), or handled directly using
optimal control theory (indirect approach).

Another approach to reducing the computational burden
in MPC, involves tracking the necessary conditions for
optimality (NCO), namely NCO-tracking (Kadam et al.,
2007; Bonvin and Srinivasan, 2013). In continuous time,
NCO-tracking starts by characterizing the optimal switch-
ing structure of the control trajectories. Under the as-
sumption that this switching structure remains unchanged
in the presence of uncertainty, feedback laws are then

constructed for tracking the active constraints and zero
gradient conditions along each arc.

The so-called multi-parametric (mp-)NCO-tracking ap-
proach was introduced by Sun et al. (2016). It com-
bines mp-DO and NCO-tracking into a unified frame-
work for multi-parametric MPC via the indirect approach.
An algorithm for characterizing the corresponding multi-
parametric solution structure in terms of the exact critical
regions and nonlinear feedback control laws was proposed
for linear-quadratic optimal control problems. In essence,
mp-NCO-tracking provides a means of relaxing the in-
variant switching-structure and active-set assumptions in
NCO-tracking by constructing critical regions for each
switching structure, while enabling a reduction in the
number of critical regions compared to direct mp-MPC
approaches.

The implementation of MPC controllers, both classical
and multi-parametric, is based on a certainty-equivalence
principle, whereby the future of the system is optimized
as if neither external disturbances nor model mismatch
were present, despite the fact that such disturbances and
mismatch are the reason why feedback is needed in the
first place. This approach works well in many practical
applications, and it often exhibits a certain robustness
due to its inherent ability to reject disturbances. When
large disturbances occur, the constraints can nonetheless
become violated, thereby calling for the development of ro-
bust MPC schemes (Bemporad and Morari, 1999; Sakizlis
et al., 2004; Kouramas et al., 2013).

This paper extends the mp-NCO-tracking approach in
order to enable robust multi-parametric controllers for
continuous-time linear dynamic systems. This approach
is inspired by tube-based MPC, and in particular the
so-called rigid tube MPC approach (Mayne, Seron and
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Raković, 2005). It involves backing-off the path and ter-
minal state constraints based on a worst-case uncertainty
propagation determined using either interval analysis or
ellipsoidal calculus. In particular, special attention is paid
to retaining the tractability of the mp-NCO-tracking de-
sign problem. The rest of the paper is organized as follows:
Sect. 2 formulates the optimal control problem of interest;
Sect. 3 provides some background on mp-NCO-tracking
controllers; Sect. 4 develops robust mp-NCO-tracking con-
trollers based on a robust-counterpart formulation of the
mp-DO problem and considers both additive and multi-
plicative time-varying uncertainty; results for the numer-
ical case study of a fluidized catalytic cracking (FCC)
unit are presented in Sect. 5; finally, Sect. 6 concludes the
paper.

2. PROBLEM FORMULATION

We consider constrained linear-quadratic optimal control
problems under uncertainty, in the form:

inf
x,u

1

2

∫ T

0

x(t)TQx(t) + u(t)TRu(t) dt+
1

2
x(T )TQfx(T )

s. t. ẋ(t) = Fxx(t) + Fuu(t) + Fθθ + Fww(t) + f0
x(0) = B0θ + b0
Gxx(t) +Guu(t) +Gθθ + g0 ≤ 0

Hxx(T ) +Hθθ + h0 ≤ 0 .

(1)

Besides standard notation in Appendix A, x ∈ Wnx
1,2 denote

the state response; u ∈ U := {u ∈ Lnu
2 | ∀t ∈ [0, T ], u(t) ∈

U} with U ∈ Knu

C , the control input; θ ∈ Knθ

C , the problem
parameters; w ∈ W := {w ∈ Lnw

2 | ∀t ∈ [0, T ], w(t) ∈ W}
with W ∈ Knw

C , the time-varying uncertainty; and Qf � 0,
Q � 0, and R � 0 are given weighting matrices.

The focus of the paper is on constructing robust mp-
NCO-tracking controllers, which can guarantee feasibility
in the worst-case scenario for the time-varying uncertainty
w(t). The objective is to develop robust formulations
that are amenable to numerical solution with the same
computational effort as the nominal mp-NCO-tracking
controllers in Sun et al. (2016), i.e. with Fw = 0.

