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A New Randomized Block-Coordinate Primal-Dual Proximal
Algorithm for Distributed Optimization

Puya Latafat, Nikolaos M. Freris, Panagiotis Patrinos

Abstract—This paper proposes TriPD, a new primal-dual algo-
rithm for minimizing the sum of a Lipschitz-differentiable convex
function and two possibly nonsmooth convex functions, one of
which is composed with a linear mapping. We devise a random-
ized block-coordinate version of the algorithm which converges
under the same stepsize conditions as the full algorithm. It is
shown that both the original as well as the block-coordinate
scheme feature linear convergence rate when the functions in-
volved are either piecewise linear-quadratic, or when they sat-
isfy a certain quadratic growth condition (which is weaker than
strong convexity). Moreover, we apply the developed algorithms
to the problem of multi-agent optimization on a graph, thus ob-
taining novel synchronous and asynchronous distributed meth-
ods. The proposed algorithms are fully distributed in the sense
that the updates and the stepsizes of each agent only depend
on local information. In fact, no prior global coordination is re-
quired. Finally, we showcase an application of our algorithm in
distributed formation control.

Index Terms—Primal-dual algorithms, block-coordinate mini-
mization, distributed optimization, randomized algorithms, asyn-
chronous algorithms.

I. INTRODUCTION

In this paper we consider the optimization problem

minimize
x∈Rn

f(x) + g(x) + h(Lx), (1)

where L is a linear mapping, h and g are proper, closed, con-
vex functions (possibly nonsmooth), and f is convex, contin-
uously differentiable with Lipschitz-continuous gradient. We
further assume that the proximal mappings associated with h
and g are efficiently computable [1]. This setup is quite general
and captures a wide range of applications in signal processing,
machine learning and control.

In problem (1), it is typically assumed that the gradient
of the smooth term f is βf -Lipschitz for some nonnegative
constant βf . We consider Lipschitz continuity of ∇f with re-
spect to ‖ · ‖Q with Q � 0 in place of the canonical norm
(cf. (3)). This is because in many applications of practical
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interest, a scalar Lipschitz constant fails to accurately cap-
ture the Lipschitz continuity of ∇f . A prominent example
lies in distributed optimization, where f is separable, i.e.,
f(x) =

∑m
i=1 fi(xi). In this case, the metric Q is taken block-

diagonal with blocks containing the Lipschitz constants of the
∇fi’s. Notice that in such settings considering a scalar Lip-
schitz constant results in using the largest of the Lipschitz
constants, which leads to conservative stepsize selection and
consequently slower convergence rates.

The main contributions of the paper are elaborated upon in
four separate sections below.

A. A New Primal-Dual Algorithm

In this work a new primal-dual algorithm, TriPD (Alg. 1), is
introduced for solving (1). The algorithm consists of two prox-
imal evaluations (corresponding to the two nonsmooth terms
g and h), one gradient evaluation (for the smooth term f ), and
one correction step (cf. Alg. 1). We adopt the general Lipschitz
continuity assumption (3) in our convergence analysis, which
is essential for avoiding conservative stepsize conditions that
depend on the global scalar Lipschitz constant.

In Section II, it is shown that the sequence generated by
TriPD (Alg. 1) is S-Fejér monotone (with respect to the set of
primal-dual solutions),1 where S is a block diagonal positive
definite matrix. This key property is exploited in Section III
to develop a block-coordinate version of the algorithm with a
general randomized activation scheme.

The connections of our method to other related primal-dual
algorithms in the literature are discussed in Section II-A. Most
notably, we recap the Vũ-Condat scheme [2], [3], a popular
algorithm used for solving the structured optimization prob-
lem (1) (convergence of this method was established indepen-
dently by Vũ [2] and Condat [3], by casting it in the form of
the forward-backward splitting). In the analysis of [2], [3], a
scalar constant is used to capture the Lipschitz continuity of
the gradient of f , thus resulting in potentially smaller step-
sizes (and slower convergence in practice). In [4], the authors
assume the more general Lipschitz continuity property (3) by
using a preconditioned variable metric forward-backward it-
eration. Nevertheless, the stepsize matrix is restricted to be
proportional to Q−1. In Section II-A, we show how the anal-
ysis technique for the new primal-dual algorithm can be used
to recover the Vũ-Condat algorithm with general stepsize ma-
trices, and highlight that this line of analysis leads to less
restrictive sufficient conditions on the selected stepsizes com-
pared to [2]–[4]. More importantly, it is shown that unlike

1Given a symmetric positive definite matrix S, we say that a sequence is
S-Fejér monotone with respect to a set C if it is Fejér monotone with respect
to C in the space equipped with 〈 · , · 〉S .
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TriPD (Alg. 1), the Vũ-Condat generated sequence is S-Fejér
monotone, where S is not diagonal. As we discuss in the next
subsection, this constitutes the main difficulty in devising a
randomized version of the Vũ-Condat algorithm.

B. Randomized Block-Coordinate Algorithm
Block-coordinate (BC) minimization is a simple approach

for tackling large-scale optimization problems. At each itera-
tion, a subset of the coordinates is updated while others are
held fixed. Randomized BC algorithms are of particular inter-
est, and can be divided into two main categories:

Type a) comprises algorithms in which only one coordi-
nate is randomly activated and updated at each iteration. The
BC versions of gradient [5] and proximal gradient methods
[6] belong in this category. A distinctive attribute of the afore-
mentioned algorithms is the fact that the stepsizes are selected
to be inversely proportional to the coordinate-wise Lipschitz
constant of the smooth term rather than the global one. This
results in applying larger stepsizes in directions with smaller
Lipschitz constant, and therefore leads to faster convergence.

Type b) contains methods where more than one coordinate
may be randomly activated and simultaneously updated [7],
[8]. Note that this class may also capture the single active co-
ordinate (type a) as a special case. The convergence condition
for this class of BC algorithms is typically the same as in the
full algorithm. In [7], [8] random BC is applied to α-averaged
operators by establishing stochastic Fejér monotonicity, while
[8] also considers quasi-nonexpansive operators. In [7], [9]
the authors obtain randomized BC algorithms based on the
primal-dual scheme of Vũ and Condat; the main drawback is
that, just as in the full version of these algorithms, the use of
conservative stepsize conditions leads to slower convergence
in practice.

The BC version of TriPD (Alg. 1) falls into the second class,
i.e., it allows for a general randomized activation scheme (cf.
Alg. 2). The proposed scheme converges under the same step-
size conditions as the full algorithm. As a consequence, in
view of the characterization of Lipschitz continuity of ∇f in
(3), when f is separable, i.e., f(x) =

∑m
i=1 fi(xi), our ap-

proach leads to algorithms that depend on the local Lipschitz
constants (of ∇fi’s) rather than the global constant, thus as-
similating the benefits of both categories. Notice that when
f is separable, the coordinate-wise Lipschitz continuity as-
sumption of [5], [6], [10] is equivalent to (3) with βf = 1
and Q = blkdiag(β1In1

, . . . , βmInm
), where m denotes the

number of coordinate blocks, ni denotes the dimension of the
i-th coordinate block, and βi denotes the Lipschitz constant of
fi. In the general setting, [5, Lem. 2] can be invoked to estab-
lish the connection between the metric Q and the coordinate-
wise Lipschitz assumption. However, in many cases (most no-
tably the separable case) this lemma is conservative.

As mentioned in the prequel, in Section II-A the Vũ-Condat
algorithm is recovered using the same analysis that leads to
our proposed primal-dual algorithm. It is therefore natural to
consider adapting the approach of Section III so as to devise
a block-coordinate variant of the the Vũ-Condat algorithm.
However, this is not possible given that the Vũ-Condat gener-
ated sequence is S-Fejér monotone, where S is not diagonal

(cf. (20)), while the proof of Theorem III.1 relies heavily on
the diagonal structure of S. This presents a distinctive merit
of our proposed algorithm over the current state-of-the-art for
solving problem (1).

In [10], the authors propose a randomized BC version of
the Vũ-Condat scheme. Their analysis does not require the
cost functions to be separable and utilizes a different Lya-
punov function for establishing convergence. Notice that the
block-coordinate scheme of [10] updates a single coordinate
at every iteration (i.e., it is a type a) algorithm) as opposed to
the more general random sweeping of the coordinates. Addi-
tionally, in the case of f being separable, our proposed method
(cf. Alg. 2) assigns a block stepsize that is inversely propor-
tional to βi

2 (where βi denotes the Lipschitz constant for fi),
in place of βi required by [10, Assum. 2.1(e)]: larger stepsizes
are typically associated with faster convergence in primal-dual
proximal algorithms.

C. Linear Convergence

A third contribution of the paper is establishing linear con-
vergence for the full algorithm under an additional metric
subregularity condition for the monotone operator pertaining
to the primal-dual optimality conditions (cf. Thm. IV.5). For
the BC version, the linear rate is established under a slightly
stronger condition (cf. Thm. IV.6). We further explicate the re-
quired condition in terms of the objective functions, with two
special cases of prevalent interest: a) when f , g and h sat-
isfy a quadratic growth condition (cf. Lem. IV.2) (which is
much weaker than strong convexity) or b) when f , g and h
are piecewise linear-quadratic (cf. Lem. IV.4), a common sce-
nario in many applications such as LPs, QPs, SVM and fitting
problems for a wide range of regularization functions; e.g. `1
norm, elastic nets, Huber loss and many more.

Last but not least, it is shown that the monotone opera-
tor defining the primal-dual optimality conditions is metrically
subregular if and only if the residual mapping (the operator
that maps zk to zk − zk+1) is metrically subregular (cf. Lem.
IV.7). This connection enables the use of Lemmas IV.2 and
IV.4 to establish linear convergence for a large class of algo-
rithms based on conditions for the cost functions.

D. Distributed Optimization

As an important application, we consider a distributed struc-
tured optimization problem over a network of agents. In this
context, each agent has its own private cost function of the
form (1), while the communication among agents is captured
by an undirected graph G = (V, E):

minimize
x1,...,xm

m∑
i=1

fi(xi) + gi(xi) + hi(Lixi)

subject to Aijxi +Ajixj = b(i,j) (i, j) ∈ E .
We use (i, j) to denote the unordered pair of agents i, j, and
ij to denote the ordered pair. The goal is to solve the global
optimization problem through local exchange of information.
Notice that the linear constraints on the edges of the graph pre-
scribe relations between neighboring agents’ variables. This
type of edge constraints was also considered in [11]. It is
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worthwhile noting that for the special case of two agents
i = 1, 2, with fi, hi ≡ 0, one recovers the setup for the cel-
ebrated alternating direction method of multipliers (ADMM)
algorithm. Another special case of particular interest is con-
sensus optimization, when Aij = I , Aji = −I and b(i,j) = 0.
A primal-dual algorithm for consensus optimization was intro-
duced in [12] for the case of fi ≡ 0, where a transformation
was used to replace the edge variables with node variables.

This multi-agent optimization problem arises in many con-
texts such as sensor networks, power systems, transportation
networks, robotics, water networks, distributed data-sharing,
etc. [13]–[15]. In most of these applications, there are compu-
tation, communication and/or physical limitations on the sys-
tem that render centralized management infeasible. This mo-
tivates the fully distributed synchronous and asynchronous al-
gorithms developed in Section V. Both versions are fully dis-
tributed in the sense that not only the iterations are performed
locally, but also the stepsizes of each agent are selected based
on local information without any prior global coordination (cf.
Assumption 6). The asynchronous variant of the algorithm is
based on an instance of the randomized block-coordinate al-
gorithm in Section III. The protocol is as follows: at each
iteration, a) agents are activated at random, and independently
from one another, b) active agents perform local updates, c)
they communicate the required updated values to their neigh-
bors and d) return to an idle state.