3. mp-NCO-TRACKING METHODOLOGY

For a given parameter value θ and in the absence of
uncertainty, the optimal feedback control trajectory u(t)
for problem (1) consists of a finite sequence of Nt(θ) arcs,
which define the so-called optimal switching structure de-
noted by S(θ). The switching times tk(θ), k = 1 . . . Nt(θ)−
1, between adjacent arcs either correspond to the acti-
vation or deactivation time for a given path constraint,
or touch-and-go points in the case of higher-order state
constraints. Besides their switching structure, characteriz-
ing an optimal solution involves determining the 6-tuple
(u(t), x(t), λ(t), µ(t), ν, π), where λ(t) ∈ Rnx are the co-
state (adjoint) variables; µ(t) ∈ Rng , the multipliers for
the path constraints; ν ∈ Rnh , the multipliers for the
terminal constraints; and π are extra multipliers for certain
interior-point constraints in the presence of high-order
state constraints.

The mp-NCO-tracking methodology by Sun et al. (2016)
proceeds in two steps, as illustrated in Fig. 1:

Model
Multi-parametric

Dynamic Optimization

Multi-parametric
NCO-tracking Controller

Critical Regions

Process
Output

Input

Disturbances

Fig. 1. Principle of multi-parametric NCO tracking.

• The first (off-line) step defines the multi-parametric
control structure, which entails a partitioning of the
uncertain parameter domain into NC critical regions,
Θ1 ∪ · · · ∪ΘNC ⊆ Θ, each corresponding to a unique
switching structure S1, . . . ,SNC . Moreover, mp-DO
determines parametric optimal solution in the form:

∀θ ∈ Θi, (u(t), x(t), λ(t), µ(t), ν, π)

= Ki
(
t, θ, ti1(θ), . . . , t

i
Ni

t−1(θ)
)
,

for each i = 1 . . . NC, where the junction times t
(i)
k

themselves are dependent on θ.
• The subsequent (on-line) step applies the multi-
parametric NCO-tracking controller in a receding
horizon manner. This step involves determining the
critical region Θi containing the current parameter
values θ, by testing primal and dual feasibility under
the corresponding feedback laws Ki. It also involves

computing the current junction times t
(i)
k , for instance

by using a Newton iteration. Then, the selected feed-
back laws are implemented until new measurements
become available at the next sampling time.

4. ROBUST mp-NCO-TRACKING CONTROLLERS

This section develops a robustification of the mp-NCO-
tracking methodology by Sun et al. (2016), whereby worst-
case uncertainty propagation (Chachuat et al., 2015) is
applied to back-off the terminal and path constrained in
order for the feedback controller to guarantee feasibility
under all possible uncertainty scenarios.

We proceed by splitting the state and the disturbance into
nominal and perturbed components as

x(t) = x̂(t) + dx(t) , w(t) = ŵ + dw(t) , (2)

for a given ŵ ∈ W and x̂ such that
˙̂x(t) = Fxx̂(t) + Fuu(t) + Fθθ + Fwŵ + f0
with x̂(0) = B0θ + b0 .

It follows that the dynamics of the state perturbation dx,
given by

ḋx(t) = Fxdx(t) + Fwdw(t) (3)

with dx(0) = 0 ,

is independent of both the control u and the parameter θ.
A unique solution to the initial value problem (3) exists
for all w ∈ W, denoted by δ(·, w) subsequently, and the
reachability tube ∆ : [0, T ] → Knx describing the solution
set of (3) for all possible realizations of the time-varying
uncertainty w is given by

∆(t) := {d ∈ Rnx | ∃w ∈ W : d = δ(t, w)} . (4)

Then, following Houska et al. (2012), a conservative robust
counterpart to the problem (1) that minimizes the nominal
cost can be stated as
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inf
x̂,u

1

2

∫ T

0

x̂(t)TQx̂(t) + u(t)TRu(t) dt+
1

2
x̂(T )TQf x̂(T )

s. t. ˙̂x(t) = Fxx̂(t) + Fuu(t) + Fθθ + Fwŵ + f0
x̂(0) = B0θ + b0
max
δ∈∆(t)

Gx[x̂(t) + δ] +Guu(t) +Gθθ + g0 ≤ 0

max
δ∈∆(T )

Hx[x̂(T ) + δ] +Hθθ + h0 ≤ 0 ,

(5)

where ∆(t) ⊇ ∆(t) stands for any compact enclosure of
the reachable set on [0, T ]. An inherent advantage of this
formulation is that the developments in Sun et al. (2016)
apply readily to the problem (5) in order to devise a robust
mp-NCO-tracking controller.