Notation and Preliminaries

In this section, we introduce notation and definitions used
throughout the paper; the interested reader is referred to [16],
[17] for more details.

For an extended-real-valued function f , we use dom f to
denote its domain. For a set C, we denote its relative interior
by riC. The identity matrix is denoted by In ∈ Rn×n. For
a symmetric positive definite matrix P ∈ Rn×n, we define
the scalar product 〈x, y〉P = 〈x, Py〉 and the induced norm
‖x‖P =

√
〈x, x〉P . For simplicity, we use matrix notation for

linear mappings when no ambiguity occurs.
An operator (or set-valued mapping) A : Rn ⇒ Rd maps

each point x ∈ Rn to a subset Ax of Rd. We denote the
domain of A by domA = {x ∈ Rn | Ax 6= ∅}, its graph by
graA = {(x, y) ∈ Rn×Rd | y ∈ Ax}, the set of its zeros by
zerA = {x ∈ Rn | 0 ∈ Ax}, and the set of its fixed points by
fixA = {x | x ∈ Ax}. The mapping A is called monotone if
〈x−x′, y−y′〉 ≥ 0 for all (x, y), (x′, y′) ∈ graA, and is said
to be maximally monotone if its graph is not strictly contained
by the graph of another monotone operator. The inverse of A
is defined through its graph: graA−1 := {(y, x) | (x, y) ∈
graA}. The resolvent of A is defined by JA := (Id +A)−1,
where Id denotes the identity operator.

Let f : Rn → R := R∪{+∞} be a proper closed, convex
function. Its subdifferential is the operator ∂f : Rn ⇒ Rn

∂f(x) = {y | ∀z ∈ Rn, f(x) + 〈y, z − x〉 ≤ f(z)}.
It is well-known that the subdifferential of a convex function is
maximally monotone. The resolvent of ∂f is called the proxi-
mal operator (or proximal mapping), and is single-valued. Let
V denote a symmetric positive definite matrix. The proximal

mapping of f relative to ‖ · ‖V is uniquely determined by the
resolvent of V −1∂f :

proxVf (x) := (Id + V −1∂f)−1x

= argmin
z∈Rn

{f(z) + 1
2‖x− z‖2V }.

The Fenchel conjugate of f , denoted by f∗, is defined by
f∗(v) := supx∈Rn{〈v, x〉 − f(x)}. The Fenchel-Young in-
equality states that 〈x, u〉 ≤ f(x) + f∗(u) holds for all
x, u ∈ Rn; in the special case when f = 1

2‖ · ‖2V for some
symmetric positive definite matrix V , this gives:

〈x, u〉 ≤ 1
2‖x‖2V + 1

2‖u‖2V −1 . (2)

Let X be a nonempty closed convex set. The indicator of X
is defined by δX(x) = 0 if x ∈ X , and δX(x) =∞ if x /∈ X .
The distance from X and the projection onto X with respect
to ‖ · ‖V are denoted by dV (·, X) and PVX (·), respectively.

We use (Ω,F ,P) for defining a probability space, where Ω,
F and P denote the sample space, σ-algebra, and the proba-
bility measure. Moreover, almost surely is abbreviated as a.s.

The sequence (wk)k∈N is said to converge to w? Q-linearly
with Q-factor σ ∈ (0, 1), if there exists k̄ ∈ N such that for all
k ≥ k̄, ‖wk+1 −w?‖ ≤ σ‖wk −w?‖. Furthermore, (wk)k∈N

is said to converge to w? R-linearly if there exists a sequence
of nonnegative scalars (vk)k∈N such that ‖wk − w?‖ ≤ vk

and (vk)k∈N converges to zero Q-linearly.

II. A NEW PRIMAL-DUAL ALGORITHM

In this section we present a primal-dual algorithm for prob-
lem (1). We adhere to the following assumptions throughout
sections II to IV:

Assumption 1.
(i) g : Rn → R, h : Rr → R are proper, closed, convex

functions, and L : Rn → Rr is a linear mapping.

(ii) f : Rn → R is convex, continuously differentiable, and
for some βf ∈ [0,∞), ∇f is βf -Lipschitz continuous
with respect to the metric induced by Q � 0 , i.e.,

‖∇f(x)−∇f(y)‖Q−1≤βf‖x−y‖Q ∀x, y ∈ Rn. (3)

(iii) The set of solutions to (1) is nonempty. Moreover, there
exists x ∈ ri dom g such that Lx ∈ ri domh.

In Assumption 1(ii), the constant βf ≥ 0 is not absorbed
into the metric Q in order to also incorporate the case when
∇f is a constant (by setting βf = 0).

The dual problem is to

minimize
u∈Rr

(g + f)∗(−L>u) + h∗(u). (4)

With a slight abuse of terminology, we say that (u?, x?) is
a primal-dual solution (in place of dual-primal) if u? solves
the dual problem (4) and x? solves the primal problem (1).
We denote the set of primal-dual solutions by S. Assumption
1(iii) guarantees that the set of solutions to the dual problem
is nonempty and the duality gap is zero [18, Corollary 31.2.1].
Furthermore, the pair (u?, x?) is a primal-dual solution if and
only if it satisfies:{

0 ∈ ∂h∗(u)− Lx,
0 ∈ ∂g(x) +∇f(x) + L>u.

(5)
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We proceed to present the new primal-dual scheme
TriPD (Alg. 1). The motivation behind the name becomes
apparent in the sequel after equation (13). The algorithm in-
volves two proximal evaluations (respective to the non-smooth
terms g, h), and one gradient evaluation (for the Lipschitz-
differentiable term f ). The stepsizes in TriPD (Alg. 1) are
chosen so as to satisfy the following assumption:

Assumption 2 (Stepsize selection). Both the dual stepsize
matrix Σ ∈ Rr×r, and the primal stepsize matrix Γ ∈ Rn×n

are symmetric positive definite. In addition, they satisfy:

Γ−1 − βf

2 Q− L>ΣL � 0. (6)

Selecting scalar primal and dual stepsizes, along with the
standard definition of Lipschitz continuity, as is prevalent in
the literature [2], [3], can plainly be treated by setting Σ =
σIr, Γ = γIn, and Q = In, whence from (6) we require that

γ <
1

βf

2 + σ‖L‖2
.

Algorithm 1 Triangularly Preconditioned Primal-Dual algo-
rithm (TriPD)

Inputs: x0 ∈ Rn, u0 ∈ Rr

for k = 0, 1, . . . do
ūk = proxΣ−1

h∗ (uk + ΣLxk)

xk+1 = proxΓ−1

g (xk − Γ∇f(xk)− ΓL>ūk)
uk+1 = ūk + ΣL(xk+1 − xk)

Remark II.1. Each iteration of TriPD (Alg. 1) requires one
application of L and one of L> (even though it appears
to require two applications of L). The reason is that, at it-
eration k, only L>ūk, Lxk+1 need to be evaluated since
L(xk+1−xk) = Lxk+1−Lxk and Lxk was computed during
the previous iteration.

TriPD (Alg. 1) can be compactly written as:
zk+1 = Tzk,

where zk := (uk, xk), and the operator T is given by:

ū = proxΣ−1

h∗ (u+ ΣLx) (7a)

x̄ = proxΓ−1

g (x− Γ∇f(x)− ΓL>ū) (7b)

Tz = (ū+ ΣL(x̄− x), x̄). (7c)

Remark II.2 (Relaxed iterations). It is also possible to devise
a relaxed version of TriPD (Alg. 1) as follows:

zk+1 = zk + Λ(Tzk − zk),

where Λ is a positive definite matrix and Λ ≺ 2In+r. For
ease of exposition, we present the convergence analysis for
the original version (i.e., for Λ = In+r). Note that the analysis
carries through with minor modifications for relaxed iterations.

For compactness of exposition, we define the following op-
erators:

A : (u, x) 7→ (∂h∗(u), ∂g(x)), (8a)

M : (u, x) 7→ (−Lx,L>u), (8b)
C : (u, x) 7→ (0,∇f(x)). (8c)

The optimality condition (5) can then be written in the equiv-
alent form of the monotone inclusion:

0 ∈ Az +Mz + Cz =: Fz, (9)

where z = (u, x). Observe that the linear operator M is mono-
tone since it is skew-symmetric, i.e., M> = −M . It is also
easy to verify that the operator A is maximally monotone [17,
Thm. 21.2 and Prop. 20.23], while operator C is cocoercive,
being the gradient of f̃(u, x) = f(x), and in light of Assump-
tion 1(ii) and [17, Thm. 18.16].

We further define

P =

(
Σ−1 1

2L
1
2L
> Γ−1

)
, K =

(
0 − 1

2L
1
2L
> 0

)
, (10)

and set H = P + K. It is plain to check that condition (6)
implies that the symmetric matrix P is positive definite (by a
standard Schur complement argument). In addition, we set

S = blkdiag(Σ−1,Γ−1). (11)

Using these definitions, the operator T defined in (7) can be
written as:

Tz := z + S−1(H +M>)(z̄ − z), (12)

where

z̄ = (H +A)−1(H −M − C)z. (13)

This compact representation simplifies the convergence analy-
sis. A key consideration for choosing P and K as in (10) is to
ensure that H = P +K is lower block-triangular. Notice that
when M ≡ 0, (12) can be viewed as a triangularly precon-
ditioned forward-backward update, followed by a correction
step. This motivates the name TriPD: Triangularly Precondi-
tioned Primal-Dual algorithm. Due to the triangular structure
of H , the backward step (H+A)−1 in (13) can be carried out
sequentially: an updated dual vector ū is computed (through
proximal mapping) using (u, x) and, subsequently, the primal
vector x̄ is computed using ū and x, cf. (7). Furthermore,
it follows from (12) that this choice makes H + M> upper
block-triangular which, alongside the diagonal structure of S,
yields the efficiently computable update (7c) in view of:

S−1(H +M>) =

(
I ΣL
0 I

)
. (14)

Remark II.3. The operator in (12) is inspired from [19, Alg.
1], where operators of this form were introduced for devising
a splitting method for solving general monotone inclusions
of the form in (9). We note, in passing, that the aforemen-
tioned algorithm entails an additional dynamic stepsize param-
eter (αn, therein). Although we may also adopt this here, for
potentially improving the rate of convergence in practice, we
opt not to: the reason is that in the context of multi-agent op-
timization (that we especially target in this paper) such design
choice would require global coordination, that is contradictory
to our objective of devising distributed algorithms. As a posi-
tive side-effect, the convergence analysis is greatly simplified
compared to [19, Sec. 5]. Besides, we use stepsize matrices (in
place of scalar stepsizes) in TriPD (Alg. 1) along with the gen-
eral Lipschitz continuity property (cf. Assumption 1(ii)) as an
essential means for avoiding conservative stepsizes, which is
especially important for large-scale distributed optimization.
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We proceed by showing that the set of primal-dual solutions
coincides with the set of fixed points of T , fixT :

S = {z | 0 ∈ Az +Mz + Cz} = fixT. (15)

To see this note that from (12) and (13) we have:

z ∈ fixT ⇐⇒ z = Tz ⇐⇒ z̄ = z

⇐⇒ (H +A)−1(H −M − C)z = z

⇐⇒ Hz −Mz − Cz ∈ Hz +Az ⇐⇒ z ∈ S,
where in the second equivalence we used the fact that S is
positive definite and 〈(H + M>)z, z〉 ≥ ‖z‖2P for all z ∈
Rn+r (since K is skew-adjoint and M is monotone).