Generally, any convex set-valued function ∆ : [0, T ] → Knx

C
satisfying the generalized differential inequality

a. e. t ∈ [0, T ], ∀c ∈ Rnx ,

V̇ [∆(t)](c) ≥ max
d,w



cT(Fxd+ Fww)

∣∣∣∣∣∣∣

cTd = V [∆(t)](c)

d ∈ ∆(t)

w ∈ W





with V [∆(0)](c) ≥ 0 ,

may provide the required enclosures of the reachable tube
(4) (Villanueva et al., 2015a). The following two subsec-
tions specialize these enclosures to tractable interval and
ellipsoidal reachability tubes. We also discuss an extension
of the approach to handle multiplicative uncertainty in the
dynamic system.

4.1 Case of Interval Reachability Tubes

An interval enclosure ∆(t) :=
[
δLx (t), δ

U
x (t)

]
⊇ ∆(t) can be

precomputed via the following system of auxiliary ODEs:

a. e. t ∈ [0,T ], ∀i ∈ 1, . . . , nx,

δ̇Lxi
(t) =min

dx

{
Fx(i,·)dx

∣∣∣∣∣
dxi = δLxi

(t)

dx ∈ ∆(t)

}

+min
dw

{
Fw(i,·)dw

∣∣ dw ∈ Γ
}

δ̇Uxi
(t) =max

dx

{
Fx(i,·)d

∣∣∣∣∣
dxi = δUxi

(t)

dx ∈ ∆(t)

}

+max
dw

{
Fw(i,·)dw

∣∣ dw ∈ Γ
}

with δLxi
(0) = δUxi

(0) = 0 and Γ := W � {ŵ} .
It follows that the robust counterpart problem (5) can be
rewritten as

inf
x̂,u

1

2

∫ T

0

x̂(t)TQx̂(t) + u(t)TRu(t) dt+
1

2
x̂(T )TQf x̂(T )

s. t. ˙̂x(t) = Fxx̂(t) + Fuu(t) + Fθθ + Fwŵ + f0
x̂(0) = B0θ + b0
Gxx̂(t) +Guu(t) +Gθθ + g0 ≤ −δG(t)

Hx[x̂(T ) + δ] +Hθθ + h0 ≤ −δH ,

(6)

with the back-offs δG(t), 0 ≤ t ≤ T , and δH taken as

δGi
(t) := abs

(
Gx(i,·)

)
rad

(
∆(t)

)
,

δHi := abs
(
Hx(i,·)

)
rad

(
∆(T )

)
.

4.2 Case of Ellipsoidal Reachability Tubes

An ellipsoidal tube enclosure ∆(t) := E(Qx(t)) ⊇ ∆(t)
parameterized by the matrix-valued function Qx : [0, T ] →
Snx
+ can be precomputed by solving the auxiliary ODEs:

a. e. t ∈ [0, T ],

Q̇x(t) = FxQx(t) +Qx(t)F
T
x + κ(t)Qx(t)

+
1

κ(t)
FwQwF

T
w

with Qx(0) = 0 ,

where we have assumed that the time-varying uncertainty
w(t) is in the ellipsoid E(ŵ, Qw) for all t; and for any given
function κ : [0, T ] → R++, e.g., so chosen as to minimize

the trace of Q̇x(t),

κ(t) :=

√
Tr (FwQwFT

w )

Tr (Qx(t)) + ε
,

for some finite tolerance ε > 0.

This way, another choice for the back-offs δG(t), 0 ≤ t ≤ T ,
and δH in the robust counterpart problem (6) is

δGi(t) :=
√
Gx(i,·)Qx(t)GT

x(i,·) ,

δHi
:=

√
Hx(i,·)Qx(t)HT

x(i,·) .

In practice, the choice of ellipsoidal reachable tubes instead
of interval tubes may be dictated by the fact that the
former are more efficient at mitigating the wrapping effect,
thereby reducing the overall conservatism.

4.3 Extension to Multiplicative Uncertainty

Next, we consider the broader class of uncertain dynamic
systems in the form

ẋ(t) = (Fx +Ω(t))x(t) + Fuu(t) + Fθθ + Fww(t) + f0 ,

where the matrix Ω(t) :=
∑p

j=1 K
jwj(t) are uncertain,

with given scaling matrices K1, . . . ,Kp. A further exten-
sion to problems where the matrices Fu and Fθ are also
affected by uncertainty is possible, for instance by invoking
similar arguments as in Smith (2004).