Next, let us define

P̃ :=

(
Σ−1 − 1

2L

− 1
2L
> Γ−1 − βf

4 Q

)
. (16)

Observe that (from Schur complement) Assumption 2 is neces-
sary and sufficient for 2P̃−S to be symmetric positive definite
(cf. to the convergence result in Thm. II.5). In particular, P̃ is
positive definite since S is positive definite.

The next lemma establishes the key property of the operator
T that is instrumental in our convergence analysis:

Lemma II.4. Let Assumptions 1 and 2 hold. Consider the
operator T in (7) (equivalently (12)). Then for any z? ∈ S
and any z ∈ Rn+r we have

‖Tz − z‖2
P̃
≤ 〈z − z?, z − Tz〉S . (17)

Proof. See Appendix A.

The next theorem establishes the main convergence result
for TriPD (Alg. 1). In specific, it is shown that the generated
sequence is S-Fejér monotone. We emphasize that the diagonal
structure of S is the key property used in developing the block-
coordinate version of the algorithm in Section III.

Theorem II.5. Let Assumptions 1 and 2 hold. Consider the
sequence (zk)k∈N generated by TriPD (Alg. 1). The following
Fejér-type inequality holds for all z? ∈ S:

‖zk+1 − z?‖2S ≤ ‖zk − z?‖2S − ‖zk+1 − zk‖2
2P̃−S . (18)

Consequently, (zk)k∈N converges to some z? ∈ S.

Proof. See Appendix A.

A. Related Primal-Dual Algorithms

Recently, the design of primal-dual algorithms for solving
problem (1) (possibly with f ≡ 0 or g ≡ 0) has received
a lot of attention in the literature. Most of the existing ap-
proaches can be interpreted as applications of one of the three
main splittings techniques: forward-backward (FB), Douglas-
Rachford (DR), and forward-backward-forward (FBF) split-
tings [2], [3], [20], [21], while others employ different tools
to establish convergence [22], [23].

A unifying analysis for primal-dual algorithms is proposed
in [19, Sec. 5], where in place of FBS, DRS, or FBFS, a new
three-term splitting, namely asymmetric forward-backward ad-
joint (AFBA) is used to design primal-dual algorithms. In par-
ticular, the algorithms of [2], [3], [20]–[23] are recovered (un-
der less restrictive stepsize conditions) and other new primal-
dual algorithms are proposed. As discussed in Remark II.3

the AFBA splitting [19, Alg. 1] is the motivation behind the
operator T defined in (12). We refer the reader to [19, Sec.
5] and [24] for a detailed discussion on the relation between
primal-dual algorithms.

Next we briefly discuss how the celebrated algorithm of Vũ
and Condat [2], [3] can be seen as fixed-point iterations of the
operator T in (12) for an appropriate selection of S, P , K.

In [3] Condat considers problem (1), while Vũ [2] considers
the following variant:

minimize
x∈Rn

f(x) + g(x) + (h � l)(Lx), (19)

where l is a strongly convex function and � represents the infi-
mal convolution [17]. For this problem, an additional assump-
tion is that the conjugate of l is continuously differentiable,
and ∇l∗ is βl-Lipschitz continuous with respect to a metric
G � 0, for some βl ≥ 0, cf. (3). Note that it is possible to de-
rive and analyze a variant of TriPD (Alg. 1) for (19), however,
we do not pursue this in this paper and focus on problem (1)
for clarity of exposition and length considerations.

One can verify that the operator defining the fixed-point
iterations in the Vũ-Condat algorithm is given by (12) with
H = P +K and S defined as follows:

S =

(
Σ−1 L
L> Γ−1

)
, (20)

P =

(
Σ−1 L
L> Γ−1

)
, K =

(
0 −L
L> 0

)
.

For such selection of S, P , K, it holds that S−1(H+M>) =
I , whence in proximal form, the operator defined in (12) be-
comes:

ū = proxΣ−1

h∗ (u− Σ∇l∗(u) + ΣLx)

x̄ = proxΓ−1

g (x− Γ∇f(x)− ΓL>(2ū− u))

Tz = (ū, x̄).

Observe the non-diagonal structure of S for the Vũ-Condat
algorithm in (20), in contrast with the one for TriPD (Alg. 1)
in (11). For the sake of comparison with [2], [3] we consider
the relaxed iteration zk+1 = zk + λ(Tzk − zk) for some λ ∈
(0, 2), in this subsection (which we opted to exclude from
TriPD (Alg. 1) solely for the purpose of simplicity).

The analysis in Theorem II.5 can be further used to establish
convergence of the Vũ-Condat scheme for problem (19) under
the following sufficient conditions (in place of Assumption 2):

Σ−1 − βl

2(2−λ)G � 0, (21a)

Γ−1 − βf

2(2−λ)Q− L>
(

Σ−1 − βl

2(2−λ)G
)−1

L � 0. (21b)

Notice that when l = δ{0} (i.e., for problem (1)), l∗ ≡ 0
whence βl = 0, and the condition simplifies to:

Γ−1 − βf

2(2−λ)Q− L>ΣL � 0.

Given the stepsize condition (21) the following Fejér-type in-
equality holds.

‖zk+1 − z?‖2S ≤ ‖zk − z?‖2S − λ‖zk+1 − zk‖2
2P̂−λS , (22)

with S defined in (20) and P̂ given by:

P̂ :=

(
Σ−1 − βl

4 G L

L> Γ−1 − βf

4 Q

)
.
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This generalizes the result in [3, Thm. 3.1], [2, Cor. 4.2] and
[19, Prop. 5.1] where Q = I and the stepsizes are assumed to
be scalar.

Our main goal here was to demonstrate the non-diagonal
structure of S for the Vũ-Condat algorithm. In the sequel,
we highlight that our analysis additionally leads to less con-
servative conditions as compared to [2]–[4]. Notice that the
proofs in the aforementioned papers are based on casting the
algorithm in the form of forward-backward iterations. Conse-
quently, the stepsize condition obtained ensures that the under-
lying operator is averaged. In contradistinction, the sufficient
condition in (21) only ensures that the Fejér-type inequality
(22) holds, which is sufficient for convergence. Therefore, even
in the case of scalar stepsizes (as in [2], [3]) condition (21)
allows for larger stepsizes compared to [2], [3].

In [4], [9] the authors propose a variable metric version
of the algorithm with a preconditioning that accounts for the
general Lipschitz metric. This is accomplished by fixing the
stepsize matrix to be a constant times the inverse of the Lip-
schitz metric, and obtaining a condition on the constant. Our
approach does not assume this restrictive form for the step-
size matrix; even when such a restriction is imposed it allows
for larger stepsizes, thus achieving generally faster conver-
gence. As an illustrative example, let us set Γ = µQ−1 and
Σ = νG−1 for some µ, ν > 0. For simplicity and without loss
of generality, let βl = 1, βf = 1. Then (21) simplifies to:

(µ−1 − 1
2(2−λ) )(ν−1 − 1

2(2−λ) )Q− L>G−1L � 0, (23)

whereas the condition required in [4], [9] is λ ∈ (0, 1] and
δ

1+δ
>

max{µ,ν}
2

with δ = 1√
νµ‖G−1/2LQ−1/2‖−1−1.

(24)
It is not difficult to check that condition, (23), is always less
restrictive than (24). For instance, let G−1/2LQ−1/2 = I and
set µ = 1.5, then (23) requires that ν < 1

6.5 whereas (24)
necessitates that ν < 1

24 .

III. A RANDOMIZED BLOCK-COORDINATE ALGORITHM

In this section, we describe a randomized block-coordinate
variant of TriPD (Alg. 1) and discuss important special cases
pertaining to the randomized coordinate activation mechanism.
The convergence analysis is based on establishing stochastic
Fejér monotonicity [8] of the generated sequence. In addition,
we establish linear convergence of the method under further
assumptions in Section IV.

First, let us define a partitioning of the vector of primal-
dual variables into m blocks of coordinates. Notice that each
block might include a subset of primal or dual variables, or a
combination of both. Respectively, let Ui ∈ R(n+r)×(n+r), for
i = 1, . . . ,m, be a diagonal matrix with 0-1 diagonal entries
that is used to select a subset of the coordinates (selected
coordinates correspond to diagonal entries equal to 1). We call
such matrix an activation matrix, as it is used to activate/select
a subset of coordinates to update.

Let Φ = {0, 1}m denote the set of binary strings of length
m (with the elements considered as column vectors of dimen-
sion m). At the k-th iteration, the algorithm draws a Φ-valued
random activation vector εk+1 which determines which blocks

of coordinates will be updated. The i-th element of the vector
εk+1 is denoted as εk+1

i : the i-th block is updated at itera-
tion k if εk+1

i = 1. Notice that in general multiple blocks of
coordinates may be concurrently updated. The conditional ex-
pectation E[· | Fk] is abbreviated by Ek[·], where Fk is the
filtration generated by (ε1, . . . , εk). The following assumption
summarizes the setup of the randomized coordinate selection.

Assumption 3.
(i) {Ui}mi=1 are 0-1 diagonal matrices and

∑m
i=1 Ui = I.

(ii) (εk)k∈N is a sequence of i.i.d. Φ-valued random vectors
with

pi := P(ε1i = 1) > 0 i = 1, . . . ,m. (25)

(iii) The stepsize matrices Σ,Γ are diagonal.

The first condition implies that the activation matrices de-
fine a partition of the coordinates, while the second that each
partition is activated with a positive probability.

We further define the (diagonal) coordinate activation prob-
ability matrix Π as follows:

Π :=

m∑
i=1

piUi. (26)

For ε = (ε1, . . . , εm) we define the operator T̂ (ε) by:

T̂ (ε)z := z +

m∑
i=1

εiUi(Tz − z),

where T was defined in (7) (equivalently (12)). Observe that
this is a compact notation for the update of only the selected
blocks. The randomized scheme is then written as an iter-
ative application of T̂ (εk+1) for k = 0, 1, . . . (this operator
updates the active blocks of coordinates and leaves the oth-
ers unchanged, i.e., equal to their previous iterate values). The
randomized block-coordinate scheme is summarized below.

Algorithm 2 Block-coordinate TriPD algorithm
Inputs: x0 ∈ Rn, u0 ∈ Rr

for k = 0, 1, . . . do
Select Φ-valued r.v. εk+1

zk+1 = T̂ (εk+1)zk

We emphasize that the randomized model that we adopt
here is capable of capturing many stationary randomized ac-
tivation mechanisms. To illustrate this, consider the following
activation mechanisms (of specific interest in the realm of dis-
tributed multi-agent optimization, cf. Section V):
• Multiple coordinate activation: at each iteration, the j-th

coordinate block is randomly activated with probability pj >
0 independent of other coordinates blocks. This corresponds
to the case that the sample space is equal to Φ = {0, 1}m.
The general distributed algorithm of Section V assumes this
mechanism.

• Single coordinate activation: at each iteration, one coordi-
nate block is selected, i.e., the sample space is

{(1,0,...,0),(0,1,0,...,0)...,(0,...,0,1)}. (27)

We assign probability pi to the event εi = 1 (and εj = 0 for
j 6= i), whence the probabilities must satisfy

∑m
i=1 pi = 1.
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The next lemma establishes stochastic Fejér monotonicity for
the generated sequence, by directly exploiting the diagonal
structure of S. The proof technique is adapted from [7, Thm.
3] (see also [25, Thm. 2], [8, Thm. 2.5]), and is based on the
Robbins-Siegmund lemma [26].

Theorem III.1. Let Assumptions 1 to 3 hold. Consider the
sequence (zk)k∈N generated by TriPD-BC (Alg. 2). The fol-
lowing Fejér-type inequality holds for all z? ∈ S:

Ek
[
‖zk+1 − z?‖2Π−1S

]
≤ ‖zk − z?‖2Π−1S

− ‖Tzk − zk‖2
2P̃−S . (28)

Consequently, (zk)k∈N converges a.s. to some z? ∈ S.

Proof. See Appendix A.

It is important to emphasize that a naive implementation of
TriPD-BC (Alg. 2) (with regards to the partitioning of primal-
dual variables) may involve wasteful computations. As an ex-
ample, consider a BC algorithm in which, at every iteration,
either all primal or all dual variables are updated. In such a
case, if at iteration k the dual vector is to be updated, both
xk+1, uk+1 are computed (cf. Alg. 1), whereas only uk+1 is
updated. This phenomenon is common to all primal-dual algo-
rithms, and is due to the fact that the primal and dual updates
need to be performed sequentially in the full version of the al-
gorithm. As a consequence, the blocks of coordinates must be
partitioned in such a way that computations are not discarded,
so that the iteration cost of a BC algorithm is (substantially)
smaller than computing the full operator T . This choice relies
entirely on the structure of the optimization problem under
consideration. A canonical example of prominent practical in-
terest is the setting of multi-agent optimization in a network
(cf. §V), where L is not diagonal, f and g are separable, and
additional coupling between (primal) coordinates is present
through h, see (32). In this example, the primal and dual co-
ordinates are partitioned in such a way that no computation is
discarded (cf. §V for more details).

We proceed with another example where the coordinates
may be grouped such that the BC algorithm does not incur
any wasteful computations: consider problem (1) with Lx =
blkdiag(L1x1, . . . , Lmxm), and g, h separable functions i.e.,

minimize
x∈Rn

f(x) +

m∑
i=1

(
gi(xi) + hi(Lixi)

)
.

In this problem, the coupling between the (primal) coordi-
nates is carried via function f . For each i = 1, . . . ,m, we
can choose Ui such that it selects the i-th primal-dual coor-
dinate block (ui, xi). Under such partitioning of coordinates,
one may use TriPD-BC (Alg. 2) with any random activation
pattern satisfying Assumption 3. For example, for the case
of multiple independently activated coordinates, as discussed
above, at iteration k the following is performed

• each block (ui, xi) is activated with probability pi > 0
• for active block(s) i compute:
ūki = proxσh∗i (uki + σLix

k
i )

xk+1
i = proxγgi(x

k
i − γ∇if(xk)− γL>i ūki )

uk+1
i = ūki + σLi(x

k+1
i − xki ).

More generally, when g and h are separable in problem (1),
and L is such that either each (block) row only has one nonzero
element or each (block) column has one nonzero element, then
the coordinates can be grouped together in such a way that no
wasteful computations occur: in the first case the primal vector
xi and all dual vectors uj that are required for its computation
are selected by Ui (with the role of primal and dual reversed
in the second case).

Remark III.2. Note that in TriPD-BC (Alg. 2) the probabili-
ties pi are taken fixed, i.e., the matrix Π is constant through-
out the iterations. This is a non-restrictive assumption and can
be relaxed by considering iteration-varying probabilities pki in
(25) and modifying TriPD-BC (Alg. 2) by setting:

zk+1 = zk +

m∑
i=1

εk+1
i

mpk+1
i

Ui(Tz
k − zk).

Let Πk denote the probability matrix defined as in (26) using
pki . Then, by arguing as in Theorem III.1, it can be shown
that the following stochastic Fejér monotonicity holds for the
modified sequence:

Ek
[
‖zk+1 − z?‖2S

]
≤‖zk − z?‖2S
− ‖Tzk − zk‖22

mP̃− 1
m2 S(Πk+1)−1

.

IV. LINEAR CONVERGENCE

In this section, we establish linear convergence of Algo-
rithms 1 and 2 under additional conditions on the cost func-
tions f , g and h. To this end, we show that linear conver-
gence is attained if the monotone operator F = A + M + C
defining the primal-dual optimality conditions (cf. (9)) is met-
rically subregular (globally metrically subregular in the case
of TriPD-BC (Alg. 2)). A notable consequence of our analysis
is the fact that linear convergence is attained when the cost
functions either a) belong in the class of piecewise linear-
quadratic (PLQ) convex functions or b) when they satisfy a
certain quadratic growth condition (which is much weaker
than strong convexity). Moreover, notice that in the case of
PLQ the solution need not be unique (cf. Thm.s IV.5 and IV.6).

We first recall the notion of metric subregularity [27].

Definition IV.1 (Metric subregularity). A set-valued mapping
F : Rn ⇒ Rd is metrically subregular at x̄ for ȳ if (x̄, ȳ) ∈
graF and there exists a positive constant η together with a
neighborhood of subregularity U of x̄ such that

d(x, F−1ȳ) ≤ ηd(ȳ, Fx) ∀x ∈ U .
If the following stronger condition holds

‖x− x̄‖ ≤ ηd(ȳ, Fx) ∀x ∈ U ,
then F is said to be strongly subregular at x̄ for ȳ.

Moreover, we say that F is globally (strongly) subregular
at x̄ for ȳ if (strong) subregularity holds with U = Rn.

We refer the reader to [16, Chap. 9], [27, Chap. 3] and [28,
Chap. 2] for further discussion on metric subregularity.

Metric subregularity of the subdifferential operator has been
studied thoroughly and is equivalent to the quadratic growth
condition [29], [30] defined next. In particular, for a proper
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closed convex function f , the subdifferential ∂f is metrically
subregular at x̄ for ȳ with (x̄, ȳ) ∈ gra ∂f if and only if there
exists a positive constant c and a neighborhood U of x̄ such
that the following growth condition holds [29, Thm. 3.3]:

f(x) ≥ f(x̄) + 〈ȳ, x− x̄〉+ cd2(x, (∂f)−1(ȳ)) ∀x ∈ U
Furthermore, ∂f is strongly subregular at x̄ for ȳ with (x̄, ȳ) ∈
gra ∂f , if and only if there exists a positive constant c and a
neighborhood U of x̄ such that [29, Thm. 3.5]:

f(x) ≥ f(x̄) + 〈ȳ, x− x̄〉+ c‖x− x̄‖2 ∀x ∈ U (29)

Note that strongly convex functions satisfy (29), but (29) is
much weaker than strong convexity, as it is a local condition:
it only holds in a neighborhood of x̄, and also only for ȳ.

The lemma below provides a sufficient condition for metric
subregularity of the monotone operator A+M +C, in terms
of strong subregularity of ∇f + ∂g and ∂h∗ (equivalently the
quadratic growth of f + g and h∗, cf. (29)) as stated in the
following assumption:

Assumption 4 (Strong subregularity of ∇f + ∂g and ∂h∗).
There exists z? = (u?, x?) ∈ S satisfying:

(i) ∇f + ∂g is strongly subregular at x? for −L>u?,

(ii) ∂h∗ is strongly subregular at u? for Lx?.
We say that f , g and h satisfy this assumption globally if the
strong subregularity assumption of ∇f + ∂g and ∂h∗ both
hold globally (cf. Definition IV.1).

In particular, Assumption 4 holds globally if either f or g (or
both) are strongly convex and h is continuously differentiable
with Lipschitz continuous gradient, i.e., h∗ is strongly convex.

Lemma IV.2. Let Assumptions 1 and 4 hold. Then F = A+
M +C (cf. (8)) is strongly subregular at z? for 0. Moreover,
if f , g and h satisfy Assumption 4 globally, then F is globally
strongly subregular at z? for 0. In both cases the set of primal-
dual solutions is a singleton, S = {z?}.
Proof. See Appendix A.

Our next objective is to show that A+M + C is globally
metrically subregular when the functions f , g and h are piece-
wise linear-quadratic (PLQ). Note that this assumption does
not imply that the set of solutions S is a singleton, neverthe-
less, linear convergence can still be established. Let us recall
the definition of PLQ functions [16]:

Definition IV.3 (Piecewise linear-quadratic). A function f :
Rn → R is called piecewise linear-quadratic (PLQ) if its do-
main can be represented as the union of finitely many polyhe-
dral sets, and in each such set f(x) is given by an expression
of the form 1

2 〈x,Qx〉+ 〈d, x〉+ c, for some c ∈ R, d ∈ Rn,
and symmetric matrix Q ∈ Rn×n.

The class of PLQ functions is closed under scalar mul-
tiplication, addition, conjugation and Moreau envelope [16].
A wide range of functions used in optimization applications
belong to this class, for example: affine functions, quadratic
forms, indicators of polyhedral sets, polyhedral norms (e.g.,
the `1-norm), and regularizing functions such as elastic net,
Huber loss, hinge loss, to name a few.

Lemma IV.4. Let Assumption 1 hold. In addition, assume
that f , g and h are piecewise linear-quadratic. Then F =
A + M + C (cf. (8)) is metrically subregular with the same
constant η at any z for any v with (z, v) ∈ graF .

Proof. See Appendix A.

Our main convergence rate results are provided in Theorems
IV.5 and IV.6. In this context, Lemmas IV.2 and IV.4 are used
to establish sufficient conditions in terms of the cost functions.
We omit the proof of Theorem IV.5 for length considerations.
The proof is similar to that of Theorem IV.6, the main differ-
ence being that in Theorem IV.5 local (as opposed to global)
metric subregularity is used: due to the Fejér-type inequality
(18), z̄k will eventually be contained in a neighborhood of
metric subregularity, where inequality (53) applies.

Theorem IV.5 (Linear convergence of Alg. 1). Consider
TriPD (Alg. 1) under the assumptions of Theorem II.5. Sup-
pose that F = A + M + C is metrically subregular at all
z? ∈ S for 0. Then (dS(zk,S))k∈N converges Q-linearly to
zero, and (zk)k∈IN converges R-linearly to some z? ∈ S.

In particular, the metric subregularity assumption holds and
the result follows if either one of the following holds:

(i) either f , g and h are PLQ,

(ii) or f , g and h satisfy Assumption 4, in which case the
solution is unique.

Theorem IV.6 (Linear convergence of Alg. 2). Consider
TriPD-BC (Alg. 2) under the assumptions of Theorem III.1.
Suppose that F = A+M + C is globally metrically subreg-
ular for 0 (cf. Def. IV.1), i.e., there exists η > 0 such that

d(z, F−10) ≤ ηd(0, Fz) ∀z ∈ Rn+r.

Then (E
[
d2

Π−1S(zk,S)
]
)k∈N converges Q-linearly to zero.

The same holds if
(i) either f, g, h are PLQ and there exists a compact set C

such that (zk)k∈N ⊆ C (as is the case if dom g and
domh∗ are compact),

(ii) or f , g and h satisfy Assumption 4 globally, in which
case the solution is unique.

Proof. See Appendix A.

In the recent work [31] the authors establish linear conver-
gence in the framework of non-expansive operators under the
assumption that the residual mapping defined as R = Id− T
is metrically subregular. However, such a condition is not eas-
ily verifiable in terms of conditions on the cost functions. In
the next lemma, we show that R is metrically subregular if
and only if the monotone operator F is metrically subregular.
This result connects the two assumptions and is interesting in
its own right. More importantly, it enables the use of Lemmas
IV.2 and IV.4 for establishing linear convergence for a wide
array of problems.