Applying a similar splitting of the state and the distur-
bance into nominal and perturbed components as in (2)

and Ω(t) = Ω̂+ dΩ(t), we can define the state reference as

˙̂x(t) = (Fx + Ω̂)x̂(t) + Fuu(t) + Fθθ + Fwŵ + f0
with x̂(0) = B0θ + b0 .

The dynamics of the state perturbation dx become

ḋx(t) = (Fx + Ω̂)dx(t) + dΩ(t)(x̂(t) + dx(t))

+ Fwdw(t) (7)

with dx(0) = 0 ,

and are now dependent on the control u and the parameter
θ via the nominal state trajectory x̂. Therefore, a similar
strategy as for additive uncertainty, whereby reachability
tubes can be precomputed for the state disturbances,
will rely on the availability of a conservative enclosure
X̂(t) ∈ Knx for the nominal state. For instance, such en-
closures can be obtained using state-of-the-art set-valued
integrators (Houska et al., 2012; Chachuat et al., 2015).
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Here, an interval tube enclosure ∆(t) :=
[
δLx (t), δ

U
x (t)

]
⊇

∆(t) can be precomputed by solving the auxiliary ODEs:

a. e. t ∈ [0, T ], ∀i ∈ 1, . . . , nx,

δ̇Lxi
(t) = min

dx,dw,
x̂





Fx(i,·) +

p∑
j=1

Kj
(i,·)ŵ


 dx

+

p∑
j=1

Kj
(i,·)dwj (x̂+ dx)

+ Fw(i,·)dw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dxi = δLxi
(t)

dx ∈ ∆(t)

x̂ ∈ X̂(t)

dw ∈ Γ




δ̇Uxi
(t) = max

dx,dw,
x̂





Fx(i,·) +

p∑
j=1

Kj
(i,·)ŵ


 dx

+

p∑
j=1

Kj
(i,·)dwj

(x̂+ dx)

+ Fw(i,·)dw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dxi
= δUxi

(t)

dx ∈ ∆(t)

x̂ ∈ X̂(t)

dw ∈ Γ





with δLxi
(0) = δUxi

(0) = 0 .

A matrix-valued function Qx : [0, T ] → Snx
+ describing an

ellipsoidal tube enclosure ∆(t) := E(Qx(t)) ⊇ ∆(t) may be
precomputed likewise. One approach involves determining
ellipsoidal enclosures for the uncertainty-dependent terms
in (7) using ellipsoidal calculus (Kurzhanski and Vályi,
1994; Villanueva et al., 2015b),

∀(dx, dw, x̂) ∈ E(Qx(t))× Γ× X̂(t),

dΩ(t)(x̂(t) + dx(t)) + Fwdw(t) ∈ E(Q(t)) ,

and then propagating Qx through the auxiliary ODEs:

a. e. t ∈ [0, T ],

Q̇x(t) = (Fx + Ω̂)Qx(t) +Qx(t)(Fx + Ω̂)T

+ κ(t)Qx(t) +
1

κ(t)
Q(t)

with Qx(0) = 0 and κ(t) :=

√
Tr(Q(t))

Tr (Qx(t)) + ε
.

Another, potentially tighter, approach to propagating Qx

is based on the recent work on linear control systems with
multiplicative uncertainty by Houska et al. (2016).

5. NUMERICAL CASE STUDY

We consider a fluidized catalytic cracking (FCC) unit op-
erated in partial combustion mode (Hovd and Skogestad,
1993). The objective is to steer the system to a given
operating point, defined in terms of the mass fraction
of coke on regenerated catalyst, Crc, and the regenerator
dense bed temperature, Trg. The manipulated variables
are the flow rate of air sent to the regenerator, Fa, and
the catalyst flow rate, Fs. A linear input-output dynamic
model is obtained via linearization and reduction of a
first-principles nonlinear model around the equilibrium
point C∗

rc = 5.207 × 10−3, T ∗
rg = 965.4K, T ∗

ro = 776.9K,
T ∗
cy = 988.1K, and T ∗

f = 400K, where Tf denotes the feed
oil temperature. The control and state variables in this
linear dynamic system are

x(t) :=

[
Crc(t)− C∗

rc
Trg(t)− T ∗

rg

]
, u(t) :=

[
Fs(t)− F ∗

s
Fa(t)− F ∗

a

]
.