Lemma IV.7. Let Assumptions 1 and 2 hold. Consider the
operator T defined in (12) and a point z? ∈ S. Then F =
A + M + C (cf. (8)) is metrically subregular at z? for 0 if
and only if the residual mapping R := Id − T is metrically
subregular at z? for 0.
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Proof. See Appendix A.

V. DISTRIBUTED OPTIMIZATION

In this section, we consider a general formulation for multi-
agent optimization over a network, and leverage Algorithms
1 and 2 to devise both synchronous and randomized asyn-
chronous distributed primal-dual algorithms. The setting is as
follows. We consider an undirected graph G = (V, E) over a
vertex set V = {1, . . . ,m} with edge set E ⊂ V × V . Each
vertex is associated with a corresponding agent, which is as-
sumed to have a local memory and computational unit, and can
only communicate with its neighbors. We define the neighbor-
hood of agent i by Ni := {j|(i, j) ∈ E}. We use the terms ver-
tex, agent, and node interchangeably. The goal is to solve the
following global optimization problem in a distributed fashion:

minimize
x1,...,xm

m∑
i=1

fi(xi) + gi(xi) + hi(Lixi) (30a)

subject to Aijxi +Ajixj = b(i,j) (i, j) ∈ E , (30b)
where xi ∈ Rni . The cost functions fi, gi, hi◦Li are taken pri-
vate to agent/node i ∈ V , i.e., our distributed methods operate
solely by exchanging local variables among neighboring nodes
that are unaware of each other’s objectives. The coupling in
the problem is represented through the edge constraints (30b).

Throughout this section the following assumptions hold:

Assumption 5. For each i = 1, . . . ,m:
(i) For j ∈ Ni, b(i,j) ∈ Rl(i,j) and Aij ∈ Rni → Rl(i,j) is

a linear mapping.

(ii) gi : Rni → R, hi : Rri → R are proper closed convex
functions, and Li : Rni → Rri is a linear mapping.

(iii) fi : Rni → R is convex, continuously differentiable,
and for some βi ∈ [0,∞), ∇fi is βi-Lipschitz continu-
ous with respect to the metric Qi � 0, i.e.,

‖∇fi(x)−∇fi(y)‖Q−1
i
≤ βi‖x− y‖Qi

x, y ∈ Rni .

(iv) The graph G is connected.

(v) The set of solutions of (30) is nonempty. Moreover, there
exists xi ∈ ri dom gi such that Lixi ∈ ri domhi, for
i = 1, . . . ,m, and Aijxi+Ajixj = b(i,j) for (i, j) ∈ E .

Each agent i ∈ V maintains its own local primal variable
xi ∈ Rni and dual variables yi ∈ Rri , and w(i,j),i ∈ Rl(i,j)

(for each j ∈ Ni), where the former is related to the linear
mapping Li, and the latter is the local dual variable of agent
i corresponding to the edge-constraint (30b). It is important
to note that the updates in TriPD-Dist (Alg. 3) are performed
locally through communication with neighbors: the only in-
formation that agent i shares with its neighbor j ∈ Ni is
the quantity Aijxi, along with edge variable w(i,j),i, while all
other variables are kept private.

The proposed distributed protocol features both a syn-
chronous as well as an asynchronous implementation. In the
synchronous version, at every iteration, all the agents update
their variables. In the randomized asynchronous implemen-
tation, only a subset of randomly activated agents perform
updates, at each iteration, and they do so using their local
variables as well as information previously communicated to

them by their neighbors. After an update is performed, in both
cases, updated values are communicated to neighboring agents.
Notice that the asynchronous scheme corresponds to the case
of multiple coordinate blocks activation in TriPD-BC (Alg. 2).
Other activation schemes can also be considered, and our con-
vergence analysis plainly carries over; notably, the single agent
activation which corresponds to the asynchronous model of
[32]–[34] in which agents are assumed to ‘wake-up’ based on
independent exponentially distributed tick-down timers.

Furthermore, in TriPD-Dist (Alg. 3) each agent i keeps pos-
itive local stepsizes σi, τi and

(
κ(i,j)

)
j∈Ni

. The edge weight-
s/stepsizes κ(i,j) may alternatively be interpreted as inherent
parameters of the communication graph. For example, they
may be used to capture edge’s ‘fidelity,’ e.g., the channel qual-
ity in a communication link. The stepsizes are assumed to sat-
isfy the following local assumption that is sufficient for the
convergence of the algorithm (cf. Thm.s V.1 and V.2).

Assumption 6 (Stepsizes of TriPD-Dist (Alg. 3)).
(i) (node stepsizes) Each agent i keeps two positive step-

sizes σi, τi.
(ii) (edge stepsizes) A positive stepsize κ(i,j) is associated

with edge (i, j) ∈ E , and is shared between agents i, j.
(iii) (convergence condition) The stepsizes satisfy the follow-

ing local condition

τi <
1

βi‖Qi‖
2 + ‖σiL>i Li +

∑
j∈Ni

κ(i,j)A
>
ijAij‖

.

According to Assumption 6(iii) the stepsizes τi, σi for each
agent only depend on the local parameters βi, ‖Qi‖, the edge
weights, κ(i,j) and the linear mappings Li, and Aij , which are
all known to agent i; therefore the stepsizes can be selected
locally, in a decentralized fashion.

We proceed by casting the multi-agent optimization prob-
lem (30) in the form of the structured optimization problem
(1). In doing so, we describe how TriPD-Dist (Alg. 3) is de-
rived as an instance of Algorithms 1 and 2.

Define the linear operator
N(i,j) : x 7→ (Aijxi, Ajixj),

and N ∈ R2
∑

(i,j)∈E l(i,j)×
∑m

i=1 ni by stacking N(i,j):
N : x 7→ (N(i,j)x)(i,j)∈E .

Its transpose is given by:

N> : (w(i,j))(i,j)∈E 7→ x̃ =
∑

(i,j)∈E
N>(i,j)w(i,j),

with x̃i =
∑
j∈Ni

A>ijw(i,j),i. We have set w(i,j) =
(w(i,j),i, w(i,j),j), i.e., we consider two dual variables (of di-
mension l(i,j)) for each edge constraint, where w(i,j),i is main-
tained by agent i and w(i,j),j by agent j.

Consider the set
C(i,j) = {(z1, z2) ∈ Rl(i,j) × Rl(i,j) | z1 + z2 = b(i,j)}.

Then problem (30) can then be re-written as:

minimize

m∑
i=1

fi(xi) + gi(xi) + hi(Lixi)

+
∑

(i,j)∈E
δC(i,j)

(N(i,j)x) (31)
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Algorithm 3 Synchronous & asynchronous versions of TriPD-Dist algorithm

Inputs: x0
i ∈ Rni , y0

i ∈ Rri , for i = 1, . . . ,m, and w(i,j),i ∈ Rl(i,j) for j ∈ Ni.
for k = 0, 1, . . . do

I: Synchronous version

for all agents i = 1, . . . ,m do

II: Asynchronous version
Each agent i = 1. . . . ,m is activated independently with probability pi > 0
for all active agents do

Local updates:
w̄k(i,j),i=

1
2

(
wk(i,j),i + wk(i,j),j

)
+

κ(i,j)

2

(
Aijx

k
i +Ajix

k
j − b(i,j)

)
, ∀j ∈ Ni

ȳki = proxσihi
?

(
yki + σiLix

k
i

)
xk+1
i = proxτigi

(
xki − τiL>i ȳki − τi

∑
j∈Ni

A>ijw̄
k
(i,j),i − τi∇fi(xki )

)
yk+1
i = ȳki + σiLi(x

k+1
i − xki )

wk+1
(i,j),i= w̄k(i,j),i + κ(i,j)Aij(x

k+1
i − xki ), ∀j ∈ Ni

Transmission of information:
Send Aijxk+1

i , wk+1
(i,j),i to agent j, ∀j ∈ Ni

Let C =×(i,j)∈E C(i,j), L = blkdiag(L1, . . . , Lm), and
Lx = (Lx,Nx) =: (ỹ, w̃) ∈ Rnd with nd = 2

∑
(i,j)∈E l(i,j) +∑m

i=1 ri, and rewrite (31) in the following compact form:

minimize f(x) + g(x) + h̃(Lx), (32)

where f(x) =
∑m
i=1 fi(xi), g(x) =

∑m
i=1 gi(xi), h̃(ỹ, w̃) =

h(ỹ) + δC(w̃), h(ỹ) =
∑m
i=1 hi(ỹi).

In what follows, S refers to the set of primal-dual solutions
of (32). As in Section II, the primal-dual optimality conditions
can be written in the form of monotone inclusion (9) with

A :(y,w, x) 7→ (∂h∗(y), ∂δ∗C(w), ∂g(x)),

M :(y,w, x) 7→ (−Lx,−Nx, L>y + N>w),

C :(y,w, x) 7→ (0, 0,∇f(x)),
where u = (y,w) represents the dual vector.

We define the edge weight matrix as follows

W = blkdiag
(
(κ(i,j)I2l(i,j))(i,j)∈E

)
,

where the weights κ(i,j) are repeated twice (for each of the
two neighboring agents). Furthermore, we set

Σ = blkdiag(σ1Ir1 , . . . , σmIrm ,W ),

Γ = blkdiag(τ1In1
, . . . , τmInm

),

Q = blkdiag(β1Q1, . . . , βmQm).

Since proxh̃?(y,w) = (proxh?(y),w − PC(w)) (using
proxδC (·) = PC(·) along with Moreau decomposition [17,
Thm. 14.3]) the proximal updates of TriPD (Alg. 1), cf. (7),
become:

ȳi = proxσihi
?(yi+σiLixi),

w̄(i,j) = w(i,j)+κ(i,j)(N(i,j)x−PC(i,j)
(κ−1

(i,j)w(i,j) +N(i,j)x)),

x̄i = proxτigi(xi−τiL>i ȳi−τi(N>w̄)i−τi∇f(xi)).

Note that for w1, w2 ∈ Rl(i,j) the projection onto C(i,j) is

PC(i,j)
(w1, w2) =

1

2

(
w1 − w2 + b(i,j),−w1 + w2 + b(i,j)

)
.

By assigning to agent i the primal coordinate xi and dual
coordinate yi and w(i,j),i for all j ∈ Ni, TriPD-Dist (Alg. 3)
is obtained. Note that this assignment entails non-overlapping
sets of coordinates, i.e., Assumption 3(i) is satisfied.

The convergence results of TriPD-Dist (Alg. 3) are provided
separately for the synchronous and asynchronous schemes in

the next two theorems, along with a sufficient condition for
linear convergence. The proofs follow directly from Theorems
IV.5 and IV.6.

Theorem V.1 (Convergence of Algorithm 3-I). Let Assump-
tions 5 and 6 hold. The sequence (zk)k∈N = (yk,wk, xk)k∈N

generated by Algorithm 3-I converges to some z? ∈ S. Fur-
thermore, if fi, gi and hi, i = 1, . . . ,m are PLQ, then
(dS(zk,S))k∈N converges Q-linearly to zero, and (zk)k∈N

converges R-linearly to z? ∈ S.

Theorem V.2 (Convergence of Algorithm 3-II). Let Assump-
tions 5 and 6 hold. The sequence (zk)k∈N = (yk,wk, xk)k∈N

generated by Algorithm 3-II converges almost surely to some
z? ∈ S. Furthermore, if fi, gi and hi, i = 1, . . . ,m are
PLQ and (zk)k∈N ⊆ C where C is a compact set, then
(E
[
d2

Π−1S(zk,S)
]
)k∈N converges Q-linearly to zero.

VI. APPLICATION: FORMATION CONTROL

In this section we consider the problem of formation con-
trol of a group of robots [15], [35], where each robot/agent
has its own local dynamics and cost function and the goal is
to achieve a specific formation by communicating only with
neighboring agents.

For simplicity of visualization we consider a 2D problem.
Each subsystem (corresponding to a robot) has four states xi =
(pxi

, pyi , vxi
, vyi), where (pxi

, pyi) and (vxi
, vyi) denote the

position and the velocity vectors, respectively. The input for
each system is given by ui = (vuxi

, vuyi). The discrete-time LTI
model of each system is given by

xi(k + 1) = Φixi(k) + ∆iui(k), k = 0, 1, . . . .

The state and input transition matrices are as follows

Φi =


I 0 X1 0
0 I 0 X1

0 0 X2 0
0 0 0 X2

, ∆i =


X3 0
0 X3

X1 0
0 X1

,
where the parameters are X1 = −td(e−

1
td − 1), X2 = e

− 1
td

and X3 = t2d(e
− 1
td − 1 + 1

td
) with time constant td = 5 (s).

This discrete-time model was derived from the continuous-
time model of [35] using exact discretization with step length
∆T = 1.
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Let N denote the horizon length. Consider the stacked state
and input vectors xi ∈ R4N ,ui ∈ R2N :
xi := (xi(1), . . . , xi(N)), ui := (ui(0), . . . , ui(N − 1)).

Then the dynamics of each agent can be represented as
Aixi + Biui = bi where Ai, Bi are appropriate matrices and
bi depends on the initial state. The state and input constraints
of each agent are represented by the sets Xi, Ui and are as-
sumed to be easy to project onto, e.g., boxes, halfspaces, norm
balls, etc. Moreover, we assume that each agent has its own
private objective captured by input and state cost matrices Qi
and Ri, and vectors qi, ti. The specific formation between
agents is enforced using another quadratic term that penalizes
deviation of two neighbors from the desired relative position.
The optimization problem is described as follows:

minimize
xi,ui

m∑
i=1

1
2‖Qixi − qi‖2 + 1

2‖Riui − ti‖2

+

m∑
i=1

∑
j∈Ni

λi

2 ‖C(xi − xj)− dij‖2

subject to Aixi + Biui = bi, xi ∈ Xi, ui ∈ Ui
i = 1, . . . ,m

(33)

The relative desired distance of agent i from its neighbor j is
given by dij , C is an appropriate linear mapping that selects
the position variables, and λi is an scalar weight to penalize
deviation.

For each system that communicates with i, i.e., j ∈ Ni, we
introduce a local variable xij , that can be seen as the estimate
of xj kept locally by agent i. In order to be consistent hereafter
the self variables xi,ui are denoted by xii,uii.

For each agent i = 1, . . . ,m define the stacked vector
zNi

=
(
(xij)j∈Ni∪{i},uii

)
∈ Rni ,

where ni = 4N(|Ni|+ 1) + 2N .
Let Ei be a linear mapping such that EizNi

= Aixii +
Biuii. Hence, the set of points satisfying the dynamics are
given by Di = {z ∈ Rni |Eiz = bi}. Consider the linear
mapping Li such that LizNi = (xii,uii) and denote Zi :=
Xi × Ui. Moreover, let hi := δZi

, gi := δDi
and

fi(zNi) := 1
2‖Qixii − qi‖2 + 1

2‖Riuii − ti‖2

+ λi

2

∑
j∈Ni

‖C(xii − xij)− dij‖2.
With these definitions problem (33) is cast in the form of

problem (30) (minimizing over zNi
, i = 1, . . . ,m) where

the linear mapping Aij , for j ∈ Ni, is such that AijzNi =
(xii,−xij) if i < j and AijzNi = (−xij ,xii) otherwise.
Therefore, we can readily apply TriPD-Dist (Alg. 3) to solve
the problem in a fully distributed fashion yielding both syn-
chronous and randomized asynchronous implementations.

In our simulations we used horizon length N = 3. For the
input and state constraints of all agents we used box con-
straints: the positions pxi and pyi are assumed to be between
0 and 20 (m). The velocities vxi

and vyi and inputs vuxi
and

vuyi are assumed to be between between 0 and 15 (m/s) (for
all agents). The local state cost matrices are set Qi = 0.1I for
all i. The local input cost matrices are set Ri = I for half of
the agents and Ri = 2I for the rest. Moreover, the vectors qi,
ti are set equal to zero, and the penalty parameter λi = 10 is
used for all the agents.

The stepsizes of TriPD-Dist (Alg. 3) were selected as fol-
lows: i) (edge stepsizes) κ(i,j) = 1 for all (i, j) ∈ E , ii) (node
stepsizes) σi = βi/4 and τi = 0.99/(βi

2 + σi +
∑
j∈Ni

κ(i,j))
for all i, where we used

βi = max{‖Q>i Qi‖+ λi(|Ni|+ 1), ‖R>i Ri‖},
which is an upper bound for the Lipschitz constant of ∇fi. It
is plain to see that the above choice of stepsizes for the agents
satisfy Assumption 6(iii). Note that the stepsize selection only
requires local parameters Ri, Qi, λi and the number of neigh-
bors |Ni|, i.e., the algorithm can be implemented without any
global coordination.

In our simulations, we considered m robots initially in a
polygon configuration and enforced an arrow formation by
appropriate selection of dij in (33). This scenario is depicted
for m = 5 in Figure 2. The neighborhood relation in this case
is taken to be the same arrow configuration, i.e., all agents have
two neighbors apart from two agents with only one neighbor.

For comparison we considered the dual decomposition ap-
proach of [15] (based on the subgradient method). Notice
that dual decomposition with gradient or accelerated gradi-
ent methods can not be applied to this problem since fi’s are
convex but not strongly convex. Recently, TriPD-Dist (Alg. 3)
was compared against the dual accelerated proximal gradient
method, in the context of distributed model predictive control
(with strongly convex quadratic cost) [36].

In the simulations for Figure 1, we used the stepsize 10/k
(as tuned for achieving better performance) for the dual de-
composition method where k is the number of iterations. No-
tice that the dual decomposition approach for this problem can
not achieve a full splitting of the operators involved: at every
iteration agents need to solve an inner minimization (we used
MATLAB’s quadprog to perform this step), the result of
which must be communicated to the neighbors for their com-
putation, and is followed by another communication round.
This extra need for synchronization would further slow down
the algorithm in practical implementations [37].

Figure 1 demonstrates the superior performance of both the
synchronous and asynchronous versions of TriPD-Dist (Alg. 3)
compared to the dual decomposition approach. The y-axis is
the distance of vk := (xk11,u

k
11, . . . ,x

k
mm,u

k
mm) from the

solution (v? was computed by solving (33) in a centralized
fashion). The x-axis denotes the total number of local trans-
missions between agents. In the asynchronous implementation
we used independent activation probabilities pi = 0.5 for all
agents. It is observed that the total number of local iterations
is similar to that of the synchronous implementation. Finally,
as evident in Figure 1 both versions of TriPD-Dist (Alg. 3)
achieve linear convergence rate as predicted by Theorems V.1
and V.2 (the functions fi, gi and hi are PLQ).

VII. CONCLUSIONS

The primal-dual algorithm introduced in this paper enjoys
several structural properties that distinguish it from other re-
lated methods in the literature. A key property, that has been
instrumental in developing a block-coordinate version of the
algorithm, is the fact that the generated sequence is S-Fejér
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Figure 1. Comparison for the convergence of the algorithms for m = 5 (left), and m = 50 (right).
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Figure 2. Five agents reorganizing from a polygon to an arrow configuration
.

monotone, where S is a block diagonal positive definite ma-
trix. It is shown that the algorithm attains linear convergence
under a metric subregularity assumption that holds for a wide
range of cost functions that are not necessarily strongly con-
vex. The block-coordinate version of the developed algorithm
is exploited to devise a novel fully distributed asynchronous
method for multi-agent optimization over graphs. Our future
work includes designing a block-coordinate version of the Su-
perMann scheme of [38] that applies to quasi-nonexpansive
operators. In light of the fact that this method enjoys superlin-
ear convergence rates, such extension is especially attractive
for multi-agent optimization yielding schemes with faster con-
vergence and fewer communication rounds. Other research di-
rections enlist investigating extensions to account for directed
and time-varying topologies, communication delays, and de-
signing efficient strategies for selecting activation probabilities
and stepsizes.

APPENDIX A

Proof of Lemma II.4. Consider the operator T as in (12). By
monotonicity of A at z? and z̄ along with (13) we have

0 ≤ 〈−Mz? − Cz? +Mz + Cz −Hz +Hz̄, z? − z̄〉. (34)

For βf > 0, Assumption 1(ii) is equivalent to ∇f being co-
coercive [17, Thm. 18.16], i.e., for all x, y ∈ Rn:

1
βf
‖∇f(x)−∇f(y)‖2Q−1 ≤ 〈∇f(x)−∇f(y), x− y〉. (35)

On the other hand, for βf > 0 we have

〈Cz − Cz?, z? − z̄〉 = 〈∇f(x)−∇f(x?), x? − x̄〉
= 〈∇f(x)−∇f(x?), x− x̄〉

+ 〈∇f(x)−∇f(x?), x? − x〉
≤ 1

βf
‖∇f(x)−∇f(x?)‖2Q−1 +

βf

4 ‖x− x̄‖2Q
+ 〈∇f(x)−∇f(x?), x? − x〉

≤ 〈∇f(x)−∇f(x?), x− x?〉+
βf

4 ‖x− x̄‖2Q
+ 〈∇f(x)−∇f(x?), x? − x〉,

=
βf

4 ‖x− x̄‖2Q, (36)

where we have used (2) (with V = 2
βf
Q−1) in the first in-

equality, and (35) in the second inequality, respectively. Notice
that if βf = 0 then inequality (36) holds trivially with equality.

Using (36) in (34), along with skew-symmetry of K and
M , we have

0 ≤〈−Mz? − Cz? +Mz + Cz −Hz +Hz̄, z? − z̄〉
≤〈(M −K)(z − z?) + P (z̄ − z), z? − z̄〉+

βf

4 ‖x− x̄‖2Q
=〈(M −K)(z − z?) + P (z̄ − z), z? − z〉+

βf

4 ‖x− x̄‖2Q
+ 〈(M −K)(z − z?) + P (z̄ − z), z − z̄〉

=〈P (z̄ − z), z? − z〉+
βf

4 ‖x− x̄‖2Q − ‖z̄ − z‖2P
+ 〈(M −K)(z − z?), z − z̄〉

=〈z − z?, (H +M>)(z − z̄)〉
+

βf

4 ‖x− x̄‖2Q − ‖z̄ − z‖2P . (37)

By definition, S−1(H +M>)(z̄ − z) = Tz − z. Thus

〈z − z?, (H +M>)(z − z̄)〉 = 〈z − z?, z − Tz〉S . (38)

On the other hand, we have z̄− z = (H +M>)−1S(Tz− z).
Using (10), (14) and (7c) we conclude

‖z̄ − z‖2P − βf

4 ‖x̄− x‖2Q = ‖Tz − z‖2
P̃
, (39)

where P̃ is defined in (16). Combining (37), (38) and (39)
completes the proof.