Fig. 2. Critical regions of the mp-DO. Black lines: nominal
regions; Red lines: robust regions.

This optimization-based control problem complies with
the formulation in (1), where the parameters θ correspond
to uncertainty in the initial values of Crc and Trg, with
Θ = [−10−3, 10−3] × [−20, 20]. Numerical values for this
case study are reported in Appendix B.

A comparison of the critical regions of the mp-DO in the
nominal case (with Fw = 0) and the robust case (with
w(t) ∈ W := [−5, 5]) is shown in Fig. 2. Eleven regions are
obtained in both cases:

• The critical region CR1 corresponds to unconstrained
optimal controls.

• The solutions in CR2 and CR7 are comprised of two
arcs, a boundary arc where u2 reaches its lower and
upper bound, respectively, followed by an interior arc.

• The solutions in CR6 and CR11 are comprised of three
arcs, with a boundary arc where x1 reaches its upper
and lower bound, respectively, located in-between two
interior arcs.

• In CR5 and CR10, the solutions have the same con-
strained arc as CR6 and CR11, respectively, yet with-
out the final interior arc as the state constraint re-
mains active until the terminal time.

• The solutions in CR3 and CR8 combine the previous
two cases in CR2+CR6 or CR7+CR11, and give rise to
four arcs, starting with a boundary arc for u2 (like
CR2 or CR7), followed by an interior arc, a boundary
arc for x1 (like CR6 or CR11), and a final interior arc.

• In CR4 and CR9, the solutions present the same
structure as CR3 and CR8, respectively, but lack the
final interior arc after the boundary arc for x1.

The robust regions computed with either interval or ellip-
soidal tube back-offs happen to be nearly identical in this
case. The main effect of the back-offs is seen in the lower-
left and upper-right corners, where the regions CR4, CR5,
CR9 and CR10, and to a lesser extend the regions CR3, CR6,
CR8 and CR11, are enlarged due to the state constraints
being tightened.

The pre-computed ellipsoidal reachability tube (green line)
is shown in Fig. (3(a)), here centered at a state reference
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
 dx

+

p∑
j=1

Kj
(i,·)dwj

(x̂+ dx)

+ Fw(i,·)dw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dxi
= δUxi

(t)

dx ∈ ∆(t)

x̂ ∈ X̂(t)

dw ∈ Γ





with δLxi
(0) = δUxi

(0) = 0 .

A matrix-valued function Qx : [0, T ] → Snx
+ describing an

ellipsoidal tube enclosure ∆(t) := E(Qx(t)) ⊇ ∆(t) may be
precomputed likewise. One approach involves determining
ellipsoidal enclosures for the uncertainty-dependent terms
in (7) using ellipsoidal calculus (Kurzhanski and Vályi,
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Another, potentially tighter, approach to propagating Qx

is based on the recent work on linear control systems with
multiplicative uncertainty by Houska et al. (2016).

5. NUMERICAL CASE STUDY

We consider a fluidized catalytic cracking (FCC) unit op-
erated in partial combustion mode (Hovd and Skogestad,
1993). The objective is to steer the system to a given
operating point, defined in terms of the mass fraction
of coke on regenerated catalyst, Crc, and the regenerator
dense bed temperature, Trg. The manipulated variables
are the flow rate of air sent to the regenerator, Fa, and
the catalyst flow rate, Fs. A linear input-output dynamic
model is obtained via linearization and reduction of a
first-principles nonlinear model around the equilibrium
point C∗

rc = 5.207 × 10−3, T ∗
rg = 965.4K, T ∗

ro = 776.9K,
T ∗
cy = 988.1K, and T ∗

f = 400K, where Tf denotes the feed
oil temperature. The control and state variables in this
linear dynamic system are

x(t) :=

[
Crc(t)− C∗
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Fig. 2. Critical regions of the mp-DO. Black lines: nominal
regions; Red lines: robust regions.

This optimization-based control problem complies with
the formulation in (1), where the parameters θ correspond
to uncertainty in the initial values of Crc and Trg, with
Θ = [−10−3, 10−3] × [−20, 20]. Numerical values for this
case study are reported in Appendix B.