Proof of Theorem II.5. We establish convergence by show-
ing that the sequence (zk)k∈N is Fejér monotone with respect
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to S = fixT . We have
‖zk+1 − z?‖2S =‖Tzk − zk + zk − z?‖2S

= ‖zk − z?‖2S + ‖Tzk − zk‖2S
+ 2〈zk − z?, T zk − zk〉S

≤ ‖zk − z?‖2S − ‖Tzk − zk‖22P̃−S , (40)
where the inequality follows from Lemma II.4. Note that
2P̃ − S is symmetric positive-definite if and only if Assump-
tion 2 holds. Therefore, by (40) the sequence (zk)k∈N is Fejér
monotone in the space equipped with inner product 〈·, ·〉S ;
in particular, (zk)k∈N is bounded. Furthermore, it follows
from (40) and the fact that 2P̃ − S is positive-definite that

‖Tzk − zk‖ → 0. (41)
The operator T is continuous (since it involves proximal and
linear mappings that are continuous, and since ∇f is assumed
continuous). Let zc be a cluster point of (zk)k∈N. It follows
from the continuity of T and (41) that Tzc − zc = 0, i.e.,
zc ∈ fixT . The result follows from Fejér monotonicity of
(zk)k∈N with respect to S = fixT and [17, Thm. 5.5].

Proof of Theorem III.1. Let us define the operator Ek :=∑m
i=1 ε

k
i Ui that maps the elements of (Rn+r,Fk−1) to

(Rn+r,Fk). The iterations of TriPD-BC (Alg. 2) can be writ-
ten as zk+1 = zk + Ek+1(Tzk − zk). We have

Ek◦Ek+1 =
∑
ε∈Ψ

P(εk+1 = ε)

m∑
j=1

εjUj

=

m∑
j=1

∑
ε∈Ψ

P(εk+1 = ε)εjUj

=

m∑
j=1

∑
ε∈Ψ,εj=1

P(εk+1 = ε)Uj =

m∑
j=1

pjUj = Π, (42)

where we used Assumptions 3(i) and 3(ii). Therefore, we have
Ek
[
‖zk+1 − z?‖2Π−1S

]
= Ek

[
‖zk + Ek+1(Tzk − zk)− z?‖2Π−1S

]
= ‖zk − z?‖2Π−1S + 2〈zk − z?,Ek

[
Ek+1(Tzk − zk)

]
〉Π−1S

+ Ek
[
〈Ek+1(Tzk − zk), Ek+1(Tzk − zk)〉Π−1S

]
= ‖zk − z?‖2Π−1S + ‖Tzk − zk‖2S

+ 2〈zk − z?, T zk − zk〉S
where we used (42) and the fact Ek is self-adjoint and idempo-
tent (since Ui are 0-1 matrices) in the last equality. Inequality
(28) follows by using (17). The convergence of the sequence
follows from (28) using the Robbins-Siegmund lemma [26]
and arguing as in [7, Thm. 3] and [8, Prop. 2.3].

Proof of Lemma IV.2. From the equivalent characterization
of strong subregularity in (29) we have that there exists a
neighborhood Ux? of x? such that for all x ∈ Ux?

(f + g)(x) ≥(f + g)(x?) + 〈−L>u?, x− x?〉
+ c1‖x− x?‖2, (43)

and a neighborhood Uu? of u? such that for all u ∈ Uu?

h∗(u) ≥ h∗(u?) + 〈Lx?, u− u?〉+ c2‖u− u?‖2. (44)

Fix z = (u, x) with u ∈ Uu? and x ∈ Ux? . Consider v =
(v1, v2) ∈ Fz := Az + Mz + Cz. By definition (cf. (8)) we
have {

v1 ∈ ∂h∗(u)− Lx,
v2 ∈ ∂g(x) +∇f(x) + L>u.

Using this together with the definition of subdifferential yields:
〈v1 + Lx, u− u?〉 ≥ h∗(u)− h∗(u?), (45)

〈v2 − L>u, x− x?〉 ≥ (f + g)(x)− (f + g)(x?). (46)
Combining (45), (46) with (43), (44) and noting that

〈L>(u? − u), x− x?〉+ 〈L(x− x?), u− u?〉 = 0,

yields:
〈v, z − z?〉 = 〈v1, u− u?〉+ 〈v2, x− x?〉

≥ c2‖u− u?‖2 + c1‖x− x?‖2 ≥ c‖z − z?‖2,
where c = min{c1, c2}. Therefore, by the Cauchy-Schwarz
inequality ‖v‖ ≥ c‖z − z?‖. Since ‖z − z?‖ ≥ d(z, F−10),
and v ∈ Fz was selected arbitrarily, we have

d(z, F−10) ≤ 1
cd(0, F z) ∀z ∈ Uu? × Ux? . (47)

Thus F is metrically subregular at z? for 0.
To establish uniqueness of the primal-dual solution consider:

L(u, x) := (f + g)(x) + 〈Lx, u〉 − h∗(u).

Adding (43) and (44) yields
L(u?, x)− L(u, x?) ≥ c‖z − z?‖2 ∀z ∈ Uu? × Ux? (48)

Let z̄? = (ū?, x̄?) ∈ S such that z̄? ∈ Uu? × Ux? . Since z̄? is
also a primal-dual solution we have L(ū?, x?)−L(u?, x̄?) ≥ 0.
Therefore, using (48) at z̄? yields z̄? = z?. Since S is convex,
we conclude that it is a singleton, i.e., S = {z?}. Consequently
it follows from (47) that F is strongly subregular at z? for 0.

The second part is a direct consequence of the first part
and the fact that if Assumption 4 holds globally then also the
quadratic growth conditions (43) and (44) hold globally, i.e.,
Ux? = Rn, Uu? ∈ Rr. This can be shown by adapting the
proof of [29, Thm. 3.3].

Proof of Lemma IV.4. Since f , g and h are proper closed
convex PLQ, the subdifferentials ∂g, ∇f and ∂h∗ are piece-
wise polyhedral mappings [16, Prop. 12.30(b), Thm. 11.14(b)].
The graph of M is polyhedral, since M is linear. Therefore,
the sum F = A+M +C is also piecewise polyhedral. Since
the inverse of a piecewise polyhedral mapping is piecewise
polyhedral, the result follows from [27, 3H.1 and 3H.3].

Proof of Theorem IV.6. (Linear convergence of Alg. 2) For
notational convenience let S̄ = Π−1S and note that S = zerF
(cf. (15)). By definition we have ‖zk−P S̄S (zk)‖S̄ = dS̄(zk,S)
(where the minimum is attained since S is a closed convex set).
Consequently, it follows from (28) that

Ek

[
d2
S̄(zk+1,S)

]
≤ Ek

[
‖zk+1 − P S̄

S (zk)‖2S̄
]

≤ ‖zk − P S̄
S (zk)‖2S̄ − ‖Tz

k − zk‖22P̃−S

= d2
S̄(zk,S)− ‖Tzk − zk‖22P̃−S . (49)

By definition (12), we have
‖z̄k − zk‖2 = ‖(H + M>)−1S(Tzk − zk)‖2

≤ ‖(H + M>)−1S‖2‖(2P̃ − S)
−1‖‖Tzk − zk‖22P̃−S , (50)
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where z̄k is defined by (13) applied at z = zk. Con-
sider the projection of z̄k onto S, PS(z̄k). By definition
‖z̄k − PS(z̄k)‖ = d(z̄k,S), and we have

d2
S̄(zk,S) ≤ ‖zk − PS(z̄k)‖2S̄ ≤ ‖S̄‖‖zk − PS(z̄k)‖2

≤ ‖S̄‖
(
‖z̄k − PS(z̄k)‖+ ‖z̄k − zk‖

)2
= ‖S̄‖

(
d(z̄k,S) + ‖z̄k − zk‖

)2
. (51)

In what follows we bound d(z̄k,S) by ‖z̄k − zk‖. Define

vk := −(H −M)(z̄k − zk) + Cz̄k − Czk. (52)

It follows from (13) that (H−M−C)zk ∈ (H+D)z̄k, which
in turn implies

vk ∈ F z̄k = (A+M + C)z̄k.

Consequently, using (global) metric subregularity of F yields

d(z̄k,S) ≤ η‖vk‖. (53)

By the triangle inequality and Lipschitz continuity of C,

‖vk‖= ‖(H−M)(z̄k−zk)−Cz̄k+Czk‖
≤ ‖(H−M)(z̄k−zk)‖+‖Cz̄k−Czk‖ ≤ ξ‖z̄k−zk‖, (54)

where ξ = ‖H−M‖+ βf‖Q‖. By (53) and (54) we have

d(z̄k,S) ≤ ξη‖z̄k − zk‖.
Combine this with (50) and (51) to derive

d2
S̄(zk,S) ≤ φ‖Tzk − zk‖2

2P̃−S , (55)

where φ = (ξη + 1)2‖(H + M>)−1S‖2‖(2P̃ − S)
−1‖‖S̄‖.

Therefore, by (49) and (55) we have

Ek
[
d2
S̄(zk+1,S)

]
≤ d2

S̄(zk,S)− 1
φd

2
S̄(zk,S).

Taking expectation in both sides concludes the proof. For the
case of PLQ functions, let Uz? denote an open subregularity
neighborhood around z? ∈ S, and set U? := ∪z?∈SUz? . By
Lemma IV.4 there exists a positive η such that d(z, F−10) ≤
ηd(0, F z) for z ∈ U?. Moreover, since (zk)k∈N ⊆ C up to
possibly enlarging C we have (z̄k)k∈N ⊆ C. Note that since
(zk)k∈N ⊆ C and C is closed, C ∩ S 6= ∅ and C ∩ U? 6= ∅. It
is sufficient to show that d(z, F−10) ≤ η′d(0, F z) for z ∈ C.
Let us define D(z) := d(0, F z). Since graF is closed, D(z)
is lower semicontinuous [16, Thm. 5.7, Prop. 5.11(a)]. By
[16, Cor. 1.10] D(z) attains a minimum over the compact set
C \ U?: cd := minz∈C\U? D(z) > 0 where the strict inequal-
ity is due to the fact that the minimizer belongs to C \ U?.
Moreover, cC := supz∈C d(z, F−10) < ∞ due to the fact
that C is bounded. Hence d(z, F−10) ≤ cC ≤ cC

cd
d(0, Fz) for

z ∈ C \ U?. Therefore, by combining the two cases we obtain
d(z, F−10) ≤max{ cCcd , η}d(0, Fz) for z ∈ C as claimed. The
second sufficient condition follows from Lemma IV.2.

Proof of Lemma IV.7. First we show the if statement: as-
sume that R = Id − T is metrically subregular at z? for 0.
Then there exists η > 0 and a neighborhood U of z? such that

d(z,R−10) ≤ ηd(0, Rz) ∀z ∈ U . (56)

The two sets R−10 and F−10 are equal, cf. (15). In what
follows, we upper bound d(0, Rz) by d(0, Fz). Let w ∈ Fz =
Az +Mz + Cz. By (13) we have that

Hz −Mz − Cz −Hz̄ ∈ Az̄.

Using this together with the monotonicity of A at z and z̄, we
obtain:

0 ≤〈z − z̄, (w −Mz − Cz)− (Hz −Mz − Cz −Hz̄)〉
=〈z − z̄, w −Hz +Hz̄〉 = 〈z − z̄, w〉 − ‖z̄ − z‖2P ,

where in the last equality we have used the fact that H =
P +K and K is skew-symmetric.

By the Cauchy–Schwarz inequality

‖z̄ − z‖2P ≤ 〈z − z̄, w〉 ≤ ‖z̄ − z‖P ‖w‖P−1 ,

therefore
‖z̄ − z‖P ≤ ‖w‖P−1 . (57)

On the other hand by (12):

‖Rz‖ ≤ ‖S−1(H +M>)P−1/2‖‖z̄ − z‖P .
Combine this with (56) and (57) to obtain

d(z, F−10) =d(z,R−10) ≤ η‖Rz‖
≤η‖S−1(H +M>)P−1/2‖‖P−1‖1/2‖w‖.

Since w ∈ Fz was arbitrary, we conclude that F is metrically
subregular at z? for 0 (with a different subregularity modulus).

Next we prove the only if statement: assume that F is met-
rically subregular at z? for 0, i.e., there exists η > 0 and
neighborhood U of z? such that

d(z, F−10) ≤ ηd(0, F z) ∀z ∈ U . (58)

By (37) and the Cauchy–Schwarz inequality we infer that

‖z̄ − z‖ ≤ c‖z − z?‖,
for some positive constant c. Hence, there exists a neighbor-
hood Ū ⊂ U of z? such that if z ∈ Ū then z̄ ∈ U . Fix a point
z ∈ Ū so that z̄ ∈ U . By (58) it holds that:

d(z̄, F−10) ≤ ηd(0, F z̄). (59)

Define v as in (52) (dropping the iteration index k). Noting
that v ∈ F z̄, it follows from (59) that

d(z̄, F−10) ≤ η‖v‖ ≤ ηξ‖z̄ − z‖, (60)

where we used (54) in the second inequality. Invoking triangle
inequality we have

d(z,R−10) =d(z, F−10) ≤ d(z̄, F−10) + ‖z̄ − z‖
≤(1 + ηξ)‖z̄ − z‖. (61)

On the other hand by (12) it holds that

‖z̄ − z‖ ≤ ‖(H +M>)−1S‖‖Rz‖.
Combining this with (61) yields

d(z,R−10) ≤ (1 + ηξ)‖(H +M>)−1S‖‖Rz‖ ∀z ∈ Ū ,
i.e., that R is metrically subregular at z? for 0.
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[2] B. C. Vũ, “A splitting algorithm for dual monotone inclusions involving
cocoercive operators,” Advances in Computational Mathematics, vol. 38,
no. 3, pp. 667–681, 2013.

[3] L. Condat, “A primal-dual splitting method for convex optimization in-
volving Lipschitzian, proximable and linear composite terms,” Journal
of Optimization Theory and Applications, vol. 158, no. 2, pp. 460–479,
2013.



15

[4] P. L. Combettes, L. Condat, J.-C. Pesquet, and B. C. Vũ, “A forward-
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[6] P. Richtárik and M. Takáč, “Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function,” Math-
ematical Programming, vol. 144, no. 1-2, pp. 1–38, 2014.

[7] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-
dual algorithm and application to distributed asynchronous optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp.
2947–2957, Oct 2016.

[8] P. L. Combettes and J.-C. Pesquet, “Stochastic quasi-Fejér block-
coordinate fixed point iterations with random sweeping,” SIAM Journal
on Optimization, vol. 25, no. 2, pp. 1221–1248, 2015.

[9] J.-C. Pesquet and A. Repetti, “A class of randomized primal-dual algo-
rithms for distributed optimization,” Journal of Nonlinear and Convex
Analysis, vol. 16, no. 12, pp. 2453–2490, 2015.

[10] O. Fercoq and P. Bianchi, “A coordinate descent primal-dual algorithm
with large step size and possibly non separable functions,” arXiv preprint
arXiv:1508.04625, 2015.

[11] G. Zhang and R. Heusdens, “Bi-alternating direction method of mul-
tipliers over graphs,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015, pp. 3571–3575.

[12] P. Latafat, L. Stella, and P. Patrinos, “New primal-dual proximal algo-
rithm for distributed optimization,” in 55th IEEE Conference on Decision
and Control (CDC), 2016, pp. 1959–1964.

[13] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508–2530, 2006.

[14] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transactions on
Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[15] R. L. Raffard, C. J. Tomlin, and S. P. Boyd, “Distributed optimization
for cooperative agents: application to formation flight,” in 43rd IEEE
Conference on Decision and Control (CDC), vol. 3, 2004, pp. 2453–
2459.

[16] R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer
Science & Business Media, 2009, vol. 317.

[17] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone
operator theory in Hilbert spaces. Springer Science & Business Media,
2011.

[18] R. T. Rockafellar, Convex analysis. Princeton University Press, 2015.
[19] P. Latafat and P. Patrinos, “Asymmetric forward–backward–adjoint split-

ting for solving monotone inclusions involving three operators,” Com-
putational Optimization and Applications, vol. 68, no. 1, pp. 57–93, Sep
2017.

[20] L. M. Briceño-Arias and P. L. Combettes, “A monotone + skew splitting
model for composite monotone inclusions in duality,” SIAM Journal on
Optimization, vol. 21, no. 4, pp. 1230–1250, 2011.

[21] P. L. Combettes and J.-C. Pesquet, “Primal-dual splitting algorithm
for solving inclusions with mixtures of composite, Lipschitzian, and
parallel-sum type monotone operators,” Set-Valued and Variational Anal-
ysis, vol. 20, no. 2, pp. 307–330, 2012.

[22] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for con-
vex problems with applications to imaging,” Journal of Mathematical
Imaging and Vision, vol. 40, no. 1, pp. 120–145, 2011.

[23] Y. Drori, S. Sabach, and M. Teboulle, “A simple algorithm for a class
of nonsmooth convex-concave saddle-point problems,” Operations Re-
search Letters, vol. 43, no. 2, pp. 209–214, 2015.

[24] P. Latafat and P. Patrinos, “Primal-dual proximal algorithms for struc-
tured convex optimization: A unifying framework,” in Large-Scale and
Distributed Optimization, P. Giselsson and A. Rantzer, Eds. Springer
International Publishing, 2018, pp. 97–120.

[25] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous dis-
tributed optimization using a randomized alternating direction method of
multipliers,” in 52nd IEEE Conference on Decision and Control (CDC),
2013, pp. 3671–3676.

[26] H. Robbins and D. Siegmund, “A convergence theorem for non negative
almost supermartingales and some applications,” in Herbert Robbins
Selected Papers. Springer, 1985, pp. 111–135.

[27] A. L. Dontchev and R. T. Rockafellar, “Implicit functions and solution
mappings,” Springer Monographs in Mathematics. Springer, vol. 208,
2009.

[28] A. Ioffe, Variational Analysis of Regular Mappings: Theory and Applica-
tions, ser. Springer Monographs in Mathematics. Springer International
Publishing, 2017.

[29] F. J. Aragón Artacho and M. H. Geoffroy, “Characterization of metric
regularity of subdifferentials,” Journal of Convex Analysis, vol. 15, no. 2,
pp. 365–380, 2008.

[30] D. Drusvyatskiy and A. S. Lewis, “Error bounds, quadratic growth, and
linear convergence of proximal methods,” Mathematics of Operations
Research, vol. 43, no. 3, pp. 919–948, 2018.

[31] J. Liang, J. Fadili, and G. Peyré, “Convergence rates with inexact non-
expansive operators,” Mathematical Programming, vol. 159, no. 1, pp.
403–434, Sep 2016.

[32] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812, 1986.

[33] N. Freris and A. Zouzias, “Fast distributed smoothing of relative mea-
surements,” in 51st IEEE Conference on Decision and Control (CDC),
2012, pp. 1411–1416.

[34] A. Zouzias and N. Freris, “Randomized gossip algorithms for solving
Laplacian systems,” in European Control Conference (ECC), 2015, pp.
1920–1925.

[35] T. Schouwenaars, J. How, and E. Feron, “Decentralized cooperative tra-
jectory planning of multiple aircraft with hard safety guarantees,” in
AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004,
pp. 1–14.

[36] P. Latafat, A. Bemporad, and P. Patrinos, “Plug and play distributed
model predictive control with dynamic coupling: A randomized primal-
dual proximal algorithm,” in European Control Conference (ECC), June
2018, pp. 1160–1165.

[37] N. Freris, S. Graham, and P. Kumar, “Fundamental limits on synchro-
nizing clocks over networks,” IEEE Transactions on Automatic Control,
vol. 56, no. 6, pp. 1352–1364, 2011.

[38] A. Themelis and P. Patrinos, “Supermann: a superlinearly convergent
algorithm for finding fixed points of nonexpansive operators,” arXiv
preprint arXiv:1609.06955, 2016.

Puya Latafat is currently working towards a joint
PhD at the Department of Electrical Engineering
(ESAT) of KU Leuven (Belgium) and IMT School
for Advanced Studies Lucca (Italy). He received
his M.Sc. in Mathematical Engineering jointly from
University of L’Aquila (Italy) and University of
Hamburg (Germany), and his B.Sc. in Electrical En-
gineering from University of Tabriz (Iran). His re-
search interests revolve around large-scale and dis-
tributed optimization with applications to model pre-
dictive control and machine learning.

Nikolaos M. Freris is Professor with the School of
Computer Science and Technology at the University
of Science and Technology of China (USTC). He
received a Diploma in Electrical and Computer En-
gineering from the National Technical University of
Athens, Greece in 2005, an M.S. degree in Electri-
cal and Computer Engineering, an M.S. degree in
Mathematics, and a Ph.D. degree in Electrical and
Computer Engineering all from the University of Illi-
nois at Urbana-Champaign in 2007, 2008, and 2010,
respectively. Dr. Freris’s research interests lie in the

area of cyberphysical systems: distributed estimation, optimization, and con-
trol, machine learning, wireless networks, signal processing, and applications
in transportation, sensor networks, robotics, and power systems. His research
was recognized with the 1000-talents award, the IBM High Value Patent
award, two IBM invention achievement awards, and the Gerondelis foun-
dation award. Previously, Dr. Freris was Assistant Professor of Electrical and
Computer Engineering at New York University Abu Dhabi, and Global Net-
work Assistant Professor of Computer Science at NYU Tandon School of
Engineering. Dr. Freris is a senior member of IEEE, and a member of ACM
and SIAM.



16

Panagiotis (Panos) Patrinos is assistant professor at
the Department of Electrical Engineering (ESAT) of
KU Leuven, Belgium since 2015. During fall/winter
2014 he held a visiting assistant professor position
at Stanford University. He received his PhD in Con-
trol and Optimization, M.S. in Applied Mathematics
and M.Eng. from National Technical University of
Athens, in 2010, 2005 and 2003, respectively. After
his PhD he held postdoc positions at the University
of Trento and IMT Lucca, Italy, where he became
an assistant professor in 2012. His current research

interests are in the theory and algorithms of structured convex and nonconvex
optimization and predictive control with a focus on large-scale, distributed,
stochastic and embedded optimization and a wide range of application ar-
eas including smart grids, water networks, automotive, aerospace, machine
learning and signal processing.


	I Introduction
	I-A A New Primal-Dual Algorithm
	I-B Randomized Block-Coordinate Algorithm
	I-C Linear Convergence
	I-D Distributed Optimization

	II A New Primal-Dual Algorithm
	II-A Related Primal-Dual Algorithms

	III A Randomized Block-Coordinate Algorithm
	IV Linear Convergence
	V Distributed Optimization
	VI Application: Formation Control
	VII Conclusions
	Appendix A
	Proof of Lemma II.4
	Proof of Theorem II.5
	Proof of Theorem III.1
	Proof of Lemma IV.2
	Proof of Lemma IV.4
	Proof of Theorem IV.6
	Proof of Lemma IV.7

	References
	Biographies
	Puya Latafat
	Nikolaos M. Freris
	Panagiotis (Panos) Patrinos