A comparison of the critical regions of the mp-DO in the
nominal case (with Fw = 0) and the robust case (with
w(t) ∈ W := [−5, 5]) is shown in Fig. 2. Eleven regions are
obtained in both cases:

• The critical region CR1 corresponds to unconstrained
optimal controls.

• The solutions in CR2 and CR7 are comprised of two
arcs, a boundary arc where u2 reaches its lower and
upper bound, respectively, followed by an interior arc.

• The solutions in CR6 and CR11 are comprised of three
arcs, with a boundary arc where x1 reaches its upper
and lower bound, respectively, located in-between two
interior arcs.

• In CR5 and CR10, the solutions have the same con-
strained arc as CR6 and CR11, respectively, yet with-
out the final interior arc as the state constraint re-
mains active until the terminal time.

• The solutions in CR3 and CR8 combine the previous
two cases in CR2+CR6 or CR7+CR11, and give rise to
four arcs, starting with a boundary arc for u2 (like
CR2 or CR7), followed by an interior arc, a boundary
arc for x1 (like CR6 or CR11), and a final interior arc.

• In CR4 and CR9, the solutions present the same
structure as CR3 and CR8, respectively, but lack the
final interior arc after the boundary arc for x1.

The robust regions computed with either interval or ellip-
soidal tube back-offs happen to be nearly identical in this
case. The main effect of the back-offs is seen in the lower-
left and upper-right corners, where the regions CR4, CR5,
CR9 and CR10, and to a lesser extend the regions CR3, CR6,
CR8 and CR11, are enlarged due to the state constraints
being tightened.

The pre-computed ellipsoidal reachability tube (green line)
is shown in Fig. (3(a)), here centered at a state reference
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(a) Ellipsoidal reachability tube

(b) Robust control and response trajectories

Fig. 3. Robust mp-DO based on ellipsoidal reachability
tubes – Case of additive disturbance.

trajectory (blue line) originating from the initial state
x(0) = [8 × 10−4, 14] ∈ CR6. Quite expectedly, this
tube is found to grow along time due to the cumulated
uncertainty. The effect of using this back-off is shown in
Fig. 3(b), where the state x1 is seen to remain away from
its upper bound of 10−3.
Closed-loop simulations obtained by applying both the
nominal and robust mp-NCO-tracking controllers with a
sampling period of ∆T = 1 are shown in Fig. (4), for a
given random disturbance w(t) ∈ [−5, 5]. It can be seen
that the robust controller keeps the response feasible at
all times, whereas some constraint violations are obtained
with the nominal controller, for instance around t = 6.

Fig. 4. Closed-loop performance of the nominal and ro-
bust mp-NCO-tracking controllers – Case of additive
disturbance.

Finally, we illustrate the applicability of the methodol-
ogy in the case of multiplicative uncertainty with Ω(t) ∈
[−0.1, 0.1] abs (Fx), and Fw = 0. A breakdown of the
parameter space into 11 critical regions is obtained, similar
to the one shown in Fig. 2. Here, ellipsoidal reachability
tubes are found to be much less conservative than their
interval counterparts nonetheless, due to the inability of
the latter to handle the wrapping effect during the en-
closure propagation. A set of robust control and response
trajectories for the initial state x(0) = [8×10−4, 14] ∈ CR6

are shown in Fig. 5(a), where the back-offs are derived
from ellipsoidal reachability tubes. Corresponding closed-
loop simulations obtained by applying both the nominal
and robust mp-NCO-tracking controllers with a sampling
period of ∆T = 1 are shown in Fig. 5(b), for a given
random disturbance Ω(t) ∈ [−0.1, 0.1]. Like previously, the
robust controller keeps the response feasible at all times,
whereas the nominal controller fails to enforce feasibility.

(a) Robust control and response trajectories

(b) Closed-loop mp-NCO-tracking control

Fig. 5. Robust mp-DO and mp-NCO-tracking controller
performance – Case of multiplicative disturbance and
ellipsoidal reachability tubes.

6. CONCLUSIONS

This paper has presented an extension of the mp-NCO-
tracking approach by Sun et al. (2016) for the design
of robust multi-parametric controllers for continuous-time
linear dynamic systems subject to time-varying uncer-
tainty. This extension involves backing-off of the path and
terminal state constraints based on a worst-case uncer-
tainty propagation in the form of interval and ellipsoidal
reachability tubes. An inherent advantage of the approach
is that the back-offs can be computed prior to solving the
mp-DO problem, thus enabling the direct application of
the controller design procedure in Sun et al. (2016) and
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making the off-line computational effort independent of
the number of uncertain parameters. The effect of backing-
off of the constraints is a modification of the size of
the critical regions, and possibly the number of critical
regions too—either removing or adding extra regions. The
applicability of the approach has been demonstrated by
the case study of an FCC unit, considering either additive
or multiplicative uncertainty. Future work will consider
applications to higher-dimensional problems, where model
reductions techniques may be used for reducing the order
of the dynamic system subject to an acceptable perfor-
mance loss (Pistikopoulos, 2012).
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Appendix A. SET NOTATION

The sets of compact and convex subsets of Rn are denoted by Kn

and Kn
C. The set of n-dimensional symmetric positive semidefinite

(resp. positive definite) matrices is denoted by Sn+ (resp. Sn++).

An interval vector is denoted by
[
yL, yU

]
, and its radius and

midpoint are defined as:

mid
([

yL, yU
])

:=

(
yU + yL

)
2

, (A.1)

rad
([

yL, yU
])

:=

(
yU − yL

)
2

. (A.2)

An ellipsoid with center q ∈ Rn and shape matrix Q ∈ Sn+ is denoted
by

E(q,Q) :=

{
q +Q

1
2 v

∣∣∣ v ∈ Rn, vTv ≤ 1

}
, (A.3)

or simply E(Q) when centered at the origin.

The support function V [Z] : Rn → R of a set Z ∈ Kn is

∀c ∈ Rn, V [K](c) := max
z

{cTz | z ∈ Z} . (A.4)

In particular, the support functions of the interval
[
yL, yU

]
and the

ellipsoid E(q,Q) are defined for each c ∈ Rn as

V [E(q,Q)](c) = cTq +
√

cTQc (A.5)

V [yL, yU](c) = cT mid
([

yL, yU
])

+ abs (c)T rad
([

yL, yU
])

(A.6)

with abs (c) := (|c1|, . . . , |cn|)T.

The ith row (resp. column) of a matrix A ∈ Rn×n is denoted by
A(i,·) (resp. A(·,i)).

Let I ⊂ R, Lnu
2 (I) denotes the set of L2-integrable vector-valued

functions of dimension nu on I, and Wnx
1,2(I), the set of nx-

dimensional weakly differentiable functions on I, whose weak deriva-
tive is L2-integrable.

Appendix B. CASE STUDY DATA

The equilibrium point is C∗
rc = 5.207 × 10−3, T ∗

rg = 965.4K,
T ∗
ro = 776.9K, T ∗

cy = 988.1K, and T ∗
f = 400K, where Tf denotes

the feed oil temperature.

The non-zero matrices in the objective function and linear dynamic
system of the optimal control problem (1) are:

Qf =

[
3.011× 107 1334

1334 1.260

]
, Q =

[
108 0
0 1

]
, R =

[
1 0
0 1

]
,

Fx =

[
−2.55× 10−2 1.51× 10−6

227 −4.10× 10−2

]
,

Fu =

[
3.29× 10−6 −2.60× 10−5

−2.8× 10−2 7.80× 10−1

]
, Fw =

[
6.87× 10−7

2.47× 10−2

]
.

The path constraints are given by:
[
−100
−15

]
≤ u(t) ≤

[
100
15

]
,

[
−10−3

−20

]
≤ x(t) ≤

[
10−3

20

]
.
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making the off-line computational effort independent of
the number of uncertain parameters. The effect of backing-
off of the constraints is a modification of the size of
the critical regions, and possibly the number of critical
regions too—either removing or adding extra regions. The
applicability of the approach has been demonstrated by
the case study of an FCC unit, considering either additive
or multiplicative uncertainty. Future work will consider
applications to higher-dimensional problems, where model
reductions techniques may be used for reducing the order
of the dynamic system subject to an acceptable perfor-
mance loss (Pistikopoulos, 2012).
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227 −4.10× 10−2

]
,

Fu =

[
3.29× 10−6 −2.60× 10−5

−2.8× 10−2 7.80× 10−1

]
, Fw =

[
6.87× 10−7

2.47× 10−2

]
.

The path constraints are given by:
[
−100
−15

]
≤ u(t) ≤

[
100
15

]
,

[
−10−3

−20

]
≤ x(t) ≤

[
10−3

20

]
.
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